A STUDY OF THE MODE OF ACTION OF CYCLOPHOSPHAMIDE
AND ITS PHYSIOLOGICAL EFFECTS ON MERINO SHEEP

by

A.C. Schlink, B. Ag. Sc. (Hons.)

A thesis submitted to the University of Adelaide
in fulfilment of the requirements for the
degree of Doctor of Philosophy

Department of Animal Physiology
Waite Agricultural Research Institute
The University of Adelaide

February, 1977

[Handwritten note: Awarded March 1978]
TABLE OF CONTENTS

DECLARATION vi

ACKNOWLEDGEMENTS vii

SUMMARY viii

LITERATURE REVIEW

1) Introduction 1
2) Cyclophosphamide 2
3) Activation of cyclophosphamide 3
4) Clinical pharmacology of cyclophosphamide 6
5) Toxic hazards of cyclophosphamide 8
 (a) General effects 8
 (b) Action at the cellular level 10
 (c) Effects on fertility 12
 (d) Effects on early pregnancy 13
 (e) Effects in late pregnancy 15
 (f) Post-natal effects 16
 (g) Effects in growth 16
 (h) Cyclophosphamide as a defleecing agent 17
6) Conclusions 19
 (a) General 19
 (b) Rationale of the proposed study 20

MATERIALS AND METHODS 21

1) Animals 21
2) Sample collection and storage 22
 (a) Blood samples 22
 (b) Urine samples 22
 (c) Rumen samples 23
 (d) Skin samples 23
 (e) Wool samples 24
3) Measurements and assay procedures
 (a) Leucocyte counts
 (b) Creatinine levels
 (c) Electrolyte content
 (d) Plasma protein concentration
 (e) CPA metabolites
 (f) Urine specific gravity
 (g) Mitotic activity of wool follicles
 (h) Rumen population counts
 (i) Wool fibre diameter
 (j) Clean scoured yield
4) Formulation of calculations
5) Statistical analysis

EXPERIMENT 1 - Effects of routes of administration of CPA

1) Introduction
2) Procedures
3) Results
4) Discussion
5) Summary

EXPERIMENT 2 - Histological study of the effects of CPA on mitotic activity in wool follicles

Introduction

Section 1 - The effect of CPA on mitotic diurnal rhythm of the wool follicles

1) Introduction
2) Procedures
3) Results
Section 2 - Rate of recovery of wool follicles from CPA

1) Introduction 41
2) Procedures 41
3) Results 42
 (a) CPA metabolism 42
 (b) Histology 43
Discussion 45
Summary 47

EXPERIMENT 3 - The effect of the CPA on the rumen organisms

1) Introduction 48
2) Procedures 48
3) Results 49
4) Discussion 50

EXPERIMENT 4 - The effects of CPA on the kidney functions of Merino sheep 51

Introduction

Section 1 52
1) Introduction 52
2) Procedures 52
3) Results 53

Section 2 - The effect of CPA on kidney functions in normally hydrated sheep 54

1) Introduction 54
2) Procedures 54
3) Results 55
Section 3 - Effects of CPA administration during dehydration, on drug metabolism and kidney functions

1) Introduction 57
2) Procedures 58
3) Results 53

Section 4 - Effects of rehydration of CPA metabolism and kidney functions 62

1) Introduction 62
2) Procedures 63
3) Results 64

Section 5 - The effects of fasting and CPA on drug metabolism and kidney functions 67

1) Introduction 67
2) Procedures 68
3) Results 69

Section 6 - Effect of CPA in fasted and dehydrated Merino sheep 71

1) Introduction 71
2) Procedures 71
3) Results 72

Discussion 75

Summary 81

EXPERIMENT 5 - Long-term field trial of the effects of CPA on pregnancy, wool growth and tolerance to the drug 83

1) Introduction 83
2) Procedures 84
3) Results 86
4) Discussion 90
EXPERIMENT 6 - Short-term field trial of the effects of CPA on ewes and lambs

1) Introduction 94
2) Procedures 94
3) Results 96
4) Discussion 98

EXPERIMENT 7 - Resistance to repeated administrations of CPA

Introduction 101
Section 1 102
1) Procedures 102
2) Results 103
Section 2 104
1) Procedures 104
2) Results 105
Discussion 106

DISCUSSION AND CONCLUSIONS 109
1) Biological effects of CPA defleecing of Merino sheep 109
2) Practical implications of CPA defleecing 116

REFERENCES
SUMMARY

1) This thesis is concerned with the physiological effects of cyclophosphamide (CPA) in the Merino sheep, and with its mode of action.

2) Pen experiments were used to evaluate the physiological impact of CPA, and field trials were included to determine the effect of CPA defleecing on the productivity of the sheep.

3) The oral route of administration of CPA is the most practical but the smallest excreted amounts of CPA metabolites (the active material) were produced by this route. The order of increasing yield of CPA metabolites (as measured by CPA metabolites in the urine) was from oral (least), to subcutaneous, intraperitoneal, and then the greatest amount came from intravenous administration.

4) The inhibition of mitotic activity of wool follicles began within 3 hr of CPA administration, and a period of 14 days elapsed before normal rates of cell division were regained.

5) The level of feeding did not influence the rate of onset of mitotic inhibition or the recovery of mitotic activity from the effects of CPA. A high nutritional status increased the metabolite yield of orally administered CPA.

6) Oral CPA reduced the rumen protozoal populations but
rumen bacterial numbers and rumen pH were unaffected. There appeared to be very little metabolism of CPA in the rumen.

7) In normally hydrated sheep, urine flow was reduced by CPA but there were only minor alterations in glomerular filtration or electrolyte excretion and concentration.

8) There was extensive reabsorption of CPA metabolites by the kidneys.

9) When the water status of the sheep was altered, CPA acted as a mild diuretic and once again there were only minor changes to glomerular filtration and electrolyte excretion.

10) Although changed nutritional and water status altered the extent of CPA metabolism, there was very little impact on the biological effectiveness of the CPA as measured by leucocyte depression, and fleece shedding.

11) Four annual CPA defleeTINGS did not produce any changes in wool quality and quantity.

12) Four annual CPA defleeTINGS in the last trimester of pregnancy did not affect the lambs produced, as measured by growth rates and wool production. The fertility of the CPA-defleeced ewes was slightly higher than that of a conventionally shorn control group.

13) Rugging of the sheep was required from the time of
CPA administration to prevent premature loss of wool. After defleecing the rugs were needed to protect the sheep from the sun or from environmental cold.

14) The sheep developed resistance to CPA defleecing with repeated CPA administrations. No consistent changes were found in body weight, wool fibre diameter and coefficient of variation of the fibre diameter. The repeated dosings with CPA resulted in greater metabolism of orally administered CPA, but on the seventh and eighth doses of oral CPA there was a reduction in wool fibre diameter.