FACTORS AFFECTING SULPHUR NUTRITION OF SUBTERRANEAN CLOVER
ON SANDPLAIN SOILS OF SOUTH-EASTERN SOUTH AUSTRALIA.

A.J. NICOLSON, B.Ag.Sc.

Thesis submitted for the degree of
Doctor of Philosophy
in the Faculty of Agricultural Science.

Department of Agronomy
Waite Agricultural Research Institute
The University of Adelaide
March 1970.
TABLE OF CONTENTS

Summary

Declaration

Preface

Acknowledgements

I Introduction

II Literature Review

1. Development of Knowledge of the Sulphur Cycle.

2. Forms of S in Soils.
 (a) Inorganic SO_4^{2-}-S
 (b) Reduced forms of S
 (c) Organic S

3. Sulphur Balance in Soils
 (a) S Addition
 (i) Rainfall
 (ii) Atmospheric S
 (iii) S pesticide residues
 (iv) Fertilizer S
 (v) Plant and animal residues
 (b) S Losses from Soil
 (i) Leaching
 (ii) Volatilization
 (iii) Plant uptake

Page No.
(x)
(xi)
(xii)
(xiii)
(xiv)
1
3
8
10
11
15
15
16
18
19
19
21
22
23
24
4. Factors Affecting Soil S Transformations
 (a) The Role of Micro-organisms, Plants and Animals
 (b) Influence of C/N/S Ratios
 (c) Heating and Drying of Soils
 (d) Soil Water Content
 (e) The Influence of Liming and soil pH

5. Chemistry of Soil S Transformations
 (a) Oxidation of Soil S
 (b) Reduction of Soil S Compounds
 (c) Biochemical Soil S Transformations

6. Plant S Requirements
 (a) Field Responses and Plant S Contents
 (b) Use of N/S Ratios
 (c) Estimates of S Requirement
 (d) S Requirements Relative to Animal Nutrition
 (e) Soil Tests for S Availability

7. S-Fertilizers and Usage
 (a) Superphosphate
 (b) Gypsum
 (c) Elemental S
 (d) Prolonging Residual Effect
Experimental

A Seasonal Variations and S Deficiency on Laffer Sand - Keith, South Australia

1. Introduction
 (a) Climate
 (b) Soil

2. Keith Field Trial 1964
 (a) Site Preparation
 (b) Treatments
 (c) Fertilizer Application and Seeding
 (d) Emergence
 (e) Environmental Measurements
 (f) Soil Sampling
 (g) Soil Measurements
 (h) Methods of S Determination
 (i) Harvests
 (j) Plant Analysis
 (k) Results
 (i) Yield response and plant S uptake
 (ii) Soil $\text{SO}_4^{2-}-S$ changes
 (iii) $\text{SO}_4^{2-}-S$ in clay
 (iv) Total soil S
 (v) Estimation of S mineralization
 (l) Discussion
Factors Affecting Soil Sulphur Transformations on Laffar Sand

1. Introduction

2. Pot Experiment I, 1965
 (a) Soil Preparation
 (b) Design of Experiment
 (c) Fertilizer Application, Potting and Sowing
 (d) Soil Temperature Control
 (e) Watering
 (f) Harvesting and Analyses
 (g) Results
 (i) Recoveries
 (ii) Summary of significance tests
 (iii) Plant yields and S uptake
 (iv) Soil S measurements and balance calculations
 (h) Discussion and Conclusions
 (i) S losses
 (ii) Soil temperature and mineralization

3. Incubation Experiment I
 The Influence of Soil Water and SO₄²⁻ on Net Mineralization
 (a) Introduction
 (b) Soil and Soil Preparation
3. Incubation Experiment I (continued)
 (a) Design of Experiment 121
 (d) Potting 123
 (e) Conduct of Experiment 123
 (f) Chemical Analyses 125
 (g) Results
 (i) Net mineralization of S 126
 (ii) Nitrogen mineralization 129
 (iii) Carbon dioxide release 132
 (h) Discussion 134

4. Incubation Experiment II
 The Influence of Soil Temperature and Leaching on Net S Mineralization
 (a) Introduction 136
 (b) Soil and Soil Preparation 136
 (c) Leaching Apparatus 136
 (d) Design of Experiment 137
 (e) Conduct of Experiment 139
 (f) Chemical Analyses 141
 (g) Results
 (i) Release of SO_4^{2-}-S from leached soil 141
 (ii) Release of SO_4^{2-}-S from unleached soil 143
(h) Discussion
 (i) Leaching effects
 (ii) Soil temperature

6 The Influence of Pasture Development on Soil/Plant Sulphur Balance

Pot Experiment II

1. Materials and Methods
 (a) Introduction 148
 (b) Soils and Soil Preparation 149
 (c) Design of Experiment 151
 (d) Potting and Fertilizer Application 151
 (e) Temperature Tanks 153
 (f) Management 155
 (g) Harvests 156
 (h) Chemical Analyses 158

2. Results
 (a) Statistical Analyses 159
 (b) Plant Dry Matter Yields
 (i) Total dry matter yield 162
 (ii) Dry matter yields of tops (harvest I) 162
 (iii) Dry matter yields of tops (harvest II) 167
 (iv) Dry matter yields of roots 168
2. Results (continued).
 (c) Plant S Measurements
 (i) Percentage S content of tops
 (harvest I) 169
 (ii) Percentage S content of tops
 (harvest II) 172
 (iii) Percentage S content of roots 172
 (iv) Plant S uptake 177
 (d) Soil S and S Balance Measurements 179
 (i) Net S balance 181
 (ii) Change in SO$_4^{2-}$S 187
 (iii) Total S recovery 187
 (e) Pasture Development and S Mineralization 190

3. Discussion of Results
 (a) Soil/Plant S Balance 142
 (b) Mineralization and Immobilization of S 193
 (c) Plant Responses 196

D. Experiments Using 35S Labelled Sulphate

1. Introduction 198

2. Soil/Plant S Balance Using 35SO$_4^{2-}$S
 (a) Soil Preparation and Fertilizer Labelling 198
 (b) Treatments, Management, Harvesting
 and Chemical Methods 199
 (c) Measurement of Radioactivity 199
 (d) Results 200
 (e) Discussion 206
3. **Perfusion Experiment**

 (a) **Materials and Methods**

 (b) **Results**

 (c) **Discussion**

IV **General Discussion**

V **References**
Summary

Sulphur availability and plant yields on Laffer Sand were examined in a field experiment. Fine gypsum (<300 mesh) applied at the rate of 224 kg per ha in autumn or late winter disappeared from the top 20 cm of soil before subterranean clover (Trifolium subterraneum, L.) could respond. Downward movement of gypsum following rain caused increases in the SO_4^{2-}-S content of the 10-20 cm layer of soil, showing that leaching was occurring. Plant yield responses to the autumn application of gypsum were small, and no responses to the winter application occurred. No residual effects from previous applications of gypsum were evident.

Soil SO_4^{2-}-S content of the top 10 cm of unfertilized plots remained close to 1 ppm throughout the growing period, but the corresponding plant tops were only moderately deficient, suggesting that mineralization was supplying S for plant uptake.

In an incubation experiment, soil water contents between 6% and 18% had little effect on SO_4^{2-}-S accumulation, but at 3%, mineralization was limited. At a soil water content of 24% in the presence of 30 ppm of added SO_4^{2-}-S low recoveries of mineral N and S were recorded, suggesting that losses of volatile forms of S had occurred. The addition of SO_4^{2-}-S lowered SO_4^{2-}-S accumulation at all soil water contents.
In a second incubation experiment, intermittent leaching of soil samples increased recoveries of \(\text{SO}_4^{2-} \)-S in the leachates compared with those from samples unleached until the end of the experiment. Increases in incubation temperatures from 8.5\(^\circ\)C to 32.5\(^\circ\)C led to increased \(\text{SO}_4^{2-} \)-S accumulation in leached and unleached soils.

Two pot experiments tested the effects of soil temperature, plants, added \(\text{SO}_4^{2-} \)-S and soil organic matter accumulation on S mineralization. Failure to recover significant quantities of S originally present in the soil and soil/plant systems provided evidence of volatile S losses. Less S was recovered from the bare pots than from planted pots.

Differences in organic matter contents and C/N/S ratios of Laffer Sands after periods of topdressing ranging from 0 to 27 years had almost no influence on net S mineralization. As the level of organic S rose a decreasing proportion was mineralized. The pattern of organic matter accumulation in the six soils examined suggested that in Laffer sands, under existing cultural practices, an equilibrium may be nearly reached as early as five years after development.

One soil in pot experiment II was fertilized with \(^{35} \text{S} \) sulphate and increases in the proportion of unlabelled S in plant tops between harvests I and II, and with increasing soil temperatures, showed that mineralization was supplying S for plant uptake. Radiochemical estimation of S in soil \(\text{SO}_4^{2-} \)-S extracts were higher than those made
by reduction with hydriodic acid, showing that some of the added 35S-sulphate had been converted to reduced forms.

The experiments led to the conclusion that in spite of evidence of S mineralization on Laffer Sands there is a need for regular S fertilization using material such as fragmented rock gypsum, that will maintain S supplies for an extended period.