THE GENETICS OF AUTOTETRAPLOID MAIZE

by

R. N. Oram
B.Ag.Sc.(Hons.)

A thesis presented to the University of Adelaide for the degree of Doctor of Philosophy in August, 1959.
TABLE OF CONTENTS

I. INTRODUCTION

II. THE THEORY OF LINKAGE IN AUTOTETRAPLOIDS
 (a) Enumeration of syzygic genotypes
 (b) Classification of heterozygotes
 (c) Modes of gamete formation
 (d) The genetic matrices
 (e) The estimation of the values of mode combinations
 (f) Linkage theory in tetraploids producing aneuploid gametes

III. PRODUCTION OF AUTOTETRAPLOID STOCKS
 (a) The choice of loci
 (b) The technique of inducing tetraploidy
 (c) The tetraploid stocks produced

IV. METHODS USED IN OBTAINING LINKAGE DATA
 (a) Diploids
 (b) Tetraploids

V. RESULTS
 (a) The recombination fractions in tetraploid shrunken, waxy heterozygotes
 (b) Recombination frequencies in diploid shrunken, waxy heterozygotes
 (c) Comparison of recombination in the diploid and tetraploid heterozygotes
 (d) Recombination frequencies in tetraploid sugary, glossy heterozygotes

1 6 8 11 14 27 32 38 39 46 51 51 61 85 93 95
VI. DISCUSSION

(a) Differences between the frequencies of recombination in two segments of diploid and tetraploid maize

(b) The effects of polyploidy on recombination in other species

(c) General discussion

VII. SUMMARY

VIII. ACKNOWLEDGMENTS

IX. REFERENCES
VII. SUMMARY

The frequency of recombination in two chromosome segments has been compared in diploid and tetraploid forms of maize. The segment between the sugary endosperm-1 and glossy seedling-3 loci includes the centromere of chromosome 4, whereas the other segment, bounded by the shrunken endosperm-1 and waxy loci, is located in the distal half of the short arm of chromosome 9.

Recombination in diploids was estimated from the backcross segregations of coupling phase heterozygotes.

Tetraploids heterozygous for these genes were produced. Fisher's methods were used to estimate linkage from their second backcross segregations. Methods were devised for the elimination of bias to the estimates of the recombination frequencies due to the differential viability of some gametic genotypes and first backcross phenotypes.

The difference between the recombination frequencies in the Sh Ex segment in diploid and tetraploid heterozygotes was small and not significant. However, in the Su G1 segment, recombination was significantly more frequent in tetraploids than in diploids.

These results were interpreted on the basis
of the differences in chromosome behaviour known to exist between the diploid and tetraploid forms of maize.

It is suggested that tetraploidy may increase the frequency of recombination in the proximal regions, but have little effect in distal segments of each chromosome in maize.

Estimates of the frequencies of double reduction at seven loci, and of the frequencies with which the three chromosomes bearing them undergo numerical non-disjunction, were biased by viability disturbances. The best estimates of double reduction were obtained from triplex backcross data by assuming that the effects of numerical non-disjunction and differential viability are equal and opposite. The results support the hypothesis that recombination in the proximal chromosome regions of tetraploids is more frequent than in diploids.

The effects of polyploidy on recombination in maize are compared with those in other species.