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SUMMARY

The methods of statistical energy analysis are used to

predict vibrational energy distributions in connected structures.

The limits of ápplicability of the prediction technique are

investigated experimentally. The results of comparisons between

measurement and prediction are used to investigat'e the

\theoretical limitations inherent in the analysis.

The analysis proceeds by considering the power flow between

the parts of the structure and the nett energy balance in each

part . Thus coupling loss factors, which describe the power flow

betwqen connected parts, and internal loss factors, which describe

the nett loss of energy in the individual parts of a structure

due to aII forms of dissipation, play a central role in the analy-

sis. The coupling loss factors are related to transmission co-

efficients. Expressions for the tran'smission coefficient are

developed for the general case of four plates connected at a common

join using wave transmissíon t.heory. For the range of plate

thicknesses considered it has been sufficient to consider only

bending waves and to neglect, any energy loss due to wave trans-

formation at the join. As the coupling between plates depends upon

the angl-e of incidence of the inltial exciting bending htave and in

general a1I angtes'of incidence may be expected, it has been advan-

tageous to calculat,e average transmission coefficients, hence

average coupling loss factors.. Alternatively an empirical equation

is presented which atlows considerable mathematical simplification

in the calculation of the average transmission coefficients.

The neglect of longitudináI and tran".r"t=" wave trans-

mission and transformation at a four plate join is also invesÈi-

gated. Comparisons of average transmission coefficients calcul-

ated including longitudinal and transverse wave propagation along



with bending wave propagationrand average transmission coeffi-

cients calculated neglecting aII but bending wave propagation,

then show at what frequency and plate thickness combinations

Iongit,udinal and transverse waves can not be neglected. Empir-

ically obtained charts are presented from which the high frequency

thick plate average transmission coefficient may be estimated as

a correction to the more easily calculated bending wave trans-

mission coefficient. The effects of further $¡ave transformation

at subsequent joins are also discussed.

The internal loss factors of plates used in the experi-

menÈa1 investigation.were determined using a steady state measured

power injection method. Loss factors thus determined were found

to be consistently higher than those deterrnined using the usual

reverberation decay technique. However, the values determined

by the steady state method were consistent with very short initi-

ally steeper decay rates that btere frequenÈIy observed. Arti-

ficial damping was added to the various plates so that radiation

losses could be neglected in comparison with internal losses.

This insured that when the plates were subsequently joined together

any effects on edge radiation would be quite immaterial to the

investigation
Energy level distributions over a number of single join

multiplate structures were measured and compared with levels

predicted using the methods of statistical energy analysis, cal-

culated average coupling loss factors, and measured internal loss

fact,ors. These comparisons are then used to investigate the

Iimits of applicability the prediction t.echnique . I'rris
shown that the bounds, which are related to the number of reson-

ant modes in the excitation band width at low frequencies and to

the density of resonant modes and internal damping at, high fre-

quencies, are slightty different for the cases of two coupled



plates and three or four coupled plat,es at a single join.

Three multiplate, multijoin structures blere investigated.

Comparisons between measured and predicted plate energy levels

were good over a mid frequency range consistent with that observed

for the single join plates. The results outside of these bounds

at low and high frequencies were also reasonably good. Thus

methods and frequency range are established for the prediction

of vibrational energy levels in multiplate, multijoined, structures

to within t2dB. An extended range has also been established over

which the predicted and measured results are generally within

t2dA and, where the error is greater, the measured energy ratio

is less than that, predicted.
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SECTION I. INTRODUCTION

overthepastfewyears,therehasbeenincreasinglconcern

about the e
I

f fect of ¡po 1lutan ."1 on the quality of our environment

añd their effects on personal comfort and safety' unwanted noise

and vibration constiÈutes one form of pollutioni concern comes not

only from those who are professionally lnvolved, but also from

other members of society who are demanding theír right to an

environment free from irritating and harmfut noise' Industry is

being asked to reduce both in-plant and emitted noíse levels

while lower noise and vibration levels in air and surface trans-

port are contínually being sOught. current attitudes regarding
ll

noise pollution, resulting in ] glisqin! and envisaged legislation'

constÍtute a strong argument for continuing research into all

aspects of noise and vibration control'

This thesis is concerned with the distribution of vibra-

tional energy in an excited built up structure' since all forms

of air and surface craft, as well as many noise emitting' vibra-

tion inducing machines, can be thought of as built up structures

consisting of coltections of connected elements, it is felt that

the work presented here will find practical application in the

effort to control unwanted noise and vibration in our environment'

It is worth noting that buildings too may be considered as built

up structures and thus they too would be amenable to the analysis

presented here. Thus the topic dealt l^tith in this thesis should

have very wide aPPlication'

Withsmallstructures,forexamplemachines,oneis

generally concerned with radiated sound or vibration in critical

areas around the structure. wíth larger structures, such as

ships, aircraf t, and buildings, wê are generally concerned \^lith

noise and vibration within the confines of the structure' In
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either case our ability to predict noise and vibration levels

depends on a knowledge of the various energy inputs and their

coupling to the structural elements, the resulting vibrational

energy distribution throughout the structure and the acoustic

coupting of the struêtural elements to the surrounding fluid'

(usually air or water). The degree of couplíng and the type of

source from which the vibration comes, varies for dífferent sit-

uations, hence research in this area is necessarily relevant only

to that particular source type investigated, but predíction of the

vibrational energy distributíon in the structure is relevanÈ to

all structures, irrespective of the source, and is the subject of

the research reported in this thesl-s.

When a structure is excited, vibrational energy is distri-

buted throughout the structure in such a htay that all the struct-

ural elements are excLted to a level dependent on (a) the excita-

tion frequencies, (b) structure geometry and (c) the physical

characteristics of the structural elements.

Where the excitation is such that the lowest few modes of

the structure dominate the response, existing classical modal

response analysis techniques are satisfactory. These techniques

are also theoretfcally valid for higher order modal response, but

where Èhe excitation is of a broad band naùure, a J-arge number of

modes must be considered. In addition, the predicted higher

order modal responses are more sensitive to variations Ín geometry

and boundary conditions and it is often'not possible to define

these conditions accurately.

There are currently available computer Progralnmes, based

on classical techniques, useful for the prediction of structural

response (Xayser and Bogdanoff, L975)*, where computer memory

* See footnote on page 3.
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size and computing time are determined by the accuracy required'

However, use of these programmesr when many modes must be consid-

ered, can be prohibitive in terms of comPuter time and finally

memory size. Nonetheless a designer of a sÈructure, be it' ship

or machine, often needs to predict vibrational energy distribu-

tion, for noise and vibration contrgl Purposes even though econ-

omic factors may preclude the use of extensive computing time'

A technique which has been developed over the last decade

and which usually only requires a desk calculator for computation,

is Statistical Energy Analysis, (SEA), which uses average para-

meters to predict average energy levels of the structural element's'

These average parameters are índependent of the boundary condi-

tionS of the elements. However, the method does require a basic

minimum number of resonant modes in a measurement frequency band

and this límits the method to broad band analysis, which is

usually adequate for noise and vibration control engineering'

The technique has theoretical limitations on the extent

of its use applying particularly to frequency range and bandwidth;

these limitations are not, however, well defined. There are also

some conìmon structural configurations of ínterest where the couP-

ling coefficients required for the analysis are not easily deter-

mined. For sEA to be of use to a designer of a general structure,

these aspects need clarification and their clarification is Èhe

subject of this investígation.

Statistical energy analysis makes use of Power balance

equations which in Èurn depend upon an independent determinatíon

of loss and coupling loss factors, thus our investigation is

*Footnote: Two methods of referencing other works are used;
examPle

(a) ....respónse (Kayser and Bogdanoff, 1975) , where...
(b) ....wheie Lyon and Maidanik (L962) found" '

for



4

naturally divided into two parts; the use of power balance equa-

tions Èo describe the energy distribution of an N element connected

structure, and, the evaluation of the coupling loss factors

required for use in the po$ter balance equations- It is convenient

to consider these separately and to present a separate relevant

Iiterature review for each. Thus while the objectives of this

research are listed in section 2, their justification comes later

in sections 3 and 4. In Section 3, the power balance equation

for two coupled elements and the extension of the concepts to

include N connected elements is traced in the review of previous

work. However, the mathematics involved ín deriving these

equations from the original concept of power flow between two

linearly coupled oscillators is not presented as it has been

reviewed extensively by other authors, fox example Fahy (1974)

and Lyon (1975). Finally it is shown how the power balance

equations for a general N element connected structure can be

arranged as a matrix equationrin which the vibrational energy

disÈribution in the structure is related to the internal and

coupling loss factors for the various coupled elements.

The present methods of evaluating coupling loss factors

for different coupled element arrangements are discussed in the

literaturereviewinsection4.ItisshownthaÈÈhecoupllng
Ioss factor can be related to a wave transmission coefficient.

The use of three different wave transmission coefficients is

discussed.

The evaluation of average transmission coefficients for

a junction of 4 plates, using wave transmission theory, is next

presented and these considerations are the principal concern of

Section 4. Two situations are presented: (a) a bending r^tave

solution where bending $laves only are considered, and (b) a

general solution where wave transformations from bending to



5

Iongitudinal and transverse waves at the join are considered.

An empirical equation which relates the average bending wave

solution to the more easily calculated normal incidence bending

wave solution is Presented.

The predicted values of the average bending wave trans-

mission coefficients to the average general solution transmission

coefficients are compared in the discussion in Section 4'4'

These indicate at what plate thickness and excitation frequency

the effects of the longitudinal and transverse wave transformations

can not be ignored.

In the remainder of Section 4, experimental methods used

to measure coupling loss factors, and the problems involvedrare

discussed.

Transmission coefficients for a number of experimental

model structures consisting of various combinations of joined

plates are evaluated using the bending wave formulatíons previously

derived. These transmission coefficients are used in conjunction

with experimentally determined Ínternal loss factors to predict

energy distributions in the plate structures. Next,the structures

are subjected to third octave broad band excitation and the energy

distributions measured. In Section 5, comparisons between

measured and predicted energy ratios are presented. Two plate

single join structure results and three and four plate single

join structure results are used to determine the restrictions

within which the SEA technique gives reasonable agreement between

measured and predicted energy distributions. Further results

for larger mulÈijoin structures are also presented.

The implications of the findings in sectl-on 5 are dis-

cussed in Section 6 along with general conclusions and recommenda-

tions for further research in this fie1d.
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SECTION 2. OBJECTIVES

The frequency range over which the assumptíons implicit

in the forniulation of statistical energy anatysis are valid is

limited for any particular strucÈure, but the limits are ill

defined. An objective of this research wíll be to give quanti-

tative definition to the implied limits. Thus an objective will

be to quantÍtatively defíne the lower boundrwhich is the minimum

number of resonant modes required in an element in a measurement

frequency band. Similarly another objective will be to determine

an upper frequency bound which is related to a combination of the

degree of damping of individual modes and theír separation in

frequency space. The latter concept is described as modal over-

Iap. Thus an objective will be to quantitatively define the

upper boundrwhich is the maximum permissable value of the modal

overlap. For the purpose of defining upper and lower boundst

various models comprising two, three and four plates coupled at

a common join will be considered. The proposed bounds will then

be determined by comparing the predictions of Sea with measure-

ments made on the various models.

Yet another objective wilt be to use sEA t'o predict the

energy distribution for a multielement structure consisting of up

to four inter-connected parts and compare the predictions with

measurements taking due account for the previously determined

upper and lower frequencY bounds.

Many structures contain junctions of up to four plates

at a common join and thus it will be an objective of this research

to develop a general equation to predict the average coupling loss

factor for a co¡nmon welded join of uP to four plates. Wave

transformation can take place at a joinrbut it is not always impor-

tant and its inclusíon considerably complicates Èhe required cal-
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calculatíons. The cases when bendlng vtaves only need be con-

sidered and when wave transformation at a join can not, be ignored

will be invest,igated separately. Yet another obJectlve of this

research will be to quantitati.vely determíne the bound between

these cases. A final objective will be to develop a simplified

procedure for estimating the more complicated average couPling

ross factors from the simpler normar Lncident coupling loss

factor expression, considering only bending waves'
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SECTION 3. PO TER BALAIiICE EOUATTONS

3.I. REV IEW OF PREVIOUS TORK

A structure can be considered as a number of interconnected

elements comprísed of Plates, beams, shells and enclosed acoustic

fields. For an excitation frequency bandwídt'h within the range

of limits imposed by sEA, each element contains some,similar reson-

ant modes which can be considered' to be enSembles of modes' Lyon

(1975, (1) ) showed that the modes of an element can be thought of

as single oscillators. Lyon and Maidanik (L962) considered the

modes of a structural element to be an ensemble of oscillators'

Hence, a model of a resonant structure could be a group of reson-

ant elements coupled together. Ungar and Scharton (1967) showed

that any two coupled elements can be modelled as two ensembles

of oscillaÈors interacting and the nett power flow from one

ensemble to the other is the sum of aII the individual 0scillator

to oscillator Power flows-

Lyon and Maídanik (Lg62) present.ed an equation relating

the nett pov/er flow between two linearly coupled oscillators

excited by statistically independent random sources to the diff-

erence between the average vibrational energies of each oscillator'

This equation is

* ß
(3,I)(or-02)Ptz L2

As the connected structure can be modelled as a collec-

tion of ensembles of oscillators ínteracting togetherr êr equation

predícting the Power flow between these ensembles of oscillators

is required. No exact relationship has been developed for the

prediction of power flow for more than two coupled oscill-ators

* The symbols used are listed in the glossary at the beginning
of this thesis.
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of arbitrary coupling strength. However, with the assumption

of weak coupling Lyon and lvlaidânik (]962) and Newland (1966) have

shown that a relationship analagous to equation (3'1), 'relates

the nett power flow to the average modal energy difference between

the two ensembles of oscillators'

Pi j = Íi jr^i (Etlnt nt/nil . . . (3,21

To obtain equation (3,2), a number of restrictions have

been ímposed on the two ensembles of oscillators or grouPs of

resonant modes of the coupled elements contained within the

excitation frequency band. Fahy $974) extensively discusses

these restrictions in a very good critical review of sEA' The

steps involved in obtaining (3r2) from (3rl) will not be presented'

However, for the convenience of the reader, the major assumptions

and their implications are repeated here'

One of the restrictions is that the two elements should

be weakly coupled. Fahy states that there are few cases where

weak coupling criteria for specific systems have been published'

Examples of the two cases considered are those of coupling between

a structure and a ftuid such as the acousÈic coupting of a shell

mode to an acoustic mode of a fluid volume. Reasonably good

results also have been obtained using SEA to predict the power

flow from panels to surrounding acoustie fluids (Lyon and

Maidanik , Lg62) (crocker and Príce, 1969). It is much móre

difficult to consider, however, two coupled structural elements

as being weakly coupled. Fahy gives an example of weak coupling

between beams as two beams connected by a weak rotational'spring, as

investigated by Crandall and Lotz (1971). LoLz and Crandall
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(1973) measured power flow directly to show thaÈ Power flow

between two plates coupled by a light spring was proportional to

the modal energy dífference between the two plates. However'

Lyon (1975) states that the weak coupl.ing assumption is

unnecessary if the uncoupled systems are defined as the blocked

systems. scharton and Lyon (1968) also considered two beams

coupled by a stiff spring to be'light1yt coupled in the sense

that the angular movement at the junction was small. The coup-

ling in a real welded structure is closer to this concept than

to the others discussed.

In the work presented here, Do attempt has been made to

define the strength of the coupling, as part of this work is to

show if and where SEA can be applied to general welded plate

structures. Fahy points out in his review that investigations

by Chintsun Hwang (1973) into coupling between a plaÈe and a

welded complete cylindricat shell led to the conclusion that the

coupling was too strong for Èhe methods of sEA to be applicable.

However, Chintsun Hhrang also investigated a structure composed of

two edge connected flat, plates where comparatively good results

r¡Iere obtained.

Another assumption is that the wave fields in each e1e-

ment are reverberant, which implies that lhere are a sufficient

number of modes present in the bandwidth to constitute a rever-

berant field. Also Èhere must be a sufficient number of modes

that the coupling loss factor representé a good average value

for all the individuat coupling coefficients between the indivi-

dual modes. However, no values for the minimum number of modes

required for SEA to be usefully applied have been suggested in

the published literature. It is one of the objectives of this

research to determine experimentally the minimum number of modes

required for acceptable comparisons of measurement with the
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predictions of SEA.

Lyon and Maidanik (1962) also assumed that the modes

should be lightty damped and be well separatecl. Lightl.y damped

is often assumed to imply that the internal loss factor of

the element ti..l (Crandall and Lotz , L971). The concept of well

separated modes al[ows the power flows from each mode of one set

to different modes of the second set to be summed without the

need for considering the interaction between the modes of the

one set. The assumption stated formally is that the average

frequency difference between modes, which is I/ní, the recipro-

cal of the modal density, is greater than the half po$rer fre-

quency bandwidth (^f)L of the modal response. This can be

written as an inequality, and if both sides are divided by the

frequency f., then this and the light damping requirement can be

expressed as

ti..l (3,3(a))

nr< (n.f )-r (3,3(b) )

(3,3(b)) in effect suggests that there is an upper frequency

Iimit, the determination of which is also an objective of this

research

consideration of the power flow between two coupled

elements which are excited by statistically independent broad

band sources, (see Fig. 3-1), leads to the power balance equa-

tions for two coupled elements in steady state'

P onlEl + t¡î12nl (EI/nI-E 2/n2)
(3,4)

I

2
+ t,ln 2.nz(vr/nr-nr/nr)P a\282 (3,5)
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ln these equations, the internal loss factor of an element is

considered to be Èhe sum of the radiation loss factor plus the

plate internal loss factor

ni = ni int + ni rad

A useful reciprocity relation follows from the observation

that, the power flow from element one Èo two must certainly equal

the negative Of the power flow from two to one. Equation (3,6)

follows immediately

rr2tt = \2rn2 (3,6)

Eor P, = 0 in equation (3r5), the energy ratio E2/EI can

be expressed as

E2/EL = nrr/ (n, * nzt)

(nr/n1l \zt/ (nr+ nzt) (3,7)

The derivations and implications of equat'ions (3r4) to

(3,7) are aIJ. presented and discussed by Fahy (L974) in his

critical review.

Thus fat, we have considered only two coupled element

structures, whereas most structures contain many elements. In

his review, Fahy stated that the weak coupling assumption allowed

the vital simplification that the power flow from a mode of one

element to a mode of the coupled element could be determined

without including the interaction of any other mod.e. This
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allowed the form of the power flow equation between coupled

elements to be of the same form as the power flow equation between

coupled osciltators, with the average coupling loss factor re-

placing the coupling coefficient. If we consider an element

to be similar to an oscillator, with aYerage characteristics

replacing the characteristics of an oscillator, the weak coupling

concept can be extended to allow the power flow from one element

to a coupled element to be determined without including the

interaction of any other coupled element. This was assumed

by Eichler (1965) and led to an expression for the power balance

equation for an element coupled to any number of other elements.

P1

n
oB1t1 + oEtX nij

J-1
_)- L
.1.
lTa

n
- r¡I

l;1
lTa

Ej n ji (3,8)

Equation (3,8) was used for n = 3 ín three different

investigations; the power flow from one acoustic field to another

inside a box structure (Eichler, 1965) i the transmission loss of

a panel separating two acoustic fields (Crocker and PrÍce, 1969);

and the energy transmission from one flat plate to another via a

connecting flat beam (Lyon and Scharton, L965). AIl three are

examples of elements coupled in tandem. The application of

equation (3rg) to structures of Èhree or more interconnected

elements with various transmission paths is the subject of Èhis

investigation.

Postcript: see Page 15.
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Postscript:
A report on the investigation into sound transml-ssion

in bullding structures was read just prior to submitting this

work. The research (Gibbs and Gilford, L976) investigates

the power flow in building sÈructures t'aking account of some

wave transformations. They conclude that for sl-mple (sfngle

join) structures, wave transformat'fonS are not import'ant, but

where more than one junction is involved, their reeults

indicate that all structure borne vtaves ehould be consLdered.
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3.2. PREDICTION OF ENERGY DISTRIBUTION IN AN N.ELEI4ENT CONNECTED
STRUCTURE.

We consider any general N-element connected structure

and apply the general power balance equàtion (3,8) to each of

the N elements. These can be arrangdd to form a matrix rela-

tionship of the form AX = B where A is a square matrix of

coupling loss factors and X is a column matrix which gives the

energy level distribution. We take the energy level of element

N as a reference levelrthen the general form is

-r tz \zz -\zz

nlt

-n tg

"l N-t

-\Zt :n¡I -rl¡-l ELIEN Pr,/urE* + tlnt

E2/EN Pr,/trlE* * n¡2

- ln-t N-z

-nN-2 N-r rtq-t rq-t x-l/oEt¡ *nN 
ol-

(3,9)

Ew-t

n
where n, = n. + I n.'l-r 'r 'Lr

r=I
r+i

The Nth equation which is required to predict absolute

energy levels is

lrr¡-r, NEI¡-r/EuP*,/urE* -î** = -nrN ErlEN -n2n E,/EN

(3,10)
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where element N.i" the only element directly excited

by an external source, the input pohter terms of B become zeto

leaving a column vecÈor of the N-l COUpling loss factors from

the directly excited element. N to the other coupled elements'

The configuration of the connected structure determines

which coupling loss factors will be zeror âS where two elements

i and j are not directly coupled, the coupling loss factors nij

and nË are zero. For example, consider the two four plate

structures in fig. (3-21 with element 1 direct'Iy excited in each

case. For the box type structure, the matrix equation (3r9)

becomes

\zz -n¡z o

0 - ng¿ n¿4

-\zz n¡g -n43 E3/EL

E /E2 t

E 4/EL

ntz

0

nt¿

(3,11)

Equation (3,II) also describes the in-line structure

where I 1n = t41 = 0. (Note that nn, is contained in the term

n¿¿)'

It should also be noted that two different structural

configuraÈions may be described by the dame general matrix

equations. For examPle, when equation (3r9) is used to describe

the two struetures shown in fig. (3-3) for the case where

p2 = P3 * 0 the following equation results for both.
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(q)

(b)

FIG. 3.3. THREE ELEMENT STRUCTURES

ENERGY RAT IO EQUAT ION
TO BOTH STRUCTURES

(3, 12 ) lS APPLICABLE
(q) & (b)
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E
2 /E I \tz

E /E3 I

nzz \tz
(3,L21

ntg

Although the plates and the coupling lengths may be the

same for each case, the coupling loss factors will be different.

In a recent paper, Wöhle and Elmallawany (1975) presented

a general solution for the prediction of energy distribution in

complicated structures. Their solutíon Ís similar to equation

(3,9). Acoustic fieldswithin the structure were considered as

elements. No discussion of the evaluation of structure to

structure coupling loss factors was included. The authors

referred to previously published works which contain only evalua-

tion procedures for structure to acoustic field coupling loss

factors.
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SECTION 4. COUPLING LOSS FACTORS

4.L. REVIEW OF PREVIOUS WORK

It is clear from Section 3 tha! the important parameters

required to determine the energy distribution in a structure are

the respective coupling loss factors and internal loss factors.

Internal loss factors of elements must be either measured or

typical values usedrtaking into account the type of material and

various other losses which contribute to the apparent internal

loss. However at present, no general expression can be given

for the coupling loss factors;each join must be considered as a

special case.

The most conmon joins encountered in a connected structure

are beam to beam, beam to plate, acoustic field to plaÈe and plate

to plate. Investigations have been carried out and expressions

are available for evaluating coupling loss factors for beam to

beam (Scharton and Lyon, tr968), (Crandall and Totzr 1971);

cantilevered beam to plate, (Lyon and Eichler, L9641 ¡ beam to

plate edge, (Lyon and Scharton'1965); and acoustic field to

plate, (Crocker and Price' I969).

It is interesting to note thaÈ Scharton and Lyon (1968),

in devetoping an expression for the coupling loss factor between

two coupled beams, assumed light. damping in the following sense

(Crandall and LoLzt 197l),

ni << (n.f )
-1

which is in agreement wiÈh the inequalities (3,3(a) and (b)) with

the added resttiction (nrf¡-1 <<1. Lyon (1975(2)) has presented

a general equation relating coupling loss factor nij to a

transmission coefficient rij for coupled plates,



nij

2L.

2L
TT K.A.rl-

T.rl (4,1)

The transmission coefficient rij is defined as the ratio

or the energy transmitted across the join to the energy incident
at the join. Equation (4rI) \^ras first presented by Lyon and

Eichler (1964) and was derived from an earlier expression by

Heckl (L962), based on a 2 dimensional analogy to Sabine's

reverberant room decay equations.

Lyon and Eichler used equation (4,L) to investigate the

coupling loss factor for a cantilevered plate connected to an

infinite support plate. Wave transmission analysis was used to

obtain an expression for the average transmission coefficient of
this T type joín, which they considered as a 2 plate join.*

The expression for rij r,'ras an integral equation too com-

plicated to be of general use. Lyon and Eichler suggested that

rI2 = 8/27 for k, = k2 and TLZ = Dr/D, when k, >>

of these two values of TI2 to evaluate n' restricts íts applica-
tion to only cantílevered plate junctions where either, the

thicknesses of the two plates are equal,or where the support plate

is much stiffer than Èhe cantilevered p1ate.

Lyon (1975 (2 ) ) also presents an equation for r applicable

to the transmission of energy from one prate via a reinforcing
beam to a second plate.

Other than the two examples quoted, there does not

appear to be any other formulae readily available for calculating

*In the presentatl-on of this thesis,
as a junction of three plates withof the cantil-evered p1ate.

the T.type join is considered
tt = t3 and t, the thickness
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coupling loss factórs for plate to plate joins. Fahy (Ig74)

referred to investigations into two edge joined (L-type) coupled

plate by Chintsun Hwa'ng (1973), but attempts to obtain a copy of

this report have been unsuccessful.

Lyon (L975 (2) ) , in considering transmission through plate
junctions states that background information required to make ca1-

culations for other systems may be found in his references. It
appears that it would be most useful to use the latter background

information to develop general equations for the evaluation of
the average transmission coefficients for a general 4 plate join.
This would then a1low coupling loss factors for such a structure
to be evaluated and as stated previousry in sectíon 2. This
problem will be considered in- the folrowing sections.

The most convenient method to determine the transmission
coefficient for an energy frow from one plate to another is to
use the travelling wave method. Consider the two plate junction
in Fig.4-l,where a travelling bending wave of unit amplitude

dísplacement in plate i is incidenÈ on the join at angle oi.
Some of the energy is transmitted to form a bending wave of ampli-
tude ai propagat,ing at angle oj in plate j and the remainder isJ-')
reflected in plate i. The transmitted energy and incident energy

can be expressed in terms of the plate characterisÈics and

traverring hrave ampritudes and propagating angres, hence the
average value for the transmission coefficient from plates i to
jis

1T

2
-rl t=i | "j l2.o"o j Psi coscti doi (4,2)da l

k
l_

NoEe that the general expression for energy flor+ is ercglvl
the group velocity, is numerically proportional to phase ve
for bending hraves in plates.

i*: 1T

z

] yrere ,..i ,
Iocíty uu/k
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Equation (4,2) was used by Lyon and Eichler (1964) but

included a factor of 2 in the numerator to account for the two

equal plates receiving transmitted energy. I "j I can be

determined by considering the boundary. conditions at the join.

The wave transmission approach for two L-joined plates

is fully discussed by Cremer (Cremer, Heckl and Ungar, 1973 11)a(2))

where it is used to develop equations for the normal incidence

and average transmission coefficients. These coefficients were

used to determine the transmission loss (TL) at the join where

TL 10 los (I/ "c) (4,3)

Howeverr Do attempt was made to apply these results to SEA.

Cremer also derived expressions for .ij for special- cases

of 3 or 4 plate joíns for normal incidence only. The special

cases !.rere eitherrall plates equal or at least opposite plates

equal.

With thícker structures or higher frequencies, the longi-
tudinal and transverse l^Iaves must be considered as well as bending

waves. This problem was first considered for 4 plates at a join

by Budrin and Nikiforov (1964), for normal incidence only. Wave

transmission through concrete structure joins of 4 elements was

investigated by Kihlman (1970). He used average transmission

coefficients to predict mean square vibration leve1s in a thick
structure. Comparisons between measured and predicted levels
showed that longitudinal and transverse waves had to be considered

in evaluating the average transmission coefficient. The method

of evaluating the coefficients was not presented, but references
were made to an earlier paper (Kihlman, 1967). Attempts to
obtain this earrier paper have been unsuccessfur.
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In the previous discussion the joins were considered in

isolation. In a real structure there are many joins and the

longitudinal and transverse waves can carry vibrational energy

to a second or third junction where hrave transformations can

cause bending r^/aves to be produced, forced by the longitudinal

and transverse waves. Bhattacharya rMulholland and Crocker (1971)

investigated the wave transformations in a two join structure

and concluded that for some sÈructures predictions of energy

distributíon based on joints considered in isolation, may be in

error. By comparing predict.ed average transnfission coefficients,
evaluated using a bending wave solution and a general solution,
the conditions when r,.rave transformations, and hence the multi- join

effectsrcan not be ignoredrwill be investigated, as was stated in
Sect,ion 2.

4.2. ALTERNATIVE FORMULATIONS IN TERMS OF WAVE TRANSMISSION
COEFFICIENTS.

Equation (4rl) was derived from consideration of the

energy density decay in a vibrating plate; this approach is anal-

agous to the three dimensional room acoustics theory and in parti-

cular is analagous to the sabine reverberation time formul-ation

theory. (Beranek L97L(f).) Millington and Sette have

formulated an alternative theory for room decay. The two dimen-

sional analog of this theory leads to a similar equation to 14,1)

but with ln (f -rij) replacing .ij. The derivation is pre-

sented in Appendix A and leads to

2L
nij t- rn (r -.it)l

nk
l_

A
a

(4 ,4)



26.

There is conjecture which room decay model more closely

fits the real case. In room acoustics, the different theories

can lead to different values of the absorption coefficíent for

highly absorbent materials. However,. in this workrít is shown

in 4.3.4 that for the range of values of nij fof connected

structures,rthere is little difference between the values of the

two coefficients.
A third relationship between the coupling loss factor and

a transmission coefficient is developed by expressing the steady

state power flow and energy levels of the power flow equation

(3,2) in terms of the travelling waves in Fig. 4-1. Equation

(3,2') Èhen becomes

t LD.k.ola. 12"o" or.. dcr.ll I r- (4,5)

ni n. üJ
L + ¡"r12)

m, L0
)

2

a do
]-

(4,6)

2 l
IT

z,
n l

If the modal density equation for flat plates (Beranek

1971 ( 2) )

n, (f) Aí ß/þ ri ri)

and the wave number equation (Lyon and Eichler L964) for flat

plaÈes

orn = ^u psilDi (4 ,71

are substituted into (4r5), the average coupling loss factor can

be expressed as
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lir

k.
T

='ll-

cosclrdot

(4,8)

(4,9)

2L
r Alki

j
where

TT

z
2

a

(TF) r-l t. â
( t (1+ lai l')t.

)

t.Jl"
l-

)l') do It

We have named 1ff) the transmission factor from i to j'
ij

Equations (4,I),(4,4) and (4,8) are all of the same form'

hence a comparison between the coupling loss factors is a compar-

ison between the different transmission coefficients , T i)'

-In (t-rij ) and (TF) ij .

Theequations(4,2)and(4,9)remaininthesameform

when applied to three or four plates at a common join' The

energy transmitted from plate i to plate j and the energy leve1s

of plates i and j are the required parameters. The other plate

or plates connected at the join affect the transmitted and re-

flected wave amplitudes ai and ar. Hence the wave transmission

coefficients are affected numericaltyrbut the assumptions used

leading to the form of equations (4,2) and (4,91 remain unchanged'

lrrhen expressions for the three $tave transmíssion coef fic-

ients have been determined for the four plate single join structuret

the differences between the three different forms for the wave

transmission coefficient wiII be shown to be quite small'
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4.3. BENDING WAVE SOLUTION - ANY NUMB ER OF PLATES AT A COMIUON JOIN.

4. 3. l.wave Transmission Method.

To beginr vr€ consider four plates connected at a common

join with coordinates as shown in Fig.. 4-2. A bending wave of

unit amplitude displacement in plate I is incident at the common

join at angle oI to the normal. There is a reflected wave in

plate I of amplitud" .I travelling away from the join at reflected

angle a' and transmitted $taves a2, a3 and an travelling at

refracted angles o,Zrt, and cr,n respectively. With each transmitted

and reflected wave there is also a non propagating component with

a maximum amplitude of .i'. As only bendÍng waves are considered,

the energy is transmitted from one plate to another only by

bending moments at the join. Note that the plates do not need

to be at rich t anqles to each other for this analysis. Hence the

analysís is applicable to any number of plates at a contmon join,

atthough four plates are shown and discussed in the formulation.

Howeverras there would be few structures containing joins at which

Èhere $¡ere more than four plates, it is sufficient to consider the

four plate case.

For mathematical convenience, each plate has its or,rrn co-

ordinate system. The join is the y axis assumed positive out

of the page;each plate is in its own x-y plane with positive x

increasing away from the y axis, and positive z direction is taken

in the clockwise direction when viewed from the positive y direc-

tion, forming a series of right. handed coordinate systems. Dis-

placement in the z. direction is wr.

The boundary conditions are

(a) no displacement in any direction along the y axis,

i.e. wi = 0 at xt = 0 for all i,
(b) the join is assumed stiff in comparison with the

plate bending stiffnesses,hence the relative angle
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between any two plates remains constant, i'ê' #
L

is the same for all i, at xt = 0

(c) the sum of the bendíng moments about the join is

zero, assuming that the join has zelo moment of

inertia.

30.

0atx =0

+

,]

I4,10 )

I* .rr'n*n , -kn*, 1+sin sn - i krrYnsina' exp (it¡t)

2
4
x

i=I
a vt.

L
i^2dx

l_

a

The displacemént equation for plate I is

w, (xtry1,t) r
F"n,t 

krxrcosa, - i ktvtsinal) +

alexp (-i krxrcoscrl - i ktVtsinclt)

.r'"*p (-ktxt 1+sín ol i kryrsinot

exp (ir¡t)

The displacement equations for the remaining plates are

tr, (*rr'Yn'È)
[""*n 

(-i krrxrrcos'n í krrYrrsín*rr)

D

where the ptates are identified by the subscript n (4'II)

for n = 2t 3 and 4 resPectivelY.

The trace hrave lengths along the y axis are equal for

each plate, hence

k SINO k s]-not
2

k s ancl k s l-nc[ (4;L2)
T I 2 3 3 4 4

The factors in (4,L2) and exp(iot) are common to all

four equations and can be omitted from the displacement equations
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vrhen the boundary conditions are considered. The omítted terms

must be considered if any derivatives wíth respect to time or

position y are required. The reduced equations (4'10) and

(4r11) become

w, (xr) exp(i krxrcosor) + arexp(-i krxrcosar)

* .t exp(-krx, ltsin (4,13)

anexp (-i krrcosclrr) * "r, exp (-krrxr, (I+sin 2 )o's)

ot)

wr, (xrr) 0n

Use of the boundary conditions (a), (b) and (c) leads

to the following expressions for the constants tt as shown in

Appendix B.

*

coscrl

xrrt

(4,L4)

(4,15)

(4,t6)

(4 ,L7 \

(4,19)

1+B
1 !¿xrj r*r

l

B', i Y:¿ ,r ,*j=l Xlj '"j'

4r

i=2a, (ct,r)

¿L
ar, (cr' t ) 4

-B XI n.l=r
B

where the following relationships are used

xmrl

ü*.

k
m

k/n'

== D k 2/o l,nn'mm
2

Bn (or) l*sin or, -i coscn

( r+sin2a L/xLn2) 
0' 5 i ( t-sin2 ar/xrrr') o'u

for lsincrr l .*r'
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is the complex conjugate of B'

2

Bn

There are structures where sinor> Xlrr. This occurs when

the wave number in plate I is greater'than the wave number in

plate n. In this case, the first term of the displacement

equation (4,14) for w. becomes

r -t lt*lnn\
s l_n

1n

c 50Ia expn 2

( t+sin2cr, Ttxlnl
0

which is real.

A general exPression for

attempting to a1low for the di
lt,, | ' would be comPlicated bY

f ferent conditions, I sino, I .*rr.

X

The sign of the square root is chosen on the basis that

the displacement decreases exponentially with increasing *rr.

Hence where sinor>Xl.r, equation (4,L9 ) becomes

5

,

0.5
nn (clt) (4,20)

and sincrr>x1rr, hence equation (4,L6) is not reduced further.

The expressions for ar(clt)and "rr(ol) 
can be used to obtain

the I u, l' and l.r, l' terms in the transmission coefficient

equations (4,2) and (4,9) .

4.3.2. Enerqy Decay Method

The equations for predicting coupling loss factors based

on energy decay theory are (4,I) and (4r4). These equations

require the average transmission coefficient t. r. using the

wave number equation (4,7), the rat,io of surface densities

gsilpsj can be related to the plate parameters Xij and Üt, '
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j

(4,2L1

(4,221

o'sl D
r¡ Xr-l ij

2cosardor,/ coso. do.

2

t-

Both of the integral expressions in equation (4,21 are

symmetricalaboutol=0rhenceusingequation(4'2Ll'G'21

becomes

T.rl xijüij

T
z

IT

2

T
2

a

0

a

0

It is mathematically convenient to integrate wit'h respect

to sinol = s rather than t.o oI. This is achieved by

xijÛij j cosa.dct

(4,22) by cosot,/co"oi, set'ting i = I and j - rI¡ to

I

multiplying

become

Xtrrül' l"rrl' (coscrrr/cosqr) dstr'

I
T (s) ds (4 ,231In

T (s) is the transmission coefficient for a wave in plate I
1n

incident at angle cr,, and partially transmitted to plate n'



T (s)
1n

34.

coss

coscll
ltnl 'n

XtrrÚr^ 14,24].

(4,25)

(4,261

in which both coso' and

Equation (4 tL6)

are f uirctions of s.ltr, | '

a (s)'n

can be written as

Arr(s) coscrt/XL,-

where

(4,231

Ar, (s )

¿I

B (s) B

¡t'rl2{")

.,,=li,iîl 0/B (s) )I j

l.rrl2t") can be determined for any incident angle and plate

parameters

Substituting (4,27 ) into (4,24) and expressing the cosc)¿

terms as functions of s gives

I e,., I 
2 t") "o"2ou/x21n

(4,27)

(,lt rn/xr.,) | \ ¡ 
2 t"l lt-s2 /72rr,) 

o' s 1t-"2 ) 
0'

(4 ,281

5T (s)
1n

The average transmission coefficient is obtained from

where the upper integration limit of I ean be replaced

when Xl_n< 1.0 since no additional ene,gy is transmittedbyx In
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to plate n at an incident angle greater than the critical angle

o'c = arcsinx,, or s = Xh.
lrlhen two plates only are considered t, -- E4 = 0 and

(4,26) reduces to

¿L
A (s)

2
(4 ,29)

B +
2

þtz
xtz B I

When equation (4 t29) is substituted into equation (4,28) , the

transmission coefficient for two coupled plates for a travelling

rtrave incident on the join at angle arcsin(s) is

-51t-=2)o2ü tz¡Trr-t2lo
5

T (s)
T2

xlr*vlr*t tz (x?rr+ t2 ) 0' s ( t+ s2 ) 
0' s*,1, v e?z- t2') 0' 5 

( t -s 
2 

) 
0' s

(4,30)

which is equivalent to the expression for oblique incidence

transmission coefficient for two coupled plates derived by

Cremer (Cremer, Heckl & Ungar, 1973(2')1.

For the special 3 plate case with LZ = t¡ and tn = 0,

the two plate equatíon can be used with tl, replaced by 2þtZ

(CremerrHeckl & Ungar 1973). In this case (4,29) and

reduce to the same equat,ion as Lyon and Eichler (1964)

for the cantilevered plate coupled to a support plate.

parameter 'r'used by Lyon and Eichler is equivalent to

xr2/21þ Lz.

(4,30)

obtained

The
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A1Èhough it is not productive to reduce the general

equation for rln(s) furtherrthe normal íncidence transmission

coefficient t1r, (o) can be expressed in a relatively sipple

form. Fors=0

B = l-in

4

B1

4,. (o) - (l-i) / (L-V16lx1rr)
n=I

le 2 (o)
n

4
2/(z v

n=1 1n 1n
2/x )

and

T (o) (4,3r)
1n 2

where the summation for Aplates has been replaced by a summation

for x plates.

For two coupled plates' (4'31) becomes

2 ( rf ,,r/x ,r, )

rrr, (o) 2 (ttt rr/x¡rl/E* t,t,r2/xp\2

y'Errrlürr) o' u + (rltrr/xp) o's]2

[ir('r'r"/x,")]

which is in agreement with the 2 coupted plate normal incidence

transmission coefficient equation obtained by Cremer, Heckl &

Ungar (1973 (I) ) .
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4.3.3. Power Balance Method

The power balance equatíon led to the definition of

(TF)ij in equation (4,g1. Changing the variable to s = sina,

and setting i. = I and j = n gives

urf ln
la,r l 

2 
{ ") lt-sz ¡v2"r,) 

o' 5 ( t-"2 ) 
0' 5a"

(
ü I X

(rF)

1T

å*L. /í'rn n

u le- I '(") (t
ffi-s)1n a s

( 1's
ds

2
x
1n

(4,32)

wheretheupperlimitofintegration,u'issetequaltothe
lesser of Xi' and I. 

;
Although an expression for l.rl2{") could be derived

from (4r15) ' it is more convenientt'o use the relationship that

the sum of all the transmission coefficients and the reflection

coefficient must be unity. For convenieîcê¡ Tr1 has been used

to denote the reflectíon coefficient

tt1 (s) a l2 t"l

4
1:X r

n--2

I

(s) (4,33)

(4,341

ln

For any incidence angle, 0I,

(s)

X
2
lm

lo*l rr-"'2xfu1's
5

4
x

m=

0

)
2s

2
2 (1"1 |

(s) 1
2

0.5
)-

where

(r-s 2 0 for s t Xl*
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of

By using this expression for l.r] 
2 t=l , the denominator

(4,3)) becomes, for x plates connected to plate I

DENOM
4nXrrt d

vrsle* 
I 
2 {s) lr-s2 /x?n)

xl*

lor,l'(s) (r-=2)o'5d=

4
xr.t

I x
I

0.5
ds

(4,35)

2m=

2xlt

The integrand in the numeratot of (4,32) is the same

as the transmission coefficient equation (4,281 '

The analysis to this point has been applicable to any

material or mixture of materials. For the purpose of this

research, test plates of the same material have been used'

This allows the equations (4,L7) and (4'18) to reduce to expres-

sions involving the ratio of plate thicknesses. Note that the

absolute plate thickness is not important, provided that the

classical bending wave theory restrictions are observed, i'e'

tn< ÀBn'/6

As the bending stiffness of a plate is proportional to
3
It

D /D (rnlrm) 3
n m

d"ki"
From the wave number equation for plates (4,7') ,

(tl/DI), hence

k/kn'm\n"

l-tr,/o'l
LÇ-r"-j

o.25
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(rmlrn)

/D^)

0.5 (4,36)

and

ú,tÍ[n D
2

x*rtn

(tn,/tm) (4 ,37)

A computer programme was used to compute the value of

trrr(s) for a specific set of plates and value of s' A

Simpson's RuIe subroutine was used to determine the integral

value, hence average transmission coefficíent. The two integral

equations in equation (4,35) were written into the same pro-

gramme. Thís allowed (TF)tn to be evaluated from equation

(4,321 . With these integrals numerically calculated, the

average values of .ij, -In(1-rij)and (rF)ii were evaluated for

any set of 2, 3 or 4 flat plates at a common join'

4.3.4. Discussion of Theoretical Results

The greatest difference between the average válues of

tij, -In(l-rij) and (TF)ij occurs at the largest numerical

values of the transmission coefficient. This occurs for the

two plate junction. The variation of the three coefficients

with plate thickness ratio for two coúpled plates ís shown in

Fig. 4-3. It can be seen that the greatest difference between

(TF)f2 and t' occurs when the plates are of equal thickness

and the values are (TF)I2 = 0.44 and tr, = 0.33' the ratio of

,TElrr/rrrt 1.33, is also a maximum for the equal plate thick-

ness case. This ratio is reduåed to 1.05 for a thickness

2
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ratio of 0.5. The value of -ln(l-rij) falls between the other

two coefficients for all plate thickness ratios'

we now consider how important ¡ ot unimportant, these

differences are. The transmission coefficients are required to

evaluate the coupting loss factors which in turn are required to

predict the energy distribution in a coupled structure.

Equation (4,I) shows that for a given plate and frequency, the

coupling loss factor is proportional to the transmission co-

efficient. Let us consider the energy ratio between two coupled

elements, equation (3,2) for | æ 1 and j - 2. Inspection of

(3,71 shows that for very large coupling loss factors compared

with the internal loss factor, the energy rat.io becomes insensi-

tive to the value of the coupling loss factor. As the couP-

J-ing loss to internal loss factor ratio reduces, the sensitivity

increases. Fig. 4- 4 shows the variation in the predicted

energy ratio ,z/rt for a change in value of the coupling loss

factor to internal loss factor ratio of IdB, i.e. for the same
'l

internal loss factor, if nZL increased to \ä1, then
Il0log n)r/nr, = ldB' and the change in energy ratio is shown'

Fig, 4-4 shows that Èhe variatíon in energy ratio approaches IdB

if tl.L/n2 is very smaII. However, for a two plate junction' a

typical coupling loss factor is at }east equal to and generally

greater than the internal loss factor, resulting in reduced

sensitivity of the predicted energy ratio to a variation Ín

the coupling loss factor value.

For a four plate junction, the transmission coefficients,

hence coupling loss factor to internal loss factor ratio, is

smaller but the ratio of the two coefficients (TF) ij /r ij for

the worst case of all plates of equal thickness is only 1'15

of 0.6d8.
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Thus it is apparent that the differences between the

three lransmission coefficients are of little importance when

considering their application to SEA'

For the remainder of this wor.k, Tij has been used' as

the computation only requires one integral to be evaluated and

the comPutation time is less.

Although the average transmission coefficient can be

evaluated for any number of plates at a join, it is a process

which relies on a computer to evaluate the integral equation

(4,231 . Such an exercise must then be repeated f'or the next

join wíth another set of plate thickness ratios. such involved

computation is not satisfactory for general use and a simpler

approach to the problem of computation will be found.

The normal incidence transmission coefficient, equation

(4r31), is relatively easy to evaluate and it will be useful

for our purpose. V,rhen ,íj/rij(o) is plotted against EL/12

for two coupled plates, the computer evaluated ratios lie along

a reasonably smooth curve. This curve can be approxímated by

the empirical equation.

0.85x (4,38)
(t /r (o) ) Tij ij 2Plates I*x

forx= 3,24 ti/t)

TheT' '/r..(o) values for 3 and 4 plates at a join lie
l-l' rl

off the curve by varyíng amounts depending on the thickness

ratios of the plates at the join. By comparing .ij for 3 and

4 plate joins with tü for 2 ptate joins fot the same Ef/Li

ratios, a further approximate retationship was found which is
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I 0.7 (tm/tc'L,2) f.or Ì'm/Lc > r.2M

< I.2

(4,39)

I fort/
m-

t

where t* is the thickness of the thickest plate at the join

and t" is the greater of ti and t. .

Hence the average transmission coefficients .ij can

be evaluated empirícally by the following equation

MTT (o) (4 ,401rl

where T and M are defined by equations (4,38) and (4139).

The factors T and M are plotÈed along with some computed

results in figures 4-5 and 4-6. It can be seen that the average

transmission coefficient can be determined from the normal in-

cÍdence transmission coefficient by equation (4,40) within

0.25d8 of the computer evaluated result for thickness ratios

t./L. from 0.2 to 5. The equations can be used outside of
r-' l

this range with a decrease in accuracy'

Inspection of Fig. 4-5 shows that for two coupled plates'

if t. . (o) is used instead of T:¿t as long as t** (o) is always-l-l' ' L)

evaluated for aiìtj, the error involved is a maximum of I.8dB

at t. = t.. The coupling loss factor for j to i can then be
r-l

determined from the reciprocity equation (3'6) '

Let us examine the reciprocity rr'lationships for n

plates at a join. In the steady state condition, the power

flow from plate I to all of the (n-1) connected plates must be

I,l c

T.rl
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equal to the nett por¡Ier flows returning from the (n-1) plates

back into plate 1. This leads to the expression

n

lr=z 
tjnjr

j
n

'=r 
ttnt j

I

(4,41)

(4,421

However, if it is also assumed that for any two plates

i and j at the n plate join, the power flow from i to j is equal to

the power ftow back from j to i. ÌrÏe have the same reciprocity

relationship as (3,6) for plates i and j-

nrilnii =n /nl I

However , íf (4,42) is true, then the ratio of transmíssion co-

efficients r. ./^c.. can be related to the plate thickness ratio- L)' lr-
in the following stay. When

and as n
L crA

I /r

0.5

T.rl
constant

0.5k 2rf / (r,gr4clti)

is substituted into equation (4rt), it becomes

n..'rl

A, t.
Jr-A. t,rl(+)'A.J

A.
l-

L

A.
l_

l_

t.
L

E.
J

hence

T.rl
tji )

0.5
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TABLE 4-L.

Comparíson of Ei/Lj)0'5 with typical values of

T , ,/r . ., for various plate combinations.l-l' I r.

o.2738

0. 3r62

o.4470 0.4470

0. 500

o.5476

o.5773

0.4470

0. 500

0 .5477

0.577 4

0.6125

0.6978
0.707r
0. 7071

0.7069 0.707L
0.7069

0.7745 0 .77 43

0.7936

0. 8164

0. 8366

0 .89 42 0. 8943

0 .9L27

0. 9487

0.7937

0. 8r6 3

0.8367
0.8367
0.8368

o .8662

0. 8944

0.9487 0.9483

0.2739

0. 3162

0.4472

0.500

0.5477

0.5773

0.6124

0.707r

0 .77 46

0.7937

0.8165

0. 8367

0.8660

0. 8944

0.9129

0 .9 487

T.
l_

/r
l_

o p s at a common o n
2 3 4

0.5(t
I /E j )
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Theratio,ij/,ji'""evaluatedforanumberofdifferent

2,3and4platejunctions.Theseratiosarecomparedwith
(Lí/Ej)0'5 in Tab1e 4-I where it can be seen that the agreement

is very good. some 3 and 4 plate cases were investigated where

E,/t. was held constant while the thickness of the other plates
I)

\^ras varied and accounts for more than one value of ii/. ii in

the table fox a given thickness ratio and number of plates'

We conclude from the comparisons in Table 4.L that the recipro-

cíty relationship, equation (4,42), derived for two coupled

plates is also valid for 3 and 4 coupled plates at a join, and

thus we are led to believe that it is probably true for any

number of Plates at a join'

It is interesting to note that for structures of similar

materials, t.r(o) =.ji(o) for all thickness ratios. This can

be shown by substituting ,ltr'r/xii = rcj/Lí)z'5 into equation

(4131) and expanding for, say x = 4, and' n = 2'

2 (L2/Lr) 2.5

\, (o)

I 
r. (r/\f 5 + ft3/ELl2'5 + ft4/LL)2. 2l5

2

I . 2 5 + ft 2/ t L) 
L . 2 5 + rrzrt t rt r) 

L' 2 5 + ft2n/ t tt r)'' 
2 5)2

t (t /t )I 2

(4,43)

The denominator of 14,43) is invariant to an interchange of

indicesland2,hencetrr(o)=trr(o)andthereforenormal

incidence transmission can not satisfy the reciprocity relation-

ship.

Thecalculatedaveragetransmissioncoefficientshave

been used to evaruate the average coupring ross factors which
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in turn have been used to predict the energy ratios of the

experimental test structures reported in Section 5'

4.4. GENERAL SOLUTI O}ù FOUR PLATES AT.A COMMON JOIN

4.4.L. Wave Transml- ssion Method

Weshallno\^'reconsidertheproblemofwavetransmissj.on

atafourplatejoin.Theboundaryconditionthat'i=0at

*I = 0 is relaxed to allow the generation and propagation of

longitudinal and transverse hTaves, âs well as the previously

considered bending !'¡aves'

Themethodwhichwillbeusedisbasicallythesameas

used in section 4.3 except that two more wave fields must be

considered. Longitudinal and transverse r^taves produced in each

plate propagate ahray from the join at angles determined by the

trace wavelength and wave propagation speeds'

rn Section 4-3, both t' and (TF) ij were calculated but

as it was shown that Èheir values hrere very close, only tij will

be calculated in this section as the computation time required

is much less than for (Te) ij.
Fourplatesatrightanglesatacolnmonjo.inareconsid-

ered with the same coordinate systems as used previously and

shown in Figure 4-2. We consider an incident bending wave in

plate I which subsequently generates bending, longitudinal and

transverse vlaves at the join' The disptacements in the xir

y1 and z, directions are ui' vi and w' respectively' After

the common time dependent term exp (i ut) aird the trace v¡ave-

Iength terms, including prsitßi = gisiny' = krsincrlr have been

t ed the di Iacement equations for the four are as follows:

Note that the longiÊudinal and Ëransverse Ì¡/aves are considered as a means

of transmittíng "r,.tgy at the join, forced by the incident llave. It is
not assumed that the iongitudinal and transverse waves necessarily form
resonant wavefields.
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,j (*j ) = brcosßrexP (-ipjxjcosßi ) +cjsinv 'exp t-ia jxrcosY, )

for j= I,2,3and4 (4'441

v x ) =b sinß exp (-ip l
x j cosß

) ) c . cosy j"*p (-iqjxjcosY . )
l jll

rj (*j) = a.exP(-ikrx.coso. )+ajexp(-nj*j p+sin
J
) o'5)

for j = 1, 2t 3 and 4

for j - 2, 3 and 4

rl (*I) = exp (ikrxrcosor) +arexP (-ikrxrcosot)

2 0.5

2
cl

(4 ,45\

(4 ,461

(4,471+ alexp (-ktxt (I+sin cl, )

nj, pj and ø, are the bending, Iongitudinal and trans-

verse hrave numbers and cl, , ßi and y . are the respective wave

propagat.ing angles.

For thÍs analysis we have assumed that the incident wave

is a bending hrave. There is no way that the incident bending

wave can cause a nett displacement in the y direction' This

means that v= = 0 for all plates' Further more the join has
)

no mass, thus the boundary condítions at *j = 0 are;

(a) continuity of linear displacement

-u3

-w2

o2

-\^t 3

'u4

t4

0for)

I

tl

tr=
tl

*r=
*r=
or=
vj= I 2, 3 and 4.

(4,48å-j)
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(b) continuity of angular displacement

àwI a
I^t l for j 2, 3 and 4

ðx âx

D

j
(4,48kr1,m)

(4,48n)

o ( 4,48,o1

0 ( 4,48,p)

I

(c) the sum of bending moments is zero

4
x

j=I

^2d w.
J

: --T-J ðx7l

+E t
3 3

0

(d) the sum of forces in the *I and z, directions ís

zero. (There are no forces in the y direction since v. = 0)

ð 
3t, àut â 

3t" Ðto

", d 
+ E2Ez---! - ", Ë 

- EqEA 
*

33 a w4 ÐtI

âx

ð *2 âü"J-D

ã*3
D E fI I

I

There are no$r three types of wave transmission coeffic-

ients to be considered. These are bending to bending' 'rBBlrrr

bending to longitudinal, rBLlr, and bending to transverse'

,BTIrr, where the definition of each is similar to that given

previously, i.e. the ratio of the average energy transmitted

into plate n (bending, longitudinal or transverse) to the average

energy incident on the join (bending r¡Iave energy in this case) '

The ÈransmitÈed and reflected wave amplitudo.j , bj and

"j can be determined for a particular incident an9le crt from

the sixteen boundary condition equations. The sguares of

rhe moduli l.r l' , l Oj l' and l .j l', also functions of ot, can
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then be used to calculate the various oblique incidence trans-

mission coefficients which can be integrated over all incident

angles to give the average transmission coefficients. The

oblique incídence transmission coefficients are obtained from

consideration of power transmitted in each vtave.

The incident bending wave energy in pl-ate I is

3
D t r¡k I coscll

where the wave amplitude has been taken as unity. The longi-

tudinal wave energy transmitted across the join per unit length

is
2

2ptC"trl cos Ê.l

o j.j"l,ni lu, 12"o" Br/zorrlcoscrl

" j. jn j I u, I 
2.o" 

B ,/zorrlcoso¿ r

orticrlaj | ": 12eost ./2orklcosc,

2

and the transverse wave energy transmitted across the join per

unit length is
2

ptCrtrt 2 cosY )

Hence,

lji-!-
2

tBI, (cllj I

(4,49)

r$l er.:nt I

tBT rj (a
1

"j [2.o=vrl2Drkrcosa, (4,50)
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Pj u/crj

and

qj u/crj ( 4 ,5lb)

are the respective longitudinal and transverse wave numbers in

prate i, and lo:'l , 1c.21, cos ß, and cos Y, are arr functions of

crr '

After setting s = sinc1, as in Section 4.3, the average

transmission coefficients tBLt. and tBTtn are

Ibr,l
2I cosß

(4,5la)

(4,52)

(4,53)

(4 ,541

Í,

n
rBL-IN

TBT
1n

where F

F In ds
2 coso¿1

t]51'"o"r, 
u=

2 cosot

nrrtrrnrr/D1kl

t ' 
PntrrlcgtPttt

c 2 t
I tjltt

Ln

rÊl 
"

(l) r'tr,, t,

1n

The expressíon for the average value of tBBr' is the same as

the expression of .Irr, equation (4,22\ ' rf equation (4'541

is squared and the plate bending wave equation

o (1.814CLfr) 0.5
B

2
F

2 I
is substituted

In (

1.814CL1 fr I
(4,55)
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A parameter which includes plate thickness and excitation

frequency will be required for the ccmparison of the bending

hrave solution and general solution of the bending to bending

transmission coefficients. tr_3 contains plate thicknesses and

excitation frequency and will be discussed further in section

4.4 .2.

It would be possible to proceed further to obtain some

complicated expressions for the wave amplítudes, as was done in

sectíon 4.3, but the task is cumbersome since it involves the

solution of sixteen simultaneous equations. An alternative

approach is more attractive.

Thesolutionsareobtainedbyprocessingthesixteen

equations in a matrix form. This is set out in Appendix B'2'

A l6xl6 matrix may be reduced to a I2xL2 matrix by eliminating

c, using equations (4,4}grhri,j). The required computing
)

time may still further be reduced. As shown in the Appendix'

some simple relationships may be used to eliminate the b ' terms

reducing the :I2xI2 matrix to an 8x8 matrix. This 8x8 matrix

is sotved for each specific value of s and a subroutine based

on Simpson,s rule is again used to evaluate the integrals of

equations (4,51) , (4,52\ and (4,53). The average transmission

coefficients are then evaluated. Energy conservation requires

that

4
T

n=I
(tBB *tBL *tBT ) I (4,56)

1n 1n 1n

When n = I, the terms are interpreted as the respective reflec-

tion coefficients.

computed values-

Equation (4,56) is used as a check on the

c

AlistingoftheprogrammesusedareincludedinAppendix
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4.4.2. Discussion of Theore tical Results

The evaluation of the various average transmission co-

efficients for a number of 2 | 3 and 4 ptate single join structures

r^ras carried out using the general solution outlined in Section

4.4.L The computaÈions shorved that the bending to bending

\^rave average transmission coefficient, tBBij, varies not only

rvith plate thickness ratios , t y't j, but also with absolute .plate
thicknesses and excitation frequency. Furthermoret the com-

puted results showed that tBBij depended on whether plate j was

orthogonal to plate i or in the same plane as plate i. By

contrast, it was shown in section 4.3 that the bending wave

solution transmission coefficient, .ij, depended only upon the

plate thickness ratios. we will now review these results'

Itwilt'beusefultocomparethecomputedvaluesof

rRBij and .ij for the same set of plate thickness ratios to

determine at what absolute plate thicknesses and excitation

frequency the computed values differ substantially indicating

when the more complicated general soÌution should be used'

I{owever, before proceeding further with this comparison, it

will be of interest to discuss one unexpected result of these

computations.

rnitial comparisons of the ratio (tBB'/t) r, for different

structures, plate thicknesses and excitation frequencies showed

that for 3 and 4 plate structures, see Fig' 4-7(b) a (c)'

(rBBlt)r, became greaÈer than unity for small values of 
'r1r'

i.e. for high excitation frequency or thick plates. By contrast,

in earlier work, Cremer and Heck] (Cremer, Heck1 & Ungarr 1973(1))

showed that the bending to bending transmission coefficient

reduced for increasing frequency and plate thicknesses' In

their analysis, they investigated the junction of two plates of
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FIG. 4.7. NO}TENCLATURE FOR TÍ.{O, THREE AND FOUR PLATE SINGLE JOIN STRUCTURE'
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equal thickness and for normal incidence when bending and

longitudinal waves vlere considered. Their result could be

explained on the basis that more energy was transmitted in other

forms. It was thus surprising to find that in some cases' more

bending ulave energy was transmitted than predicted by the simple

bending wave solution.

During the course of the investigation to verify this

result, the oblique incidence bending to bending transmission

coefficient, tBBrr(s) for a 3 plate structure (Fig. 4-7(b)) was

evaluated at various values of s with interesting results'

Fig. 4-8 shows some typical values of tBBt, (s) for such a 3 plate

structure where all plates are of equal thickness, and of the

same material , viz. steel wíth CL = 5170m,/s. In the figure'

the símp1e bending wave solution is also shohrn for comparison.

For each case the average transmission coefficient, tBBr3r is

proportional to the area contained under the curve. For this

structure, at rr2, = L2, the plate thickness is equal to one

sixth of the plate bending wavelength, the linit of classical

bending \^rave theory. The critical values s"" and "CT, after

which iongitudinal and transverse \,vaves do not propagate away

from the join into plate 3, are marked on each curve. Note

that for each value of tr', there is an incident angle (equal

to "Ct) where total transmission of bending wave energy occurs

and another more oblique incident angle (designated "o) at which

no bending rrlave energy is transmitted. For the limiting curve,
.).2

,rlr= L2, this occurs at approximately s = 1.As Fti decreases

(frequency and plate thickness increase), the difference ='-"CL

increases and hence tBBt, becomes greater than tI3, mainly

because of the increased transmission at more oblique incident

angles. For progressively larger values of ,rtr, the IBBI3(")

curve approaches that of the bending wave solution curve with
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a sharp deviation near =cT'

We now ret,¿rn to the comparison of the general solution

and bending wave solution of the transmission coefficients'

We now consider 2, 3 and 4 plate structures as shown in Fig ' 4'7 '

Cremer used the reciprocal of f.,] when investigating the twoIl
plate junction mentioned previously. We shall investigate the

usefulness of F,? f.or our purpose. For plates of the same
Il

material, equation (4r55) becomes

cr,

lIETA )(
t.
_Ltt ftt

I2,ri

Graphs showing the variation of (tBBlt) ri with rtl

are shown in Fig . 4-g. Representative values of bending wave

transmission from plate one to the oiher plates of 2 | 3 and 4 platt

plate joins have been plotted in the figure. The curves have

been drawn through calculated poínts determined from the computed

evaluations of r""rj and tr. for the respective structure thick-

ness ratios and excítation frequencies.

The first thing Fig. 4-g shows is that rr] is not arl
good choice for a parameter which could be used to give an indic-

ation where tBBtj should be used instead of the more easily

evaluated ttj. The second observation is that the variation

with f and t, of (rBB/rl 
' 

and (tBB/t) rn (see Fig' 4-7) for anv

particular structure is generally as expected; that is for pro-

gressively lower values of F., ] f""" energy is transmitted asIl
bending 1nraves. The previously mentioned unexpected upward

t
trend of (tBBlt)r, for decreasing Ffí (see Fig' 4-7(b) and (c))

is apparent.

A parameter which is reasonably simple and which coI1-

apses the (tBBrlt) . . values closer together is required if any
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general guidelines relating to the use of tBBij rather than tt,

are to be Presented.

A parameter whích results in a reasonably satisfactory

collapse of the (tBB/t). . curvês is

0ab

I
7aþ

tu

t a

f

I

I

t=t

1. 814

for t tI J

for t t j1

c"

L2a

%

(4 ,57 )

where

a

rb

t a

tu t

t

t

I

I

j

l

As steel is often used in structures, it is informative

to present a related parameÈer P"O where

P r J^t4 (4r58)
ab

for t. and to as defined above. Note that. P.o has the dimen-

sion of velocitY.

The variation of (rBr./t) ij with P.O is shown in Figure

4-10. Corresponding valueS Of the nondimensional parameter

Qab "re also shown on the figure. The parameter Pab allows

the reader to obÈain an idea of the thickness and frequency
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atwhichthebendingwavesolutionforthetransmissionco-

efficient is substantially different from the general solution

for steel Plates.
For Pab < SOm/sec', ftBB/r)', -lies between 1'0 and 0'6

and for most curves between 1'0 and 0'8' Large variations

(!100%) do not occur unless Pab > t0Om'/sec' Thus a value of

Pab less than or equal to S0mr/sec' implies that for two plates'

5mmthick,.ijcanbeusedforfrequenciesuptol0kHzwithout

more than a 2dB maximum error in "ij' 
and generally the error

wilrbemu::hless,butifa5mmandarmmprateareconsidered'

P SOm/sec. at f 2kHz
ab

It can be seen from Figure 4.I0 Èhat for (tP.B/"c) ,2 and

(.cBB/r)L4,exceptforthe2coupledplatecase,theftBB/r|

curves remain near unity for Pab < 100m/s'Comparison of curves

(a), (b) and (f) for i = 2 indicates that the variation of

('rBB/rl ,, is tess for the 4 plate case ' than for the 3 plate

casewhichinturnislessthanforthetwoplatecase.
To this point we have considered only bending waves

incidentuponasinglejoininisolationandwehaveshownthat

besides transmitting bending waves, longitudinal and transverse

\^7aves are produced at the join and transmitted in the adjoining

plates.Thusatsubsequentjoins,longitudinalandtransverse

\^Tavesaswellasbending$¡aveswillbeincidentandmustbe

considered. Furthermore the incident longitudinal and trans-

verse waves will be partially transformed back into bending waves

at subsequent joins and these transformations will have to be

considered as well.

Letusconsidertheenergyflowthroughamulti-join
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FIG. 4-TI. SCHEMATIC DIAGRAM OF THE TRANSMITTFD BENDING'

LONGITUDINAL AND TRANSVERSE WAVEFIELD ÜENERATED

IN CONNECTED PLATES trROM AN INCIDENT BENDING

WAVE.
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structure. A 4 plate structure comp:rising plates a, b' c and

d, is shown in Fig. 4-II in which we assume a Ì¡ending wave of

unit energy in plate I is incident upon the join' For the

moment, assume plates 2 and,3 are remÐved. Bending, longitud-

inal and transverse hrave energy is transmitted into plate b

where this energy is incident on the second join. Each wave

type acts on the join and bending, longitudinal and transverse

\¡rave energy is transmitted into plate c from each of the three

incident wave fields. This cascade of energy flow is illus-

trated in Fig. 4-1I.

We now consider multireflections in a two plate struc-

ture. Each time energy is t,ransmitted from one plate to the

other some transformation of energy from one field to another

takes ptace. Thus we have exactty the same cascading effect

as previously illustrated in Figure 4-1I, but in this case each

ioin of the figure represents an event at the single join of

the two P1ate structure.

Weconsiderthebendingwaveenergyineachplaterelat-

ive to the incident bending wave energy in the prevíous plate'

unit bending wave energy is assumed in plate I and hence, bend-

inq¡ wave energy in plate b ís tBBtO' In plate c ' the trans-

mitted bending $¡ave energy is

(teB) (tee) + (rBL) (rLB) 
bc+trBT) ,O 

(tTB) O. (4 ,59 )
1b bc Ib

The íncident bending wave energy in plate b at the join is just

TBBlb. Hence the rCOrrect' transmission coefficient, ctBBo"

for plate b to c is

ctBBo" = -BBb" + (tBL) ro 
(tr'e) a"/ (tBB) ,o+ 

(tet¡ ro 
(tte) v"/ (tBB) to

(4,60)
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Cremer (Cremer, Heckl & Ungar, L973(1)) showed that there is a

reciprocity relationship for wave transformation for two coupled

plates rnthen considering normal incidence' i'e' TBL = tLB'

TBT = .rTB. Hence the ratio of the tcorrectr transmission co-

efficient to the single join general solution transmission co-

efficient for transmission from plate b to c may be written as

CtBB

TBB
1+(#J"[i)".(i)"ffiÌ (4,61)

bc b

When we consider energy transmission at subsequenÈ joins we see

from the schematic diagram of Figure 4-1I that each group of

three incident wave fields undergo transformations to create

nine new fields. However the nine new fields add and reduce

to three which are a bending, Iongitudinal and transverse field'

Thus for any join between two plates b and c equation (4.61)

holds, provided that there is only one other plate connected to

plate b.

we nov¡ include plat,es 2 and, 3 as shob¡n in Figure 4-11

and follow the previous procedure. Now, the bending wave

energy transmitted to plate b from plates I, 2 and 3 is

tBB ib

and, as before, this is the bending wave energy incident on the

join of plates b and c. !{hen the previous procedure is

foltowed through, wê arrive at an equation for (CtBBr/tB")b.

símilar to (4,61)

3
t

i=I
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3
t

i=I
(tBL) . 

O ib
(crBB/r es) ¡c 1+

I+

3
I (tBT)

í=1

c,a=I

3
X (tBB)

i=l

+
3

ib X (tBB) ib

(4,6I (a)

Inspectionofmanycomputedresultsshowsthatgenerally

rBTij is approximately equal to 0'7tnI,r'but to be conservative'

b¡e assume tBlij = tBTij. Then equation (4,6r(a)) becomes

(=) '(#")(=J (4 ,62)
k

Equation(4,62)showsthatwhenconsíderingthetrans-

mission coefficient from any plate (j) in a structure' to

another(k),dueregardshouldbepaidtothetransmittedlongi-

tudinal (and transverse) waves from any other join on plate (j )

including the energy flow back from (k) to (j ) '

We now consider the relationship of (tBL/tBB), ' to excit-

ation frequency, plate thicknesses and plate thickness ratios'

The ratio (r BL/"cBB)r, was computed for a number of t\^¡o' three

and four plate single join structures at various excitation

frequencies. (tBL/tBB),, ratios (see Fig. 4-7) are very much

Iess than f or orthogonal plates, hence only ftBL/"cBB) ,, are

presented, plotted against P.O in Fig ' 4-I2' The use of this

parameter does not produce a collapse of the data onto a single

Iine or even a small range. various parameters \^tere tried but

none achieved an adequate collapse of the data to warranL the

introcluction of a more complicated parameter'
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ttBL.1a
If the product 'rBB is equal to 0.3' then

l_
r-l

(CtSe,/tSn)if i= approximately 1.6 according to equation (4'62) ¡

approximately a 2dB error is incurred it tBBit is used alone

without correction. If we consider.only one of the tBlij and

tBB.. terms under the summation (say plate I and b in Fig' 4-1f)
r-l

and assume that the ratio (tBL/IBB) r, associated with these two

plates is larger than the ratio associated with any other plate

interactions at this join (say plates 2 lo b and 3 to b in Fig'

4-1I) , then (tBlltsts) . . is greater than (ftsl"/ltnetr) ' This

being sor we inspect Fig. 4-:-2 to determine below what value

of p the product (tBL,/tBB) * * (tBL,/'rBB) -,- is less than 0.3.
ap _ vsuvw \Lvul ."-'íj 'lK

For (tBL,/tBB).. approximately equal to (tBL/tBB) 'n' values of

Pab < I00m,/s appears to be a suitable criterion for (rBL/tBB) ,,
< 0.55 if curves (f) and (g) are excluded' It is not unreason-

able to exclude (f) and (g) as it is unlikely that a structure

would contain plates where two consecutive joins, of three

plates at each join had plate thickness ratios 5:I.5:5 at each

join. This would impty that the thickness ratio of plate i

to k, considering (tF.L/"cgs) i j ßBL/TBB) j¡,would be 1I:1'

However, urhere larger thickness ratio structures are considered'

more care is required, especially with three plate joins as

shown in Fig. 4-7(b). curves (f ) and (g) in Fig. 4-I2 show

that large values of (rBL/'cBB) rT and thus (CrBB/TBB) according

to equation (4,62) , occur for three plate joins with plate 2

(see Fig . 4-7 (b) ) much thinner than plates I and 3. A structure

with this type of join is shown in Fig. 4-13 and consists of a

number of sequential three plate joins. we assume that the

plates 1, 3, 4,5 and 7 ate all 5mm thick while the plates 2

and 6 are each 1.5mm thick. As GBL/IPB)r, is equal to

(rBL/rBB) 32, we can use equation (4,62) to write
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FIG. 4-I3. MULTI-JOIN
THREE PLATE

L2=
all

STRUCTURE WITH LARGE THICKNESS RATIO

JOINS.
t6 = I'5 mm'

other Plate thicknesses 5mm.
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I+2 ("cBL/'cBB) (rBL/rBBl ,UL225

At P.O = I00m,/s, curves (d) and (f ) of Fig' 4-L2 show (tBL'ltBB)

values which determine (CtBB,/tBn)rU is 4' i'e' a 6dB error'

For Pab = 50m/s , (CIBB/IBB) 25 is reduced to 2'2 or approximately

a 3dB error. similarly, as (rsI'/tBB)25 is equal to (tBLrltBB)nu

and using equation (4,62) , rtle can write

(CtBB,/ts") 
Se

I+2 (rBL/rBB) rU (tBL,ztBB) tU

but as (tBL/tBB) rU is the same as ('tBL/rBBl ,rt then

(CrBB,/tB") Sø is equat to (CtBB/tB") ZS for the same values of

P , i.e. at the same excitation frequency'
aþ'

As the general solution is required to obtain tBB, and

as it requires very little extra computation to obtain values

of.rBLand.rBT,itisthenarelativelyeasytasktousethe

correct bending to bendingÍ transmission coefficient, from

equat'ì on (4 ,6L (a) ) .

If the bending wave sotution transmission coefficients

are used , (c"cBB/.) jo will be less than the previously discussed

ratio (ctBBr/tB") jo, since in nearly arl cases for Pab < r00m,/s

(tBBlt)1¡ is between 0'6 and 1'0'

FromthediscussionitcanbeseenthatforP"o<I00m/s

the bending wave solution for the transmission coefficient can

be used for both single join and multi-join structures provided

that the plate thickness ratios at consecutive joins are not

too large or too small. If the structure is such that thickness

ratios of approximately 3 to I at one join are followed by

thickness ratios of approximatety t to 3 at a consecutive join 
'

thenPab<50m,/sshouldbethecriterionforminimumerrorsin
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the evaluated transmission coefficient of less than a factor

2. For the structure shown in Fig ' 4-12' Pab = 50m'/s occurs

at an excitation f r:equency of 3kHz '

of
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4.5 EXPERIMENTAL METHODS.

4.5.1. Apparent Loss Factor

Itisnowappropriatetodiscussmethodsofexperiment-

ally determining coupling loss factors' At present there is

no way of measuring the coupling loss factor directly' what

is measured is an apparent loss factor for an element from which

the coupling loss factor can be determined provided that the

other losses included in the apparent loss factor are known'

This can be mathematicalty expressed in two equations; one con-

sidering the energy flow in and out of an element of a coupled

structure,

,Eiri app + dEi/dL (4,63)
P

]-

and the

factor app.

ni app ni int+ni ::ad+lsupport losis*lcoupled structures
(4,64)

With careful design of the experimental apparatus the

support losses can be made negligible and provided the internal

(mechanical) loss of the element is large compared to the

radiation loss factor, the apparent loss factor reduces to

merely the sum of the internal loss and coupled loss' Equation

(4,64) becomes

ni app = ni+ncouPled structures

other showing the composition of the apparent loss

ni

where n
a

is as defined in Section 3.

(4,65)
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The coupling loss factor is included in the ncoupled structure

term. Hour nij is included depends on the structure to which

the element is couPled.

The discussion now reduces to an examination of methods

to determine the apparent loss factor. These fall into two

categories; energy decay methods where P. in equation (4,63)

is set equal to zero and the energy decay rate is measured and,

steady state methods where the energy level Ei and input Povter

Pi are steady, hence the rate of change of energy is zero'

Forthepurposeofthediscussion,Wêconsideratwo

coupled element structure. T-f the element connected to element

i is infinite or has a very large modal density compared with

that of element i, then the power flow from the connected

element back to element i can be neglected, hence

ni app ni*nij (4,66)

Lyon and Eichler ,]964) used Equation (4,66 ) when

investigating two coupled plates neglecting power flow back from

the second element. Hoh¡ever, when the power flow back from

the coupled element j can not be neglected

ni app ni+nij-niin ¡/ (nii+ni) (4 ,67')

The reciprocity relationship of (3'6) allows (4,67) to be re-

arranged to give

ni)ni (ni app-ni)nij
ni* (tj /nt\nj-ni app

(4,68)
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Much of the following discussíon is concerned with the

experimental measurement of both n' app and ni' The apparent

loss factor is determined from tests on element i of the coup-

led structurei ni is determined from lests on element i before

it is coupled to anY other element'

4.5.2. Ene Decay Methods

There are two commonly used methods of obtaining the

average energy decay rate of an element excited by band limited

noise. one is the pause method where a band limited random

signal excites the element. The signal is cut off and +-he

cecay rate measured. This method has been in use for many years

for measuring room absorption and it is tempting to consider its

use for plates. However, its use for plates experiences diffi-

culty because of the low modal density associated with plates'

The modal density of plates remains constant independent of

frequency unlike that of rooms which increases rapidly with

increasing frequency. The problems associated with the low

frequency excitation of rooms, for example, erratic decay curves

and consequent large spread of decay rates ' are associated with

plate excitation at all frequencies. Thus large numbers of

tests are required to obtain accurate average loss factors,

for both ni .pp utd ni measurements'

The second decay method is a newer technique developed

by schroeder (1965) and improved by Kuttroff and Jusofie Ã967/81'

This method produces an ensemble of alt possible decay curves at

once so that a single average decay rate is determined. The

Ioss factor so determined is then equivalent to the average loss

factor that would be determined from an infinite number of pause

tests. Ho$rever for plates, in contrast to rooms with single

slopes, the curves often show clearly double slopes, triple



77.

slopes ancl sometimes continuously varying slopes as weII.

Ifadecaymethodisused,thequestionstillarises

which decay slope to use when more than one slope is bbtained'

shall it be the average of the first.S, 7 or 10dB? As the

loss factors are for use to determine steady state energy levels '

it seems tikely that the initial decay rate is the one which

should be used, but inspection of many schroeder-Kuttroff

obtained decay curves show distinct initial slopes of only I or

2dB before a change of slope and these are very difficult to

measure. Thus for accurate work an alternative must Lre found'

4.5.3. S teadv State Methods

One way to determine an appropriate value of a loss

factor for an element is to measure the 10ss factor while the

element is at a steady excitat,ion level. This is the case

when dEi/dt in (4,63) is zelo.

In order to solve (4,63), Pi, the nett power flow from

an external source into element i, as well as the mean energy

level of the element, must be measured. If the element is not

coupted to a structure, ni is determinecl and if element i is

coupled to another element, li app ís measured' nij can then be

determined from equation (4'68)'

Although this power flow method is useful for determining

the internal loss factor of individual elements and was used for

this purpose in this research, as described in Appendix D.4.,

there is another consideration which may render the technique

unsuitable for use on coupled structures. In order tO measure

pi, we have used point excitation of the plate and Fahy (1970)

raises doubts that SEA can be applied to a point excited coupled

structure. Fahy points out that the theories of energy flor"'

between randomly excited coupled oscillators have assumed that
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the external sources of inpuÈ power to the oscillators are

statistically independent, but for a panel excited by a point

force, the modal forces on the panel cannot be statistically

independent. The doubts raised by Fahy do not ÞIled the

validity of the point excitation method to determine the uncoup-

Ied element internal loss fac+-ors îi, Or the coupled element

apparent loss factors ni app. However, the relationship

between n. app and rì. . , equation (4,68), is based on SEA; it does

assume that the external modal forces on the modes of the plates

are statis'tically independent and hence its validity could be

questioned.

Inordertoinvestigatethisfurther,fourdifferent

two coupled element structures were excited by exciting one of

the two plates in each case by (a) point contact excitation and

(b) non contact excitation. For a given coupled structure,

the energy level ratio Uj/r, should be the same, within the

expected experimental range, f.or both point contact and non

contact excitation if SEA is applicable for both forms of excit-

ation. The mean energy level ratios for each structure for

both forms of excitation were measured, âs described in Appendix

D.5 and D.6. The measured energy ratio level differences for

the two excitation methods are presented in Fig. 4-L4. The

spread of results is larger than that predicted in Appendix D' 6 '

Fig. D-6. Not only is the scatter larger than is reasonably

expected, but it does not reduce for higher excitation frequency'

as does the standard deviation of expected measured energy

ratios, shown in Fig. D-6. These results do indicate that the

energy ratios measured during point contact excitation are not

necessarily the same as those measured during non contact excit-

ation.
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Thereis,however,anotherwayofmeasuringcoupling
l-oss factors under steady state conditions without the requíre-

ment for measuring the input power P.. This second steady

state measurement iechnique is based on the power balance equa-

tions for coupled structures where the input po\^ter Pi is zeÍo,

i.e. when only one element of the structure is excited. For

a two coupled element structure., with P, = 0 and element I

directly excited, equation (3,7\ results' The modal density

ratio can be calculated from known formulae, (Hart and Shah'

I}TI) and the coupling loss factor 121 .". be determined. An

extension of this method can also be used to determine'n2I and

n12 vrithout assuming the reciprocity relationship (3'6).

If a second test is carried out where element 2 is

directty excited, the two power balance equations for the indir-

ectly excited elements can be written in matrix form

(E I -(e 2 t

I 2
(E2l 

2

\tz

\zt

(82)1 \2

(81) 2 n1
(4,69)

t

(E )

where (E- ) - is the mean energy level of element i when element
LJ

j is directly excited from an external (non contact) source'

The above method can be extended for three plates or

four plates at a common join. Consider the three plate single

join structure. There are six coupling loss factors, hence

six simultaneous equations are required to determine the coup-

Iing loss factors.

In this case, three separate tests are carried out, with

each of the three elements directly excited in turn. For each

test, there are two power balance equations with P, = 0 and
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thesegivetherequire.ilsixpowerbalanceequa.tions.
following matrix equation results'

-(E 0 (n (E I 0 -(E 3 l1
2 1 2

(E2)3 (Ez)¡ o -(Eg) rl lz

) )

The

tn2 (E2)r

-n3 (83)1

-n1 (Er) 
2

-n3 (E3) 
2

-n1 (81)3

-\2 (EZ) ¡

(4,70)

I I

o -(Er)r -ß)r o ("g)r (eE)

(E I 2
(E) 0 -(E 2 2 3 2t2 ) -(n ) 0

I1

r1 2

nzto -(Er)z -@)2 o (Es)z (Eg)

(Er)¡ (Er)3 o -(Ez)¡-(83)3 o l3

-(n 1 3
0

The four plate single join configuration requiring four

separate tests, Ieads to a set of L2 simultaneous equations to

determine the L2 coupling loss factors'

It can be seen that the energy level measurement method

to determine coupling loss factors does not require the assump-

tion of reciprocity and a non contact source may be used' The

only information required other than the measured energy levels

are the experimentally determined internal loss factors of the

individual elements-

4.5.4. The rtance of I Loss Factor to
n erna oss ac tra

It is important to consider the sensitivity of the exper-

imentally determined coupling loss factor to the variation in

the directly measured quantities required. consider the

equation (4,68) relating tìI,pp to ntZ fot the two coupled

element situation. rf nl = \2, and as n12 must be positive'
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then the following inequality must be true

l . rl rpplnt <

(4,7I) ís applicable irrespective of whether energy decay

methods or the steady state measurement of input power method

is used.

Fig. 4-15 shows the relationship of ntZ/nt to

nt 
"pp/n, 

based on equation (4,68) for tI = t2

and nI = \2. It can be seen that a small error in the measure-

ment of nl app or nl can result in a large error ttr 112 if ntZ

is much greater or much less than nI. The best range to exper-

iment in is for \tZ approximately equal to n1'

Similar considerations are true for the energy ratio

measurement method. If each side of equation (3,7) is divided

by the modal density ratio the average modal energy ratio is

(E2/n2l / Gr/nr) 'q2r/$2L + \Z) (4,72)

Equation (4,72) is shown in Fiq. 4-L6 where inspection shows

that a small error in the measured energy ratio can cause a

Iarge error in n 2I/n2 if nrr/n2 í= much greater than I' For

this method however, as nrr/n, becomes less, the sensitivity

to error in Er/E, becomes less.

The Iast method which uses the simultaneous equations

is also bound by this restriction. The determinant of the

2x2 matrix in (4,69 ) is

(4 ,7 rl

)lontl I 1
(P

2 2
(4 ,7 3)
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when the energy ratio expressions are substituted

with the appropriate loss factor formulae, the expression in

the square bracket becomes

1
\t2\2t

( nrrn 2L+\In 2 r+n2n rr+n an r)
(4 ,7 4)

If the internal loss factors are mueh less than the

coupling loss factors, then the determinant is very small.

small variations in the measured energy ratios then have a

magnified effect on the experimental value of the coupling loss

factors.

Itisapparentfromthisdiscussionthatítv¡ouldbe

preferable to increase the damping of the elements to reduce

the coupling loss factor to internal loss factor ratio nearer

to oner oI. Iess than one for steady state experimental methods'

However, since the upper frequency bound discussed in Section 3

is proportiona-I to the internal -l oss f aetor, âD increa-se in the

internal loss factor reduces the experimentally useful frequency

range. This limits the amount of damping whieh can be added to

the elements. For two coupled plate structures, the minimum

coupling loss to internal loss factor ratios obtained \^Iere often

still greater than one.

we har¡e reviewed the difficulties involved in using

experimentally measured energy levels to accurately determine

the coupling loss factors of a structure. Although we have not

discussed experimental results at this stage, it is useful to

use some of the experimental results for a two element coupled

structure to illustrate the sensitivity of the experimentally

determined coupling loss factor to apparent slight errors in the
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measured element energy levels'

Fig. 4-17 (a) and (b) shows the measured mean energy

Ievel ratios EZ/EI for element I directly excited and EI/EZ

for element 2 directlY excited' AIso shown is the theoretical

energy ratios calculated using SEA' The internal loss factors

experimental IY measured and the couPling loss factors were
were

evaluatedusingequation(4,40)and(4,1).Thecouplingloss
factor to internal loss factor ratio varied from approximately

1. B at 500H2 to aPProximatelY 0.7 at l600Hz, and it can be seen

that there is good agreement between theorY and exPeriment in

this range.

Thisdatawasthenusedtodeterminethecouplingloss

factors using two steady state methods; (a) assuming reciprocity

as in equation (3,7) and (b) using similtaneous êquations as in

(4,69). These results and the theoretical bending wave coupling

loss factors are shown in Fig' l+ - ra

Thespreadoftheexperimentallydeterminedcoupling

lossfactorresultsderivedfromanapparentlyexperimentally
goodsetofmeasuredenergylevelresultsindicatethatitís

notveryinformat,ivetopresenttheresultsasacomparisonof
predicted and measured coupting loss factors'

Theobjectiveofthisworkistoindicateforwhatrange

ofexcitationfrequencìesforagivenstructureSEAcanbeused

topredictt'heenergydistributionintheconnectedstructure.

Thusit'Seemsappropriatetopresenttheresultsasacomparison

between predicted and measured energy level ratios' The pre-

dictedratiosaredeterminedusingsEAtechniquesaspresented

inSection3.Thecouplinglossfactorsrequiredforthe

energydistribuiionequationsareevaluatedusingequations
(4,40)and(4,1)andhenceagreementbetweenpredictedandex.

perimentallymeasuredenergyrat'iosshowswhereequations(4,I),
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(4,40) and (3,9) can be used

in a structure.

to predict the energy distribution

Beforeclosingthisdiscussiononexperimentalmethods

and accuracy of results, there is one other consideration to be

discussed. v,le wish to ensure that the measured internal loss

factor of each element, li, is unchanged when the element is

incorporated in a structure. This assumes the optimum measuring

method is used. As mentioned previously, the measured internal

10ss factor is due to the sum of the mechanical internal losses

of the element plus the loss due to radiation to the surrounding

fluid, assuming that the losses via the support System are neqlig-

ibIe.
The Iosses due to radiation in an undamped metal plate

are often more significant than the mechanical internal losses '

especially near critical frequency. If this loss factor could

be assumed to be constant for all plate configurations, there

would be no problem. The plate is tested-by itself to obtain

ni.Whenitisconnectedtoanotherplateoröombinationsof
plates, not only has the acoustic sPace into which it radiates

been altered, but also the edge condition of the plate has been

altered. Maidanik (Lg62) has shown that below critical fre-

quency the radÍation is from Èhe plate corners and edges, hence

it, is most likely that the radiation loss factor for a coupled

plate would be different from that of the uncoupled plate' If

additional damping is provided, the added damping on the plates

increases tirrt and reduces the overall variation of ni from the

uncoupled to the coupled condition. The increased damping also

reduces the influence of any losses due to the support system'
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SECTION 5. COMPARISON OF THEORETICALLY AND EXPERIMENTALLY
INED IN .STRUCTURE S.

5.1. INTRODUCTION

In this section, the measured plate energy ratio levels

.of various steel plate structures are compared with the theore-

tical energy ratio leve}s, predicted using the matrix equation

(3r9). The coupling loss factors required were evaluated using

the bending wave solution empirical equation (4r40) to obtain

t...whj.ch was substituted into the couplíng loss factor equation
rl'

(4rI). Bending wave solution average transmission coefficients

were used for all the coupted structures investigated as the

maximum value of P"O in anY structure at the highest excitation

frequency used was much less than 50mr/s' Additional damping

was added to each plate and its internal loss factor was exper-

imentally measured using the point contact excited steady state

method discussed in Section 4.5.3. The appartus and experi-

mental procedure used to measure the loss factors are described

in Appendix D.

The physical characteristics of all plates used are

listed in Table 5-1. The measured internal loss factors of

these plates are Presented in Table 5-2.

single join structures were investigated fírst. Four

two-plate, two three-plate and one four-p}ate single join struc-

tures were tested. Other plates were then added to some of

these single join structures, and struetures were coupled

together to form three multi-join structures, two of which

contained only two-plate joins and one contained two, three and

four plate joins. Table 5-3 shows a line sketch of each coup-

led structure, together wlth the lengths of join between the

coupled elements. The coupling loss factors required, evaluated

at 10O0Hz, are also listed. The coupling loss factor at any
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TABT,E 5.1.

LIST OF EXPER IMENTAL PLATES

P.lat'e
No.

Area
2

m

0.140

0.171

0. tt8
0. 195

0. 186

0.201

0. 179

0. 185

0. r39

0.293

0. r78

0.L24

0. 388

0.245

0.200

0. 314

0.280

0.237

Thickness
mm.

0.99

L,24

L.27

0.79

0. 79

L.27

L.27

L.27

L.27

L.27

r.27

L.27

1.27

L.27

0.79

r. 57

1. 57

L.57

l4ass

lçg'

I. I68

I.654

L.290

L.2L4

1.152

2.L33

L.872

L.957

1.460

2.416

r. 800

L.265

3. 865

2.435

L.287

3.947

3.552

2.968

Modal DensitY
n(f)

47 .4x10 -,

-?46.0xI0 r

-¿31.3x10 J

-?82.9x10 r

-??9. 3x10 ¿

-?53.0xI0 J

.?
4?.3x10 r

-?48.7xl0 r

-236.7x10 r
_?

63.1xI0 ¿

-247.1x10 r

-232.7x10 ¿

-2102. xlO r

-?64.4x10
-?85.3x10 ¿

.?
66.9xIO J

-a59. 8x10 J

-?50.5xI0 r

I

2

3

4

4A

5

5A

6

6A

7

7A

I

9

10

II

T2

r3

I4



TABLE 5-2

PI,ATE INTERNAI, LOSS FACTORS (x1000 )

Hz

400

500

630

800

1000

1250

1600

2000

2500

3150

4000

5000

I

2.94

2.68

3.24

4. 10

4. 80

7.50

L2.2

L6.2

23.4

47.3

3.29

3.05

2.50

5. 18

5. 70

8. 40

13. I
30.0

30. 3

45.4

3

2.46.

4.03

3.L7

2.r9

2.28

L.97

2.30

4.96

3.98

3. 56

4.0I

6.94

7 ,7Ar8

2.L2

1.63

l. 38

1. 46

1. 60

:.50

L.72

2.42

3.27

9 ,10

L.2L

L.03

L.22

r. 18

1.04

1. 14

1. 66

L.52

2.49

2.52

3. 59

6.92

11

2.66

2.88

3.L7

2.43

2.56

2.98

2.64

3.77

4.18

L2

L.82

0"981

r.90

1.50

1. 05

L.2L

1..1

2.37

2.93

2.57

3.44

7.32

13

1.13

L"24

r.08

L.29

1. r0

1. 35

1.64

2.37

2.6L

2.57

3.44

7.L7

2 4r4A 5r5A 1616A

2.39 4.56

2.20 7.07

2.L9 4. 83

2:13 6.40

2.L4 5. 90

2.05 9.L7

4.53 18.4

4.15 18. r

4.86 31.9

4.L6 30. 5

5.4á

r1.8

ro
N
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TABLE 5-3

I,IST OF COUPI,ED EI,EMENTS

plates are shown in edge view except for those

denoted 3 or 6A which are ín plan view'

Coupling Lengths
Metres

L = 0. 356L2

L = 0.22334

Couplíng Loss
Factors aù IkHz

xl000Element Nos.
and Sketch

L

5

6

9

11

I

I ntz
nzL

ng ¿

n¿g

= 7.L2

= 7.31

- 5.39

= 2.O3

= 2.39

= 2.60

2

L = 0.13 n5o

nes

n9 to
nto g

s6

Lg tO = .56I

L -Lt711

; s.33

= 8.48

g ll = o'42L nz tt
ntt z

nzg

nez

, ngtt
ntt g

= 1.55

= 1.19

= 4.7L

= 9.45

= 3.10

= 1.19



Element Nos.
and Sketch

9

12

I

2

sa

-1 "Lo L2

= 0. 561

9
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TABLE 5-3 (cont'd)

LIST OF COUPLED ELEMENTS

Coupling Lengths
Metres

Coupling Loss
Factors at IkHz

xr000

t9l0= 1.56 îlO9= 2'47

\g 12= 2-49 \L2 g= 3'94

ll'12= 3.8I nl2I0= 3'81

L

-D

910

9L2
2

Common length

L 0.56r

"t Z = .354

Lr oe = .359

LZ ee = .352

Lt Z = .354

Lt 6e = .359

LI 5e = .305

Lz6e, = '352

L5A 6A = .352

îIO 12 = 1.85 ll2 I0 = I'79

îI013= 1.85 11310= 2'00

tt2 13 = 2-9I î13 12 = 3'26

ng to
ng tz
n9 t¡

= 0.731 n

= 1.17 n

= I.I7 n

= 7.I2

= 7.O4

= 7.4?

109

t29
139

\zt
noA t
lea z

= 1.16

= L.79

= 2.00

= 7.3L

= 9.09

= 9.40

\tz
Ît 6e

n2 6e

I

As for the Previous
structure

Plus
tI 5A= 6.10 r5AI= 5'99

l5a6a 7.25 16A5A= 9'352

@

@
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Element, No.
and Sketch

I

13 10

7A /.4

95.

TABLE 5-3 (conÈrd)

LIST OF COUPLED ELEMENTS

Coupling Lengths
Metres

common length

Lg 
r ro ,L2 ,Lg= ' 561

L3 ¿e = .223

Lg tZ = .223

LAn tZ = .4L6'

LA,-7a, = .360

LTetZ = .434

Llt tl = .394

Lt¡ t¿ = .425

Coupling Loss
Factors at lkHz

xLo0 0

î9 lO = 0- 73I

[9 12 - L-L7

ng 13 = 1.17

l1O 12 = I.85

îro 13 = r' 85

112 13= 2-9I

ng 4e = 5.39

n¡ tZ = 6.10

n4A 12 = 1.36

îlO 9 = 1.16

\L2 g= L.79

îI3 9 = 2.00

î12 tO = L.79

îr3 lo = 2'oo

î13 12 = 3.26

Î¿e g = 2-L2

ntZ ¡ = 2-84

îI2 4A = 1.61

T2 7A

14 13

= 4.70

= 7.38

I4A ?A= 0.644îZA4A= 1'08

\za, tz
ntg t¿
lZA 14 = 7.13 îI4 7A= 6.65

= 6.60 n

= 6.23 n
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other frequency can be evaluated from these values since n ',

is proportional to (t¡) 0.5

In all experiments, only one elemenÈ at any one time

was directty excited by a non contacting external source and

all the energy ratio levels presented in this section are relat-

ive to the directly excited element'

The experimental procedures and in3trumentation used to

measure the energy ratios of the coupled structures are discussed

in Appendix D.

In Section 5.2., the single join structure results are

presenÈed and discussed, and in Section 5.3, the multi-join

structure results are presented, In section 5.2, the two

plate single join structure results and the three and four plate

single join structure results are Presented separately.

The single join structure results are used to determine

the bounds withín which the agreement between predicted and

measured energy ratio levels is satisfactory. In order to do

this, parameters to define the bound.s are required as well as a

criterion for accePtabíIítY.

The lower bound is related to the number of resonant

modes in the excitat,ion frequency bandwidth Ni, where for each

element

N 0.23n f. (5,1)
I

as aII tests were carried out using one third octave broad band

noise. The possibility that an upper bound may exist was

mentioned in the literature review of Section 3, as a conseguence

of the inequality (3,3(b)), If both sides of the inequality are

multiplied by (nif ), then (3,3(b) ) can be written as R, < I where

t

R
l_
, a modal overlaP factor, is
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n n f (5,21
R

l- l_L

ThereisanR.andN,valueforeachelementateach

excitation frequency. Hence, for fòur plates at a single join'

there are four R, and four N, values which êre applicable to

that structure. only one R and one N is required as a Para-

meter. The parameters used in Section 5.2 to determine the

Iower and upper bounds are N*rr, "td 
R*"* where Nmin is the

Iesser of N. and N. and R^"* is the larger of R, and R' when the

energy ratíos between elements í and j are being considered'

irrespective of the values of N and R Of any other plates at

the common join. A suitable críterion for satisfactory agree-

ment between predicted and measured energy ratio levels ís that

the level difference be not greater than f2dB'

InSection5.2,theresults.arepresentedasalevel

difference in dB between measured and predicted plate energy

ratios. In Section 5.3, the predicted and measured energy

ratio are plotted against frequency for each l-ndividual multi-

join structure. The results are discussed with reference to

the upper and lower bounds determined from the single join struc-

ture results in 5.2.

5.2. SINGI.,E JOIN STRUCTURES

5.2.L. Two Plate Joíns

Thetheoreticalenergyratiosofthefoursinglejoin

structures, shown in Table 5-3, were predicted as described in

section 5.I. The energy ratÍos, with one element directly

excited in each case, were measured as described in Appendix

D. The measured and predicted energy ratios of the four single

join structures and the measured and predicted level differences
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TABLE 5-4

PREDICTED AND MEAS URED ENERGY RATTOS

Two plate coupled structure - Plate Nos. 1 e 2.

Frequency
Hz

400

500

630

800

100 0

1250

1600

2000

2500

3150

2
Pred.

.8I4

.810

.7s4

.67 7

.613

.47L

.324

.243

.166

.080

LeveI
Diff.

dB

-2.75

-0. 02

-0.13

0 .02

0. 53

0. 82

ì0. 31

t. 54

L.79

3.71

E2/E
Meas.

.476

. 8r1

.613

.754

.793

.526

.340

.339

.427

1.15

I
Pred.

.758

.753

.7 66

.596

.547

.426

.298

.140

,L29

.081

Level
Diff.

dB

Et/E
Meas.

.432

.805

.7 32

.680

.s43

.569

.301

.347

.250

.188

-2.02

0.32

-0.97

L.02

1. 61

0. 91

0.57

3. 86

5.20

11.5r
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TABLE 5-5

PR.EDICTED AIi¡D MEASUFED ENERGY RATIOS

Two plate coupled structure - Plate Nos. 3&4

FrequencY
Hz

400

500

630

800

1000

L250

16 00

2000

2 500

3150

4000

5000

E3/E
Meas.

. I0s

.085

.272

.36s

.200

.L7 6

.2L9

. r49

.255

.2L8

. r60

.163

4
Pred.

.292

.246

.257

.27 6

.264

.267

.244

.164

.r7 4

.L7 3

. r51

.097

Level
Díff.

dB.

-4 .44

-4.64

0.25

I.2L

-L.22

-1. 8r

-0. 48

.0.41

L.67

0.87

0.24

2.24

E.4/83

Meas.

.260

.307

.532

l. 14

.7 32

.861

.73s

.680

.449

.692

.613

.296

Pred.

r,524

1.504

r.433

L.37 3

L293

L.250

.696

.682

. s55

.s73

.419

. r90

LeveI
Diff.

dB

-7.68

-6. 90

-4. 31

-0. 81

-2. 47

-L.62

0.24

-0.01

-0.92

0.82

1. 65

L.92
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TABLE 5-6

PREDICTED AND MEASURED ENERGY RATIOS

Two plate coupled st,ructure PlateNos.5&6.

EFrequency
Hz Meas.

s/E Level
Diff.

dB

E

Meãs.
e/Es

Level
Diff.

dB

-L.32

0. 89

-0.33

-0.82

-1. 40

0. 15

2 .89

2.82

3. 1l

6
Pred. Pred

400

s00

630

800

1000

L250

1600

20 00

2500

.372

. r64

.346

1.029

.450

.165

.242

.390

. TzL

.493

.351

.418

.32r

.3r4

.205

.101

.093

.049

-L.23

-3. 30

-0. 8l

5.06

1. s6

-0. 96

3.79

6.22

3. 9r

.32L

.386

.343

.237

.203

.192

. r79

.163

.092

.435

. 3r4

. 370

.287

.280

.185

.092

.08s

.04s
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TABLE 5-7

PREDICTED AI{D MEASURED RATIOS

Two plate coupled structure

FrequencY
Hz Meas.

10
Pred.

Eg/E
LeveI
Diff.
", dB

'to/' 9
Pred.

,57 6

.579

.564

.559

.560

.429

.4ll

. 340

.222

LeveI
Diff.

dB

0.41

0. 83

r. 31

3.50

400

500

630

800

iooo

L2s0

1600

20 00

2500

3150

4000

5000

.832

.783

1.066

L.282

I.032

1. 488

.936

.966

1. 109

.884

.903

.841

L.392

r. 400

L.347

1. 330

L.332

L.284

1.143

l. r33

.916

.866

.67I

.407

-2.23

-2.52

-r. 02

-0. 16

-r. 11

0.64

-0.87

-0.69

0. 83

0. 09

L.24

3.15

t'teas.

.650

.565

.520

.545

.600

.472

.498

.460

.497

0.53

-0. 11

-0. 35

-0. 1I

0. 30

.4L2 .503 -0.87

.t

I

l
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in dB are presented in Tables 5- 4,5-5, 5-6 and 5-7'

The t2dB criterion of acceptability is applíed to each

level dÍfference result which has a particular value of R*u* "td
N . associated with it. Fig. 5-I represents a plot of the

mrn

corresponding values of R*.* and Nrot' for aII the two plate test

results and shows which results lnet the !2dB criterion' It is

then used to determine the upper and lower bounds. The bounds

indicated are such that 95S of the data Points within those

bounds meet the !2AB críterion. Because of t}re possibility of

experÍmental error and the statistical spread of results' it is

unreasonable to place the bounds so that a]l the enclosed data

points meeÈ the 12dB criterion. The dat,a points are in groups

of two because for each N*ir, "td 
R*"* coordinate, there are two

results, the Eí/Ej level difference and the Ej/Eí level differ-

ence. A series of curves are formed by the data points because

both N*in .td R*"* increase with frequency, and from equations

(5.I) and (5.2), it can be seen that for each structure, the

slope of the curve at any point is given by

R*u*/N*i' (nn)maxlO.23n*t' (s. 3)

It is coincidental that 3 of the 4 sets of two coupLed plates

have similar values for this factor, and this accounts for the

grouping of.the data points. The lower bound i= N*ir, = 6' and

the upper bound is R*.i = 1.0.

The presentation in Fig. 5-1 is used to det'ermine the

bounds but does not indicate how the level diff,erences vary with

Nmin "td R*"*. The variation is shown in Fig ' 5-2 and Fig' 5-3

respectively, where the level differences are presented as a

mean value + one standard deviation. rndividual data points are
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shov¡n where lnsuffj.cient results are avaÍlab1e to present a mean

value and standard deviation. In Fig ' 5-2, all data points

where R*"* t 1.0 have been omitted to avoid masking the effect

of N*ir on the level differences. Simflarly' in Fig' 5-3' all

data points where Nmin < 6 have been omitted'

Inspection of Fig- 5-2 shows that as Nmin decreases

below 6 the spread of results increases and the measured energy

rat,io tends to be less than the predicted'energy rat'io'

Thedependenceoftheleveldifferenceonthemodal

overlap factor R Ís much more distinct. Ftg. 5-3 shows that as

R - increases, the spread of results does not increase markedly
max

(except at one particular value of **"*), but there is a distinct

change of slope of the general line of mean values at approxi-

matelyR*"*=I.o.Themeasuredenergyratioisgreaterthan

the predicted energy raÈio for R*"* ) l, but the results show

that this upward trend can be approximately predicted by adding

2dB to the originally predicted energy ratio level for each

doubling of R*"* above 1.

Both parameters R*.* and N*t' are proportional to fre-

quency. Generally, if the internal loss facÈo¡-s of eaçh plate

are approximately of the same order, then

Nmin = o'23n*trrf

and

Rmax
n.n f'r max

The upper and lower limits I and N.in = 6 can be related
x

to frequency and hence the frequency range in which the coup ling

loss factor prediction technique can be directl-y applied to a

strucEure, assuming third octave band excit'ation' is given by
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N

ni

L
R

U (5,4)<f.<
0.2 3t*i' \-t*r.*

where N" is the lower bound and Ru is the upper bound' It can

be seen from (5.4) that for the two plates' there is a value of

niatwhl.chtheupperandlowerfrequencyboundscol-ncideand
there is no directry usabre frequency range. For two coupled

element structurest

\
NL

nmLn

"-""
(5,5)

0.23

0.038 r*irr/t*.*

thatis,theinternatlossfactorsoftwocoupledelementstruc-

turestmustbemuchlessthano.o3Sfortheretobeanyusable
frequencyrange.Aspreviouslydiscussed,thefrequencyrange

can be extended upwards to at least five times the upper limit

by adding I0Iog

for R*.* > 1.

(ry;"t to the Prèdieted enersv ratio level

5.2.2. Three and Four Plate Join

Thetheoretica}energyratiosforthetwothreeplate

andonefourplatesingl,ejoinstructures,describedinTable

5-3,weieevaluatedasdescribedinSection5-l.Theenergy

ratíos of each structure vrere *"""ot"å, âs described in Appendix

D. The measured and predicted energy ratios and the level

difference between them, in dB, fox all three and four plate

single join structures are listed ín Tables 5-8, 5-9 and 5=I0.

Thet2dBcriterionísagainusedtodeterminetheupper

and lower bounds in Fig. 5-4 and the mean and standard deviation

of the 1ever differences are protted against N*1r, and R*"* ín
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TABLE 5.8 (A)

PREDICTED AND ENERGY RATros

e lates af a common oín - PIa
Plate 7 dírec t excLted

NoE. 7 I and 11.

FrequencY
H2

500

630

800

1000

1250

16 00

2000

2500

3150

E8/E
Meas. pred.

IreVeI
Diff.

dB

Êry'E
Meag.

,322

.454

.590

.382

.655

.463

.463

.443

.568

Pled.

LeVel
Díff.

dB7 7

.345

.266

.499

.295

.325

.30s

.458

. T9I

.344

.399

. 395

.392

.380

.371

.358

.320

.286

.25t

-0.64

-L.72

1. 04

-1. 10

-0.58

-0. ?0

1.56

-L.7 4

I. 3'l

.631

.567

.608

.552

,47 3

.465

. 330

.27L

.158

-2.92

0. 97

-0.13

-r. s9

1.41

-0. 01

L.47

2.L4

5.55
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TABLE 5-8 b

PREDICTED À}ID MEASURED ENERGY RATIOS

Three Plates at a common oín - Plate N

Plate I dire exclted

Ett/Ea
Meas.

7 I and 11.

Pred.

Level
DÍff.

dB

-r.47

-0. 90

l. 4r

-0. 31

0. 87

1.61

5.82

6.03

7.13

FrequencY
Hz

E7/E I
Meas. Pred.

IreVel
Diff.

dB

800

r000

1250

1600

2000

2500

3150

4000

5000

0.610

0. 606

r.288

L.033

0. 826

0.948

1. 43

1.06

0.839

1. 430

1. 359

L.324

L.243

r.079

0. 870

0.737

0.596

0. 330

-3. 70

-3. s1

-0.L2

-0.80

-1. 16

0. 38

2.88

2.50

4.05

0.832

.855

L.248

.817

, .7'lL

.7L6

1.101

.907

.47L

1. 167

1.053

.902

.878

.630

,495

.288

.226

.'0911
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TABT,E 5-8 c

AI{D MEASURED Y RATIOS

I and 1I.
Three P lates at a common oin-P late Nog. 7

Ptate 11 dl-rectIv exc ited

FrequencY
Hz

500

630

800

1000

1250

1600

2000

2500

.262

.496

.400

.326

.520

" .522

.500

.595

LeveI
Diff.

dB

-2 .66

0.03

-0.61

-1.1r
r.00

1. s9

2.59

4.64

E8/E

Meas.

.308

.L25

.394

.22L

.169

.247

.372

.396

Pred.

.254

.258

.243

.225

.22L

.L97

.156

.r22

tevel-
Diff.

dB

0.84

-3. 14

2.L0

-0.09

-1. 17

0.98

3.77

5. rl

't/EttMeas. Pred.
11

.483

.493

.460

.42L

.413

,362

.275

.204
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TABLE 5-9 (a)

PREDICTED AND MEASURED ENERGY RÀTIOS

loan - Plate Nos. 9, I0 and 12.
Three Plates atac ommon

Plate 9 d irectl v excited

FrequencY
HZ

400

500

630

800

r000

1250

1600

2000

2500

3r50

4000

5000

.247

.447

.29L

.395

.463

.27 4

.207

.260

.255

.314

.563

.293

.482

. 505

.452

.45r

.463

.434

.364

.336

.255

.242

.L7 6

.0917

Level
Diff.

dB

-2.92

-0.53

-L.92

-0. 50

0.00

-2.0L

-2.44

-r.11
0.00

1. 14

5.05

5.05

'tz/ugMeas.

.362

.604

.407

. 317

.689

.352

.3r0

.349

.267
'.430

.469

.425

Pred.

.501

. s39

.468

.47 6

.498

.467

.405

.348

.285

.283

.2L9

.1r9

LeveI
Diff.

dB

-r.41
0.49

-0.61

-1.77

1.41

-L.24

-0.70

0.02

-0.29

I.82

3. 31

5.54

Eto/Eg
Meas. Pred-
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TABLE s-e (b)

PREDICTED AND MEASURED ENERGY RATIOS

-ioin - P Iate Nos. 9 10 and L2,Three PIates at a colnmon

Plate I0 direct lve xcited

10
Pred.

r.178

1. 036

r.028

1.055

.97 3

.779

.720

.5r3

.47 9

.332

.L62

Level
Diff.

dB

-I. 13

-3. 13

-0.27

-2.06

-r.55
0.02

0.48

-0.07

1.14

5. 41

5.93

Etz
Meas.

10
Pred.

LeveI
Diff.

dB
/EEs/E

FrequencY
Hz Meas.

500

630

800

r000

12 50

r600

2000

2500

3150

4000

5000

.909

.57 4

r.094

.657

.680

.783

.803

. s04

.623

1.153

.635

.754

.684

.928

.7 4L

.649

.691

.7e6

.513

.57 L

.994

.57 3

.827

,7r5

.726

.758

.710

.607

.523

.426

.422

.329

.181

-0.40

-0.17

1.07

-0. t0

-0.39

-0.56

r. 82

0.80

r. 31

4.80

4.98
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TABLE 5-9 (c)

PR.EDICTED AND MEASURED ENERGY RATIOS

I0 and L2.
Three P lates at a n oin - Plate Nos. 9

Plate L2 d irectl v excited

FrequencY
HZ

500

630

800

r000

1250

1600

2000

2500

3 150

400 0

5000

Es/E
Meas.

L2
Pred.

r. 210

1. I31

r.106

I.11I

r.044

.863

.852

.619

.572

.4II

.2L9

Level
Diff.

dB

-3.67

2.08

-2.LO

-1. 90

-0.30

0 .84

-0.90

0. 08

0.59

2.22

6.2L

'to/"tzIvleas. Pred.

.382

.643

.613

.678

.458

.7L2

.544

.480

.644

.777

.7 4L

.796

.754

,7 40

.7 43

.706

.605

.599

.460

.43I

.327

.189

Level
Diff.

dB

-3.r9

-0.69

-0.82

-0.40

-r. 88

0.70

-0. 39

0. 18

L.7 4

3.76

s.93

.515

L.826

.697

.718

.975

t.048

.693

.6 30

.655

.685

.9L4



PREDICTED

TABLE 5.10

AND MEAS URED

jo in-P

ENERGY RATIOS

late Nos. 9'
v excited

Level
Diff.

dB

12 and 13.10'

E
FrequencY

Hz Meas

.4L2

.203

.344

.29L

.544

.336

.7L6

.5r0

.336

.256

.375

. s66

.918

.958

.820

.79L

.8r8

.720

.535

.466

.3L2

.286

.185

.0825

EtzEto
I'teas.

.538

.224

.446

.235

.507

.255

.455

.4L7

.307
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Fig. 5-5 and 5-6 in a similar manneÏ to the presentation of the

two coupled plate results in 5'2'L'

Again N*i' i" the lesser of N, and N, and R*"* is the

greater of Ri and R, when considering the level differences of

"i/"jandEr/ErirrespectiveofthevaluesofNandRofthe
other Plates at the join.

Theboundsdeducedfromthedataínrig.5-4areNmin=9

andR*.*=o.S.Inthiscase'approxímatelygotofthedaÈa
points within these bounds meet the t2dB criterion' Half of

the remainíng 108 of data points within the bounds but not meet-

ing the lzdB level dlfference criteríon are from results involv-

ing a specífic plate (plate number 10) excited at a specific

L/3 octave bandr (centre frequency L250Hzl. This indicates that

either the experimentally measured internal loss factor of plate

10 in the L250Hz band is in error, Ieading to an erroneous pre-

dicted energy ratio t ot the number and,/or spacing of resonant

modes in that band is far from the assumed statistical average'

As in 5.2.L, the data points with R*"* > 0'8 have been

omitted in Fig. 5-5r âs have those data points with N*ir, ' 9 in

Fig. 5-6. The standard deviations of the level differences are

generally greater in both Fig' 5-5 and Fig' 5-6 than for the

respective two coupled plat,e results. The mean energy levels

of each plate were evaluated from mean square acceleration levels

determíned .from measured acceleratlon, levels at I locations on

each plate. In the 2* plate experiments, 10 measurement loca-

tions were used on each plate. rn Appendix D, in which the

accuracy of measured results are discussed, Fig' D-5 shows that

the 95* confidence limits of the experimentally measured plate

mean square acceleration levels does not increase by more than

0.2d8 for a reduction in'the number of measurement locations

from 10 to 8, hence it appears to be unlikely that the increase
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in the standard. deviation of the energy ratio level differences

is due to the reduced number of measurement locations' It is

probablethattheincreasespreadofresultsforthe3and4

plate single joín structures compared with the two plate struc-

ture results is because the evaluation of the power flow in a 3

or 4 plate coupled structure is further removed from the original

SEA extension to evaluating power flow between two lightly coup-r

red elements from the basic concept of power flow between two

coupled oscillators.
InspectionofFig'5-5indicatesthatforN*rrr19'the

mean value decreases slowly with decreasÍ''g N.i,, b't the standard

deviation increases. The standard deviatíon generally decreases

wÍth increasitg N*i' with the exception at N*rn = 18' This

large standard deviation is caused by some results involving

plate I0 at L25OHz 113 octave band excitation previously men-

tioned.Whentheseresultsareomitted,themeanva]-ueand

standard deviation are as shown by the dashed line'

IÈ can be seen in Fig' 5-6 that the variation of R^"*

does not appear to affect the standard devíation of the level

differences but, âs for the two coupled ptate results' t'here ís

a distinct change of slope of the mean values of the level diff-

erences fot R*"* > 0.8' Again, it appears that this upward

trendcanbeapproximatelypredictedbyadding2dBtothepre-

dicted énergy ratio per doubring of R*"* above R*.* = 0'8'

The effect of omitting the poor results involving plat'e 10 at

I250Hz excitation is not as pronounced as ít is in Fig' 5-5'

since the particular data points affect the mean value and stan-

dard deviation at two values of R*.*' 0'08 and O'L2' As in

Fig.5.4,themeanvaluesandstandarddeviationswiththese

data points omitted are shown dotted in Fiq' 5-5'
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The bounds determined from the two plaÈe data presented

in Fig. 5-I are slightty different from those deterûrined from

Fig. 5-4 for the three and four plate single join structures'

It seems likely that the bounds are ímpossible to define exactly'

hence to avoid unnecessary complications when considering multi-

join structures, we have assigned a lower and an upPer bound for

aII single join structures. These bounds Nmin = 6 and R*^* =

1.0 will be used when discussing the results in section 5'3'

5.3. MULTI -JOIN STRUCTURES

5. 3. I. Two P1ate Joins

(a)Themeasuredandpredictedenergyratiosofacoupled

structure comprising plates I, 2 and 64, cOnnected AS shOwn in

Table 5-3, are presented in Fígs. 5-7, 5-8 and 5-9 where the

directly excited plates are 2, 6A and t respectively. The

frequency at which Nmin = 6 is noted in each figure' í'e' the

frequencyatwhichthelowerofN.orN.isequalto6whencon-

sidering the energy ratio Eí/E). Above R*.* = I' the adjusted

predicted energy ratio is also shown'

As there are three interconnecting plates, there is a

second energy flow path through the third plate which affects the

energyratioEi/Ej.Thisbeingsorthenitseemsprobablethat

the No and Rn values of the third plate k, should be considered

in determining Nmin ..d R*.* for the structure. If the inclu-

sion of the N* and Rn values of the third plate restrict the

frequency range determined by Nmin "td R*.* from elements i and

j onty, then the frequency at which Nk = 6 is noted and the pre-

dicted energy is adjusted above Rk = 1' As the upper bound

frequencies approximately coincide only one adjusted predicted

average ratio is-shown in each of the graphs'
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InspectionofFigs.S-7|5-8and5'gshowthatallthe

measured and predicted energy ratios are within !'2dB between

the t\^to frequency limits determined bY N, = 6 and R' = 1' In

additionrtheagreementforNr<6wasalsowithinlzdBinall

casesexceptfortworesurts;theenergyratioF.r/F,uoat'400Hz

andE,/E2aE500Hz.Atfrequenciesabovetheupperbound
(above 1600H2) the measured energy ratios are generally in closer

agreement with the adjusted predicted level for the tests where

plates6and2weredirectlyexcited.However,whenplatel

wasdirectlyexcited,themeasuredenergyratiowaspredicted
more closely by the unadjusted theory'

(b)Ptate5Awasaddedtothepreviousstructuretoform

afourplatecoupledstructurewhereonlytwoplatesarecoupled

at any one join. The predicted and measured energy ratios

ul/"2, Est/Ez and' Ero/82, plate 2 being exÈerna1ly excited' are

shown in Fig. 5-ro. As there are three energy flow paths to

eachelement,thequestionofwhichNandRvaluesshoulddeter-

minethefrequencyboundsagainarises.Foreachenergyratio

consideredrtheN*'nlowerfrequencyboundforthetwoelements

involved is shown as well as the most restrictive lower bound

ofthefourelements,delerminedbyN6e=6atapproximately
T00Hz.TheupPerfrequencyboundforthetwoelementsinvolved
is determined ín each case by R2 = 1' and

most reétrictive upper frequency bound'

R5A=ldeterminesthe

The adjusted Predicted

energy ratios are shown for both R, > I and RUO > 1 except fox

theE5A/E2ratioswheretheRr>ladjustmentsarenotrequired'
InspectíonofFíg.5-loshowsthatforthethreesetsof

resultspresented,thedifferencesbetweenthemeasuredandthe
predictedenergyratiosarewithinlzd}betweenallthebounds

shown, although the lower bound for EL/EZ and EUO,/E2 (NZ = 6 at
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approx. 550H2) is close to the 500H2 result which shows a larger

level difference of approximately 3dB in each case' The 2 sets

of upper bounds are too close to each other to determine whether

one should be used rather than another. For all three energy

ratios, the measured results l4tere closer to the prediction for

R > I than for the 'corrected' predicted energy ratio except
max

in the 2000H2 band.

Itísinterestingtocomparethepredictedandmeasured

energy ratio level differences for EL/82 and F,ro/B, for both the

three ptate structure (Fig. 5-71 and the four plate structure

(Fig.5-10)atR*"*>l.Theadjustedpredictionismoreaccur-

ate for the three plate structure but the unadjusted energy ratios

are closer to the measured energy ratios for the four plate

coupled structure. None of the physical parameters of the plates

have been alteredi area, thicknessr internal loss factors and

couplinglossfacÈorsforelementsl'2and6Aarethesamein

each case. The only alteration is the changed boundary condi-

tions of the glates I and 6A at the edges connected to plate 5A'

This demonstrates that the adjustment to the predicted energy

ratios for frequencies above R*.* = I must be regarded as a very

approximaËe guide onIY.

The results shown ín Figs' 5-7 to 5-10 show that the

measured revels are within t2dB of the predicted revels over the

bounded-frequency range and often within t2dB of the adjusted

predicted level where.R*"* is greater than 1.0. Except for

oneresult,(rig.5-8,E,/Euoat3I50Hz)theleveldifference

was greater than t2dB only where the measured level was less

than (a) the adjusted predicted level fot R*.* > 1' and (b) qhe

predicted level for N*'r, < 6'
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5.3.2. Two Three and Four Plate Joins

The structure comprising eight plates, described in

Table5-3wasexcitedbydirectlyexcitingplateL4.The

measured energy ratios E/E'A, E'/ELA' and E'Z/EV are compared

withthetheoreticalenergyratíos,predictedasdescribedin

section 5.1. The theoretically deterrnined energy raÈios and

themeasuredenergyratiosarepresentedlnFig.5-11.
Itisdífficulttodeterminewhichelementsshouldbe

used to define the upper and lower bounds which should be applied

to the whole structure' It seems likety that there are some

elements of the structure which would not cause the energy levels

ofotherelementstoaltergreatlywhentheirparametersare
altered or the element is removed' Plate 3 is an example of

thiswhenconsideringtheenergyratio"g/"u.Itisprobable

that those elements whiCh when altered, would cause a significant

changeíntheenergylevelsofotherelements,wouldbethoseín
themostdirectenergytransmissionpaths.onthisbasis,the

bounds shown in Fig. 5-II are determined from the elements which

aPPearÈobeinanimportantlocationinthestructure.Also

the most restrictive bounds are included, these being N3 = 6 and

R4A = t'

ItwouldappeartobeneedlesslyrestÈictivetouseN'

andRno-todetermínetheboundswhenconsideri-ngEr/Ea4and

Etz/Eta..Howeverthedifferencebetweentheadjustedpredicted

energy ratios for RnO > I and R, > 1 are too close to each other

todeterminewhetheroneelementmorethantheotheriscontrol-
IingtheresPonse.SimilarlyrDoconclusíoncanbemaderegard-

ingwhichlowerboundshoul.dbeused.Innearlyalllowerfre-

quencybands,themeasuredenergyratiosareingoodagreement

with the predicted energy ratios well below the expected lower
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frequency bounds determined by N7A = 6 or Nan = 6' Again'

where the measured and predicted energy ratios differed by more

than zdB, the measured ratios were less than the predicted ratios'

The lower than expected measured energy ratios 
'g/'u 

and

Elz/Etq ín the L2SoHz third octave band, well within all the

frequency bounds, demonstrates thaË the coupling loss factor
prediction Eechnique used in this work, although generally
predicting the energy distribution satisfacÈorily

within the uPPer and Iower frequency llmítations, cannot be

relied upon to gíve an accurate prediction in all cases' The

poor agreement between predicted and measured energy ratio levels'

discussed in 5.2.2 was also associated with plates 9 and 10

excited by a L250Hz third octave band random signat' It should

be noted, however, that even for these relatively Poor results

at :I250Hz, the predicted and measured energy ratio level differ-

ences are within 3dB. In many engineering applicatioris' a pre-

diction of energy distribution in a structure to thís order of

accuracy would be accePtable'
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SECTION 6. CONCLUSIONS

Asetofpowerbalanceequationswritteninamatrix

form, Equation (3r9), enables the vibratíonal energy distribution

in a connecÈed structure to be evaluáted, provided the coupling

10ss factors and internal 10ss factors are known. In order to

apply this SEA technique to multi-plate structures, a simple

means for calculating average coupling loss factors, for up to

four plates at a single join, has been presented.

The coupling loss factor is retated to an average trans-

mission coefficient which can be calculated from an empirical

equation. This equation very closely approximates the average

transmission coefficients calculated using bending wave trans-

mission theory and extensive comput'er integration procedures'

For an error in the predicted coupling loss factor of

less than 2dB, the effect of longitudinal and transverse $¡ave-

fields, generated at the join need not þe considered when

Qab < 0.01g, i.e. for steel p < 50ms-1. The wave transforma-
aÞ

tion should be considered for Qab > 0.036. In the region between

these limits, the bending wave solution can generally be used

unless the structure contains two consecutive joins where the

plate thickness ratios are greater than two to one. In such a

structure, Iongitudinal and transverse wave generation should be

considered when evaluating the coupling loss factors.

when considering thick sÈructural elements or high fre-

quencies, i.e. Q.U > 0.036, the transformed longitudinal and

transverse waves transport energy, some of which is transformed

back to bending wave energy in subsequent plates. This addi-

tional bending wave energy can be allowed for in the matrix

equation by using a 'correctedr bending wave to bending wave

transmission coefficient to evaluate the required coupling loss
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factor. varues for bending to bending, bending to longitudinal

and bending to transverse wave average transmissíon coefficients

for each of the joins are required to det'ermine the rcorrected'

bending to bending transmission coefficient. There does not

appeartobeanysimplerelationshipsenablÍngÈhesecoefficients

tobedetermíned,eitherbyrelatingthemtonormalincident

coefficients or to bending solution coefficients, hence empiri-

cally obtained chart.s relating the general solutíon transmission

coefficients to the more easily evaluated bending solution co-

efficients, or time consuming computer evaluations, are still re-

quired.

The vibrational energy dístribution in single join struc-

tures of up to four plates with arbitrary coupling strength' can

be predicted 
I

\ to an accuracy of t2dB with at least 90*

confidence within the upPer frequency bound (R*"* = I) and lower

frequency bound (N*ir, = 6)' The frequency range can be extended

to **.* approximately equal to 5 with an adjustment to the pre-

dicted energy level for I I **"*< 5' rn the extended range'

the energy levels can be expected to be within t2dB in the major-

ity of measurements, with differences larger than 2dB generally

such that the measured level ís less than the predicted level'

Agreement between predicted and measured energy levels in general

multijoin structures can be expected' generally within t2dB and

within 3dB .over the extended frequency range. '

Itismoredif.ficulttostatewhichelementsshouldbe

used to determine the upper and lower frequency bounds when con-

sideringamultijod-nstructure.Itisthoughtprobablethat

the N and R values of those elements in the major vibrational

energy transmission paths would be those which determine the

upper and lower frequency bounds for the structure, but further



135 .

experimental work is required to determine whether this is so'

Furtherexperimentalworkisalsorequiredtoinvesti-

gate the validity of sEA for thick structures, that is with
'*

Qab , 0.036. For the structures where the bendíng, Iongitudinal

and transverse htaves are required to accurately predict struc-

turalenergydistribution,itmaybeusefultoproducecharts

or Ëables of the three average transmission coefficients tBB'

rBL and rBT for various typical plate j'oins at specific frequen-

cies. This would save a designer much computing time but is not

warranted until the relevant experimental work has been carried

out.

InconclusionitshouldbenoÈedthatsEAhasbeenshown

to be.appricable to rear structures with arbitrary coupring

strengths, where the internal loss factor of each element in the

strucùure was not only accuratety determined, but was such that

it would not alter significantly from the uncoupled state to the

coupled state. However, for líghtly damped metals, where radi-

ation controls the measured internal loss factor, this is not so'

In botted, rivetted or spot welded structures additional losses'

whích need to be considered as part of the element internal loss

factor, occur at the join, mainry due to air pumping. The

estimation of the inÈernal loss factors of elements in exísting

structures is difficult because of these variables' It would

be useful for further research to be undertaken to investigate

thedependenceoftheapparentinternallossfactorofanele-

ment on the type of join and structure configuration' This

couldthenbeusedtoestimatetheinternallossfactorsof

elements in existing structures'

Providedtheinternallossfactorsoftheelementsin

a coupled plate structure are known'

*see postcriPt Page I4a'

the vibrational energY
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distributíon can be Predicted wLthin definable fre-

quencylimits,whichdependuponthemodaldensityandmodal

overlap characterístics of the elements ínvolvedr ês well as

the accuracy and the level of confidence requÍred by the

designer. The upper lirnit applies only to the coupling loss

factorpredictionmethodandisnotnecessarilyalimitation

of SEA.
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APPENDIX A. ENERGY DECAY IN A TWO D IMENSIONAL FIEI,D

Theprocedureisanalagoustothatusedtodetermine

the energy decay in large rooms (Beranek , I97I (1) ) ' The energy

density of the field, Dn is due to aII bending waves travelling

in all directions with equal probabirity. The power rost at

an edge aL where another plate is coupled is DncnalT/n ' This

is completely analagous to the 3-D expression for power lost at

a surface of a room. This energy loss is for one reflection'

As the wave travels through the medium there are internal (and

radiation) losses which can be represented by

D (x) -mx (A,1)
p

(A,2 )

eDo

where x is the distance travelled by the wave and m is a propaga-

tion loss factor. The amount of power reflected back into the

plate at edge ÀL is DnCnALr/n where

The same method as is used by Embleton (Beranek, 1971(I)) to

achieve the reverberation time formulae for rooms, is applied'

The time required for the total energy to undergo one reflection

only is 
^t 

and the energy densitY is

"t/', zLz/Lt -md (4,3)
D (Ar) D (r r

p o I

where d is the distance travelled by the waves in Àt'

r=I-t

Ar d/c g

r.e
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where

d TAP/LT

is the mean free Path and C fs ùhe group velocity of the bending
I

waves. Lf is the perimeter of the plate of area An' After

time t, the energY densitY is

Lt/Lt "t/"r LTCgt/rrAp -mC tg
Dp (r) =D (r

DExP

o I r2 ) e

o r
ctg (-t Lirn ri)
rA

P

-ilC (4,4 )

(4,5)

(4,6 )

1g

Since 10 log ex

10 log (Dp (r) /Do)

The reverberation time T for a 6OdB decay is then

60nAn

T

= - f 't% (-rr,, ln rr) t + * tn'] a"
r-p

4.34C mA 
-l

pJI t - ELi (l-ri) + n

60

Assuming there are no losses at the edges¡ i'ê'

T 0, then
l_

4 .4t¡
sec.

0îI
T

4.34Cnm
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Since C

written
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(¡)nl
m = 

-cg

(Ar 7)

(A' 8)

(A,9 )

For the case where there are no internal losses,

* = 1l = 0, and changing An to At

601TAr 4.4t¡

T

nLz

-4.34Ca8L, In (1-tt) 'úúfl
T2

I 2C-
D

2u/k¡tthe coupling loss factor np can be

\tz
I

2 (-DL ln (l-t ))I I

k AI I

For a plate with only one join of length L

0.0505 x an (-rr,i ln (l-tr)

2 L (-In (I-tr, ) )

n Ark,

ARt

Îf

which is equation (4r4) of the text' rf 
'LZ 

is substituted

for -In(I-rfZ)in a similar way "" 0SAB is substituted for -1¡(1-o)

in room acoustics, (Ar8) becomes



140.

XL (t
t- L2 (A,I0 )Itz =

ktAt

This is applicable where the join between two plates has 2 ox

more values of t associated wíth it. This occurs when more
L2

Èhan 2 plates are connected at a common join but the lengths of

joÍn for each are not equal. For exarnple, (A'10) is required

to evaluate the coupling loss factors at' the junction of plates

4A, 7A, and L2 in the g plate test structure, described in

Tab1e 5-3. The tength of join between plates 7A and 12 is

Lle,tZ = 0.434m. However, the joins connectíng plate 4A to

these two plates are 1ess, L4AZA = 0.360 "td 
L4R12 = 0'415'

Considering nZe lZ , r7AL2 has one value along the length of

the 3 plate join and a different value for the remaining length

of Lle,tZ. A similar approach is requíred to evaluate nl,-tZ'

?
1T
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APPENDIX B. SOI.UTION OF SIMUI,TANEOUS TION S TO OBTAIN
D

81. BENDING !{AVE FIELD ONI-,Y

From the displacement equations (4,13) and (4rL4) and

the boundarY condition that

w.
t-

0atx l-
0

then
0 1+a + a

0 an
+

therefore

"r - (l+a )
(B,1)

I

(8,2 )

II

an

an -an for n 2 3' 4

Substituting (B,I) and (8,21 into (4,13) and 14,L4) and dif fer-

entiating with respect to x', the derivatives are

Ew I ikrcosctr+kt
2I+sLn ot lfsin c[

1

ðx *r=o
I + "t 

(-ikrcosor+k

-u2r"ot2ol-kl

I

2

(Br3)

(8,4 )âw = .r, (-ikrrcosorr*k' 1+sin oún

âxn x=0n

n

t"J
;Tt

â2w

= ", (-t2r.o" 
2 or-r.l ( r+s in2

= -zxla,

1)0 1I+sin2crr)

(B,5 )

0t
2

2 ann
ðxn n=Q

= -2k

2k I

(8,6 )
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The second boundary condition that

âwI àw
n

âxn

gives the three equatJ-ons

k, (ícoscrt 1+sin ot) + ark, ( l+sin2or-icosot)2

=aknn 1+sin cr,rr-icosorr)

( I+a I I I + arDrk arOrf<2,2

âx I

(8,7)

Summing the bending moments about the jofn leads to

2
4i+

To solve fox a2t

where

)D k

B

+a k 0 (8, 8)D
4 4

(B'7) is rearranged and the term B, eubstituted

21+sin ct i coso fori=1r21314
J j

2
B *= 1+sin cl + i coso 1I I

(8,9)

l

a3 = arkrB2/kgB3

^4 = arkrB2/k4F4

tl (arkrBr:ktBI*) /krBf

(B r I0)

(B,11)

and

Ita I ( a rk rB r-2 ik rco scr, t ) /k ta t (8,12)
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withtheserelationshipsappropriatelysubstítutedinto

(BrB) and rearranged t

32j,D k cosctI 1 tkgBlkaB4
'a

a

k B
4 I"r" il' nrnrkgk¿prkr"z"384*D2k28rB384+D3kgBtBzB 4+D 4

which reduces to

2ikrcosotB¡84

*DzkzsE B BI 3 4
+D3k3sE B BI 2 4

*D4k4sE
(8, 13)

(8, r4 )

B
1 2 IB2 *z 

fz"r"a

Using the Parameters

xij

rl ij

k. /k.)' r-

(B r I3) becomes

a2

= o¡<jnru!

cosorBrBn¿L

xtz 4
x

j=

u3 can be found by following the same'procedure as before and

this leads to

2í cos0 
uBZB a

a

F
xrg3

and similarlY for a4.

uä
I xfj

ÉlBzBgB¿
(8, 15 )
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The general form for n = 2, 3 or 4 can be written

2i
cosüI BZBgB4

xrtt B n (8,16 )

B B B B

lI 2

B j,

which is equivalent to equation (4'16)'

Equation (B'14) is substituted into (8,11) and using

(DEN) as a shorthand notation for the bracketed expression'in

the denominator of the last three equations

2ícos0l B28394- B1* (DEN)

an

t- I Yrr-

[,=t 
*t,

43

(8,17)
"l B (DEN)I

This can be rearranged to give

-"r"1* tþr 
"n*F;r"n*þ,"r' + B2B3B4 (2icoscrt'Bt*)

ur

-2(
4 üt' BzB3B¿

B1(DEN)

) B I B
2 3 4

B BT

n=2X ln B B *I

B *

xn

2

B (DEN)I

B B
1 3 4

B ) + B2B3B4

I
*
BB

n (B,18)
(nnn)

which is equivalent to equation (4'15)'



145.

82. BENDING, LONGITUDINAL AND TRANS VERSE WAVE FIELDS.

Asv

(4r48, g, h'
j

at 0 are:x.l

u j x j =Q

b sinß /cosyl ) l

J

i, j ), amptitudes .j and b' can be related by

c
)

(8,19)

(8,20)

(B,2I)

(B t22l

(8,231

(B,24)

x.=0
J

!,Iith(B,19)substitutedwhereappticable'andthetermscommon

toallthedisplacementequationsomitled,asdiscussedin

section 4.4, the displacement equations and theír derivatives

(cosß jcosY . +sinßr sinV' )

âu.
)

ðx.l =Q

j )
sin"¡-ib (p co +q j sinß j j

J

for j I 2t 3, 4.

s2B

x j
,

*l I+ tr*tl

Ðw I

I

*r=o

tr
l"o"2o r-rl.o=2o rar+rl 1 l+sin2a r )

s3orar-kfl { r*=irr2ot ) 
I' ttr'

ikrcosor-ikrcosçt-k *"ir,2o) "l
âx

2

I=Q

*r=o

a

-k al;l
à¡tr

co-ikrcos3crr+
3
I*l

xr=o

ik (8,25)



and for n = 2, 3, 4

x=0n

a +ann

Ðwn = -ik n
ã

x=0n

**n 2=-k n
â
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2I*sin 0

2 2
+ k ( I+sin ct

n

Ì47n

xn

(8,26)

(8,27)

(8,28)

(8,3la)

(8,3lb)

anncosot ann

)co 2sc[ann a
nn

2xn

n

3x
n

x=0n

a3* 3 2 I 5 I
( I+sin c (8,291

n
â

x=0n

Twelve linear equations are obtained by substituting

the above relationships into the boundary equations (4'48)'

Considering contínuity of linear displacement, (4r48a-f), using

the previously defined parameters Xij and rl' and introducing

(8,30)

iklcos tor,t' k

cosßrcosy . *sinßi sini .

n ct n

H.
J

the following are obtained.

"rbi 
+ cosyt lar+a))

cosY¡Htbt + cosvrH3b3 = o

-cosy2al + cosVraj - H2b2= -cosY2

0

(s,3Ic)



"l*.i*"3*.3'=-t

L47 .

Htbt - cosyt (.¿ + ai) 0

(B,3ld)

1n,3Ie)

= -icoso,

(8, 3tk,1,m)

arr) ai)

(8,31f)

Considering continuity of angular displacement (4r48kr1,m),

-icosctat +=irrzor) .i * xrrrcosor, * Xl l+sin C[

-cosy4al + cosY4aj + ttnbn = -cosY4

z 
( -ü lrr"os 

2 
orrarr+,¡, ln ( I+s in2

n

forn=213t4

and summing bending moments (4,48n)r

2-cos d

where F

2or) aj +
4
t+ (l+sin

2 (B,3ln)= cos o1

summing forces in the two dírections perpendicular to

the y axis give the remaining two equations required'

ral n=

ico s'o r-. r- ( r+s in2 o 
t- 

) 
t' u. 

i- i, t z 
( cos 

2 
9 r+ftsinß, s inv zl b 

z

ixr ¡ü rrcos3o 3a 3+xr ¡ü r¡ ( l+s in2cr, I 
r' 5ar*i't 

¿ 
(cos2 ß n+ffsinß n 

sinv 
n 

) b

.3l-cos c[ I

"j.jpjlorki1j

Since qj"itYj o.sinß.'l l
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.3r-cos 0 ( r+sin2o r, 
t ' u"i-iFr2b2-ixt 

¡üt gto" 
3o 

r",

iF b
.3

= 1COS C[ I (431o)
I4 4

(co"2 ß

o,
J sinß sínyj
J

l j

.b
T

b ( l+a I+a
1 t cosy r/u,2

b
3

-cosy 3HIbI/cosY IH3

+ I
p

hence

SJ-milarlY

rar -

* x1gürg (1+sin203) 1'5tti

iF I Ib t+ i Xtzú., r.o " 
3o, 

a r' Xr2Ú',, ( l+s in2 o rll' 
5 

^
I

e 
-íFtgbs

iXtAüt¿.os3anan+Xf ¿V rn 
( l+sin' o n"'S ^'i = 0 (B,3Ip)

These L2 Linear equations can be solved simultaneously

to obtain the wave amplitudes for any incident angle cr' To

obtain the transmission coefficients, these equations must be

solved for a large number of incident angles. The computing

time required to solve the equations is reduced by eliminating

the b, terms leaving I simuttaneous equatJ-ons to be solved'

The following relationshiPs

- (az+a;) cosyr,/H,

b
4

-cosynHrbr/cosl rHn

(8,32 )
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are substituted into the appropríate equations of (8r31) '

At this point, the analysis, which has been completely

general, is restricted by the assumption that the four plates

are of the same material. The longitudinal wave speed is t'hen

the same for each element independent of its thickness, hence

the subscript can be omitted from the H, cosY, siny, p and q

terms. Equations (8,32) become

I +a ) cosylHb -(a 2 2

b ( I+a ) cosy/H
2 I I

(8,33)

b -b I3

b -b 24

The resulÈing 8 equations are presented in matrix form Ax = B

where
2cos cl,

+a

"I

a

a

3r HCOS Cl +F ) cosf
I

+(Fai

2

a!

ai

I L2 14

0

x= a I
2

3

, B= -i coso JXn
-1

-i cosc t/Xn
0a4

-i coso¿ JXV



2-cos a1
2I+srn ol

1tt {i+sin2

i (Ftz+Ft4

Xt:

2'Va2cos s,

0

,Jrr, (l+sin2ar) -ü13tos2o: Ur¡(l+sin2ca) -ütncos2o¿ ür¿ (r+sin2cn)

-ixrsút:H.o=3o, xr¡Úl¡H(1+sin2 r)t't0

"r) 
t'1

r.o"v]l

{l+sin2cr) 0'5

0 0

3

o

I

ct

, 

þ:iiï;;;: Jþ:lî,,, :::Ï'' l
0 -ix r¿ü 14Hto" c4 X r¿ü r¿E 

( t+"i"2q )l' s

0

I

2 0.5
- (l+sin ol)

I

-icosctt
Xt¡

- icoso

0

0

o

I

r-coso

-icosct -(l+sin2ar, 
o'u

icose, 1l+sinza,) 
o'5 0 o

00

00

xtz xtz

A

P
(Jl
o

1
0

00

0

3

1
0

I0

0 0
1

000- (I+sin2or-, o'u

xt¿ Xrt
0

icoscn ( 1+sin
)

4)
0.5
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The sino l
containing sincrr.

variable.
Acomputerprogralnmeisusedwheretheaboveequat'ions

are set Lnto a simpson's RuIe integrating routlne' The various

transmissfon coefficients are calculated usíng the derived wave

amplitudes.Alistingoftheprogrammeusedisgivenín
Appendix C.

and coscrj terms are transformed to expressions

For any set of plates, sino, = s is the only



I

5

APPENDIX C. COMPUTER PROGRÀMMES

C.1. COMPUTATION OF THE AVERÀGE TRANSMISSION COEFFICÏENT - BENDING WAVE SOLUTION

PROGRAM TRFC4 ( II{PUT'OUTPUT TTAPES=INPUT ITAPEó=OUTPUT)
CALCULATES TRANSMISSIOIì FACTOR F t T¡) FOTI UP TO C PLATES OF SAI'IE
MATERIAL BUT OIFFERENT THICKNESSES.---CONNECTEO ALO¡JG ¡ COMMON

JÖIN JOIN ÂNGLE NOT IMPORTANT

LOSS FACTOR( IJ)=2LF (.IJ, / (PI} A (I)K ( I}
L IS LENGTH OF JOIN
K ( I ) IS I¡AVENUMBER IN PLATE I
Â ( I } TS AREA OF PLATE I

F'(IIJ) IS TRANSMISSION COEFFICIENT TOR(ITJ)
-LN(l-TOR(IrJl) -LN- I-S ALSO CALCULATE0
-R- IS RATIO TOR AVERA6E,/TOR ¡¡ORMAL II.¡CIDENCE
ANGLE FOR PLATES f AND J
rFI2 BASED ON DIRECT SUBSTITUTION INTO POhIER FLOIJ EOUAT ION
F I2N IS FI? CALCULATEO AT NORMAL INCIDENCE ONLY

THIS PROGRAÈI ONLV CALCS F ( IJ) FOR I LESS THAN J
F (JI)=F(IJISORI (T(JllT(l) )

EXÎERNAL TCPHIOENZTDNP¡ IRCFF
3? hRITE (6r I )
I FOR},IAT (IHIr4XrZ4¡ITRANShISSION COEFF TORIJç5OXIZ?HTFI2 IS TRANSI'IISS
lION FACTORT//l
hRITE (6¡21

? F oRt{AÎ ( 4X rZHT I r 3X ç?HT 2r 3X r 2HT3 r 3X r 2HT4 r 8X r 3HF I 2 r I I X. 3HF I 3 r I lX r
I 3 HF t 4 r I I X r 3 HF ?3 r I I I r 3 HF 24 r I I X r 3 HF 3 4 r I 0 X r a HT F I ? r I 0 X r a HF I 2N )

PLATE IHICKNESSES TI I¿ T3 T4 IN FIRST 4 FIELOS OF DATA CARD

5Th FIELD I.S CONTROL O (LEAVE BLANK)..-CONTINUE
-1.----- ---NEl PA6E
I.-.----- -STOP AFTER THTS CARD

FOR 3PLATES I4r0
FOR E PLATES TE=g AND I3TO

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

t0

l5

20

25

H
ul
N

c
c
c
c
c
c

30



35

40

/.5

50

s5

ó0

3 R€AD(5ró) Tl rT2r T3rT4'SlO
6 FORt'lAT (5F5.el

IF(Tll42t4?¡7
7 lF ( t2l4?t42ta
8 1Pl?Ff2/tl

I F'( f3l'40 I 34 ¡ 3a
34 ll ll4)40r35r35
35 lRl3=T3ZTl

1Rl4=14/fl
IF(1.-TRl2)9rl0rl0

9 Zl2gl./soRl (TRIU I
G010 I t

I0 Zl2=1.
I I CALL SÎ-IPSN (TCPtrrTRl2 rTR l3rTRI4r' 0 r Zl2 I 0. 000 I I I 0 rSI I r SPI 2rN' IPl2l

Â12:1.-SPl?
Fl?=-ALOG(Al2t
F l3¡ .0
F l4=. 0
F23=. 0
F ?4=. 0
F34='g
RlZ=SPl? ITCPV(' 0 I TRl2 rl Rl 3r TR l4 )

:Rl3¡.0
Rl4r.0'l
R?3r.O, ,

R24-. q
R34r.0
SPI 3¡.0
SPIô¡. Û;
SP23=.0 I

SP24r.0
SP34r.0
CALL SHPSN(RCFF rTRt2 r TR t3rTRlôr ¡0r I .0r 0. 0oOl I l0 rSt I r SPI I rNr IPI I )

cALL SMpsN iogN¿ rTrtl2'TR tã. Tpie, .ó,Zl2r 0. Ooo I r I0 ISI I .DNI2rNr JDl2I

(¡
(,

rS



70

75

e0

85

cALL St,rpsN (oHpr r TR I2r TR I3 rTRl4r .0 r I .0 r 0.000I I I0 r S I I. SD I2 ç N I I S I2 )

RSlZ=TRl2{1TRl2
FN I ?=3. 14 I 6{rSP l?lRS I 2
RDI 2=3'. l4t 6/RS I 2-DN I 2-SDl 2

FPIz=RNI?/RÐI?
TRNÞåTCp¡r ( . 0, TrlI2 rTFìl3r ÏRl4)
ÂNl2=1.-TRNI'{
¡ 12¡=-ALOG ( ANIZ)
IF(T3)40ç12¡13

l? lF 174)40r30r44
l3 lR2l=ll/T?

1P23=T3/T?
1R24=T4/l?
IF(l¡-TRl3)l4rl5rl5

l4 Zl3=1./SORT (TRI3)
oTo 16
l3=1.
F ( l.-1R23) l7r l8r l8
23=1./SQRÍ (TR23)
0To 19
?3=1.
Ãr_u- õupsH (Tcpr r TR l3 r TR lz r TRl4r . 0 r Z I 3 r 0 . 0 00 I r I 0 r sI I r sP I 3 r N r IF l3 )

¡Uf- imgiN (TCP¡ rTRZ3 r TRZI r TR24 ; .0 ç7?3r 0. 000 I r I 0 r SI I r SP23i N' IP23 l

I 3=l ..SPl3
Fl3=-ÀLOG(Al3¡
¡23=1..SPZ3
F23=-ALOO ( A23t
F I 3-SPl 3/TCP}, ( . 0 r TRl3r T Rl4 r TRl2 )

R23=SP23 /1 CPlt (. 0 r TR23 r 1 R2 I ç TR24 )

IF (T4)40r30r20
20 TR34=T4IT3

TR32=T2113
TR3l-Tl,r13
1F ( l.-lRl 4l?l¡??¡??

ts(¡
È

I
I
I

I
I

G

5z
6I
7Z

G

8Z
9C'c

A90

95

100



I c5

ll0

It5

I?_0

r?s

130

2?
23
?4

25
?6
27

?8
?e

?l 214=1./soRT (TRl4t
GOIO 23
Z l4=l .
IF(1.¿IFl24l24¡25¡?5
7?4=l . /SQRT ¡ lRZa I
GOro 26
2?4=1.
IF ( l.-TR34) ?1 ç28t28
734-1./SQRT ( TR34)
coïo 29
234=1.
CALL Sl,iPSN (TCPr r TRl4rTR l2 I TRl3r . 0 r Zl4r 0. 000 I I I 0 rS I I I SPI4r N r IP l4 )

CALL StiPSN ( TCPI çTR24 ¡T î<21 r TR23 ç . 0 qZ?4r 0. 000 I r I 0 r S I I r SP24r N r IP24 )

CALL S¡4PSN ( TCPI rTR34 rTF3l ç TR32 r . 0 r 234 r 0. 000 I r I 0 r $ I I ! SP34r N' J P34 )

A14=1.-SPl4
F l4=-AL0glAl4l
À?4=1.-SPe4
F24=-AL0O (A?4)
Â34=1.-SP34
F34=-ALOG | Â341
R l4=SP l4/f CPW ( . 0 r TR14 r I R l2r TRI 3 )
R24=SP24 /'lePl ( . 0 r TR24 r I R2l I TR23)
R34=SP34/TCPï ( .0 r TR34 t I R32 I TR3l I

30 SultÏa.O
SUI{I=SPl I }5P I alSP I 3 oSF I rt

TR I TE I êr4 I SPIâT SPI 3 r SPI{ T SP23 ISP24T SP34 T TRNT{

4 FORI'tAT l??Xt3HIORr lXr6(Et0.3r4Xl ¡ l0XrEl4.3)
hRITE (ór4ót Rl2rRl 3 r Rl4 r R23r R?{r R34

46 FORHAT l??Xr lHRr3X ró (El0.3r4X) I
hRITE (6 r3l t Tl rI2rT3rT4¡Fl2r Fl3r Fl4rF23 ¡F ?4çF34r F Pl? çF I ?Nr SPI I r

I SUMÏ
3l FORtIAT ( 2x ¡4F5.2 r lX r 2HLlt r l X r ? ( El 0.3 r 4x )' E1 0.3/

I??Xr6HIORIlrtE¡0.3r l0xrShsuM TORrrEl0 .3/ / I
IF(IPl2)50r51r50

H(¡
(¡



l15

t40

145

t50

5l IF(IPl3)5or52r5o
5? IF ( IPl4t 50r53r50
53 IFlIP23l5or54r50
54 IF ( IÞz¿+t 50r55r50
55 I.F(.IP34)50r5ór50
56 IF(STO)32r3r33
iO r"irf f e (ór57) Ipl I r IPI?r IFl.3r JPl4r IP?3 tlP?4ç IP34
57 FOR¡AT Q\r4ãXs¡qpsoÑ RrrLE cRITERIa NOT MET FRROFì CODES'2Xt7l?t

IF (STOt 32r3r33
4O hRITE (6r41) Tl rT?ç13ç14
4l FoRMÄT(ZX ç4F5.2r5Xr3lHcATA CARD ERRoR -VE THICKI'lESSr)

IF(ST0)32r3r33
4? hRITE (6r43) T I rT2rT3rT4
43 FORiTAT l?XçaFS.zrSxr35HCATA CARO ERRoR Tt OR T? -VE OF 0r)

IF (STOI 32r3r33
44 hRITE (6r45) Tl rT2rT3rT4
45 FORMAT (2Xr4F5.2t5Xr l6¡ERROR T3¡0 T4*0r )

IF(STO)32r3r33
33 STOP

ENO

BTOELT IMAXTSI I rSrNr IÊRl
E ROUTINE FOR FUNCTION F(X)

CTION F(XrHrYrZl
DOUBLED EACh REPEAÎ UNTIL OESIRED
X. NO. OF REPEATS ( IÌ{AX ) TS MET

SII=.0
S=.0
N=0
F A=B-Â

P
(Jl
Or

I

5



l0

t5

?0

25

35

40

30

IF (8At l9rl9r20
I9 IER=l

RETTJRN
?A lF (OE!' I ?2¡?2ç?3
?? I E.R=Z

RETURN
23 IF ( ItIAX-l ) 24 s?4¡?5
U+ ¡fR=3

FElURN
25 \=BÀ/?¡+À

rrHALF = I
SUnx=f (XrlJ ¡\ç7)ItBAì2 '/3'
S=SUHKe (F lArllrY çZl +F (Brl{rY rZ) ) }8^/6'
0028 I=2 r It'lAX
SII=S
õ= t S-SUtlK/2 'l lZ '
¡¡¡¡f=NHALFTz
ANhALF=NHALF :'

F RSf X=Ao ( 8AlANhALF I /?'
SUI{X=F (FRSTXrlrYrZ}
XK=FRSTX
KLAST=NHALFJI.FINC=BAIANHALF

Dõ 2ó K¡lrKLAsr
XK=XK+F INC

zo suur=suliK'F (tKrlrYrZ).-- 
;ut4K=õurx*z .1'8^f ( 3'rtANt-.ALF,
S=S+SUl'tK
irìffiõ 1j'Sl I t -ABs ( 0EL'ts t ) 2e ¡?8q?8

28 CONTINUE
IER=¿
GO10 30

29 IER=O
30 lr¡=ZctrHALF

RElURN
ENO

F
ul
-J

45



I

5

T

5

c
FUNCT ION TCPI{ (X rl{rY rZ)
¿ÃLCUL;TES-TPAf\SMISSIOÑ COFFFICIENT AT X¡SIN(¡LPX¡ I )

hMCO= ( I .O-X*X*ï ) | ( 1.0-XfX )

1çpg=Hcrlz.SI1SQRT ( UI{CO)'ASO ( X rhJ rY r Z )

RETURN
END

ÉUNCI ION AS8(XrrÚrY çZ)
CO¡TPLEX SQ rSUSO I ¡
i= tollã. ioso (xrYl {'so (xt¿l /susG (Xrttt ¡\ çzl
¡SQ=REAL ( AI ¡I2+AIMAG ( A } {I{T2

RETURN
END

H
(tl
@

T

5

FUNCT IOFI SO (X rl I

cónPuex sorsÞtrsP
5q=SP(IrHl-SM(Xrt'l)
RETURN
ENO



I

5

I

5

FUNCT IOÑ SP (Xril)
COHPLEX SP
SP=CÞrPLX (SORT ( l.+X+X+w ) r 0' )

RET.URN
END

FU¡¡CTI0N SM(Xrtrl
e0t4PLEI Sll
þ/M2= l o -XtXnW
wtl=SORT ( ABS ( hll'{z1 }

sM=Cl,tPLX(0.rblM)
IF(IHZllç?¡?

I SM=(0cr-l.lfSltt
2 RETURN

END

I

5

FUI{CTION SUSO (I rH çY ¡Zl
COI'IPLEL SUSOTBH¡rBMyrBlrY rBHZ r ArB¡CrOr SO

¡=SO(Xrl.l
g=SO(XrÍ)
C=SQ(XrYl
D=Sê(XrZl
BMIsBr}CrD
EHI=l{r{re.5rA$C{r0
Bt¡f Y:Y+ne o5ÐAëBrO
gil/=/ì*2.5{rAÕB.rrc
SUSO=Bt4X oBMH+ 8t¡lY +8MZ
RETURN
END

H
ul
\0

t0



I

5

c
FUNCI ION DENA (A rWrYrZl
ONE ¡NTEGRAL EOUATION IN DENOI'IINÂTOR FOR POWER BALANCE APPROACH

DENZ=SORT ( I .-XiX ) ÕASQ ( X r I{ r Y r Z ) Õll

RElURN
Eî¡0

FUNCÏ ION DNPì, (I rl{ rYrZ}
ONE INÎEGRAL EOUATION
F$=Tc¡
rrlrl= [ .0-XrXnH
Ytl=1.-XÕXrY

INDENO},IINATORFORPOIJERBALANCEAPPQOÂCI'I

l.l=l o - xrz
F (rhl I ?ç?
!{-.0
F (YHl3r ¡4
Fl=. O

tF-(¿t{t5r6r
z r{=. O

As.o (lrtrY rZl +5QRT (lÈ1) tYooz.5+458{X;Y rZrþ}*5oRT (Ytit}

IrZrr,ylÕSGÍiT(Zt{}
gþltlP=¡cr ê,¡

DNPI=5UÈ€/R5.
RETURN
ENo '' i'

t

5

c

7

I
k
T

Y

olo

l0

l5

1
?
3
4
5
6
llzrr2o5r Asgt



1

5

I

5

c
FUNCIION RCFF (XrWrY rZ)
CALCULATES REFLECTION COEFFICIENT
COMPLEX SUSOTSSQPç A

A=-SSOP ( X r W r Y ¡ZI /SUSQ ( Ã T W T Y T Z )
pç¡¡=REAL ( A) +ë¿+A It'lAG ( A ) Õr'2

RETURI'¡
ET,¡D

FOR PLATE I AT ,{=SIN(ALPhA I)

FUT;CT IOIT¡ SSOP (XTI¡ TY TZ )

tõrpr,Ëi SOTSSOP rStaXrBi'{vr tEMYTBMZ I ÂPSorSPrSMrBrCr0
Ê=S8(Xrll)
C=SQ(XrY)
!l-S8(XrZ)
Bl.tX=BcC$D
ÂPSQ=SP (Xr l.l +5M (Xr l. )

EMb=hr+2.srrcl'Dü APSQ

El.{Y:Y ir?.5nB{1Ðü AP SO

- Ftli=¿+r2. 5¡BtCrAPSO
S SOP= B þr X r Bl'l H+ 8t¡l Y' Bl¡l Z

RETURN
Ehlo

P
or
H

t0



c.2 TRANSMTSS ION COEFFICIENT GENERAL SOLUTION
COMPUTAT TON OF THE AVERAGE

FROGRAtl TFBLT ( INPUT TOUIPUT TTAPE5-INPUT rf ÂPE6=OUTPUT)

DIMENSION T;iui rf i+i ,T0R ¡+rgl rT I l (4r3) rrdMT (4r3) ç TFC (4r 3) I DIFF (4r 3 )

t¿li:j||;l!tfå;iànrrrron_FAcr'R F(rJ) FoR up To 4 PLaTES oF s¡ME

T4ATERIAL BUi' ôlrrËneÑr rr.iõr¡ressEs----co¡TNFclED ALoNG A CoMMoN

¡orr.t aeNoiÑc,-uõncl . ÂÑD înaÑsvense l/{AvES CoNSIDERED

Loss FAcroR'itril=aur(lrJt'i'iPliarr)K(l) ---FoR BENDING HAvEs

t IS LENGTH OF JOIN
i r r ¡ IS wAvENut'tBER I! FLATE I
;iit is AREA oF PLAIE I

F(IrJ) IS TORBB TRANS' COEFF

oR TFCBB=-I-N ( t-ïoããB) 8uT BENDING hiAVES FROM INCIDET'rf

LONGT. AND TNÃÑSVÈNSC *¡iËõ' TONCT- AND TORBT MAY NEED TO 8E

coNsIDERED Åilen 
- 
itre F IRsr JoIN oF A STRI,,cTURE '

17 hRITE(6çl) iêF?^r, .'r¡rrlp( qFNnINGT LONGT. AND TRANSV
T FORPIAÍ (IHIT5XI?6HTRANSI¿ISSION FACTORS FENDINGI L(
-IERSE 

hrAvE FIELOS C0NSID'EREDc / /l-ðenine 
FREouENcY IN FIRST DATA FIELD

4PLATETHICKNESSESIN¡t.u.r¡t¡rexr4FIELDs.--IIFIRSl¡f2¡13rT4r
ANO PLATES i ¡Ñõ g OPFOSITE AND PERPEI'¡DTCULAR TO ? AND 4.

ãix riËr-ó rs'côiìinõ.--1.ji:i::_3!11i1:::î3i'åi:E
I.------ -'STOP AF1ER THIS CARO

Tl AND Te MUST BE +vE

ló nÊ¡ô'tsr l0)Fr (TD( I) r Iel r'+) rST0

t o FoRllAT (6F6.2)
Do ?? I-lr4

2? T(I)=TD(ll/1000'
RTF=SQRT(T(ll*F)
DOZ I=l r4

? ãõOf I)e(54.4nT 1I'l/T (I)/tìTF)ttÕ2

I

5

l0

l5

?0

?5

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c

ts
Ol
NJ

30



35

ll u¡nlrÈ.leitaol
l e0 FoRxAT ( ax r i HF r óx r zHT l r 6x ç?HT?r óx r zHT3 r óx r zHT4 r 6x r 3HFS0 r 5X r 3HTOR r

l6ir2hBBrl0xr2t'tBLrI0x ¡Zt òT rl0xr3hTFCr6Xr2l'rBBrl0X¡?flBLrl0XrZhBT)
3 

-C 
ALL SMSNz (T rF r . 0 r I . I . 0 I r t 0 r TNM r T I I r TOR r tr¡ I IER )

D04 I=l r4
DO4 J=l r3
hi,tT ( I rJ) =I.-ToR ( I rJ)

4 TFC (I rJ)=-ALOG¡çMT ( lrJl )

IF(IER-4)8r5.8
5 Do6 I=l r4

C0ó J=l r3
ó DIFF { IIJ)-TOF ( ITJ)-TIT (IIJ)

hRITE (6r?)Fr (TD(N) rN=lç4) r (FSO ( I) r I r (TOR ( I rJ) rJrl r 3) r I r (TFC ( I rJ) r

rJ=lr31 r I=l r4l r ( (TI t ( I r.j ) r J.l r3) r I¡l r4) r ( (TNM ( I rJ) rJ=l r 3) r I:l r 4l
? F9RHAT (zx;F5 )?xa4(F5.zr 3x ) rElo.3r2xr IHI r I I r 3EI2.3r6x r lhI r I 1 ' 3E12.3
l/3(4lxrEl0.3r2XrlHlrIlr3El2.3¡6XrlHlrIlr3El?'3/l/?\ç
ãr i¡,0Èl ñor sAT IsF IED I 40xr I 5HpREV I0U5 VALUES ¡ / 4 155\1 3E I 2 .3/ t / 2\ t
32SHTOR NoRf.lAL INCloEt\cE oNLY ç/4155Xç3E12.3/l /'

GOTO I5g ùntTE (6r9)Fr (TD (N) rN=l r4) r (FSO ( I) r I r (foR ( I r J) rJ:I r3) r I r (TFC ( I rJ) r
IJ=l r3) rI¡lr4t r ( (TNt'l(Ir.Jl rJrlr3) rl-lr4l

9 ÈOnrr¡t(ZXrF5ç?\ç4(F5.2r3X)rEl0.3r2XrlHlrIIr3El2.3çóxrlhlrIlr3El2.3
l/3(4lXrEl0.3r2XlIHlrIll3El2.3róXrlHlrIlr3E|2.3/|/2X¡
228hTOR NoRHAL INeIDEîìCE ONLY ç /4155I.13El?.3/l /l

t5 SUHI=.0
DO88 Nelr4
DO88 l{=l r 3

88 SUI{T=SUI4T+TOR (N rM }

hRITE (6r20t SUI'II
?o FoRtitAT (!xrl6HstJM oF ToR (IçJ)-rEl2.3/ /l

!F(SIO)l7rlórl8
t8 STOP

END

40

¿|5

50

55

60

P
Oì
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c
c
c
c
c
c
c

t

5

'IER)FUNCT IONS
OEL ANO M¡X. NUMBEP

Of REPEATS TS SET BY IilAX.
THIS ts BASËD oÑ't-r_lentni pRoGR¡M FOR A SINCLE VARTARLE FUNCTIoN

iÑ-rrris pnoãnrn rie IN¡IIAL t'ruutlER oF ELEMENTS ls srT To 128 T0

REDUCE COT.TPùTING. . MAX' OF 3 RUNS IS SET THEREFORE MAX' OF 5I2
ELEHENTS USED IN FIÑAL RUN.

DI;{ENSIo¡l ii+} rSIl (cr3} rS(4r3) rSUMK (4r3) rTBX (4) rTLX (4) rTTX (4) r
rieL(+) rTLLial,ril(4) rTBHi4t rTL r(4) rTTH(4) rTcX l4¡31 rTNM(4r3) r

2TCAH(4r3t rFSO(4)
DO? Ialr4
002 J=l 13
SIl(IrJl-.0

? S(IrJ!=.0
B A=Afr-AL
IF(BA)l9rl9r20

l9 IER=l
RE.f URN

20 IF (OEL) ??¡??¡?3
?? IER=?

FEÏURN
?t IF(IHAX-ll24r?4tlJ
?4 IER-3- 

RETURN
?5 x=BÀ/?..AL-

NHALF=ó+
CALL SOLVA(TrXrFrFSOIfCX)
CALL SOLVA (T r ALTFTFSOT ¡ Nt'i l
CALL SOLVA (TTAHTFTFSOTI CAHI

DO3 I=l r4
DO3 J=l13
SUHK ( I rJ) ITCX ( I T J} fBAËz . /3.

3 õif r¡i=SUtlK(ItJl e(TNM(I rJ¡ +TCAH( IrJ) )rá84/6'

SUBROUTINE SMSN2 (TTFTAL TAHTDELT IMAXTTNf'ITSI I TSTN

ixis pNOAN¡T APPLIES SII,TPSONS RULE TO A SET OF

iÑiÈ.cn¡ieo rnom AL lo Al'r. AccuFAcY Is sET BY

l0

I5

20

7_5

ts
o\
,Þ

30



:15

40

t+5

s0

55

ó0

c IEST RIJN IMAX¡3
I MAX=3
DO2'8 'L=2 r IHAX
lrftALF=NHALFç2
ANHALF=NHALF
FRSTX=AL+ ( BA,/ANH 

^LF 
I /2t

CALL SOLVA (T rFRSTXrF.rFSSr TCX )

DO4 I=lr4
DO4 Jalr3
SII(IrJ)=S(IrJ)
ill'Jl= tS(f rJ)-SuMK ( IrJ) /2'l /2'

4 SUHK(trJ)ETCX(IrJ)
XK=FRSIX
KLASf =NHALF-l
F INC=BAlANHALF
DOA6 X=l TKLAST
XK=XK+F INC
CALL SOLVA (TTXKTFTFSOTTCX )

002ó I=l r4
DO26 J=l r3

Zb iu¡lx ( I r J ) -$(,¡laK ( I r J t + T c x ( I r J )

005 !=l r4
Dos J=l r3 

tÀ/ .3'nANFALF)iunr ( t rJl ''sul'lK 
( I r J) *2'rB

5 é trrJl=s(IrJl +suMK (rrJ)
LìO6 I=1r4
0Oó J=lr3
IF(ABs(S(IrJ}-SIl(IrJl)-ABs(DEL{ls(IlJ)})6ç?8ç?8

6 CONTINIJE
Goro 29

?8 CONIINUE
I ER=4
GoTo 30

29 IER=O

H
o\(¡

65



t

5

70

10

T5

?_0

c
c
c
c
c
c

¡O Èr=2INHALF
RETURN
ENO

SUBROUI INE SOLVA (T rSrFG rFSOr TOR )

ïHIS SETS Up REOUIRED þATRIX FOR INCIDENT ANGLE ---S=SIN(ALPI1A I )

coHpLEx r{AvE nmpuiruoes FRoM MATRIx so.LUTI0N ARE usED T0 cALcULATE

ixe fñIHSU¡SSfO¡r COEFFICIENTS FOP THE P¡RTICULAR VALUF 0F S.

TORBB ( I rN) -TOR (Nr I t IN PROGRAM

TORAU ( I rN)ãTOR(Nr2} IN PROGRAM

TORBI ( I rlr) rTOR (Nr 3) IN PROGRAM

DIMENSION A (8rBt rB (8) rr ( lól rcMZ ( 4l ¡CP?(4) rEM (4) rEP (4) rEHM (4 ) r

tèfp(4) rCIMZ(4) rClP?14) rCl.t(4) rCP(4) rPSM(4) rPSP (41 çT (4) rTD(a) I
2ASQ(4t rBSQi+l rcsot+l rr0Rtqr3l rEHP (41 çF (a) rclu(4) rscR(2r8r40) rTR(4)
3rAL(4) rAT(4) rFSS(4)

COt'tPLEX ATBTCCOMTHTCOHTALTATT XlTarX5TBrQ
CO 70 N:l r4
DO 70 t't¡lt3

7Q lOR(Nrl{l-¡0
À(5rll¡(l.r0.l
A(5r21=(l.r0.l
A(5r5):¡(l.r0.l
Â (5r6)s(1.r0.)
A(?r3lc(1.r0.)
À(7ç4)e(1.r0.)
Þ17ç?l=(1.r0.)
A(?rB)=(1.r0.)
B (5) = (-1. r0. )

TF=T(l)nFQ
RTF=SQRI (TF)

P
ot
o\

?5



30

35

40

45

55

6

109

tll

9

4

C82=l .-SëS/ ( 3.59E-04älF )

Z=ABS (CB2)
CB=SORÏ (Z)
SC=S/ ( 3.20E-02{tRTF )

CC2=l .-SrS/ ( I . 024E:'03r1Ï F )

2=ABS (CCz,
CC=SORT ( Z )
SB=S/ ( 1.90E-0ZÈRTF)
CCOM=CiaPLX(CCr0.)
HS=SBnSC
Hc=cBäcc
H=CMPLX(HC+HSr0.)
IF (CBZl9ç?¡?
H=CMPLX ( HS r -HC )

IF (CCA)4¡?ç?
H=CMPLX(HS-HCr0.)

COM=CHPLX(0.r-CC)
OH=CCOI'I/H rt(0.r-l')
0 3 N=lr4
MA (Nl =1.-S*SnT (N) /T ( t )
=ABS (CM2(N) )
H(N)=SQRT(Zl
P2 (N) =1. +slls$Î (N) /T ( I )
IH2 (Nls( l.-Sns) ÕT (N) /I ( I )

ClP?(N) - ( l.+SÕS)'rlT (Nt /Ï ( I )
CP ( N ) =SORT (CPe (N) )

C Iì,1 (N t =SQRT 
(CI¡42 (N) )

CIP (N) =58Rf (CIPe (N) )

FSH(N)=CMp(N)rs(T(Nl /f lL) )+r¡2
PSP (N) =CPZ (N) r+ (T (N) /l (l ) ) +Õ2

El,l (N) = (Clt (N) l¡SORT (T (N) /T ( I ) ) ) çn3

c
?c

t)
c
7
c

3c
c

tl
50

H
o\\¡



60

fr5

70

75

80

P5

E

F

3F
Â

Â

Ä

A

Â

A

A

A

A

A

P(N)=(CP(N)+SQRT(T(N) /f ll) ) ){r{r3
(N) =54.4ÍT (N) /T ( I ) /RTF
d t¡Ð =F (N) .'F (N)
I r I ) =CMPLX 

(-Cl'{z ( I ) I 0. )

¡'l) =QtlPLX (CPZ ( I I r0. )

I r3) =Ct'tPLX (-PSq (2) r 0. )

I r4)=CMPLX (PSP (2) r 0. )

I r5) =CMPLX (-PSM (3) r 0' )

I r6l =CMP¡¡ ¡PSP (3) r 0. )

1 ¡l) =QMPLX 
(-PSM (4) I 0. )

t ¡ g) =Çl'tPLX 
(PSP (4) r 0. )

2rl)=CMPLX(0.rfM(l))
? ç21 --CllPLX ( -EP ( I ) r 0 . )

S
(

(
(
(
(
(
(
(

(
(

A l?ç5) =CHPLX ( 0. r-EM (3) )

A (?ç5¡ =ÇMPLX (EP 13) r 0' )

À (3r3) =CHPLX (0. rEM (2) )

A (3r4)=CMPLX (-EP (2) ç 0. )

Â (3rl ¡ =QlrlPLX (0. r-EM (4) )

ô (3r8)=CMPLX (EP (¿r) r0. )

À(4ç ll=CMPLX (0. r-CIf'! (2) )

Ã 14ç?) =Ci{PLX (-CIP (2) r 0 ¡ )
A (4r3) =Cl,lPLX (0. ;GM (2) )

A (4 ç4) =CHPLX (CP (e) r 0. )

A (6r 1 ) =QtrlPLX (0. r-CIil (3) )

A (6r2) =CHPLX (-CIP ( 3l ç 0' )

A (ór5 ) =CI'IPLX ( 0. rCl'{ { 3) )

Â (6r61=CMPLX (eP (3) r0. )

Â ( 8r I ) =CMPLX ( 0. r-CIM ( 4l )

A (8rl) =Çt'tPLX (-CIP (4) r 0. )

A (8r?) =CMPLX (0. rCM (4) )

A ( 8r8 )=CMPLX 1ÇP (41 r 0. )

B(ll=-A(lrl)
B (e)=C!{PLX (0. rEM ( I ) )

B (41=A (4r l )

E(ó)=A(6rl)

F
Or
@

q0



95

100

105

Ir0

lt5

120

B(8)=A(8rl)
F?4=F t?l +F (4)
Fl3=F1¡¡+F(31
IF(Cljlz(2))l0rlrl

l0 A(4r3)=A(4r3lr(0.ç-l' )

A (3r3)=A (3r3) il (0o I +l o )

I IF(CMz(3) )l2rl3rl3
l? A (6r5) =A (ór5) r¡ (0o r-f ¡ )

A 12..5 ) =A l?¡51rr ( 0. r + I ' )

t3 IF (CM2(4) ) l4ç5r5
l4 A (8 r? I =A (8r7) n ( 0. r-l ' )

A (3r?!=A (3r71 {1 (0. r +l' )

5 A (?;l )=A (2rl) -F24rÊCOH
Ã (? t?l =A l?ç?) -F 24+COH
A (3r3I =A (3r3) -FI 3nCoH
Ä ( 3 r4l =A ( 3ç 4, -F l3itCOH
F (2)=B (2) +Fz4lrCoH

3l IF(T(3))20rl5rl6
t5 IF(T(4) )20rl7rl8
l6 IF (T (4) ) 20r l9r7
?O URITE (ór33}
3-"+ FORMAT ! 2x t l0HoATA ERRoF )

i Do 32 M=lr4 ''
DO 32 N¡lç3

32 TOR(gr¡¡=.0
REIURN

c -GLINIT- IS AN AVALIABLE LIBRARY ROUTINE To SoLVE Co¡{PLEx MATRIX

C EOUATION AXeS THIS IS NOT REPRODUCED HERE'
17 CALL CLINIT (ArBrXr4r I TDETTEXTCNRTSINGULTBTSCR)

L=2
K=5
GoÏo I I

l8 co 63 J=5r6
DOóZ I=l rB

H
Ol
\0

I25



130

135

140

145

I50

155

I9

7

c
cc;

tl
?l

6? A(JrI)=A(J+2.I)
ó3 B(J)=8(J+2)

D064 J=5r6
0064 I=l r ó

ó4 A(IrJ)=A(Ir¡+2)
CALL CL INIT ( A rBrX r Oó I I I DET IEX TCNR I SINGUL T O8T SCR )

K=I 3
L=4
D0 ó8 l=9¡12
x(I+4t=X(I)

f)g X(I)=.0

coTo r I
CALL CL INIT ( A ¡ B r X r 0ó r I I DET r EX r CNtr t SINGULç 08r SCR )

K=9
L=3
coTo I I
cALL CLINIT ( A rB r X r8r I rDET rEX rCNR I SINGULç 08rSCR)
K =13
L=4
iTTI ARE THE PROPAGATIN6 AND NON-PROPAGATING EENDING hJAVE

A MPL I TUDES .
FIND LONGT. AI'¡D TRAÌ\SVERSE I¡ÚAVE AMPLITUDES FROH X ( T )

DOAt I=l rKr4
J=(I+31/4
ÂSO (Jl =X ( I) r*X ( I ) +X ( I+I ) ÕX ( I+l )

0=CI{PLX(X{3}rX(4})
xlT4=CHPLX (X ( ll rX (2) )

X lTe= ( l. r 0. ) +Q+Xl T4
O=CMPLX(X(5) rX(6) )

X5T8=CHPLX (X (7) rX (8.) )

X5T8=0+ X5TB
AL(t)=-COHüXSTg
AT(ll=-SB*X5T8/H

P\¡

160



165

t70

l7s

ì..8 0

I85

ÂL (2!=QQfitrtll4

^T 
12) =SB+X 114/11

IF(L-3)56r57r58
58 AL(4)=-¡L(2)

AT (4) =-AT ( 2,
57 .ôL(3)=-AL(I)

AT(3)=-AT(l)
56 DO ó0 J=l rL

8S0 (.¡¡=REAL (AL (J) ) n+12+AIMAG(AL (J) )n+2
óO CS8 ( J ) =REAL ( AT ( J ¡ ¡ **I+ A I MAG ( AT ( J I I **?

IF(CIH(I))67ç67¡65
67 D0 66 N=lrL

DO 66 l'{=l 13
66 TOR(Nrlil)s.0

T0R(lrl)=1.0
GOTO ?2

65 DO ?? N=l rL
IF (Ct'i2lN) ) 23ç23t?4
10R(Nrl)=.0
GOïO ?8
TOR (Nr I )=EM lN)'nASQ (N),/CMA (N) /CIt'l ( I )

28 tF(CBZI?5ç?5¡26
¿5 IOR(Nr2l=.0

Golo 29
?6 TOR (Nr?)=F(N) ItBSe (N)rlCElCIr,r ( I ) /?.
?9 IF(CC2l?7¡?7ç80
?7 TOR(Nr3)=.0

GOTO ?2
8o toR(N.r3) =0.320rtF (N)nCSG (N) ItCC/CIM ( I I

?? CONTINUE
R ET URN
END

?3

24

H\¡
F

lc0
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C.3. COMPUTATION OF VIBRAT IONA], ENERGY RATIOS OF A CONNECTED STRUCTURE.

PROGRAM ENCAL ( INPUT 
' 
OUTPUT , TAPE S=INPUT r TAPE6=OUTPUT )

CALCUI,ATES ENERGY RATIOS FOR CONNECTED STRUCTURES OF UP TO 10

ELEMENTS --.-.--USING POIVER FLO!{ EQUATIONS
LAST ELEMENT ONLY DIRECTLY DRIVEN ----ELEMENT (N)

Drr{ENSTON CL(10,10),PL(9),4(r0,10),cLF (10'10),PN (10)
11 READ (5,1)N' (PN (I),I=l'N)
I FORMAT(12,1013)

V{RITE (6 ,L4) (Pl¡ ( I ) , I=l 
'N)L4 FORMAT (lHI, 5X,19HÞLATE ENERGY RATLOS/ /6x' 1OHPLATE NO .S,L0l5/ /)

M=N-1
WRITE (6,2\ (PN (I), I=I,M)

2 FORI4AT (4X r lHF,8X,8 (2HER, 12 ,10X) ,2HER, rL, / /)
READ (5, 3) ( (Cr, (I,J),J=I, 10), I=l,N)
READ COUPLING LOSS FACTORS -.- CALCUI,ATED AT 1OOOHZ

lST CARD CL 11 ,L2 tL3,14 , ---ETC
NEXT CARD CL 2L t22,23 t24,---ETC
CoNTINUE FOR N CARDS cL(I, I) DUMIt',lY VALUES E.G. ZERO

ALL LOSSES ENTERED X1OOO.
3 FORMAT(10F7.3)

DATA CARD lST FIELD ---FREQUENCY
REIIAINING FIELDS..-TNTERNAL LOSS FACTORS FOR PLATES T TO

N-l IN ORDER. DRIVEN PI.ATE LOSS
FACTOR NOT REQUIRED

CoNTROL--- F=20000. NEvg sET oF DATA FOLLOüIING
F G.T.2OOOO STOP

4 READ(5r5)F, (PL(r) rr=1'Ivl)
5 FORMAT (F6, 9F7.3 )

rF (F-20000. ) 13 ,rL,L2
L3 î=E/L000.

R5'=SQRT (F)
Do 6 r=lrlv1
CL(IrI)=-0

c
c
c

10

c
c
c
c
c

c
c
c
c
c
c

ts\¡
N15

20

25

30



35

40

SUI4F=. 0
DO 7 J=l rN
CLF (I,J)=-CL(I 'J) /RF

7 SUI"IF=SUMF+CLF ( I, J)
6 CLF (I,I)=- (SUMF-PL (I) )

DO 9 I=lrM
9 CLF(N,I)=CL(N,I)/RF

DO 8 I=I'M
DO I J=I,N

I A(I¡J)=Q1,P(J'I)
CALL ASOL (A,l'1r l)
F=1000. *F
wRrrE (6,10) F, (A(r,1),r=l,M)

IO rOnMer Òx/zx,E5 ,2X' 9 (E10. 3 ,4X) )

GOTO 4

L2 STOP
END

45

IO

H
-J(,

t

5

c
c
c

SUBROUTINE ASOL (A,N 
'I4)THIS IS A FAST I¡A'iNTX SOLVING ROUTINE WITH NO CHECKS

USEFUL WHERE DET. OF A IS NOT NEAR ZERO'

REFERENCE (HEMMERLE - 1967)
DTMENSTON A(10,I0)
L=N*!1
DO I I=lrN
A(N+l,L)=I .O/A(1'I)
DO 2 J=2 tL

2 A (N+I,J-I) =A (I,J) *A(N+I,L)
DO 3 J=2 

'NDO 4 K=2 ,L
¿ Át,r-r,K-i)=A(J,K) -A(J, r) *a(N+1,K-1)
3 A iJ-1 , r,) =-a (J, 1) *A (N+1 , L)

DO I J=l rL
1 A(N,J) =A (N+1,J)

RETURN
END

15
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APPENDIX D.APPARATUS AND EXPER IMENTAL PROCEDURE

D.1. INTRODUCTION

In order to predict the energy distribution in a connected

structure, using Equation (319), the internal loss factors of the

individual elements are required, and these int'ernal loss factors

are obtained experimentally. Experimentally measured energy

ratios are reguired to compare with the predicted energy ratios'

That is, the experimental work involved the accurate measurement

of uncoupled plate internal loss factors and the steady state

energy levels of the plates comprising the test structure.

In this appendix, the apparâtus required and experimental

procedure used to measure the int'ernal loss factors and plate

energy ratios are described. In D.2, the structure support

system and associated external drivers are described. The

general instrumentat,ion used and its calíbration is discussed

in D.3. Both steady state and decay methods of measuring the

internal loss factors are described and discussed in D'4' The

method of measuring the plate energy ratios is included in D' 5,

followed by a general discussion on the expected accuracy of

the experimental results in D.6.

D.2. TEST STRUCTURE SUPPORT SYSTEM

D.2.L. Requirements

lvhen measuring the loss factor of an element, it is

important to reduce any losses via the support syst'em to a

degree where they are small compared with the measured loss'

In some early tests, the plates $tere supported by long

piano wires from the ceiling. During the tests it was noticed

that the strings were vibrating and accelerometer measurements

showed that energy was being transferred into the ceiling' A

support system which would block this energy flow was required'
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Theotherrequirementwasthatthesystemshouldsupport

theplateandthenoncontactingdriversuchthatthedistance
betweenplateanddriverwasmaintainedduringalltests.

D.2.2. S t Block

The support brock is shown in the photographs Fig' D-t

and D-2. The prate to be supported was clamped fírmly into a

steel block, 250mm x l00nm x 50mm' The clamPing was achieved

bysixhightensilesetscrewsactingonaclampingbar'set
into a milled slot in the block' The bar was grooved along t'he

lengthoftheclampingfacesothattheplate\¡¡asgrippedbyan

edgeratherthanasmoothsurface.Eachplatewascutsothat
itwasheldonlyatamaximumofthreesupportpointseach

approximately 20rnm wide' The bar was clamped so that the

bottomedgeofthebarandthebottomsurfaceoftheblockwere
flush' This ensured that no losses would occur from vibration

orairpumpingbetweentheplateandaclampingsurfaceoverhang.

Theblockwassupportedbyfourpianowiresconnectedtoanover-

head beam.

Theextremeimpedancemismatchbetweentheplateedge

andÈherelativelymassiveblockreducedenergylossestothe

supPort sYstem' Accelerometers were placed on the suPport beam

and no measurable outputs I¡Iere obtained when the suPPorted

st,ructure htas excited'

D.2.3 . Point Contact Driver SuPPort'

ThesteadyStatemeasurementoftheinternallossfactor

requiredthemeasurementofinputPowertotheplaÈewhoseloss

factorwasbeingmeasured.Althoughtheminishakerdriverand

transducerGouldhavebeenmountedonthesameplatesupport
block'aSwastheelectromagneticdriver,therewouldhavebeen
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required a provision for adjusting the position of the dríver

relative to the plate in at least two directions' .Îd perhaps

all three directions in space, to facilitate the lining up of

the transducer and the mounting hole.in the plate. (See descri-

ption of the transducer in Appendix E' )

Toavoidthecomplicatedmountingrequirements,the

input power transducer and mini shaker were mounted on a çross

slide which was rigidly connected to a free-standing frame'

Theshakerwasmountedsuchthatitsdriveactionwas

horizontal and the cross slide allowed horizontal adjustment

in a direction Perpendicular to the shaker movement' The

fourpianowiressupportingtheclampingblockwereabletobe

individuallyadjustedverticalty.Thisnotonlyenabled

vertical position control of the plate relative to the input

flow transducer but also allowed a fine degree of control of the

orientation of the plate to the transducer. If the transducer

\^'asattachedfirmlytotheplatewhenitwasnotnormaltothe
plate,thebendingmomentsexertedontheforcetransducer

could cause false readings, whj-ch would indicate incorrect ínput

por,ilerlevels'Thefinecontrolonplateorientationallowed

this problem to be reduced to a minimum'

D. 3. INSTRUMENTATION AND ITS CALIBRATION

rt will be seen later, in D'4 and D'5' that experimental

individual plate internal loss factors and steady state plate

energylevelscanbedeterminedfromtwotypesofmeasurements
(a) acceleration levels at a number of different points on the

prate i to obtain the mean square acceleration lever ,^?, and
a

{b) the average Power inPut, Pi into the directlY driven Plate i'
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D.3.1. Acceleration Measurement

The acceleration levels on the plates were measured using

a BrüeI and Kjaer accelerometer type 1344 in conjunction with a

.F.E.T. voltage fotlower and third octave band spectrometer'

The band 1imited signal was averaged in a long time averaging

circuit and the voltage output was displayed on a digital volt-

meter. A schematic diagram of this circuit is included in Fig'

D-3, where the point contact driver is shown. The same meas-

urement method was used for electromagnetic (non-contact) exèita-

tion.

D.3.2. Input Power Measurement

The average input power was determíned using the relation-

ship

P f (r) .v (r) dr (D,t)T

a l-

where fci (t) and v, (t) are the instantaneous values of the

applied force and velocity at the point input to the dírectly

driven plate i.

A transducer (Fig. D-4), described in Appendix E' was

used to measure the force and acceleration simultaneously at

the input point of the plate. The acceleration signal was inte-

grated to give velocity, and the two signals were third octave

band limited and then multiplied. (see Fig. D-3)

The multiplier incorporated an Analog Devices AD530J

integrated circuit connected for use as a multiplier. The

instantaneous output voltage was averaged to give the time

averaged product of f c(t).v(t) '

I
Tl_ c
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Phasecompensationwasusedtooffsetanyadditional

phase changes between the two instantaneous signals, introduced

by the circuit.

D.3.3. Calibration

The third octave band spectrometer, multiplier and long-

time averaging circuit each have gain and zero drift control'

Apuretone(t000Hz3VoltsR.¡jl.s.)wasusedasareference

signalforthegainsettingoftheaveragingandmultiplier

circuits. The zeÍo drift and gain controls were set before the

calibration of the transducers and all settings were checked at

Ieast once every three hours during experimentation'

Themethodusedtoobtainthecalibrationconstantfor

thepowerinputmeasì¡rementrP.watts/voLL'ísincludedinthe

descriptionofthepowerflowtransducerinAppendixE.
Astandardreferenceaccelerometerwasíndirectlyusedto

determine the calibration constant for the plate accelerometer'

The accelerometer on the transducer was calibrated using the

reference, mounted back to backr âs described in Appendix E'

The plate accelerometer response \á¡as then compared with the

transducer accelerometer response by mounting them back to back'

The plate accelerometer calibration constant (PA) c is then

(PA) ( TA)' 'c metres/s ec2 /volrl. (D.2 )
c

where.Apo'"Ìi"theaveragevoltagereadingofthepowerflow

transducer accererometer and <Aprate> is the average vortage

reading of the plate accelerometer measured simultaneously'

(TA)cisthecalibrationconstantoftheaccelerometer

on the Power flow transducer'
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In all cases, the excitation was third octave band

limited and the measurement of each signal was through the same

circuitry as that used in all experimental data recordinE'

A list of the calibratíon constants is given in Appendix

E, table E-1.

D.3 .4. Mass Loading

A mass loading factor (ML) was applied to the measured

plate mean square acceleration levels to compensate for the

reduced acceleration levet measured due to the accelerometer

mass loading the plate. This was determined from, (Beranek'

1e7r (3 ) )

a"/ao zn/Früuvr)

where a is the measured plate acceleration level

is the unloaded plate acceleration level

is the added mass

L

"o
Ma

and Z is the mechanical impedance of the test plate'
p

.l {a"/ao) 2l

(D,3)

hence (ML)

For steel Plates'

)
um/zn 

= 
mf /14 ' 5t-

Where m is accelerometer mass (kg') and t is the plate thickness

in mm.
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The mass m was that of the accelerometer plus a typical

amount of beeswax used to connect the accelerometer to the plate'

and was 2.389m.

D.4. INTERNAL LOSS FACTOR MEASUREMENT

D. 4. I. Steadv StaÈe Method

The internal loss factors of the uncoupled plates htere

determined from the measurements of input po!{er and mean plate

energy level during. steady state excitation. From equation

(4 t63) where dei,/dt = 0

(D,4)P /wEa l-ni

The steady state energy tevel for a plate of mass m is

^.r^?, /^2l_ l-E (D,5 )
I

where ,u2!, is the mean square acceleration revel of prate í,

hence the internal loss factor can be expressed as,

(r,r/mi) @i/."?tl (D,6)ni

Each test plate was supported from the clamping block

and was directly driven by the mini shaker via the power input

transducer, as shown in Fig. D-1. The for+e and velocity signals

\^¡ere multiplied and averaged to give a voltag" Up with the phase

compensator set for the particular bandwidth being investigated'

V PpI
P c watts (D,7)
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The plate acceleration was measured in ten dífferent

locations over the plate surface to obtain the mean square

acceleration voltage .Vf,, from which the mean plate energy can

be determined

(r"rr),mrcvf,> eN3/62 (D,8)E
l-

and from equation (Dr6)

0)
n

VPpc (D,9 )
l_ ul'tnol 2

i

The experimentally obtained internal loss factors for

each plate are presented in Tab1e 5-2'

D.4.2. Decay Methods

Energydecaytestswerecarriedoutontwoplatesto

compare the internal loss factors measured using conventional

decay methods with those obtained during steady state excitation'

The majority of results were obtained using a Brüet &

Kjaer Reverberation Processor type 4422, which uses the

Schroeder-Kuttroff double pulse method, and the remainder were

measured using the standard pause method'

The longt.ime averaging RMS circuit consisted of a pre-

cision fulI wave rectification circuit with a variable response

averaging circuit. The acceleration signal during the decay

tests was fed into this circuit with an apPropriate response

time selected. An Analog Devices 755N logarithmic amplifier

was used to convert lhe averaged RIvIS signal to a logarithmic

output which was displayed on a storage cathode ray oscilliscope'

(cRo). The decay slope was used, in conjunction with the cRo
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D. 5 . PI,ATE ENERGY RATIO }IEAS

After individual plates had been welded to form a

connected structure' it was supported from the clamping block

suchthattheelectromagneÈicdriver$Iasabletodirectlyexcite
the appropriate plate' Fig' D-5 shows a three plate single

join structure supported from the clamping block'

Theplate,ènergyratiosweredeterminedusingEquation

(D,8),tntherethemeansquareaccelerationswereobtainedfrom

tenmeasurementlocationsovereachplatefortwocoupledplate
,a "Ïght 

points for three or more plate structures'

Since the same accelerometer htas used to measure the

ptateaccelerationlevelonallplates,theabsoluteacceleration

levels r¡Iere not required and the plate measured energy ratios

are given bY,

vottageandsweePtimesettings'toobtainreverberatíontimes'
hence loss factors' The results of these measurements are

discussed in APPendix E'

ví (D,10)
E

L /E (m /m ) (ur, /ML tj)
) a l T

OF EXPE RIMENTAL RES ULTS
D.6.

Although the voltage signals were measured through the

instrumentation to an accuracy of t4*t the least accurate com-

Ponentbeing'themultiplierwitha"p".tfi.derrorrangeoftzz'
theaccuracyoftheinternallossfactors,andenergylevelratios'

\^rere determined by the accuracy of the measured mean energy

tevelsofeachplate.Themeanenergylevelisproportionalto

j) (<ví>i/<
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themeanSquareaccelerationlevel,whichisthemeanofthe

square of a number of separate readings of the time averaged

accelerationlevels,measuredatdifferentlocationsoneach
plate.Sincetheplatetimeaveragedresponseisnotuniform

overtheplate,theaccuracyofthedeterminationofthemean

squareaccelerationlevel'hencethemeanplateenergylevel'is

relatedtothenumberandlocationsofthemeasuringpoints.
Themeasuringpointswererandomlyselectedwithinsmall

areaswhich\â¡erespreadgeneralryoverthepratesurface'

Locations near plate edges, joins and driving points were avoided

as much as possible to reduce any near-field effects'

Theaccu'.iyorthemeansquarevaluesdependsonthe

number of point readings used to obtain the mean square value'

Tests were carried out on two plates at different frequencies

toinvestigatethedeviationofresultsabouta'true'mean.
This|true,meansquarelevelwasdeterminedfromalargenumber

ofpointmeasurements.The2sigmapointsfordifferentfre-
quenciesanddifferentnum'bersofpointmeasurementsusedto

obtainameansquarevalueareshowninFig.D-6.Thisindicates

that the g5g confidence limits, applied to thé mean square accel-

erationlevelsmeasuredatdifferentfrequenciesusingSorl0

measurementlocations,arelessthantl.3dB.Athigherfre-
quenciestheg5Bconfidencelimitsdecreasetolo.5dB.These

Iimitsdeterminetheoverallaccuracyofbothinternalloss
factor and energY ratio results'
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INSTRUMENT ATION FOR STEADY STATE
APPENDIX E. TRANSDUC ERS AND

LOSS

E.I. REOU IREMENTS

The average input power to the test plate can be measured

by sensing the instantaneous force and velocity at the input

point to the Plate'

is the inPut Power'

Thetimeaverageintegraloftheirproduct

(t).v(t)dt (8,1)
P

t-

It is essential that the phases of the two input signals be very

carefully preserved prior to their introduction into the multi-

pliercircuitinordertomeasurethecorrectinputpower'

Fig. E-I, previously shown as Fig' D-3' shows the required

circuitry and is repeated here for convenience'

8.2. TRANSDUCER CONSTRUCTION AND THEORY

The power flow transducer shown in Fig ' E 2 consists of

anannularpiezo-electriccrystalclampedbetweentwobrass

bosses by a 3/L6 inch U'N'F' brass bolt' A mica wafer

separates the signal electrode from the grounded boss at one

end and the other boss forms the shield' A B' & K' type 4344

accelerometer was bonded to the head of the compression bolt'

The 3/L6,, thread of the compression bolt is compatible with the

mini shaker rlriver' The body of the aceelerometer and the brass

bosses and bolt share a coilrmon ground in the signar circuit'

Thesignalfromtheaccelerometerisintegratedtogive

a velocity signal. The voltage from the clamped crystal is

proportionaltotheaxialstrain,henceitisproportionalto
theaxialforce.Theclampingbolthelpstoprotectthecrystal

fromdamageifaccidentalshearforcesorbendingmomentsare
applied.
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The transducer is described by the mobility circuit

shown in Fig. E-3' rn this circuit M, is the dynamic mass of

theshakerandmetalontheshakersídeoftheforcetransducer,

represented by a capacitance' âs is M'' the mass on the plate

side of the force transducer' The spring rates' Iç of the com-

pressionboltandofthepiezo-electriccrystalarerepresented

byinductances.Reallosses,C,thedampingmechanisms,are

represented by resistances, where c is proportional to l/R'

In the ciriuit, the current' i' is analagous to force' f c'' and

thevoltagedropbet'weentwopointsisanalagoustotherelative

velocitybetween'thosepoints,thevelocityoftheplateatthe

input point, v, is analagous to the voltage across ZP'V' The

real loss cL represents any losses due to the accelerometer

lead movement'

Referring to the mobility circuit' the power into the

test plate is'f'"'v> which is equivalent to 
"n'Ut 

in the

mobitityanalogy.Theuseofthesymbols<>willindicatethe

time average o the contained quantity'

<ip v> . (i¡-i2-iL) .V> = 'i3Vt- 
ti2 . V> . iO.Vt

(E'2)

and V are
Since the impedanc" M2 is purely reactive' LZ

in quadrature, hence '!2'V'is 
zeto' and therefore

<i-.V> = 'i3V' 'iLU' 
(E 

' 
3)

p

Both C" and C" are very large as both crystal and bolt

have very row mechanicar resistances ' hence is and ig are

negligible, hence



a
3

Ki-nl

Kn<i7.v> 'i"'ut

(E,4)

(8,5)

(8,6 )

the onlY nett lvork done

0

(8,7)

is*íz

'it,

L92.

V>

The raÈio of i6/i7 is alÚays tl: same' depending on

rerative moduri of elasticity and areasof the bort and crystal'

thus

where K'

Hence

l-
3

is a constant to be determined by calibration'

I

<ip v>

.iLV'representsanyworkdoneontheaccelerometerleadorany

otherenergylossfromt'heplatesideofthetransducer.This
could include any acoustic radiation from the piston-tike vib-

ratingbosses.Theselossesaresmallandwerecompensated
forbythephasecompensationcircuiÈduríngcalibration.

When the Plate is not attached'

is attributable to these losses' 'inVt

This Power reading P"'

tion, hence after calibration

P

K <i-.v>nt

can be set to zero during calibra-

PL

p
K <i-.v>

NI
(8,8)
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8.3. INSTRUMENTATION

TheintegratorwasbasedonaB.eK.tyPe1606,wherea

highgaincathodefollowerwasfol}owedbyapassiveintegration

circuit- When the signal was integrated' it was phase shifted

by approximately' but not exactly' 90 degrees' The amount of

errorvariedwíthfrequency.Aslightphasedifferencealso

occurredbetweenthetwosignalsthroughthe]./3octaveband
filters. This also varied from band to band'

ThephasecompensatorshowninFig.E-l,allowedthephase

ofoneofthesignalstobealteredtocompensateforthevaria-
tionsmentionedaboveandanyunwantedenergylossesatthe

transducer' This uníty gain circuit was based on a previously

publishedphaseshiftingnetwork.(Baker,We'standHunter,I973.)

Somecomponentswerealteredtosuítthísapplication,butitwas

basicallytheSamecircuit.Atenturnpotentiometerwithan

attached counter allowed a specific phase shift to be set for

each L/3 oelave band of ínterest'

8.4. CALIBRATfON PROCEDURE

Calibration constants were

and force signals'

required for the velocitY

tandard test accelero-
These were both referenced to a s

meter which htas mounted back to back with the transducer acce

meter' 
--' reference accererometer

The transducer accelerometer and

signals 'Atneust 
and qngl were measured for each 1/3 octave

band, using a long time averaging R'M'S' circuit and digital

voltmeter. The force and velocity signals were measured in

eachbandwiththepreviouslydeterminedphasecompensator

setting.Thesignalmonitoredwasthesquaredsignalfromthe

lero-
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murtiplier, i.e' <v?-and <v2>' AII signals r^Iere measured at

a particular amplifier setting of the spectrometers whích had

beenpreviouslycalibratedusingtheirinternalreferencesignals.
Thetransduceraccelerometercalibrationconstantwas

determíned from

(rA)c = (m)c .ï*¿etre/sec2¡vort

where (m) c
constant.

is the known reference accelerometer calibration

The velocíty calibratíon constant

(rA¿ 'Arneols' metres/sec/vort.
.v2>

V
û)c

and the force calibration constant

M (rA) 'ArRAus newtons/volt
c c .v7,

f

were multiplied to obtain the power flow calibration constant

P= FVcc watts,/voIt

Since the force and velocity signals were calibrated

throughthemultiplier'thenPcwasrelatedtothemultiplier

outputdirectlyforspecificamplifíersettingsonthespectro-
meters. The calibration constants are listed in Table E-I'

F c

c
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M was the calibration ntass used' This comprised an

c

addedmassscrewedontothemountingst'udplusanexperimentally

determinedequivalentmasswhichisM,inthemobititycircuit.
M^ was not just the mass of the boss '' bolt head and accelero-

¿

meter because the compression bolt connected the two bosses

directly.TheeffectofthiswasunknownandhenceM'was

determined exPerimentallY'

Varioussizemasseswereaddedtothetransducerandthe

force and acceleration voltages measured in different bands and

with different leve1s of excitation' îoxce/acceleration ratio

wasplottedagainstaddedmass'(Fig'E-41'andthelinewas

extrapolatedtothef'orce/acceleration=0,axis.Thenegative

interceptindicatesthattheequivalentmassM,wasapproximate-

ly 11 grams.

8.5. TRANSDUCE R-PLATE IMPEDANCE MATCHING

When the impedance mismatch between transducer and plate

wasgreat,thepowermeasurementwassmallevenwíthnearmaxi.
muminputforceandveiocityvoltagestothemultiplier.The

fluctuations in the output due to the random nature of the

excitingsignalbecamesignificantcomparedwiththeaverage

value. The only way to improve this was to increase the degree

of matching between the plate and transducer impedances'

Thepointimpedanceintoaninfiniteplateispurely

resistiveandafiniteplatecontainsareactíve(stiffness

determined) component as well' The transducex/dtíver impedance

is determined almost entirely by its mass'

The initiar attempt to match the impedances was to make

thedriver/transducerlookliketheplate.Thetransducermass

$'asreducedtoaminimumandthedríverwasmadetoresemblea
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multimodal Plate' The mini shaker excited a small stiff plate

whichhadrolledmeshattachedtoitsedges.Thisthengavea
resPonsesimilartoalargemultimodalplate.Thetransducer

wasattachedtothesmallplate(driver)andtothetestplate,

that is, a multimodal plate driven by a multimodal plate' Two

serious problems were encountered with this approach which caused

its abandonment' The two problems were that the dynamic effect

oftheaccelerometerleadwasincreasedsincethetotalmass
$'assmall,andtheresponseoftheunloadedtransducer$'aspoor

duetosmallbutsignificanttransverseaccelerationsintroduced
by the bending movement of the driving plate' The force and

accereration signars shourd remain in phase and the ratío between

themshouldbeconstantduringasineS$'eepwhentheloadwas
purelymassive.Thiswasnotachievedwhenthetransducer$'aS

plate.mounted,althoughitwasachievedwhenthetransducer$¡as

driven directly by the mini shaker'

Amoresuccessfulsecondattemptinvolvedtheaddition

of a mass at the driving point of the prate so that rocarly' the

driven plate impedance looked *ot% Iíke the mass-controlled

transducer imPedance'

The.¡nassesoneachsideoftheforcetransducerhTeremade

approximately equal, that is' the dynamic mass of the driver

and driver side boss, MI, $tas approximately equal to M, plus the

added mass. This mass was then used as the added mass during

theforcecalibrationprocedure.Asthemassofthetransducer

was no\^7 large, the effect of the lead was reduced significantly'

Theaveragepol¡¡erfactorincreasedfromtypically0.05to

0.20withsomereadingsuptoo.5.Althoughthiswasnotper.
fectmatching,itwassufficienttoreducethefluctuationsto

amaximumofappro*imatelytwopercentofthepowerinputmeas.

urements.
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E.6. TRANSDUCER TESTING

The direct calibration of force and acceleration' and

hencevelocity,transducers,allowedthepowercalibrationconstant

P.tobedetermined'Adirectdeterminationofthisconstant

wouldhavebeenbetterbutthisdidnotseemfeasiblebecauseof
the very small power levels involved'

Acomparisonbetweenplateinternallossfactorsseemed

theonlywayoftestingthetransducerlbutthiswasnotgood

sincetherationalefordevelopíngthetransducer\{asthatthe

steadystatedeterminationmaymeasurelossfactorswhichcontrol
inthesteadystatebutarenotreadilymeasuredusingthedecay

methods. However, steady state internal loss factors were

measuredusingtheprocedureoutlinedinAppendixD.oneof

thedampedplateswasusedtoobtaindecaymeasuredlossfactors.

TheselossfactorsarepresentedinFig.E-5(Swift&Bies,1975).
Thedifferenceofabout2dBoverthelargerangeofresults

etiminates any errors due to additional losses, ê.9. at the plate/

transducerjoin,otherwisethelineardifferencesshouldbethe

same at aII frequencies' which is clearly not the case'

'lrnesimilaroverallpatternindicatedthatthetransducer

wasmeasuringlossfactors.Thetwopossibleconclusionsare

that,thesteadystatemeasurementdoesshowalargerlossfactor

whidrcontrolsinthesteadystatesituation,orthattherewas
a calibration error'

Thecalibrations\â'erecheckedandanotherplatetested

usingtheSchroeder-KuttroffreverberationProcessor.During

thesedecaytests'somerepeatableinitialdecayslopes(about

IdB)\â¡erenoticed.Thesewereincreasedtoameasurablesíze,

by adjusting the CRO voltage gain and sweep rate; the initial

slopewasthenmeasuredtoobtainthelossfactor.Theseresults



¡
.qffi

o
¡

a

o
a

'sËffi. . ,",{*

'l¡llt':. .f ,i;

. ,-: ,

o
o
I

2

r0
2

a

¡

o

Io

Io

¡
o

¡
o

I

-1t0-

É.
o
Þ-
O
LL

Ø
U)
o

a

ts
\o
to

5

FREQUENCY kHz

fIG. E-5. DAIIPED PLàTE - INTERNÀL IÆSS FACTORI O '
DECÀY I'TEÀSURE}TENT.

I2 4

o

¡

STEADY STÀTE I-IEASUREI'IENT; r , ENERGY



#

'-+i.t

o
x

-008

.006

.00s

.004

.oo3

t\)

o

I

t
x

t

o

x

I

o

x
a

PÉ.o
(J
É

l/)
l.r)

9

o

':i.',;;t

o

o

I o

.002

.001

¡
¡t

1
1

I

050 2

FREQUENCY kHz.

FIG.E-6.DAMPEDPLATEINTERNALLOSSFACToRSìo,STEADYSTATEI¿IEASUREMENT;
MEASUREMENT;FIRST6d'B;X¡ENERGYDECAYMEASUREMENTFIRSTToR2dB.

I t ENERGY DECAY



20r.

,*

are presented in Fig. E-6 where the agreement between the short

I or 2dB decay results and the steady state measurements is good

in a number of third octave bands.

The agreement between these initiat decay slope measured

Ioss factors and the steady state measured loss factors, combined

with the fact that the rechecked calibration constants agreed

with those originally used, indicates that the steady state method

is measuring the plate internal loss factor which controls the

steady state resPonse.
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TABLE 8.1. CALIBRATION CONSTANTS

Acceleration and velocity AmPlifier gain setting
Force AmPlifier gain setting

Ë

Fr.equency
Hz

Plate
Accelerometer

(PA) 
^

^/ 
s2 /vZtt

Velocity
V

c
m/s/voLE

.52L

.524

.540

.552

. s84

.625

.7L2

.968

.835

'' Force
Fc

Nr/volt

6odB

IOOdB

Power

Pc
wattsr/voIt

400

500

630

800

1000

r250

16 00

2000

2500

315 0

4000

5000

6 300

8û00

10000 i

. r83

.198

.2r5

.206

.202

.2LO

.203

.2r2

.2LO

.227

.23L

.253

.289',.
1

"{16
.5r4

. 09s1

.103

. LL2

. r07

.105

.109

. r06

.11r

. r13

.L25

. r35

.158

.20s

.403

.429

3.67
I

I

I
I

,|

.521,

I
)

.6 73
t
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