THE OXIDATION OF INORGANIC SULPHUR COMPOUNDS
IN RELATION TO DENITRIFICATION IN
THIOBACILLUS DENITRIFICANS

by

Mohammed Aminuddin, B.Sc. (Hons.)

A thesis submitted in fulfilment of
the requirements for the degree of
Doctor of Philosophy

Department of Agricultural Biochemistry,
Waite Agricultural Research Institute,
The University of Adelaide.

March 1974.
TABLE OF CONTENTS

PREFACE

ACKNOWLEDGEMENTS

DECLARATION

NOMENCLATURE AND ABBREVIATIONS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

SUMMARY

1 LITERATURE REVIEW
 1.1 The Metabolism of Inorganic Compounds of Sulphur and Nitrogen by Bacteria
 1.1.1 Some common features of sulphur and nitrogen in biological systems
 1.1.2 The Nitrogen Cycle
 1.1.3 Transformation of sulphur compounds
 1.2 The Oxidation of Inorganic Sulphur Compounds by *Thiobacillus*
 1.2.1 Sulphide oxidation
 1.2.2 Oxidation of elemental sulphur
 1.2.3 Sulphite oxidation
 1.2.4 Thiosulphate oxidation
 1.2.5 Electron transport
 1.2.6 Phosphorylation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The Metabolism of Inorganic Compounds of Sulphur and Nitrogen by</td>
<td>1</td>
</tr>
<tr>
<td>Thiobacillus</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Some common features of sulphur and nitrogen in biological</td>
<td>1</td>
</tr>
<tr>
<td>systems</td>
<td></td>
</tr>
<tr>
<td>1.1.2 The Nitrogen Cycle</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Transformation of sulphur compounds</td>
<td>3</td>
</tr>
<tr>
<td>1.2 The Oxidation of Inorganic Sulphur Compounds by Thiobacillus</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Sulphide oxidation</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Oxidation of elemental sulphur</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3 Sulphite oxidation</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4 Thiosulphate oxidation</td>
<td>22</td>
</tr>
<tr>
<td>1.2.5 Electron transport</td>
<td>26</td>
</tr>
<tr>
<td>1.2.6 Phosphorylation</td>
<td>31</td>
</tr>
</tbody>
</table>
1.3 Activation of Sulphate
 1.3.1 ATP-sulphurylase
1.4 Dissimilation of Nitrate by Microorganisms
 1.4.1 Nitrate and nitrite reductases
 1.4.2 Oxidative phosphorylation

2. AIM OF THESIS

3 EXPERIMENTAL MATERIALS
 3.1 Preparation of Standard Solutions
 3.2 Buffers
 3.3 Biological Materials
 3.3.1 Bacterium
 3.3.2 Enzymes
 3.3.3 Others
 3.4 Radioisotopes
 3.5 Other Materials and Chemicals

4 EXPERIMENTAL METHODS
 4.1 Culture Techniques
 4.1.1 Culture média
 4.1.2 Maintenance of cultures
 4.1.3 Anaerobic cultures
 4.1.4 Aerobic cultures
 4.1.5 Harvesting the bacteria
 4.2 Enzyme Techniques
 4.2.1 Preparation of cell-free extracts
 4.2.1.1 Disruption of bacteria
 4.2.1.2 Preparation of crude extracts (S10)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.3</td>
<td>Preparation of particulate (P144) and soluble (S144) fractions</td>
<td>52</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Preparation of luciferin-luciferase enzyme</td>
<td>53</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Preparation of heat-stable extract from S144 fraction</td>
<td>53</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Partial purification of adenylate kinase</td>
<td>54</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Determination of enzyme activities</td>
<td>54</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Nitrate reductase</td>
<td>54</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Nitrite reductase</td>
<td>57</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Sulphide oxidizing enzyme</td>
<td>59</td>
</tr>
<tr>
<td>4.2.5.4</td>
<td>Sulphite oxidase (AMP-independent)</td>
<td>60</td>
</tr>
<tr>
<td>4.2.5.5</td>
<td>APS-reductase</td>
<td>62</td>
</tr>
<tr>
<td>4.2.5.6</td>
<td>Sulphur oxidizing enzyme</td>
<td>62</td>
</tr>
<tr>
<td>4.2.5.7</td>
<td>Thiosulphate oxidizing enzyme</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>(a) Nitrate reduction</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>(b) Production of sulphite</td>
<td>63</td>
</tr>
<tr>
<td>4.2.5.8</td>
<td>Rhodanese</td>
<td>64</td>
</tr>
<tr>
<td>4.2.5.9</td>
<td>ATP-sulphurylase</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(a) Continuous method</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(b) Sampling technique</td>
<td>66</td>
</tr>
<tr>
<td>4.2.5.10</td>
<td>ADP-sulphurylase</td>
<td>66</td>
</tr>
<tr>
<td>4.2.5.11</td>
<td>Adenylate kinase</td>
<td>67</td>
</tr>
<tr>
<td>4.2.5.12</td>
<td>Lactate dehydrogenase</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5.13</td>
<td>Inorganic pyrophosphatase</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5.14</td>
<td>ATP-generating systems</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>(a) Substrate level phosphorylation</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>(b) Oxidative phosphorylation</td>
<td>70</td>
</tr>
</tbody>
</table>
4.2.6 Determination of Michaelis constant (Km) 71
4.2.7 Determination of molecular weight by Sephadex gel filtration 72

4.3 General Techniques 73
4.3.1 Sulphide electrode 73
4.3.2 Oxygen electrode 75
4.3.3 Starch-gel electrophoresis 76
4.3.4 High voltage paper electrophoresis 77
 4.3.4.1 Separation of inorganic sulphur compounds 77
 4.3.4.2 Separation of nucleotides 78
4.3.5 Mass spectrometry 78
4.3.6 Radioisotope techniques 79
 4.3.6.1 Radiochromatogram scanner 79
 4.3.6.2 Liquid scintillation spectrometry 79
 4.3.6.3 Cerenkov radiation (for ADP-sulphurylase assay) 80
4.3.7 Preparation of column support 81
 4.3.7.1 DEAE-cellulose for the separation of proteins 81
 4.3.7.2 DEAB-cellulose for the separation of nucleotides 81
 4.3.7.3 Sephadex and Sepharose gel filtration 82
4.3.8 Membrane ultrafiltration 83

4.4 Chemical Determinations 83
4.4.1 Protein 83
4.4.2 Nitrite 83
4.4.3 Sulphite 84
4.4.4 Sulphide 84
4.4.5 Thiosulphate 85
4.4.6 Inorganic phosphate 85
4.4.7 ATP ... 86
4.4.8 Cytochromes and flavoproteins 87
4.5 Other Determinations 88
4.5.1 Absorption spectra 88

5 EXPERIMENTAL RESULTS

5.1 Sulphide oxidation 89
5.1.1 Sulphide oxidation linked to various
terminal acceptors 89
5.1.1.1 Oxygen 89
5.1.1.2 Nitrate 92
5.1.1.3 Nitrite 97
5.1.2 Products of sulphide oxidation 102
5.1.2.1 Experiments with 35S-sulphide 102
5.1.2.2 Absorption spectra of
polysulphide-type compounds 108
5.1.2.3 Production of sulphite 112
5.1.3 Stability of sulphide oxidizing
enzyme ... 116

5.2 Oxidation of polysulphide and elemental sulphur 116
5.2.1 Oxidation of polysulphide 116
5.2.2 Oxidation of elemental sulphur 118
5.2.2.1 Linked to oxygen uptake 118
5.2.2.2 Linked to nitrate reduction 121
5.2.2.3 Product of sulphur oxidation 126

5.3 Sulphite oxidation 130
5.3.1 Breakage of cells 130
5.3.2 Sulphite oxidation in cell extracts 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3</td>
<td>AMP-independent sulphite oxidation (sulphite oxidase)</td>
<td>133</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Linked to oxygen uptake</td>
<td>133</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Linked to ferricyanide reduction</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(a) Purification of enzyme</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(b) Properties of the purified enzyme</td>
<td>139</td>
</tr>
<tr>
<td>5.3.4</td>
<td>AMP-dependent sulphite oxidation (APS-reductase)</td>
<td>147</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Formation of APS</td>
<td>147</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Purification of APS-reductase</td>
<td>149</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Properties of purified APS-reductase</td>
<td>152</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Purity of sulphite oxidase and APS-reductase</td>
<td>152</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Molecular weight determinations</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>Thiosulphate oxidation</td>
<td>157</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Linked to oxygen uptake</td>
<td>157</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Linked to nitrate reduction</td>
<td>161</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Production of sulphite from thiosulphate</td>
<td>161</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Experiments with $^{35}\text{S}-\text{SO}_3^-$ and $\text{S}-^{35}\text{SO}_3^-$</td>
<td>161</td>
</tr>
<tr>
<td>5.5</td>
<td>Electron transport</td>
<td>160</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Terminal acceptors</td>
<td>160</td>
</tr>
<tr>
<td>5.5.1.1</td>
<td>Nitrate</td>
<td>160</td>
</tr>
<tr>
<td>5.5.1.2</td>
<td>Nitrite</td>
<td>172</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Cytochrome components of the electron transport system</td>
<td>176</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Characterization of overall electron transport system</td>
<td>181</td>
</tr>
</tbody>
</table>
5.5.3.1 Sulphide oxidation 181
5.5.3.2 Sulphite oxidation 186
5.5.4 Effect of growth conditions on respiratory enzymes and electron transport components 190

5.6 ATP-generating Systems 192
5.6.1 ATP production coupled to sulphite oxidation 192
5.6.2 Oxidative phosphorylation 195
5.6.3 Substrate level phosphorylation 198

5.7 ATP-sulphurylase 208
5.7.1 Purification 208
5.7.2 Properties 213
5.7.2.1 Distribution 213
5.7.2.2 Purity of the enzyme 213
5.7.2.3 Effect of incubation time and composition of reaction mixture 215
5.7.2.4 Effect of enzyme concentration, pH, temperature and inhibitors 215
5.7.2.5 Effect of APS and PPi 218
5.7.2.6 Molecular weight determination 218
5.7.2.7 Stability of enzyme 221

6 DISCUSSION 222
6.1 The Oxidation of Sulphide to Sulphite 222
6.2 Sulphite Oxidation 230
6.3 Thiosulphate Oxidation 236
6.4 Electron Transfer System 241
6.5 Phosphorylation 245
6.6 ATP-sulphurylase 249
6.7 General Discussion and Conclusions 250

7 BIBLIOGRAPHY 255
SUMMARY

1. The work described in this thesis is mainly concerned with the metabolism of inorganic sulphur and nitrogen compounds and their inter-relationships in the chemoaautotrophic bacterium, Thiobacillus denitrificans.

2. Cells and crude extracts (S10) catalysed the enzymic oxidation of sulphide, which may be coupled via the respiratory chain to either oxygen, nitrate or nitrite as terminal electron acceptors. Enzyme activity was associated mainly with membrane fraction (P144).

Cell suspensions reduced nitrate and nitrite to NO, N₂O and N₂ gases when sulphide was the electron donor. Sulphide-linked nitrate reductase was detected in crude extracts (S10) but the P144 and S144 fractions catalysed the reaction only when they were recombined. Sulphide linked nitrite reductase activity, located mainly in the P144 fraction, had a pH optimum of 7.5 with one mole of sulphide oxidized per mole of nitrite reduced.

The initial product of sulphide oxidation was a membrane-bound polysulphide. In the absence of either nitrate or nitrite, sulphide was oxidized to polysulphide and sulphite. When nitrate was present sulphide was oxidized to sulphate with
a concomitant reduction of nitrate to nitrite. Under anaerobic conditions and in the presence of nitrite, sulphide was oxidized to polysulphide only. The formation of this membrane-bound polysulphide was inhibited by CO.

3. The oxidation of elemental sulphur was catalysed by an enzyme present in the S144 fraction; GSH and a low molecular weight, heat-stable factor were required for the reaction. Sulphur oxidation may be linked to oxygen uptake in the S144 fraction and to nitrate reduction in the crude extracts (S10). The initial product of sulphur oxidation was sulphite.

4. There are two sulphite oxidizing enzyme systems, namely a soluble APS-reductase and a particulate, AMP-independent sulphite oxidase. The latter enzyme may be linked to either oxygen uptake, the reduction of ferricyanide or nitrate reduction while the former was linked to ferricyanide only.

Oxygen uptake coupled to sulphite oxidation in the P144 fraction was not affected by AMP but was inhibited non-competitively by nitrate.

Sulphite oxidase and APS-reductase were purified and their properties compared.
5. Thiosulphate oxidation located in the membrane fraction may be linked to either oxygen uptake or nitrate reduction. Thiosulphate utilised oxygen only after adding GSH whereas nitrate reduction occurred with thiosulphate alone.

$^{35}\text{S-SO}_3^-$ was oxidized to $^{35}\text{S-sulphide}$, $^{35}\text{S-polysulphide}$, $^{35}\text{S-tetrathionate}$ and $^{35}\text{S-sulphate}$. In the presence of GSH $^{35}\text{S-SO}_3^-$ was oxidized mainly to $^{35}\text{S-sulphite}$ but when nitrate was substituted for GSH, the main products were $^{35}\text{S-tetrathionate}$ and $^{35}\text{S-sulphate}$.

6. Nitrate was oxidized to nitrite by cell suspensions and crude extracts (S10) when thiosulphate, sulphide, sulphite and NADH were the electron donors. These compounds also reduced nitrite in intact cells but in crude extracts nitrite was reduced by sulphide and NADH only.

Cytochromes of the α, α and δ types were detected in crude extracts. In the membrane fraction (P144) cytochromes of the α and δ types reduced by sulphide under anaerobic conditions were reoxidized by either oxygen or nitrite. Sulphite, however, reduced only cytochrome α which was reoxidized by nitrate and oxygen but not by nitrite. In the S144 fraction cytochromes of the α and α types reduced by sulphite were reoxidized by oxygen but nitrate and nitrite were ineffective. Cytochromes of the α
and d types combined with CO and these effects were reversed by light.

7. Particulate fractions (P144) catalysed the phosphorylation of ADP to ATP during the oxidation of either various inorganic sulphur compounds or NADH. The production of ATP was verified by the firefly luciferin-luciferase enzyme as well as by following the incorporation of 32P into ATP. During the oxidation of either sulphide, sulphite or NADH, ATP production was inhibited by 2,4-dinitrophenol and oligomycin as well as by compounds that restrict electron transfer. Under anaerobic conditions, intact cells produced ATP during either sulphide oxidation linked to nitrite reduction or the oxidation of sulphite coupled to the reduction of nitrate.

In the S144 fraction, ATP was formed from APS and Pi. The S144 fraction contained high activities of ATP-sulphurylase, inorganic pyrophosphatase and adenylyl kinase but ADP-sulphurylase activity was relatively low. The contribution of these enzymes to substrate level phosphorylation was investigated.

8. ATP-sulphurylase was purified about 250-fold and some of the properties of the enzyme were studied.