THE BIOLOGY AND ECOLOGY OF

AECHIMEIS NIGER (L.)

A thesis presented in fulfillment of the requirements for
the degree of Doctor of Philosophy of the University of Adelaide.

by

K. R. RAWAT
TABLE OF CONTENTS

INTRODUCTION

NOTES OF INTEREST

EXPERIMENTAL BIOLOGY

1. The Egg
 1. Effect of Different Constant Temperatures on the Rate of Development and Survival 64
 2. Effect of Different Combinations of Temperature and Saturation Deficit on Rate of Development and Survival 66
 3. Effect of Low Temperatures on Survival and Development 70
 4. Effect of High Temperatures on Survival 75
 5. Effect of Different Saturation Deficits for Short Exposures to 50-55C on the Rate of Development and Survival 76
 6. Effect of Age on Survival of Eggs, Subjected to a High Lethal Temperature for Short Periods 78
 7. Effect of Dry Atmosphere on Survival and Development at Different Temperatures 79
8. Effect of Varying Moisture-Status of the Environment on Survival and Development
9. Effect of Rearing Successive Generations, in the Laboratory, on General Vitality, as shown by Visibility of Eggs

II. The Larva and Pupa
1. Rate of Development and Survival of Larvae in relation to Temperature
2. Relation Between Rate of Development of Larvae, Survival of Larvae and Pupae, and the nature of the Food
3. Effect of Partial Submersion in Water on Survival of First Larval Instar
4. Different Combinations of Temperature and Saturation Deficit in relation to Survival of Starved First Larval Instar
5. Effect of Different Combinations of Temperature and Saturation Deficit on Survival of Starved Fifth Larval Instar
6. Relation between Temperature and Dehydration from Local Phytophagous Larvae in Dry Air
7 (a). Relation between Temperature and Number of Larval Bodies
7 (b). Number of Larval Bodies and Sex
8. Effect of Temperature on Rate of Development and Survival of Pupae
9. Effect of Different Constant Temperatures on Pupae which had undergone 75% of their Development at 20°C
10. Effect of Different Combinations of Temperature and Saturation Deficit on Rate of Development and Survival of Pupae
11. Water-location from Pupae in relation to Saturation
12. Effect of Temperature, during Larval Development, on Weight and Linear Dimensions of Pupae

III. The Imago
1. Effect of Feeding on Longevity at Different Temperatures
2. Effect of Saturation Deficit during Pupal Period on Longevity, Fecundity and Viability
3. Effect, on Oriposition, of Transference of Imago Oriposition at an Optimum Temperature to a Temperature of 10°C
INTRODUCTION

_**Agrotis infusa** (Boisd.) - (Lepidoptera: Agrotidae) is one of the many common species of economic importance in Australia. Over a long period of years it has been recorded as causing considerable damage to a variety of crops and pastures, at irregular intervals. At times it has been credited with the total destruction of crops particularly wheat, at least in isolated patches (Proctor 1899, 1911; Acan, 1919). It may be pointed out, however, that grave doubts exist as to the correctness of many of the identifications made by the earlier observers. In spite of the many references about economic damage by the species over the last 60 years, its biology and behaviour have hitherto been little known. Recently Cossins (1956) made an important contribution leading to the better understanding of the adult behaviour of the species in the south-eastern part of Australia. From his field observations, supplemented by laboratory investigations, he drew the following conclusions:

1. The major part of the population of _A. infusa_ in south-eastern Australia has but a single generation each year. In very favourable habitats, however, three or four generations annually are theoretically possible.

2. In the spring the moths migrate to the mountains (Australian Alps), where they aestivate gregariously, in a sexually immature condition, in crevices and small caves at altitudes above about 4000 feet. In the late summer and autumn, they migrate back to their breeding grounds.

3. From the preliminary data he suggests that a facultative diapause occurs during aestivation.
4. The migration, together with the facultative diapause, enables the moths to survive when adverse environmental conditions on the plains, mainly lack of suitable larval food, prevail.

It should, however, be noted that, because of the collection of a few impregnated females in spring in light traps at Canberra, and the presence of occasional larvae in gardens during summer in the same locality, he suggested that a small part of the population fails to aestivate.

Now, it is an accepted principle, that the biology of a species in one area cannot be interpreted in terms of its biology in a distant and climatically different one, and, the collection of a large number of moths of *A. infusa* in a light-trap at the Waite Agricultural Research Institute throughout the year, suggested that its biology in the neighbourhood of Adelaide, might differ considerably from that exhibited in southeastern Australia. Partly because of these considerations, and partly because of the lack of information on the habits and the biology of the species, the present study was started late in 1955 and continued until 1957.

Besides the investigation of the general biology and the seasonal history of the species in South Australia, a second objective was to evaluate the influences of certain environmental factors, - mainly temperature, moisture and food, - on the rate and course of development, survival, fecundity etc., with a view to obtaining a better understanding of its innate capacity for increase, under different conditions. Morphological studies of the larvae, pupae and adult were also undertaken.
as they are of great taxonomic value, and are therefore useful for the
correct identification of the species in its various stages. As with
many other common agrotids, failure to appreciate its morphological
characters has led to much confusion in the past through misidentification
of species recorded as doing economic damage.