A Thesis on

GENETIC AND FUNCTIONAL ASPECTS
OF THE OUTER MEMBRANE PROTEINS OF
ESCHERICHIA COLI K12

by

Vimala Devi Sarma

Department of Microbiology and Immunology
University of Adelaide

Presented for the degree of Doctor of Philosophy
October 1978

Awarded 9.3.79.
CONTENTS

STATEMENT 1

ACKNOWLEDGEMENTS 2

ABSTRACT 3

CHAPTER 1

A Review of the Literature 5

1.1. Structure of Outer Membrane 6

1.2. Nomenclature of Outer Membrane Proteins 12

1.3. The Lipoprotein 20

1.4. Functions of Outer Membrane Proteins 24

1.4.1. Molecular Sieving 24

1.4.2. Transport Functions of Outer Membrane Proteins 28

1.4.3. Function of Periplasmic Proteins 33

1.4.4. Role in Conjugation 36

1.4.5. Receptors for Bacteriophage and Colicins 38

1.4.6. Role in Colicin Tolerance 39

1.5. Biosynthesis and Assembly 42

1.6. Location of Outer Membrane Protein Loci 48

CHAPTER 2

Materials and Methods 50

2.1. Media 50

2.1.1. Nutrient Broth 50

2.1.2. Nutrient Agar 50

2.1.3. Soft Agar 50
2.1.4. Minimal Medium 49.
2.1.5. Minimal Agar 49.
2.1.6. Minimal Soft Agar 50.
2.1.7. Indicator Plates 50.
2.1.8. Semisolid Plates 50.

2.2. Bacteriophage Procedures

2.2.1. First Isolation of Phage from Sewage 51.
2.2.2. Second Isolation of Phage from Sewage 52.
2.2.3. Phage Purification 52.
2.2.4. Propagation in Liquid Medium 53.
2.2.5. Propagation on Solid Medium 53.
2.2.6. Phage Assay 53.
2.2.7. Selection of Phage Resistant Mutants 54.
2.2.8. Phage Neutralization 54.
2.2.9. Efficiency of Plating 55.
2.2.10. Phage Screen of Mutants 55.

2.3. Colicin Methods

2.3.1. Double Layer Plate Test 56.
2.3.2. Triple Layer Plate Test 57.
2.3.3. Colicin Assay 57.
2.3.4. Selection of Colicin Resistant or Tolerant Mutants 57.

2.4. Genetic Methods

2.4.1. Bacterial Crosses 58.
2.4.2. Preparation of Transducing Pl Phage Lysates 59.
2.4.3. Transduction with Bacteriophage Pl 59.
2.4.4. Transduction of the Mal A Marker 60.
2.4.5. Bulk Transductions with Double Selection for Wild Type Transductants 60.
2.4.6. Transduction of the Transposon Tn10 61.
2.4.7. Homogenotization of \texttt{omp B} Strains Carrying F'\texttt{l41} 62.
2.4.8. Bacterial Crosses in Complementation Analyses 62.
2.4.9. Calculation of Map Distances 63.
2.4.10. Test for Donor Proficiency 63.

2.5. Selection of Mutants
2.5.1. Nitrosoguanidine Mutagenesis 65.
2.5.2. Double Selection Procedure for \texttt{omp B} Mutants 66.
2.5.3. Selection of \texttt{nal A} Mutants 66.

2.6. Purification and Testing of Isolates 66.

2.7. Growth Experiments
2.7.1. Growing Colony-Front Experiment 67.
2.7.2. Colony Size Experiment 67.
2.7.3. Growth Curves 68.

2.8. Methods in Chemotaxis
2.8.1. Spot Test for Motility 69.
2.8.2. Chemotaxis Assay 69.

2.9. Protein Procedures
2.9.1. Extraction of Outer Membrane Protein 71.
2.9.2. Protein Estimation 72.
2.9.3. Polysacrylamide Gel Electrophoresis 73.

2.10. Table(s) of Strains and Phage
2.10.1. Bacterial Strains 74.
2.10.2. Colicin Tolerant and Phage Resistant Type Strains 77.

2.10.3. Colicinogenic Strains 80.

2.10.4. Bacteriophages Used in Screening Mutants 82.

CHAPTER 3

Isolation of Bacteriophage from Sewage

3.1. Introduction 84.

3.2. Varieties of Phage in Sewage 85.

3.3. Selection of Mutants 86.

3.4. Phage Screen of Mutants 87.

3.5. Polyacrylamide Gel Electrophoresis 89.

3.6. Preliminary Mapping 94.

3.7. Discussion 94.

CHAPTER 4

Mutants Affected in the Major Outer Membrane Protein 1

4.1. Introduction 98.

4.2. Polyacrylamide Slab Gel Electrophoresis 99.

4.3. Phage and Colicin Pattern 104.

4.4. Discussion 106.

CHAPTER 5

Genetic Mapping of Colicin Tolerant Mutants

5.1. Introduction 115.

5.2. Bacterial Crosses 116.

5.3. Transduction 117.

5.4. Three-Point Crosses 122.

5.5. Map Locus 125.
5.6. Genetic Mapping of the Tol VIII Mutation 127.

5.7. Discussion 127.

CHAPTER 6

Physiology of omp B Mutants

6.1. Introduction 131.

6.2. Donor Proficiency of Mutants Affected in Protein 1 134.

6.3. Rate of Chemotaxis in Semisolid Medium 134.

6.4. The Chemtactic Response of omp B Mutants 137.

6.5. Effect of a Gradient of Carbon Source 140.

6.6. Growth Curves 144.

6.7. Extent of Growth Defect in omp B Mutants 146.

6.8. Discussion 150.

CHAPTER 7

Reversion Studies

7.1. Introduction 159.

7.3. Properties of Revertants 161.

7.4. Bacterial Crosses 164.

7.5. Genetic Mapping by Phage P1 Transduction 165.

7.6. Discussion 168.

CHAPTER 8

Fine Structure Mapping and Complementation Analysis of the omp B Gene 172.

8.1. Fine Structure Mapping

8.1.2. Three-point Crosses 173.
8.1.3. Construction of a Fine Structure Map 175.

8.2. Complementation Analysis

8.2.1. Construction of Merozygotes 177.

8.2.2. Complementation Groups 180.

8.3. Discussion 180.

CONCLUDING REMARKS 183.

BIBLIOGRAPHY 185.
ABSTRACT

This thesis contributes towards the elucidation of the biological functions of an abundant protein in the outer membrane of *Escherichia coli* K12, designated protein 1, and the mapping of genes on the chromosome concerned with its expression. Protein 1 exists on the outer membrane as two closely-related forms of differing electrophoretic mobilities, 1a and 1b, which can be visualized by sodium dodecyl sulphate polyacrylamide gel electrophoresis on slab gels.

A search for novel bacteriophage from sewage which exploit outer membrane protein as receptors, uncovered a phage group to which resistant mutants could be selected. This mutant class, Aer, together with some previously isolated phage resistant and colicin tolerant mutant classes, were found to lack either protein 1a or 1b, or both on their outer membranes. The absence of protein in these mutants was correlated with phage resistance and colicin tolerance, in an attempt to define the role of these proteins.

The mutations in three of the colicin tolerant phenotypic classes, found to lack both proteins 1a and 1b, were all shown to map in the 74 minute region of the *Escherichia coli* chromosome. The locus is designated *omp B* (for outer membrane protein). Three-point crosses established the linear sequence of genes in this region.
to be **aro** **B** - **omp** **B** - **mal** **QP** - **glp** **D**.

The **omp** **B** mutants were investigated for physiological defects in order to determine the primary function of protein 1. **omp** **B** mutant strains were found to be disadvantaged in growth on solid and liquid media with low concentrations of carbon source, as well as defective in chemotaxis towards sugars and amino acids. These observations are interpreted in the light of the "porin" hypothesis (Nakae, 1975).

Mutations occurring at high frequency result in the reversion of the unstable **omp** **B** phenotype. Such reversions were shown to be in secondary loci and fall into two groups which restore either protein 1a or 1b, together with the expected colicin tolerance and/or phage resistance. The revertant mutation, designated **omp** **G**, mapped at 0 minutes on the **E. coli** chromosome.

A fine structure analysis of the **omp** **B** locus was attempted by transducing **omp** **B** mutations into **omp** **B** **aro** **B** mutant strains with phage P1 lysates. A suitable selection which ensured the survival of only wild type recombinants arising from intragenic crossovers, was devised. Opposing configurations of pairs of alleles in such crosses determined the sequence of alleles and enabled an allelic map to be constructed. Finally, the construction of merozygotes with P' prime factors carrying various **omp** **B** mutations showed that there were two complementation groups in the **omp** **B** locus.