The Investigation of the Absolute Intensities of Emission of Characteristic Kα Radiation from Thin Targets

by

T. Miticnić (M.Sc.)

A Thesis presented for the Degree of Doctor of Philosophy in the Physics Department University of Adelaide

AUGUST 1961
Contents

Introduction.

Section 1.

1.11 Expression for the emission of Ka quanta for normal incidence of the electron beam.

1.12 Relation between number of K shell ionizations produced per electron and total cross section for K shell ionizations.

1.2 Secondary effects in the emission of characteristic X radiation.

1.21 Indirect production of characteristic radiation by the photo-electric absorption of the continuous radiation.

1.22 Fluorescence Yield.

1.23 Electron rediffusion.

1.24 Ratio of the number of Ka quanta to the total number of K quanta produced.

1.31 Electron stopping power.

1.32 Total ionization cross section.

1.4 Ka quanta produced for oblique incidence of the primary electron beam.

1.41 Theoretical derivation for the emission of Ka quanta taking into account electron scattering in the target:

(a) For normal incidence of the primary electron beam.

(b) For oblique incidence of the primary electron beam.

Section 2.

2.1 Experimental problem for the isolation of Copper Ka radiation.

2.3 Crystal Monochromator.
2.4 Balanced filters.
2.41 Efficiency of Balanced filters.
2.5 Choice of detector.
2.51 Ionization chamber.
2.6 Quantum Counting Efficiency and dead volume of Counter.
2.7 Geiger Counter.
2.71 Correction for the 'Dead Volume' of an end window Geiger Counter.
2.72 Linearity of detector.
2.73 Dead Time.
2.74 Fluctuations.
2.75 Probe Unit and multiple discharges.
2.8 Proportional Counter.
2.81 Spectral response curve.
2.82 Dead time.
2.9 Scintillation Counter
2.10 Escape peak
2.11 Pulse Height Discrimination
2.12 Integral curve.
2.13 Conclusion.
2.14 Electronic circuits used in conjunction with Proportional and Scintillation Counters.
2.15 Scaler.
2.16 The Schmidt circuit.
2.17 Single channel Pulse Height Discriminator.
2.18 Upper limit of Counting Rate of Amplifier-discriminator scaler system.
Section 1.
3.1 High tension supply.
3.12 Pumping system.
3.13 Baffle and cut off valve.
3.2 Porcelain insulator and electron gun.
3.22 Magnetic lens.
3.23 Target Chamber.
3.24 Linearity of galvanometer.
3.25 Scintillation Counter used for the measurement of Copper Ka radiation.

Section 4.
4.1 Preliminary tests carried out on the equipment.
4.2 Measurement of the intensity of Copper Ka emission for normal incidence of the electron beam.
4.3 Measurement of the intensity of Copper Ka emission for oblique incidence of the electron beam.
4.4 Measurement of Copper Ka emission using:
 4.41 (a) Proportional Counter,
 4.42 (b) Geiger Counter.
4.5 Measurement of the intensity of Copper Ka emission using a crystal monochromator.

Section 5.
5.1 Yield for normal incidence of the primary electron beam.
5.2 Energy distribution of secondary electrons.
5.3 Measurements of the energy distribution of secondary electrons for normal incidence of the primary electron beam.
5.4 Yield at oblique incidence.
5.5 Rediffusion at oblique incidence.

Section 6.

6.1 Experimental results of Copper Kα emission for normal incidence of the primary electron beam.
6.12 Experimental results obtained with (a) Proportional Counter, (b) Geiger Counter.
6.13 Experimental results obtained with a crystal Monochromator.
6.2 Experimental results for Copper Kα emission for oblique incidence of the primary electron beam.

Section 7.

7.1 Theoretical calculations for Ag Kα emission for normal and oblique incidence of the primary electron beam when diffusion in the target is (a) neglected, (b) accounted for.
7.2 Experimental determination of Ag Kα emission.
7.3 Experimental results of Ag Kα emission.

Section 8.

Ratio of characteristic to white radiation from a Copper target.
Experimental Results.

Conclusion.

Appendix.
An expression for the number of X\alpha quanta emitted from thick targets per unit solid angle per electron for varying angles of emission to the target surface and varying accelerating voltages of the primary electron beam was derived, taking into account electron scattering. This derivation included the case when the incident electron beam was (a) parallel, (b) inclined to the target normal. Measurements of absolute intensity were made on thick targets of Copper and Silver using different types of detectors in conjunction with a pair of balanced filters and a crystal monochromator. Rediffusion from targets of Copper and Silver for varying accelerating voltages of the primary electron beam was investigated. The ratio of characteristic X\alpha to white radiation from a Copper target was determined as well as the efficiency of the white radiation.