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SUMMARY

The methods of statistical energy analysis are used to
predict vibrational energy distributions in connected structures.
The limits of applicability of the prediction technique are
investigated experimentally. The results of comparisons between
measurement and prediction are used to investigate the

\theoretical limitations inherent in the analysis.

The analysis proceeds by considering the power flow between
the parts of the structure and the nett energy balance in each
part . Thus coupling loss factors,which describe the power flow
between connected par£s,and internal loss factors,which describe
the nett loss of energy in the individual parts of a structure
due to all forms of dissipation,play a central role in the analy-
sis. The coupling loss factors are related to transmission co-
efficients. Expressions for the trangmission coefficient are
developed for the general case of four plates connected at a common
join using wave transmission theory. For the range of plate
thicknesses considered it has been sufficient to consider only
bending waves and to neglect any energy loss due to wave trans-
formation at the join. As thg coupling between plates depends upon
the angle of incidence of the initial exciting bending wave and in
general all angléé‘of incidence may be expected, it has been advan-
tageous to calculate average transmission coefficients, hence
average coupling loss factors. Alternatively an empirical equation
is presented whi¢h allows considerable mathematical simplification
in the calculation of the average transmission coefficients.

The neglect‘df longitudinal and tranéverse wave trans-
mission and transformation at a four plate join is also investi-
gated. Compérisons of average transmission coefficients calcul-

ated including longitudinal and transverse wave propagation along



with bending wave propagation,and average transmission coeffi-
cients calculated neglecting all but bending wave propagation,
then show at what frequency and plate thickness combinations
longitudinal and transverse waves can not be neglected. Empir-
ically obtained charts are presented from which the high frequency
thick plate average transmission coefficient may be estimated as

a correction to the more easily calculated bending wave trans-
mission coefficient. The effects of further wave transformation
at subsequent joins are also discussed.

The internal loss factors of plates used in the experi-
mental investigation were determined using a steady state measured
power injection method. Loss factors thus determined were found
to be consistently higher than those determined using the usual
reverberation decay technique. However, the values determined
by the steady state method were consistent with very short initi-
ally steeper decay rates that were frequently observed. Arti-
ficial damping was added to the various plates so that radiation
losses could be neglected in comparison with internal losses.

This insured that when the plates were subsequently joined together
any effects on edge radiation would be quite immaterial to the
investigation.

Energy level distributions over a number of single join
multiplate structures were measured and compared with levels
predicted using the methods of statistical energy analysis, cal-
culated average coupling loss factors, and measured internal loss
factors. These comparisons are then used to investigate the
limits of applicability  the prediction technique, T It is
shown that the bounds, which are related to the number of reson-
ant modes in the excitation band width at low frequencies and to
the density of resonant modes and internal damping at high fre-

quencies, are slightly different for the cases of two coupled



plates and three or four coupled plates at a single join.

Three multiplate, multijoin structufes were investigated.
Comparisons between measured and predicted plate energy levels
were good over a mid frequency range consistent with that observed
for the single join plates. The results outside of these bounds
at low and high frequencies were also reasonably good. Thus
methods and frequency range are established for the prediction
of vibrational energy levels in multiplate, multijoined, structures
to within *2dB. An extended range has also been established over
which the predicted and measured results are generally within
124 and, where the error is greater, the measured energy ratio

is less than that predicted.
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SECTION 1. INTRODUCTION

Over the past few years, there has been increasing concern
about the effect of\polhﬂmnts\ on the qgality of our environment
and their effects on personal comfort and safety. Unwanted noise
and vibration constitutes one form of pollution; concern comes not
only from those who are professionally involved, but also from
other members of society who are demanding their right to an
environmént free from irritating and harmful noise. Industry is
being asked to reduce both in-plant and emitted noise levels
while lower noise and vibration levels in air and surface trans-
port are continually being sought. Current attitudes regarding
noise pollution, resulting in §§§§gg§l and envisaged legislation,
constitute a strong argument for continuing research into all
aspects of noise and vibration control.

This thesis is concerned with the distribution of vibra-
tional energy in an excited built up structure. Since all forms
of air and surface craft, as well as many noise emitting, vibra-
tion inducing machines, can be thought of as built up structures
consisting of collections of connected elements, it is felt that
the work presented here will find practical application in the
effort to control unwanted noise and vibration in our environment.
It is worth noting that buildings too may be considered as built
up structures and thus they too would be amenable to the analysis
presented here. Thus the topic dealt with in this thesis should
have very wide application.

With small structures, for example machines, one is
generally concerned with radiated sound or vibration in critical
areas around the structure. With larger structures, such as
ships, aircraft, and buildings, we are generally concerned with

noise and vibration within the confines of the structure. In



2.

either case our ability to predict noise and vibration levels
depends on a knowledge of the various energy inputs and their
coupling to the structural elements, the resulting vibrational
energy distribution throughout the structure and the acoustic
coupling of the structural elements to the surrounding fluid,
(usually air or water). The degree of coupling and the type of
source from which the vibration comes, varies for different sit-
uvations, hence research in this area is necessarily relevant only
to that particular source type investigated, but prediction of the
vibrational energy distribution in the structure is relevant to
all structures, irrespective of the source, and is the subject of
the research reported in this thesis.

When a structure is excited,vibrational energy is distri-
buted throughout the structure in such a way that all the struct-
ural elements are excited to a level dependent on (a) the excita-
tion frequencies, (b) structure geometry and (c) the physical
characteristics of the structural elements.

Where the excitation is such that the lowest few modes of
the structure dominate the response, existing classical modal
response analysis techniques are satisfactory. These techniques
are also theoretically valid for higher order modal response, but
where the excitation is of a broad band nature, a large number of
modes must be considered. In addition, the predicted higher
order modal responses are more sensitive to variations in geometry
and boundary conditions and it is often not possible to define
these conditions accurately.

There are currently available computer programmes, based
on classical techniques, useful for the prediction of structural

response (Kayser and Bogdanoff, 1975)*, where computer memory

* See footnote on Page 3.
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size and computing time are determined by the accuracy required.
However, use of these programmes, when many modes must be consid-
ered, can be prohibitive in terms of computer time and finally
memory size. Nonetheless a designer of a structure, be it ship
or machine, often needs to predict vibfational energy distribu-
tion, for noise and vibration control purposes even though econ-
omic factors may preclude the use of extensive computing time.

A technique which has been developed over the last decade
and which usually only requires a desk calculator for computation,
is Statistical Energy Analysis, (SEA), which uses average para-
meters to predict average energy levels of the structural elements.
These average parameters are independent of the boundary condi-
tions of the elements. However, the method does require a basic
minimum number of resonant modes in a measurement frequency band
and this limits the method to broad band analysis, which is
usually adequate for noise and vibration control engineering.

The technique has theoretical limitations on the extent
of its use applying particularly to frequency range and bandwidth;
these limitations are not, however, well defined. There are also
some common structural configurations of interest where the coup-
ling coefficients required for the analysis are not easily deter-
mined. For SEA to be of use to a designer of a general structure,
these aspects need clarification and their clarification is the
subject of this investigation.

Statistical energy analysis makes use of power balance
equations which in turn depend upon an independent determination

of loss and coupling loss factors, thus our investigation is

*Footnote: Two methods of referencing other works are used; for
example -
(a) ....response (Kayser and Bogdanoff, 1975), where...
(b) ....where Lyon and Maidanik (1962) found...



naturally divided into two parts; the use of power balance equa-
tions to describe the energy distribution of an N element connected
structure, and, the evaluation of the coupling loss factors
required for use in the power balance equations. It is convenient
to consider these separately and to présent a separate relevant
literature review for each. Thus while the objectives of this
research are listed in Section 2, their justification comes later
in Sections 3 and 4. In Section 3, the power balance equation
for two coupléd elements and the extension of the concepts to
include N connected elements is traced in the review of previous
work. However, the mathematics involved in deriving these
equations from the original concept of power flow between two
linearly coupled oscillators is not presented as it has been
reviewed extensively by other authors, for example Fahy (1974)

and Lyon (1975). Finally it is shown how the power balance
equations for a general N element connected structure can be
arranged as a matrix equation,in which the vibrational energy
distribution in the structure is related to the internal and
coupling loss factors for the various coupled elements.

The present methods of evaluating coupling loss factors
for different coupled element arrangements are discussed in the
literature review in section 4. It is shown that the coupling
loss factor can be related to a wave transmission coefficient.
The use of three different wave transmission coefficients is
discussed.

The evaluation of average transmission coefficients for
a junction of 4 plates, using wave transmission theory, is next
presented and these considerations are the principal concern of
Section 4. Two situations are presented: (a) a bending wave
solution where bending waves only are considered, and (b) a

general solution where wave transformations from bending to



longitudinal and transverse waves at the join are considered.
An empirical equation which relates the average bending wave
solution to the more easily calculated normal incidence bending
wave solution is presented.

The predicted values of the average bending wave trans-
mission coefficients to the average general solution transmission
coefficients are compared in the discussion in Section 4.4.

These indicate at what plate thickness and excitation frequency
the effects of the longitudinal and transverse wave transformations
can not be ignored.

In the remainder of Section 4, experimental methods used
to measure coupling loss factors, and the problems involved, are
discussed.

Transmission coefficients for a number of experimental
model structures consisting of various combinations of joined
plates are evaluated using the bending wave formulations previously
derived. These transmission coefficients are used in conjunction
with experimentally determined internal loss factors to predict
energy distributions in the plate structures. Next,the structures
are subjected to third octave broad band excitation and the energy
distributions measured. In Section 5, comparisons between
measured and predicted energy ratios are presented. Two plate
single join structure results and three and four plate single
join structure results are used to determine the restrictions
within which the SEA technique gives reasonable agreement between
measured and predicted energy distributions. Further results
for larger multijoin structures are also presented.

The implications of the findings in Section 5 are dis-
cussed in Section 6 along with general conclusions and recommenda-

tions for further research in this field.



SECTION 2. OBJECTIVES

The frequency range over which the assumptions implicit
in the formulation of statistical energy analysis are valid is
limited for any particular structure,but the limits are ill
defined. An objective of this research will be to give gquanti-
tative definition to the implied limits. Thus an objective will
be to guantitatively define the lower bound,which is the minimum
number of resonant modes required in an element in a measurement
frequency band. Similarly another objective will be to determine
an upper frequency bound which is related to a combination of the
degree of damping of individual modes and their separation in
frequency space. The latter concept is described as modal over-
lap. Thus an objective will be to quantitatively define the
upper bound,which is the maximum permissable value of the modal
overlap. For the purpose of defining upper and lower bounds,
various models comprising two, three and four plates coupled at
a common join will be considered. The proposed bounds will then
be determined by comparing the predictions of SEA with measure-
ments made on the various models.

Yet another objective will be to use SEA to predict the
energy distribution for a multielement structure consisting of up
to four inter-connected parts and compare the predictions with
measurements taking due account for the previously determined
upper and lower frequency bounds.

Many structures contain junctions of up to four plates
at a common join and thus it will be an objective of this research
to develop a generél equation to predict the average coupling loss
factor for a common welded join of up to four plates. Wave
transformation can take place at a join,but it is not always impor-

tant and its inclusion considerably complicates the required cal-



calculations. The cases when bending waves only need be con-
sidered and when wave transformation at a join can not be ignored
will be investigated separately. Yet another objective of this
research will be to quantitatively determine the bound between
these cases. A final objective will be to develop a simplified
procedure for estimating the more complicated average coupling
loss factors from the simpler normal incident coupling loss

factor expression, considering only bending waves.



SECTION 3. POWER BALANCE EQUATIONS

3.1. REVIEW OF PREVIOUS WORK

A structure can be considered as a number of interconnected
elements comprised of plates, beams, shells and enclosed acoustic
fields. For an excitation frequency bandwidth within the range
of limits imposed by SEA, each element contains some similar reson-
ant modes which can be considered to be ensembles of modes. Lyon
(1975, (1)) showed that the modes of an element can be thought of
as single oscillators. Lyon and Maidanik (1962) considered the
modes of a structural element to be an ensemble of oscillators.
Hence, a model of a resonant structure could be a group of reson-
ant elements coupled together. Ungar and Scharton (1967) showed
that any two coupled elements can be modelled as two ensembles
of oscillators interacting and the nett power flow from one
ensemble to the other is the sum of all the individual oscillator
to oscillator power flows.

Lyon and Maidanik (1962) presented an equation relating
the nett power flow between two linearly coupled oscillators
excited by statistically independent random sources to the diff-
erence between the average vibrational energies of each oscillator.

This equation is

(¢,-0

P12 B12

As the connected structure can be modelled as a collec-
tion of ensembles of oscillators interacting together, an equation
predicting the power flow between these ensembles of oscillators
is required. No exact relationship has been developed for the

prediction of power flow for more than two coupled oscillators

* The symbols used are listed in the glossary at the beginning
of this thesis.



of arbitrary coupling strength. However, with the assumption
of weak coupling Lyon and Maidanik (1962) and Newland (1966) have
shown that a relationship analagous to equation (3.1), relates
the nett power flow to the average modal energy difference between

the two ensembles of oscillators.

Py = nijwni (E;/n; - Ej/nj) e (3,2)

To obtain equation (3,2), a number of restrictions have
been imposed on the two ensembles of oscillators or groups of
resonant modes of the coupled elements contained within the
excitation frequency band. Fahy (1974) extensively discusses
these restrictions in a very good critical review of SEA. The
steps involved in obtaining (3,2) from (3,1) will not be presented.
However, for the convenience of the reader, the major assumptions
and their implications are repeated here.

One of the restrictions is that the two elements should
be weakly coupled. Fahy states that there are few cases where
weak coupling criteria for specific systems have been published.
Examples of the two cases considered are those of coupling between
a structure and a fluid such as the acoustic coupling of a shell
mode to an acoustic mode of a fluid volume. Reasonably good
results also have been obtained using SEA to predict the power
flow from panels to surrounding acoustic fluids (Lyon and
Maidanik, 1962) (Crocker and Price, 1969). It is much more
difficult to consider, however, two coupled structural elements
as being weakly coupled. Fahy gives an example of weak coupling
between beams as two beams connected by a weak rotational’spring, as

investigated by Crandall and Lotz (1971). Lotz and Crandall
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(1973) measured power flow directly to show that power flow
between two plates coupled by a light spring was proportional to
the modal energy difference between the two plates. However,
Lyon (1975) states that the weak coupling assumption is
unnecessary if the uncoupled systems are defined as the blocked
systems. Scharton and Lyon (1968) also considered two beams
coupled by a stiff spring to be 'lightly' coupled in the sense
that the angular movement at the junction was small. The coup-
ling in a real welded structure is closer to this concept than
to the others discussed.

In the work presented here, no attempt has been made to
define the strength of the coupling, as part of this work is to
show if and where SEA can be applied to general welded plate
structures. Fahy points out in his review that investigations
by Chintsun Hwang (1973) into coupling between a plate and a
welded complete cylindrical shell led to the conclusion that the
coupling was too strong for the methods of SEA to be applicable.
However, Chintsun Hwang also investigated a structure composed of
two edge connected flat plates where comparatively good results
were obtained.

Another assumption is that the wave fields in each ele-
ment are reverberant, which implies that there are a sufficient
number of modes present in the bandwidth to constitute a rever-
berant field. Also there must be a sufficient number of modes
that the coupling loss factor represents a good average value
for all the individual coupling coefficients between the indivi-
dual modes. However, no values for the minimum number of modes
required for SEA to be usefully applied have been suggested in
the published literature. It is one of the objectives of this

research to determine experimentally the minimum number of modes

required for acceptable comparisons of measurement with the
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predictions of SEA.

Lyon and Maidanik (1962) also assumed that the modes
should be lightly damped and be well separated. Lightly damped
is often assumed to imply that the internal loss factor of
the element ni<<l (Crandall and Lotz, 1971). The concept of well
separated modes allows the power flows from each mode of one set
to different modes of the second set to be summed without the
need for considering the interaction between the modes of the
one set. The assumption stated formally is that the average
frequency difference between modes, which is 1/ni, the recipro-
cal of the modal density, is greater than the half power fre-
quency bandwidth (Af)% of the modal response. This can be
written as an inequality, and if both sides are divided by the
frequency £, then this and the light damping requirement can be

expressed as

ni<<1 (3,3(a))

1

ni<(nif)' (3,3(b))

(3,3(b)) in effect suggests that there is an upper frequency
limit, the determination of which is also an objective of this
research.

Consideration of the power flow between two coupled
elements which are excited by statistically independent broad
band sources, (see Fig. 3-1), leads to the power balance edqua-

tions for two coupled elements in steady state.
P = wnlEl + wnlznl(El/nl—Ez/nz) (3,4)

P2 = wn2E2 + wnzlnz(Ez/nz-El/nl) (3,5)
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In these equations, the internal loss factor of an element is

considered to be the sum of the radiation loss factor plus the
plate internal loss factor
i i int ¥ N5 rad
A useful reciprocity relation follows from the observation
that the power flow from element one to two must certainly equal

the negative of the power flow from two to one. Equation (3,6)

follows immediately

Moy = Npyfy (3,6)

For P, = 0 in equation (3,5), the energy ratio EZ/El can

2

be expressed as

E,/E, = ny,/(n, + Nyp)

(nz/nl) Nyy/ (Nt n21) (3,7)

The derivations and implications of equations (3,4) to
(3,7) are all presented and discussed by Fahy (1974) in his
critical review.

Thus far, we have considered only two coupled element
structures, whereas most structures contain many elements. In
his review, Fahy stated that the weak coupling assumption allowed
the vital simplification that the power flow from a mode of one

element to a mode of the coupled element could be determined

without including the interaction of any other mode. This
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allowed the form of the power flow equation between coupled
elements to be of the same form as the power flow equation between
coupled oscillators, with the average coupling loss factor re-
placing the coupling coefficient. If we consider an element

to be similar to an oscillator, with average characteristics
replacing the characteristics of an oscillator, the weak coupling
concept can be extended to allow the power flow from one element
to a coupled element to be determined without including the
interaction of any other coupled element. This was assumed

by Eichler (1965) and led to an expression for the power balance

equation for an element coupled to any number of other elements.

n n

P; = wEini + wEiZ nij - Wk Ej Ny (3,8)
j:l j:l
STESNE T

Equation (3,8) was used for n = 3 in three different
investigations; the power flow from one acoustic field to another
inside a box structure (Eichler, 1965); the transmission loss of
a panel separating two acoustic fields (Crocker and Price, 1969);
and the energy transmission from one flat plate to another via a
connecting flat beam (Lyon and Scharton, 1965). All three are
examples of elements coupled in tandem. The application of
equation (3,8) to structures of three or more interconnected
elements with various transmission paths is the subject of this

investigation.

Postcript: see Page 15.
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Postscript:

A report on the investigation into sound transmission
in building structures was read just prior to submitting this
work. The research (Gibbs and Gilford, 1976) investigates
the power flow in building structures taking account of some
wave transformations. They conclude that for simple (single
join) structures, wave transformations are not important, but
where more than one junction is involved, their results

indicate that all structure borne waves should be considered.
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3.2. PREDICTION OF ENERGY DISTRIBUTION IN AN N-ELEMENT CONNECTED
STRUCTURE.

We consider any general N-element connected structure
and apply the general power balance equation (3,8) to each of
the N elements. These can be arranged to form a matrix rela-
tionship of the form AX = B where A is a square matrix of
coupling loss factors and X is a column matrix which gives the
energy level distribution. We take the energy level of element

N as a reference level,then the general form is

"1 "Ny N3] sw wm “NN-1 1 El/ENﬂw Py/wEg + Ny |
M2 Myp =Nz .. ov ; Ey)/Ey Py/wEy + Ny
L k! vt =
- N-1 N-2
M N-l “Mn-2 N-1 "N-1 N-1 E. -/EJ [P ./wE. +n
N-175 Fn-17%"y "N N-1
- — = e .
. (3,9)
where nii = ni + I Nir
r=1
r#i

The Nth equation which is required to predict absolute

energy levels is

P.JwE.. - = - - _——— -
N/ YEN TNyn Ny E1/Eny “May Eo/Ey TN-L NEN-17En

(3,10)
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Where element N,is the only element directly excited
by an external source, the input power terms of B become zero
leaving a column vector of the N-1 coupling loss factors from
the directly excited element N to the other coupled elements.

The configuration of the connected structure determines
which coupling loss factors will be zero, as where two elements
i and j are not directly coupled, the coupling loss factors nij
and nji are zero. For example, consider the two four plate
structures in fig. (3-2) with element 1 directly excited in each

case. For the box type structure, the matrix equation (3,9)

becomes

Ngg N3y 0 E,/Ey ny2

SNa3 N33 ~Masf | Ba/Ea =1 ° (3,11)
0 —n3s Mg | Ba/Ey N14

i 1L ]

Equation (3,11) also describes the in-line structure

where Meg =Ny = 0. (Note that Mgy is contained in the term

Ngq) -

It should also be noted that two different structural
configurations may be described by the same general matrix
equations. For example, when equation (3,9) is used to describe
the two structures shown in fig. (3-3) for the case where

P, = Py = 0 the following equation results for both.
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(a)

(b)
FIG. 3.3. THREE ELEMENT STRUCTURES

ENERGY RATIO EQUATION (3,12) IS APPLICABLE
TO BOTH STRUCTURES (a) & (b)
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Nap ~ N3 Ey/Ey N12
= (3,12)
Ny3 55 E4/Ey ”13‘J

Although the plates and the coupling lengths may be the
same for each case, the coupling loss factors will be different.

In a recent paper, W8hle and Elmallawany (1975) presented
a general solution for the prediction of energy distribution in
complicated structures. Their solution is similar to equation
(3,9). Acoustic fieldswithin the structure were considered as
elements. No discussion of the evaluation of structure to
structure coupling loss factors was included. The authors
referred to previously published works which contain only evalua-
tion procedures for structure to acoustic field coupling loss

factors.
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SECTiON 4. COUPLING LOSS FACTORS

4.1. REVIEW OF PREVIOUS WORK

It is clear from Section 3 that the important parameters
required to determine the energy distribution in a structure are
the respective coupling loss factors and internal loss factors.
Internal loss factors of elements must be either measured or
typical values used,taking into account the type of material and
various other losses which contribute to the apparent internal
loss. However at present, no general expression can be given
for the coupling loss factors;each join must be considered as a
special case.

The most common joins encountered in a connected structure
are beam to beam, beam to plate, acoustic field to plate and plate
to plate. Investigations have been carried out and expressions
are available for evaluating coupling loss factors for beam to
beam (Scharton and Lyon, 1968), (Crandall and Lotz, 1971);
cantilevered beam to plate, (Lyon and Eichler, 1964); beam to
plate edge, (Lyon and Scharton,1965); and acoustic field to
plate, (Crocker and Price, 1969).

It is interesting to note that Scharton and Lyon (1968),
in developing an expression for the coupling loss factor between
two coupled beams, assumed light damping in the following sense
(Crandall and Lotz, 1971),

ny <<(nif)"l << 1

which is in agreement with the inequalities (3,3(a) and (b)) with

the added restriction (nif)—l

<<1l. Lyon (1975(2)) has presented
a general equation relating coupling loss factor n, . to a

transmission coefficient Tij for coupled plates,
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= 2L Ty (4,1)
m

The transmission coefficient Tij is defined as the ratio

of the energy transmitted across the join to the energy incident
“at the join.' Equation (4,1) was first presented by Lyon and
Eichler (1964) and was derived from an earlier expression by
Heckl (1962), based on a 2 dimensional analogy to Sabine's
reverberant room decay equations.

Lyon and Eichler used equation (4,1) to investigate the
coupling loss factor for a cantilevered plate connected to an
infinite support plate. Wave transmission analysis was used to
obtain an expression for the average transmission coefficient of
this T type join, which they considered as a 2 plate join.*

The expression for Tij was an integral equation too com-
plicated to be of general use. Lyon and Eichler suggested that

= 8/27 for kl = k2 and Typ = Dl/DZ when k1 >> k,. The use

T12 2
of these two values of Tyo to evaluate P restricts its applica-
tion to only cantilevered plate junctions where either, the
thicknesses of the two plates are equal,or where the support plate
is much stiffer than the cantilevered plate.

Lyon (1975(2)) also presents an equation for 1 applicable
to the transmission of energy from one plate via a reinforcing
beam to a second plate.

Other than the two examples quoted, there does not

appear to be any other formulae readily available for calculating

*In the presentation of this thesis, the T type join is considered

as a junction of three plates with t, = t. and t, the thickness
of the cantilevered plate. 1 ¢
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coupling loss factors for plate to plate joins. Fahy (1974)
referred to investigations into two edge joined (L-type) coupled
plate by Chintsun Hwang (1973), but attempts to obtain a copy of
this report have been unsuccessful.

Lyon (1975(2)), in considering transmission through plate
junctionsstates that background information required to make cal-
culations for other systems may be found in his references. It
appears that it would be most useful to use the latter background
information to develop general equations for the evaluation of
the average trznsmission coefficients for a general 4 plate join.
This would then allow coupling loss factors for such a structure
to be evaluated and as stated previously in Section 2, This
problem will be considered in- the following sections.

The most convenient method to determine the transmission
coefficient for an energy flow from one plate to another is to
use the travelling wave method. Consider the two plate junction
in Fig.4-1,where a travelling bending wave of unit amplitude
displacement in plate i is incident on the join at angle TR
Some of the energy is transmitted to form a bending wave of ampli-
tude aj propagating at angle aj in plate j and the remainder is
reflected in plate i. The transmitted energy and incident energy
can be expressed in terms of the plate characteristics and
travelling wave amplitudes and propagating angles, hence the

average value for the transmission coefficient from plates i to

j is
n
2
iy ~ // Pgs | a gi cosa; dog (4,2)
L _s1
— k'
7 k; k,

. 2
Note that the general expression for energy flow is €,¢4lv/ vhere Cq ,
the group velocity,is numerically proportional to phase velocity «w/k
for bending waves in plates.



23.
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FIG. 4.1. TRAVELLING BENDING WAVE AMPLITUDES
AND DIRECTION OF PROPAGATION FOR
AN OBLIQUE BENDING INCIDENT ON

THE JUNCTION OF TWO EDGE COUPLED
PLATES i & |
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Equation (4,2) was used by Lyon and Eichler (1964) but
included a factor of 2 in the numerator to account for the two
equal plates receiving transmitted energy. | aj | can be
determined by considering the boundary conditions at the join.

The wave transmission approach for two L-joined plates
is fully discussed by Cremer (Cremer, Heckl and Ungar, 1973 (1l)&(2))
where it is used to develop equations for the normal incidence
and average transmission coefficients. These coefficients were

used to determine the transmission loss (TL) at the join where

TLI = 10 log (1/71) (4,3)

However, no attempt was made to apply these results to SEA.

Cremer also derived expressions for Tij for special cases
of 3 or 4 plate joins for normal incidence only. The special
cases were either,all plates equal or at least opposite plates
equal.

With thicker structures or higher frequencies, the longi-
tudinal and transverse waves must be considered as well as bending
waves. This problem was first considered for 4 plates at a join
by Budrin and Nikiforov (1964), for normal incidence only. Wave
transmission through concrete structure joins of 4 elements was
investigated by Kihlman (1970). He used average transmission
coefficients to predict mean square vibration levels in a thick
structure. Comparisons between measured and predicted levels
showed that longitudinal and transverse waves had to be considered
in evaluating the average transmission coefficient. The method
of evaluating the coefficients was not presented, but references
were made to an earlier paper (Kihlman, 1967). Attempts to

obtain this earlier paper have been unsuccessful.
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In the previous discussion the joins were considered in
isolation. In a real structure there are many joins and the
longitudinal and transverse waves can carry vibrational energy
to a second or third junction where wave transformations can
cause bending waves to be produced, forced by the longitudinal
and transverse waves. Bhattacharya ,Mulholland and Crocker (1971)
investigated the wave transformations in a two join structure
and concluded that for some structures predictions of energy
distribution based on joints considered in isolation, may be in
error. By comparing predicted average transnmission coefficients,
evaluated using a bending wave solution and a general solution,
the conditions when wave transformations, and hence the multi- join
effects, can not be ignored,will be investigated, as was stated in

Section 2.

4.2. ALTERNATIVE FORMULATIONS IN TERMS OF WAVE TRANSMISSION
COEFFICIENTS.

Equation (4,1) was derived from consideration of the
energy density decay in a vibrating plate; this approach is anal-
agous to the three dimensional room acoustics theory and in parti-
cular is analagous to the sabine reverberation time formulation
theory. (Beranek 1971(1).) Millington and Sette have
formulated an alternative theory for room decay. The two dimen-

sional analog of this theory leads to a similar equation to {4,1)

but with - 1n (1 mTij) replacing Tij.‘ The derivation is pre-
sented in Appendix A and leads to
2 L
nlj == = [_ In (l _Ti])] (414)

T K.A,
1i
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There is conjecture which room decay model more closely
fits the real case. In room acoustics, the different theories
can lead to different values of the absorption coefficient for
highly absorbent materials. However, in this work,it is shown
in 4.3.4 that for the range of values of Tij for connected
structures,there is little difference between the values of the
two coefficients.

A third relationship between the coupling loss factor and
a transmission coefficient is developed by expressing the steady
state power flow and energy levels of the power flow equation
(3,2) in terms of the travelling waves in Fig. 4-1. Equation

(3,2) then becomes

i
B LD.k;wla.lzcos a; da,
/x o e It j (4,5)
o 2 2
. njangw m; o 2 m. 2
DR [ (L +]a,]9 - —L— |a,|“]| do,
2 i) n, * ) =
- 1 n.
2 / J

If the modal density equation for flat plates (Beranek’

1971 (2)

ng (£) = Ay ﬁ/cLiti) (4,6)

and the wave number equation (Lyon and Eichler 1964) for flat

plates

4 2
k. . w pSl/Di (4,7)

are substituted into (4,5), the average coupling loss factor can

be expressed as
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2 L -
Nys = =— (TF) . . (4,8)
- T RAjky [ 13]
where %
kg _% laj| cosajdai
(TF) ;5 =T — (4,9)
’ k5 >z t t
] | 2, _ 314 12
( —=(1+]a, |9 - —*|a.|")doy
AN t 1 t. ) 1
2 Jj i

We have named (TF)ij the transmission factor from i to j.

Equations (4,1),(4,4) and (4,8) are all of the same form,
hence a comparison between the coupling loss factors is a compar-
ison between the different transmission coefficients, Tij'
—1n(1-Tij) and (TF)ij'

The equations (4,2) and (4,9) remain in the same form
when applied to three or four plates at a common join. The
energy transmitted from plate i to plate j and the energy levels
of plates i and j are the required parameters. The other plate
or plates connected at the join affect the transmitted and re-
flected wave amplitudes a; and aj. Hence the wave transmission
coefficients are affected numerically,but the assumptions used
leading to the form of equations (4,2) and (4,9) remain unchanged.

When expressions for the three wave transmission coeffic-
jents have been determined for the four plate single join structure,

the differences between the three different forms for the wave

transmission coefficient will be shown to be quite small.
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FIG. 4.2. GEOMETRY AND WAVE PROPAGATION DIRECTIONS
FOR FOUR PLATES AT A COMMON JOIN.
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4.3. BENDING WAVE SOLUTION - ANY NUMBER OF PLATES AT A COMMON JOIN.

4.3.1.Wave Transmission Method.

To begin, we consider four plates connected at a common
join with coordinates as shown in Fig. 4-2. A bending wave of
unit amplitude displacement in plate 1 is incident at the common
join at angle oy to the normal. There is a reflected wave in
plate 1 of amplitude a; travelling away from the join at reflected
angle ., and transmitte&d waves ay, aj and a, travelling at
refracted angles Oy s0g and a, respectively. With each transmitted
and reflected wave there is also a non propagating component with
a maximum amplitude of ai'. As only bending waves are considered,

the energy is transmitted from one plate to another only by

bending moments at the join. Note that the plates do not need

to be at right angles to each other for this analysis. Hence the

analysis is applicable to any number of plates at a common join,
although four plates are shown and discussed in the formulation.
However,as there would be few structures containing joins at which
there were more than four plates, it is sufficient to consider the
four plate case.

For mathematical convenience, each plate has its own co-
ordinate system. The join is the y axis assumed positive out
of the page;each plate is in its own x-y plane with positive x
increasing away from the y axis, and positive z direction is taken
in the clockwise direction when viewed from the positive y direc-
tion, forming a series of right handed coordinate systems. Dis-
placement in the zy direction is W, .

The boundary conditions are

(a) no displacement in any direction along the y axis,

i.e. W, = 0 at X; = 0 for all i,
(b) the join is assumed stiff in comparison with the

plate bending stiffnesses,hence the relative angle
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ow.
i

Bxi

between any two plates remains constant, i.e.
is the same for all i, at X, = 0
(c) the sum of the bending moments about the join is

zero, assuming that the join has zero moment of

inertia.

0

N
il

=
)
t
"
It

The displacement equation for plate 1 is

wl(xl,yl,t) = [%xp(i klxlcosocl - ilklylsinul) +
a,exp (-1 kyx cosa; - i klylsinal) +
al'exp(—klle1+sin2a1 - i klylsinali]

exp (iwt) (4,10)

The displacement equations for the remaining plates are

wn(xn,yn,t) = [Enexp(—i k x,cosa - i knynsinan)
! f .2 . . .
+ an.exp(—kﬁxn l1+sin o, — 1 knyn51nuni]exp(1wt)

where the plates are identified by the subscript n (4,11)

for n = 2, 3 and 4 respectively.
The trace wave lengths along the y axis are equal for

each plate, hence

k151nul = kzsinoc2 = k.,sino = k,sina (4,12)

3 3 4 4

The factors in (4,12) and exp(iwt) are common to all

four equations and can be omitted from the displacement equations



when the boundary conditions are considered.
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The omitted terms

must be considered if any derivatives with respect to time or

position y are required.

(4,11) become

exp (i klxlcosal) + alexp(-i klxlcosal)

+ al'exp(—klx1J1+sin2al)

Il

wn(xn)

. ' . 2 0.
anexp(-l kncosun) +a, exp(—knxn(l+s1n an)

Use of the boundary conditions (a),

The reduced equations (4,10) and

(4,13)

%)

(4,14)

(b) and (c) leads

to the following expressions for the constants a, as shown in

Appendix B.

al(al)

an(ul)

1
. B

21 cosu1

By

4 ., . X
B I ill s 1n
j=1 “~1j )

where the following relationships are used

Xmn

b

mn

Bn(ul)

for |[sina,|<x;,

kn/km

= b k_2/p k 2
nn m m

/ . 2 ;
l+sin"a_ -1 coso
n n

.2 .2,0.5
(1+sin “1/X1n )

N .2
- i(l-sin al/xln )

(4,15)

(4,16)

(4,17)

2,0.5

(4,19)
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*
Bn is the complex conjugate of Bn

There are structures where sinal>xln. This occurs when
the wave number in plate 1 is greater than the wave number in
plate n. In this case, the first term of the displacement

equation (4,14) for W becomes

a exp -knx 5
X 1n

.2
sin
n(

a 0.5
1 -1)

The sign of the square root is chosen on the basis that
the displacement decreases exponentially with increasing X -

Hence where sinul>xln, equation (4,19) becomes

2 2 0.5 ‘sin oy 0.5
Bn(ul) = (l+sin ul/xln) r‘(‘—ﬂf——— - ) (4,20)
X1n
which is real.

A general expression for |an|2 would be complicated by
attempting to allow for the different conditions, |sinocl|<x1n
and sinal>xln, hence equation (4,16) is not reduced further.

The expressions for al(ul)and an(ul) can be used to obtain
the |a1|2 and |an|2 terms in the transmission coefficient

equations (4,2) and (4,9).

4.3.2. Energy Decay Method

The equations for predicting coupling loss factors based
on energy decay theory are (4,1) and (4,4). These equations
require the average transmission coefficient Tij. Using the
wave number equation (4,7), the ratio of surface densities

psi/péj can be related to the plate parameters Xij and wij'
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(4,21)

Both of the integral expressions in equation (4,2) are
symmetrical about a; = 0, hence using equation (4,21), (4,2)

becomes

(N1

Ll
2

iy Xijlpij |aj|2cosajdai/ coso, do,

0

0 T
2
2
Xijwij |aj| cosajdoci (4,22)
0

It is mathematically convenient to integrate with respect
to sinotl = s rather than to G,. This is achieved by
multiplying (4,22) by cosai/cosai, setting i = 1 and j = n, to

become

1
Tin ~ Xlnwlnlé( lanlz(cosan/cosal) ds
/1
= ” Ti,(S) ds (4,23)

Tln(s) is the transmission coefficient for a wave in plate 1

incident at angle o and partially transmitted to plate n.
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cosa. | |2
T (s) = x;.¥ a
1n 1n"3n cosa, n (4,24)
in which both cosa  and |an|2 are functions of s.
Equation (4,16) can be written as
an(s) = An(s) cosul/xln (4,25)
where
23
An(S) = (4,26)
4 wl.
B, (s)B, (s)Z ~L1 (1/B(s))
Jj=1713

|a 2(s) can be determined for any incident angle and plate

n |

parameters

2
|2, |

" (s) = |An|2(s) coszal/xin (4,27)

Substituting (4,27) into (4,24) and expressing the coso

terms as functions of s gives

0.5 2,0.5

Ts) = Wy /xg) 1A% e (1-s%/x% )00 (1-s?)

(4,28)

The average transmission coefficient is obtained from
(4,23) where the upper integration limit of 1 can be replaced

by X1n when X1p < 1.0 since no additional ene gy is transmitted
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to plate n at an incident angle greater than the critical angle

o = arcsinx]n, or s = Xq,-

1c
When two plates only are considered t3 = t4 = 0 and

(4,26) reduces to

By(s) = —— (4,29)

When equation (4,29) is substituted into equation (4,28), the
transmission coefficient for two coupled plates for a travelling

wave incident on the join at angle arcsin(s) is

2 2.0. .
2w12(x12—s )0 5(1-52)O 2

12
| 2,0. : 2,0. 2, 0.
Xaptuiatoy, O ,re™) 02 (rs?) 0%, 00,5 0 P (1) 02

(4,30)

which is equivalent to the expression for oblique incidence
trénsmission coefficient for two coupled plates derived by
Cremer (Cremer, Heckl & Ungar, 1973(2)).

For the special 3 plate case with t, = t; and t, = 0,
the two plate equation can be used with le replaced by Zwlz
(Cremer ,Heckl & Ungar 1973). In this case (4,29) and (4,30)
reduce to the same equation as Lyon and Eichler (1964) obtained
for the cantilevered plate coupled to a support plate. The

parameter 'r'used by Lyon and Eichler is equivalent to

X12/2V55,
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Although it is not productive to reduce the general
equation for Tln(s)further,the normal incidence transmission
coefficient Tln(o) can be expressed in a relatively simple

form. For s =0

B1 = Bn = 1-1
4
Ah (O) = _(l":i-)/(Z wlﬁ/xln)
n=1
1A 12¢0) = 2/(gw /x. )2
n n=1 1ln X1n
and
2y, /%X.)
T (0 = in__ln (4,31)

X 2
l:il (wln/xln)}

where the summation for 4 plates has been replaced by a summation
for x plates.

For two coupled plates, (4,31) becomes

Il

200) 5/%15)/ [+ 12/%121]

2/[5"12/“’12)0'5 /%1207 )

T1(0)

Il

which is in agreement with the 2 coupled plate normal incidence
transmission coefficient equation obtained by Cremer, Heckl &

Ungar (1973(1)).
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4.3.3. Power Balance Method

The power balance equation led to the definition of

(TF)ij in equation (4,9). Changing the variable to s = sinoc1
and setting i = 1 and j = n gives
. 2,0.
($£_)o _in |An|2(s) (l—sz/xi )0 5(l-s )0 )
in Xin e
(TF)ln u 2,0.5
LA / X la1l%(s) 4 / 13 1%(s) (1-59)°"° 4o
241n In (l 2)0 5 0 2
X
In
(4,32)

where the upper limit of integration, u, is set equal to the
lesser of x.. and 1.
in :

Although an expression for |al|2(s) could be derived
from (4,15), it is more convenient to use the relationship that
the sum of all the transmission coefficients and the reflection
coefficient must be unity. For convenience,fv:ll has been used

to denote the reflection coefficient

2
Tll(S) = |al|

= 1-1 Tln(s) (4,33)

For any incidence angle, oy
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By using this expression for [6112(3), the denominator

of (4,32) becomes, for x plates connected to plate 1

B " 2 2 92 0.5
DENOM = mx5 —/1 x* oz Yim|a_|“(s) {1-s%/x},) 9s
In 0 In o X1m
2 2,0.5
J[u |An| (s) 1-s“) ds 10 Bsi
0 2
X1n

The integrand in the numerator of (4,32) is the same
as the transmission coefficient equation (4,28).

The analysis to this point has been applicable to any
material or mixture of materials. For the purpose of this
research, test plates of the same material have been used.

This allows the equations (4,17) and (4,18) to reduce to expres-
sions involving the ratio of plate thicknesses. Note that the
absolute plate thickness is not important, provided that the

classical bending wave theory restrictions are observed, i.e.

tn<}\Bn/6
As the bending stiffness of a plate is proportional to
3
ty
D /D = (t_/t)>
n’ “m n m
From the wave number equation for plates (4,7),
4 _
kl o (tl/Dl), hence
Xan = kn/km
0.25
tn/Dn \

tm/Dm
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0.5
= (tm/tn) (4,36)
and
2
ﬂm1 B (Dn/Dm)an
= (t_/t ) (4,37)
n’ m Y
A computer programme was used to compute the value of
Tln(S) for a specific set of plates and value of s. A

Simpson's Rule subroutine was used to determine the integral
value, hence average transmission coefficient. The two integral
equations in equation (4,35) were written into the same pro-
gramme. This allowed (TF)1n to be evaluated from equation
(4,32). With these integrals numerically calculated, the
average values of Tij, —ln(l—Tij)and (TF)ij were evaluated for

any set of 2, 3 or 4 flat plates at a common join.

4.3.4. Discussion of Theoretical Results

The greatest difference between the average values of

Tij, -ln(l—Tij) and (TF)ij occurs at the largest numerical

values of the transmission coefficient. This occurs for the
two plate junction. The variation of the three coefficients
with plate thickness ratio for two coupled plates is shown in
Fig. 4-3. It can be seen that the greatest difference between

(TF)12 and T occurs when the plates are of equal thickness

12

and the values are (TF)12 = 0.44 and T = 0.33. The ratio of

12
(TF)lz/le, 1.33, is also a maximum for the equal plate thick-

ness case. This ratio is reduéed to 1.05 for a thickness
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FIG. 4.3. COMPARISON OF Tj2,-n(1-Typ)) AND TFz FOR
TWO COUPLED PLATES AT VARYING PLATE
THICKNESS RATIOS
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ratio of 0.5. The value of —ln(l-Tij) falls between the other
two coefficients for all plate thickness ratios.

We now consider how important, or unimportant, these
differences are. The transmission coefficients are required to
evaluate the coupling loss factors which in turn are required to
predict the energy distribution in a coupled structure.

Equation (4,1) shows that for a given plate and frequency, the
coupling loss factor is proportional to the transmission co-
efficient. Let us consider the energy ratio between two coupled
elements, equation (3,7) for i = 1 and j = 2. Inspection of
(3,7) shows that for very large coupling loss factors compared
with the internal loss factor, the energy ratio becomes insensi-
tive to the value of the coupling loss factor. As the coup-
ling loss to internal loss factor ratio reduces, the sensitivity
increases. Fig. 4-4 shows the variation in the predicted
energy ratio E2/El for a change in value of the coupling loss
factor to internal loss factor ratio of 1dB, i.e. for the same
internal loss factor, if Moy increased to n%l, then

10log n%l/n21 = 1dB, and the change in energy ratio is shown.
Fig. 4-4 shows that the variation in energy ratio approaches 1dB
if nZl/n2 is very small. However, for a two plate junction, a
typical coupling loss factor is at least equal to and generally
greater than the internal loss factor, resulting in reduced
sensitivity of the predicted energy ratio to a variation in

the coupling loss factor value.

For a four plate junction, the transmission coefficients,
hence coupling loss factor to internal loss factor ratio, 1is
smaller but the ratio of the two coefficients (TF)ij/Tij for
the worst case of all plates of equal thickness is only 1.15

of 0.6dB.
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Thus it is apparent that the differences between the
three transmission coefficients are of little importance when
considering their application to SEA.

For the remainder of this work, Tij has been used, as
the computation only requires one integral to be evaluated and
the computation time is less.

Although the average transmission coefficient can be
evaluated for any number of plates at a join, it is a process
which relies on a computer to evaluate the integral equation
(4,23). Such an exercise must then be repeated for the next
join with another set of plate thickness ratios. Such involved
computation is not satisfactory for general use and a simpler
approach to the problem of computation will be found.

The normal incidence transmission coefficient, equation
(4,31), is relatively easy to evaluate and it will be useful
for our purpose. When Tij/Tij(O) is plotted against tl/t2
for two coupled plates, the computer evaluated ratios lie along
a reasonably smooth curve. This curve can be approximated by

the empirical equation.

0.85x (4,38)

(t1,:/1:.(0)) = T =
ij’ ij 2Plates 1+x

for x = 3,24 ti/tj

The'&j/Tij(o) values for 3 and 4 plates at a join lie
off the curve by varying amounts depending on the thickness
ratios of the plates at the join. By comparing Tij for 3 and
4 plate joins with T for 2 plate joins for the same ti/tj

ratios, a further approximate relationship was found which is
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M o= 1-0.7 (ty/t_-1.2) for t /t > 1.2
(4,39)

M =1 for t_/t < 1.2
m’ "¢

where t is the thickness of the thickest plate at the join
and tc is the greater of ti and t..
Hence the average transmission coefficients Ty can

be evaluated empirically by the following equation

T.,. = MTTij(o) (4,40)

where T and M are defined by equations (4,38) and (4,39).

The factors T and M are plotted along with some computed
results in figures 4-5 and 4-6. It can be seen that the average
transmission coefficient can be determined from the normal in-
cidence transmission coefficient by equation (4,40) within
0.25dB of the computer evaluated result for thickness ratios
ti/tj from 0.2 to 5. The equations can be used outside of

this range with a decrease in accuracy.

Inspection of Fig. 4-5 shows that for two coupled plates,
1f’&j(o) is used instead of Tij, as long as Tij(O) is always
evaluated for tithj' the error involved is a maximum of 1.8dB
at t., = t..

1

J
determined from the reciprocity equation (3,6).

The coupling loss factor for j to i can then be

Let us examine the reciprocity r~lationships for n
plates at a join. In the steady state condition, the power

flow from plate 1 to all of the (n-1) connected plates must be
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equal to the nett power flows returning from the (n-1) plates

back into plate 1. This leads to the expression

(4,41)

However, if it is also assumed that for any two plates
i and j at the n plate join, the power flow from i to j is equal to
the power flow back from j to i. We have the same reciprocity

relationship as (3,6) for plates i and j.

nij/nji = nj/ni (4,42)

However, if (4,42) is true, then the ratio of transmission co-
efficients Tij/Tji can be related to the plate thickness ratio

in the following way. When

_ 0.5 0.5
k; = 2nf /(1~814thi)

is substituted into equation (4,1), it becomes

L £ 0.5 T,
n.. = —| & S
13 Ai E constant
and as n;a Ai/ti
A.,t..0.5 T A t.
A1 &) = ) 1
A\t Tiaa A t.
i j Jji i Jj
hence
T.. t. 0.5
Tz t.)
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TABLE 4-1.

5

with typical values of

ij/Tji for various plate combinations.
T../T..
(t./t.)O.S iy’ "ji .
i’ 73 No. of plates at a common join
2 3 4
.2739 0.2738
. 3162 0.3162
.4472 0.4470 0.4470 0.4470
.500 0.500 0.500
.5477 0.5476 0.5477
.5773 0.5773 0.5774
.6124 0.6125
.7071 0.7069 0.7071 0.6978
0.7069 0.7071
0.7071
.7746 0.7745 0.7743
.7937 0.7936 0.7937
.8165 0.8164 0.8163
.8367 0.8366 0.8367
0.8367
0.8368
.8660 0.8662
. 8944 0.8942 0.8943 0.8944
.9129 0.9127
.9487 0.9487 0.9487 0.9483
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The ratio Tij/Tji was evaluated for a number of different
2, 3 and 4 plate junctions. These ratios are compared with
(ti/tj)o'5 in Table 4-1 where it can be seen that the agreement
is very good. Some 3 and 4 plate cases were investigated where
i:i/tj was held constant while the thickness of the other plates
was varied and accounts for more than one value of Tij/Tji in
the table for a given thickness ratio and number of plates.
We conclude from the comparisons in Table 4-1 that the recipro-
city relationship, equation (4,42), derived for two coupled
plates is also valid for 3 and 4 coupled plates at a join, and
thus we -are led to believe that it is probably true for any
number of plates at a join.

It is interesting to note that for structures of similar
materials, Tij(O) = Tji(O) for all thickness ratios. This can
be shown by substituting wij/xji = (tj/ti)z'5 into equation

(4,31) and expanding for, say x = 4, and n = 2.

z(tz/tl)Z.S

12
[1+(tz/t1)2'5 . (t3/tl)2.5 . (t4/tl)2.5]2

2

1.25 1.25 .2 1.25 .2 1.2572
[(tl/tz) (/) s(ed/e ey +(t2/e ) ]

(4,43)

The denominator of (4,43) is invariant to an interchange of
indices 1 and 2, hence le(o) = TZl(o) and therefore normal
incidence transmission can not satisfy the reciprocity relation-
ship.

The calculated average transmission coefficients have

been used to evaluate the average coupling loss factors which
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in turn have been used to predict the energy ratios of the

experimental test structures reported in Section 5.

4.4. GENERAL SOLUTION: FOUR PLATES AT A COMMON JOIN

4.4.1. Wave Transmission Method

We shall now reconsider the problem of wave transmission
at a four plate join. The boundary condition that w, = 0 at
Xy = 0 is relaxed to allow the generation and propagation of
longitudinal and transverse waves, as well as the previously
considered bending waves.

The method which will be used is basically the same as
used in Section 4.3 except that two more wave fields must be
considered. Longitudinal and transverse waves produced in each
plate propagate away from the join at angles determined by the
trace wavelength and wave propagation speeds.

In Section 4-3, both Tij and (TF)ij were calculated but
as it was shown that their values were very close, only iy will
be calculated in this section as the computation time required
is much less than for (TF)ij.

Four plates at right angles at a common join are consid-
ered with the same coordinate systems as used previously and
shown in Figure 4-2. We consider an incident bending wave in
plate 1 which subsequently generates bending, longitudinal and
transverse waves at the join. The displacements in the X,,

Yy and zg directions are u;, Vg and Wy respectively. After
the common time dependent terﬁ exp (i wt) and the trace wave-
length terms, including pisinBi = q.sinyj = klsinal, have been

J
omitted, the displgggggggrequations for the four are as follows:

Note that.thg longitudinal and transverse waves are considered as a means
of transmitting energy at the join, forced by the incident wave. It is

not assumed that the longitudinal and transverse waves necessarily form
resonant wavefields.
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u.(x.) = b.cosB.exp(-ip.x.cosB.)+c.siny_ ex ~ig.x.cosy.
5 %4 jeosB exp (-ip x cosBy)+e siny jexp Fid ¥y 5Y5)
for 3 =1, 2, 3 and 4 (4,44)
v.(x.) = b.sinB.exp(-ip.x.cosB,) - c.cosy.exp(-iq.x.cosy.
5 (%5 i BJ p(- PyXy BJ) 3 Y5 p( a45%5 YJ)
for j =1, 2, 3 and 4 (4,45)
' 2 40.5
(x.) = a.exp(~-ik.x. o.)+a. -k.x. 1+sin“a. .
wy(xg) = ajexp(-ikjxjcosay)+ajexp -k x; (Hst 3077
for j = 2, 3 and 4 (4,46)
wl(xl) = exp(lklxlcosul)+a1exp(—1klxlcosal)
+ a'exp(—k X (l+sin2a )0'5) (4,47)
1 171 1 !

kj’ pj and qj are the bending, longitudinal and trans-
verse wave numbers and uj,Bj and Yj are the respective wave
propagating angles.

For this analysis we have assumed that the incident wave
is a bending wave. There is no way that the incident bending
wave can cause a nett displacement in the y direction. This

means that vj = 0 for all plates. Further more the join has

no mass, thus the boundary conditions at xj = 0 are;

(a) continuity of linear displacement

1 3
u, = -,
wy = (4,48a-3)
w, = "Wy
Wl . —u4
Uy T Yy

<
o
]
o
H
o
(a1
.
I
l—l
N
w
o
o]
Q
N
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(b) continuity of angular displacement

Bwl awj

e = —_—— for j = 2’ 3 and 4 (4148klllm)

Bxl ij

(c) the sum of bending moments is zero

(I I
v}
Il
o

(4,48n)

(d) the sum of forces in the X and Zq directions is

Zero. (There are no forces in the y direction since vj = 0)
2w, du, 2w, du,

D + E,t - D -E,t, — = 0 (4,48,0)
1l 3x3 272 3 x 3 3x3 474 9%
1 2 3 4
83w2 8u3 83w4 Bul

D + E, t - D - E.t,— = 0 (4,48,p)
2 ax3 373 5x 1 3%d 1l
2 3 4 1

There are now three types of wave transmission coeffic-
ients to be considered. These are bending to bending, TBBln,
bending to longitudinal, TBLln, and bending to transverse,

tBT. , where the definition of each is similar to that given

1n

previously, i.e. the ratio of the average energy transmitted

into plate n (bending, longitudinal or transversej to the average

energy incident on the join (bending wave energy in this case).
The transmitted and reflected wave amplitudesaj, bj and

cj can be determined for a particular incident angle oy from

the sixteen boundary condition equations. The squares of

% and |g)?

the moduli Iajlz, ij , also functions of o,, can
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then be used to calculate the various oblique incidence trans-
mission coefficients which can be integrated over all incident
angles to give the average transmission coefficients. The

oblique incidence transmission coefficients are obtained from

consideration of power transmitted in each wave.
The incident bending wave energy in plate 1 is

3
Dlwklcosa

1l

where the wave amplitude has been taken as unity. The longi-
tudinal wave energy transmitted across the join per unit length
is

2

ptCrw cos B,

and the transverse wave energy transmitted across the join per

unit length is

12
|.c. |
ptCTw2 —J cCOoSY ..
%) J

Hence,

_ 2 2 3
TBL]j(ul) = pjtjCijlbjl cosBj/Zlelcosoc1
- E.t.p.|b.|%cosB./2D kicosa (4,49)
3737303 s MO S iy |
TBT .. (a,) = p.t.C ?q.lc.|2cosy./2D k3cosa
1571 3737TIT D SRR A 1

G 2 y
(E)Ejtjqj|°jl cosyj/Zlelcosal (4,50)
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and
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o
I

w/C

. = w/C..
a5 = /Cpy

(4,51a)

(4,51Db)

are the respective longitudinal and transverse wave numbers in

plate j, and |bj2|

(ll.

;e

, COS % and COS’G are all functions of

After setting s = sincxl, as in Section 4.3, the average

transmission coeff

icients TBL and TBT are
1n in

1 b, 2 cosB_
TBL = F ds
in In 2 coso
0 1
2
1|c_|“cosy
TBT = & @ F n I 3s
In E'n 'p'n 1ln 2 cosa
0 1

where Fln

The expression for
the expression of

is squared and the

is substituted

- Entnpn/lel

3

Canntn/CBlFltl

the average value of 'rBBln
Tin’ equation (4,22).

plate bending wave equation

(1.814C1ft)0'5

C t 1l

1.814CLl tl ft1

(4,52)

(4,53)

(4,54)

is the same as

If equation (4,54)

(4,55)
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A parameter which includes plate thickness and excitation
frequency will be required for the comparison of the bending
wave solution and general solution of the bending to bending
transmission coefficients. Fli contains plate thicknesses and
excitation frequency and will be discussed further in Section
4.4.2.

It would be possible to proceed further to obtain some
complicated expressions for the wave amplitudes, as was done in
Section 4.3, but the task is cumbersome since it involves the
solution of sixteen simultaneous equations. An alternative
approach is more attractive.

The solutions are obtained by processing the sixteen
equations in a matrix form. This is set out in Appendix B.Z2.
A 16x16 matrix may be reduced to a 12x12 matrix by eliminating
Cj using equations (4,48g9,h,1i,3). The required computing
time may still further be reduced. As shown in the Appendix,
some simple relationships may be used to eliminate the bj terms
reducing the 12x12 matrix to an 8x8 matrix. This 8x8 matrix
is solved for each specific value of s and a subroutine based

on Simpson's rule is again used to evaluate the integrals of

equations (4,51), (4,52) and (4,53). The average transmission
coefficients are then evaluated. Energy conservation requires
that
4
nil (TBBln+TBL1n+TBTln) = 1 (4,56)

When n = 1, the terms are interpreted as the respective reflec-
tion coefficients. Equation (4,56) is used as a check on the
computed values.

A listing of the programmes used are included in Appendix
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4.4.2. Discussion of Theoretical Results

The evaluation of the various average transmission co-
efficients for a number of 2, 3 and 4 plate single join structures
was carried out using the general solution outlined in Section
4.4.1. The computations showed that the bending to bending
wave average transmission coefficient, TBBij, varies not only
with plate thickness ratios, ti/tj’ but also with absolute‘plate
thicknesses and excitation frequency. Furthermore, the com-
puted results showed that TBBij depended on whether plate j was
orthogonal to plate i or in the same plane as plate i. By
contrast, it was shown in Section 4.3 that the bending wave
solution transmission coefficient, Tij, depended only upon the
plate thickness ratios. We will now review these results.

It will ‘be useful to compare the computed values of
TBBij and Tij for the same set of plate thickness ratios to
determine at what absolute plate thicknesses and excitation
frequency the computed values differ substantially indicating
when the more complicated general solution should be used.
However, before proceeding further with this comparison, it
will be of interest to discuss one unexpected result of these
computations.

Initial comparisons of the ratio (TBB/T)ij for different
structures, plate thicknesses and excitation frequencies showed
that for 3 and 4 plate structures, see Fig. 4-7(b) & (c).,
(TBB/T)13 became greater than unity for small values of Flg,
i.e. for high excitation frequency or thick plates. By contrast,
in earlier work, Cremer and Heckl (Cremer, Heckl & Ungar,1973(1))
showed that the bending to bending transmission coefficient
reduced for increasing frequency and plate thicknesses. In

their analysis,they investigated the junction of two plates of
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equal thickness and for normal incidence when bending and
longitudinal waves were considered. Their result could be
explained on the basis that more energy was transmitted in other
forms. It was thus surprising to find that in some cases, more
bending wave energy was transmitted than predicted by the simple
bending wave solution.

During the course of the investigation to verify this
result, the obligue incidence bending to bending transmission
coefficient, TBB13(S) for a 3 plate structure (Fig. 4-7(b)) was
evaluated at various values of s with interesting results.

Fig. 4-8 shows some typical values of TBB13(s) for such a 3 plate
structure where all plates are of equal thickness, and of the
same material, viz. steel with CL = 5170m/s. In the figure,
the simple bending wave solution is also shown for comparison.

For each case the average transmission coefficient, TBB13, is

proportional to the area contained under the curve. For this
structure, at Flg = 12, the plate thickness is equal to one

sixth of the plate bending wavelength, the limit of classical

bending wave theory. The critical values Scr and So after

which iongitudinal and transverse waves do not propagate away
from the join into plate 3, are marked on each curve. Note
that for each value of Flg there is an incident angle (equal

to T) where total transmission of bending wave energy occurs

(©
and another more oblique incident angle (designated so) at which

no bending wave energy is transmitted. For the limiting curve,

2
Fis3

(frequency and plate thickness increase), the difference Sy~ ScrL

= 12, this occurs at approximately s = 1l.As Flg decreases

increases and hence TBB13 becomes greater than T37 mainly
because of the increased transmission at more oblique incident

angles. For progressively larger values of Flg’ the TBBlB(S)

curve approaches that of the bending wave solution curve with
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a sharp deviation near sS.q-

We now return to the comparison of the general solution
and bending wave solution of the transmission coefficients.
We now consider 2, 3 and 4 plate structures as shown in Fig. 4-7.

Cremer used the reciprocal of F1§ when investigating the two

plate junction mentioned previously. We shall investigate the
usefulness of Flg for our purpose. For plates of the same

material, equation (4,55) becomes

L2 (cL )(t.)2 1
15 1.814’ ‘£’ FE;

Graphs showing the variation of (TBB/T)lj with Flg

are shown in Fig. 4-9. Representative values of bending wave
transmission from plate one to the other plates of 2, 3 and 4 plat«
plate joins have been plotted in the figure. The curves have
been drawn through calculated points determined from the computed
evaluations of TBBlj and le for the respective structure thick-
ness ratios and excitation frequencies.

The first +thing Fig. 4-9 shows is that Fl§ is not a
good choice for a parameter which could be used to give an indic-
ation where TBBlj

evaluated Tij. The second observation is that the variation

should be used instead of the more easily

with £ and t1 of (TBB/T)12 and (TBB/T)14 (see Fig. 4-7) for any

particular structure is generally as expected; that is for pro-

gressively lower values of Flg

less energy is transmitted as
bending waves. The previously mentioned unexpected upward
trend of (TBB/T)13 for decreasing Flg (see Fig. 4-7(b) and (c))
is apparent. ‘

A parameter which is reasonably simple and which coll-

apses the (TBB/T)ij values closer together is required if any
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general guidelines relating to the use of 'rBBij rather than Tij
are to be presented.
A parameter which results in a reasonably satisfactory

collapse of the (TBB/T)ij curves is

Q |— EE L
ab € F2
a ab
2 1.814
= f — (4,57)
ty G
where
ta = t1
for t1> tj
tb = t:|
t = t
a J
for tl< tj
B = Y

As steel is often used in structures, it is informative
to present a related parameter Pab where

B 2
Pp = f ta/tb (4,58)

for ta and t, as defined above. Note that Pab has the dimen-

b
sion of velocity.

The variation of (TBB/T)ij with Pab is shown in Figure
4-10. Corresponding values of the nondimensional parameter

Qab are also shown on the figure. The parameter Pab allows

the reader to obtain an idea of the thickness and frequency
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at which the bending wave solution for the transmission co-
cfficient is substantially different from the general solution
for steel plates.

For P_, < 50m/sec. , (TBB/T)ij_lies between 1.0 and 0.6
and for most curves between 1.0 and 0.8. Large variations
(+100%) do not occur unless Pab > 100m/sec. Thus a value of

P less than or equal to 50m/sec. implies that for two plates,

ab
5mm thick, Tij can be used for frequencies up to 10kHz without

more than a 2dB maximum error in Tij, and generally the error

will be mu~h less, but if a 5mm and a lmm plate are considered,

Pab - 50m/sec. at £ = 2kHz

It can be seen from Figure 4-10 that for (TBB/T)12 and
(TBB/T)14, except for the 2 coupled plate case, the (1BB/T)
curves remain near unity for P_, < 100m/s.Comparison of curves
(a), (b) and (f) for j = 2 indicates that the variation of
(TBB/T)12 is less for the 4 plate case, than for the 3 plate
case which in turn is less than for the two plate case.

To this point we have considered only bending waves
incident upon a single join in isolation and we have shown that
pesides transmitting bending waves, longitudinal and transverse
waves are produced at the join and transmitted in the adjoining
plates. Thus at subsequent joins, longitudinal and transverse
waves as well as bending waves will be incident and must be
considered. Furthermore the incident longitudinal and trans-
verse waves will be partially transformed back into bending waves
at subsequent Jjoins and these transformations will have to be
considered as well.

Let us consider the energy flow through a multi-join
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SCHEMATIC DIAGRAM OF THE TRANSMITTFD BENDING,
LONGITUDINAL AND TRANSVERSE WAVEFIELD GENERATED
IN CONNECTED PLATES FROM AN INCIDENT BENDING
WAVE .
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structure. A 4 plate structure comprising plates a, b, ¢ and
d, is shown in Fig. 4-11 in which we assume a bending wave of
unit energy in plate 1 is incident upon the join. For the
moment, assume plates 2 and 3 are removed. Bending, longitud-
inal and transverse wave energy is transmitted into plate b
where this energy is incident on the second join. Each wave
type acts on the join and bending, longitudinal and transverse
wave energy is transmitted into plate c from each of the three
incident wave fields. This cascade of energy flow is illus-
trated in Fig. 4-11.

We now consider multireflections in a two plate struc-
ture. Each time energy is transmitted from one plate to the
other some transformation of energy from one field to another
takes place. Thus we have exactly the same cascading effect
as previously illustrated in Figure 4-11, but in this case each
join of the figure represents an event at the single join of
the two plate structure.

We consider the bending wave energy in each plate relat-
ive to the incident bending wave energy in the previous plate.
Unit bending wave energy is assumed in plate 1 and hence, bend-
ing wave energy in plate b is TBBlb. In plate c, the trans-

mitted bending wave energy is

(TBB)lb(TBB)bc+(TBL)lb(TLB)bc+(rBT)lb(TTB)bc (4,59)

The incident bending wave energy in plate b at the join is just

T1BB Hence the 'correct' transmission coefficient, CTBBbc

1b°
for plate b to c is

CTBBbc e TBBbc +(TBL)lb(TLB)bc/(TBB)1b+(TBT)1b(TTB)bc/(TBB)lb

(4,60)
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Cremer (Cremer, Heckl & Ungar, 1973(1)) showed that there is a
reciprocity relationship for wave transformation for two coupled
plates when considering normal incidence. i.e. TBL = TLB,

TBT = 1TB. Hence the ratio of the fcorrect' transmission co-
efficient to the single join general solution transmission co-

officient for transmission from plate b to ¢ may be written as

= 14— (— — ) (— (4,61)

TBB T1BB e TBB TBB TBB

CTBB tBL\ [1BL +(TBT TBT)
bc b C 1b

When we consider energy transmission at subsequent joins we see
from the schematic diagram of Figure 4-11 that each group of
three incident wave fields undergo transformations to create
nine new fields. However the nine new fields add and reduce
to three which are a bending, longitudinal and transverse field.
Thus for any join between two plates b and ¢ equation (4.61)
holds, provided that there is only one other plate connected to
plate b.

We now include plates 2 and 3 as shown in Figure 4-11
and follow the previous procedure. Now, the bending wave

energy transmitted to plate b from plates 1, 2 and 3 is

TBBib

™M w

and, as before, this is the bending wave energy incident on the
join of plates b and c. When the previous procedure is
followed through, we arrive at an equation for (CTBB/TBB)bc

similar to (4,61)
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3 3
TBL iil(TBL)ib TBT iil(TBT)ib
(CTBB/TBB)b = 1 + +
€ 3 3
B be -E (TBB)ib B E (TBB)ib
i=1 i=1

(4,61 (a)

Inspection of many computed results shows that generally

TBTij is approximately equal to 0.7TBLij,but to be conservative,

we assume TBLij = TBTij. Then equation (4,61 (a)) becomes
CTBB ZTBL; o TBL
= 1+ 2 ; (4,62)
TBB K iTBBij TBB.k

Equation (4,62) shows that when considering the trans-
mission coefficient from any plate (j) in a structure, to
another (k), due regard should be paid to the transmitted longi-
tudinal (and transverse) waves from any other join on plate (J)
including the energy flow back from (k) to (3).

We now consider the relationship of (TBL/TBB)ij to excit-
ation frequency, plate thicknesses and plate thickness ratios.
The ratio (TBL/TBB)12 was computed for a number of two, three
and four plate single join structures at various excitation
frequencies. (TBL/TBB)13 ratios (see Fig. 4-7) are very much
less than for orthogonal plates, hence only (TBL/TBB)12 are
presented, plotted against Pab in Fig. 4-12. The use of this
parameter does not produce a collapse of the data onto a single
line or even a small range. Various parameters were tried but
none achieved an adequate collapse of the data to warrant the

introduction of a more complicated parameter.
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(BL ZTBL
If the product TBB ETBB ;5 is equal to 0.3, then

(CTBB/TBB)jk is approximately l 6 according to equation (4,62);
approximately a 2dB error is incurred if TBBjk is used alone
without correction. 1f we consider only one of the TBLij and
TBBij terms under the summation (say plate 1 and b in Fig. 4-11)
and assume that the ratio (TBL/TBB)ij associated with these two
plates is larger than the ratio associated with any other plate
interactions at this join (say plates 2 to b and 3 to b in Fig.
4-11), then (TBL/TBB)ij is greater than (ETBLij/ETBBij). This
being so, we inspect Fig. 4-12 to determine below what value

of Pab the product (TBL/TBB)ij (TBL/TBB)jk is less than 0.3.

For (TBL/TBB)ij approximately equal to (TBL/TBB)jk, values of
Pab < 100m/s appears to be a suitable criterion for (TBL/TBB)12
< 0.55 if curves (f) and (g) are excluded. It is not unreason-
able to exclude (f) and (g) as it is unlikely that a structure
would contain plates where two consecutive joins, of three
plates at each join had plate thickness ratios 5:1.5:5 at each
join. This would imply that the thickness ratio of plate i

to k, considering (TBL/TBB)ij (TBL/TBB)jk,would be 11:1.
However, where larger thickness ratio structures are considered,
more care is required, especially with three plate joins as
shown in Fig. 4-7(b). curves (f) and (g) in Fig. 4-12 show
that large values of (TBL/TBB)lz, and thus (CTtBB/TBB) according
to equation (4,62), occur for three plate joins with plate 2
(see Fig. 4-7(b)) much thinner than plates 1 and 3. A structure
with this type of join is shown in Fig. 4-13 and consists of a
number of sequential three plate joins. We assume that the
plates 1, 3, 4, 5 and 7 are all S5mm thick while the plates 2

and 6 are each 1l.5mm thick. As (TBL/TBB)12 is equal to

(TBL/TBB)32, we can use equation (4,62) to write
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MULTI-JOIN STRUCTURE WITH LARGE THICKNESS RATIO

THREE PLATE JOINS.

4-13.

FIG.

t2 b t6 = 1.5 mm.

5mm.

all other plate thicknesses
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(CTBB/TBB)25 = l+2(TBL/TBB)12 (TBL/TBB)25

At Pab = 100m/s, curves (d) and (f) of Fig. 4-12 show (tBL/TBB)
values which determine (CTBB/TBB)ZS-iS 4, i.e. a 6dB error.

For Pab = 50m/s, (CTBB/TBB)25 is reduced to 2.2 or approximately
a 3dB error. Similarly, as (TBL/TBB)25 is equal to (TBL/TBB)45

and using equation (4,62), we can write
(CTBB/TBB) o = 1+2 (1BL/TBB) ,; (TBL/TBB) .

but as (T‘BL/TBB)56 is the same as (TBL/TBB)lz, then
(CTBB/TBB)56 is equal to (CTBB/TBB)25 for the same values of
Pab’ i.e. at the same excitation frequency.

As the general solution is required to obtain TBB, and
as it requires very little extra computation to obtain values
of TBL and TBT, it is then a relatively easy task to use the
correct bending to bending transmission coefficient, from
equation (4,61(a)).

If the bending wave solution transmission coefficients
are used( (CTBB/T)jk will be less than the previously discussed
ratio (CTBB/TBB)jk, since in nearly all cases for Pab < 100m/s
(TBB/T)jk is between 0.6 and 1.0.

From the discussion it can be seen that for Pab < 100m/s
the bending wave solution for the transmission coefficient can
be used for both single join and multi-join structures provided
that the plate thickness ratios at consecutive joins are not
too large or too small. If the structure is such that thickness
ratios of approximately 3 to 1 at one join are followed by
thickness ratios of approximately 1 to 3 at a consecutive join,

then Pab < 50m/s should be the criterion for minimum errors in
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the evaluated transmission coefficient of less than a factor of

2. For the structure shown in Fig. 4-12, Pab = 50m/s occurs

at an excitation frequency of 3kHz.
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4.5. EXPERIMENTAL METHODS.

4.5.1. Apparent Loss Factor

It is now appropriate to discuss methods of experiment-
ally determining coupling loss factors. At present there is
no way of measuring the coupling loss factor directly. What
is measured is an apparent loss factor for an element from which
the coupling loss factor can be determined provided that the
other losses included in the apparent loss factor are known.
This can be mathematically expressed in two equations; one con-
sidering the energy flow in and out of an element of a coupled

structure,

P. = wE.n

i app

and the other showing the composition of the apparent loss
factor n.
i app.
n =

8 .. . +
i app Ny 1nt+n1 rad+nsupport loss ncoupled structures

(4,64)

With careful design of the experimental apparatus the
support losses can be made negligible and provided the internal
(mechanical) loss of the element is large compared to the
radiation loss factor, the apparent loss factor reduces to
merely the sum of the internal loss and coupled loss. Equation
(4,64) becomes
(4,65)

: = n,+
nj app Ny ncoupled structures

where ni is as defined in Section 3.
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The coupling loss factor is included in the ncoupled structure
term. How ”ij is included depends on the structure to which
the element is coupled.

The discussion now reduces to an examination of methods
to determine the apparent loss factor. These fall into two
categories; energy decay methods where Pi in equation (4,63)
is set equal to zero and the energy decay rate is measured and,
steady state methods where the energy level Ei and input power
Pi are steady, hence the rate of change of energy is zero.

For the purpose of the discussion, we consider a two
coupled element structure. If the element connected to element
i is infinite or has a very large modal density compared with
that of element i, then the power flow from the connected

element back to element i can be neglected, hence

M app - UFRUFY (4,66)
Lyon and Eichler (1964) used Equation (4,66) when
investigating two coupled plates neglecting power flow back from
the second element. However, when the power flow back from

the coupled element j can not be neglected

. = N, .M. N
n N:TN njlnl

i app = MiMi3 /(g 3+05) (4,67)

J J

The reciprocity relationship of (3,6) allows (4,67) to be re-

arranged to give

(_Ilj/_ﬂi)nj (n; app’”i) (4,68)

ni+(nj/ni)nj-ni app

nij =
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Much of the following discussion is concerned with the

experimental measurement of both ni and ni. The apparent

app
loss factor is determined from tests on element i of the coup-
led structure; n, is determined from tests on element i before

it is coupled to any other element.

4.5.2. Energy Decay Methods

There are two commonly used methods of obtaining the

average energy decay rate of an element excited by band limited

noise. One is the pause method where a band limited random
signal excites the element. The signal is cut off and the
decay rate measured. This method has been in use for many years

for measuring room absorption and it is tempting to consider its
use for plates. However, its use for plates experiences diffi-
culty because of the low modal density associated with plates.
The modal density of plates remains constant independent of
frequency unlike that of rooms which increases rapidly with
increasing frequency. The problems associated with the low
frequency excitation of rooms, for example, erratic decay curves
and consequent large spread of decay rates, are associated with
plate excitation at all frequencies. Thus large numbers of
tests are required to obtain accurate average loss factors,

for both ni and ni measurements.

app
The second decay method is a newer technique developed

by Schroeder (1965) and improved by Kuttroff and Jusofie (1967/8).

This method produces an ensemble of all possible decay curves at

once so that a single average decay rate is determined. The

loss factor so determined is then equivalent to the average loss

factor that would be determined from an infinite number of pause

tests. However for plates, in contrast to rooms with single

slopes, the curves often show clearly double slopes, triple
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slopes and sometimes continuously varying slopes as well.

If a decay method is used, the question still arises
which decay slope to use when more than one slope is obtained.
Shall it be the average of the first 5, 7 or 104B? As the
loss factors are for use to determine steady state energy levels,
it seems likely that the initial decay rate is the one which
should be used, but inspection of many Schroeder-Kuttroff
obtained decay curves show distinct initial slopes of only 1 or
2dB before a change of slope and these are very difficult to

measure. Thus for accurate work an alternative must be found.

4.5.3, Steady State Methods

One way to determine an appropriate value of a loss
factor for an element is to measure the loss factor while the
element is at a steady excitation level. This is the case
when dEi/dt in (4,63) is zero.

In order to solve (4,63),Pi, the nett power flow from
an external source into element i, as well as the mean energy
level of the element, must be measured. If the element is not
coupled to a structure, n; is determined and if element i is

coupled to another element, n is measured, n.. can then be
1]

i app
determined from equation (4,68).
Although this power flow method is useful for determining
the internal loss factor of individual elements and was used for
this purpose in this research, as described in Appendix D.4.,
there is another consideration which may render the technique
unsuitable for use on coupled structures. In order to measure
Pi’ we have used point excitation of the plate and Fahy (1970)
raises doubts that SEA can be applied to a point excited coupled

structure. Fahy points out that the theories of energy flow

between randomly excited coupled oscillators have assumed that
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the external sources of  input power to the oscillators are
statistically independent, but for a panel excited by a point
force, the modal forces on the panel cannot be statistically
independent. The doubts raised by Fahy do not[gfgﬁgﬁ the
validity of the point excitation method to determine the uncoup-
led element internal loss factors ni, or the coupled element

apparent loss factors n However, the relationship

i app’

between ny and niﬁ' equation (4,68),1s based on SEA; it does

app
assume that the external modal forces on the modes of the plates
are statistically independent and hence its validity could be
questioned.

In order to investigate this further, four different
two coupled element structures were excited by exciting one of
the two plates in each case by (a) point contact excitation and
(b) non contact excitation. For a given coupled structure,
the energy level ratio Ej/Ei should be the same, within the
expected experimental range, for both point contact and non
contact excitation if SEA is applicable for both forms of excit-
ation. The mean energy level ratios for each structure for
both forms of excitation were measured, as described in Appendix
D.5 and D.6. The measured energy ratio level differences for
the two excitation methods are presented in Fig. 4-14. The
spread of results is larger than that predicted in Appendix D.6,
Fig. D-6. Not only is the scatter larger than is reasonably
expected, but it does not reduce for higher excitation frequency,
as does the standard deviation of expected measured energy
ratios, shown in Fig. D-6. These results do indicate that the
energy ratios measured during point contact excitation are not
necessarily the same as those measured during non contact excit-

ation.
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‘There is, however, another way of measuring coupling
loss factors under steady state conditions without the require-
ment for measuring the input power P.. This second steady
state measurement technique is based on the power balance equa-

tions for coupled structures where the input power Pi is zero,

i.e. when only one element of the structure is excited. For
a two coupled element structure, with P2 = 0 and element 1
directly excited, equation (3,7) results. The modal density

_ratio can be calculated from known formulae, (Hart and Shah,
1971) and the coupling loss factor N,y can be determined. An
extension of this method can also be used to determinevn21 and
N5 without assuming the reciprocity relationship (3,6).
If a second test is carried out where element 2 is

directly excited, the two power balance equations for the indir-

ectly excited elements can be written in matrix form

(By)y ~(Ea¥y "12 (Ep)y My

(4,69)

= (B Eagyls "2} (Eyda My

where (Ei)j is the mean energy level of element i when element
j is directly excited from an external (non contact) source.

The above method can be extended for three plates or
four plates at a common join. Consider the three plate single
join structure. There are six coupling loss factors, hence
six simﬁltaneous equations are required to determine the coup-
ling loss factors.

In this case, three separate tests are carried out, with
each of the three elements directly excited in turn. For each

test, there are two power balance equations with Pj = 0 and
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these give the required six power balance equations. The

following matrix equation results.

—:(El)l ) (Ey)y (Ep)y O _(IE3)—11_” 1; _"“2 (Ez)j
0 -(Ep); ~(Ey); 0 (Eg);  (B)gflnqql |3 (B3l
Ea B, 0 -@y),Ey, 0 nasl |71 (Br)2
0 -(Ej), —(Ej), O (E5), (B3l npy| |3 (B3l
()3 (Bp)z 0 =(Ep)3-(E3)y 0 na1| |71 (Bids

“(Bydy O (B))y (Eply 0 ~(Egdglingpl 70y (Fplg

| s B O )
(4,70)

The four plate single join configuration requiring four
separate tests, leads to a set of 12 simultaneous equations to
determine the 12 coupling loss factors.

It can be seen that the energy level measurement method
to determine coupling loss factors does not require the assump-
tion of reciprocity and a non contact source may be used. The
only information required other than the measured energy levels
are the experimentally determined internal loss factors of the
individual elements.

4.5.4. The Importance of Coupling Loss Factor to

internal loss factor ratio.

It is important to consider the sensitivity of the exper-
imentally determined coupling loss factor to the variation in
the directly measured quantities required. Consider the
equation (4,68) relating ny app to P for the two coupled

element situation. If Ny = Ny and as Nq2 must be positive,
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then the following inequality must be true

1< /nl <1l + nl/n2 (4,71)

"1 app

(4,71) is applicable irrespective of whether energy decay
methods or the steady state measurement of input power method
is used.

Fig. 4-15 shows the relationship of nlz/nl to

/nl based on equation (4,68) for n; =n

iy app 2

and nq = TNy Tt can be seen that a small error in the measure-
ment of U app or ny can result in a large error in n 2 if N
is much greater or much less than ny- The best range to exper-
iment in is for N2 approximately equal to ny-

Similar considerations are true for the energy ratio
measurement method. If each side of equation (3,7) is divided

by the modal density ratio the average modal energy ratio is

(E,/n,)/(E;/ny) = nyi/ngg + My) (4,72)

Equation (4,72) is shown in Fig. 4-16 where inspection shows
that a small error in the measured energy ratio can cause a
large error in n21/n2 if n21/n2 is much greater than 1. For
this method however, as nZl/n2 becomes less, the sensitivity
to error in E2/El becomes less.

The last method which uses the simultaneous equations
is also bound by this restriction. The determinant of the

2x2 matrix in (4,69) is

E, B
|DET| = l: - (5§ :](El)l (E,), (4,73)
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When the energy ratio expressions are substituted
with the appropriate loss factor formulae, the expression in
the square bracket becomes

Nq5N
1 - 12 21 (4,74)

(My5N51FN1N5 1NNy %N M)

If the internal loss factors are much less than the
coupling loss factors, then the determinant is very small.

Small variations in the measured energy ratios then have a
magnified effect on the experimental value of the coupling loss
factors.

It is apparent from this discussion that it would be
preferable to increase the damping of the elements to reduce
the coupling loss factor to internal loss factor ratio nearer
to one, or less than one for steady state experimental methods.
However, since the upper frequency bound discussed in Section 3
is proportional to the internal loss factor, an increase in the
internal loss factor reduces the experimentally useful frequency
range. This limits the amount of damping which can be added to
the elements. For two coupled plate structures, the minimum
coupling loss to internal loss factor ratios obtained were often
still greater than one.

We have reviewed the difficulties involved in using
experimentally measured energy levels to accurately determine
the coupling loss factors of a structure. Although we have not
discussed experimental results at this stage, it is useful to
use some of the experimental results for a two element coupled
structure to illustrate the sensitivity of the experimentally

determined coupling loss factor to apparent slight errors in the
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measured element energy levels.

Fig. 4-17(a) and (b) shows the measured mean energy
level ratios E2/E1 for element 1 directly excited and El/EZ
for element 2 directly excited. Also shown is the theoretical
energy ratios calculated using SEA. The internal loss factors
were experimentally measured and the coupling loss factors were
evaluated using equation (4,40) and (4,1). The coupling loss
factor to internal loss factor ratio varied from approximately
1.8 at 500Hz to approximately 0.7 at 1600Hz, and it can be seen
that there is good agreement between theory and experiment in
this range.

This data was then used to determine the coupling loss
factors using two steady state methods; (a) assuming reciprocity
as in equation (3,7) and (b) using similtaneous equations as in
(4,69). These results and the theoretical bending wave coupling
loss factors are shown in Fig',A,T}?, B

The spread of the experimentally determined coupling
loss factor results derived from an apparently experimentally
good set of measured energy level results indicate that it is
not very informative to present the results as a comparison of
predicted and measured coupling loss factors.

The objective of this work is to indicate for what range
of excitation frequencies for a given structure SEA can be used
to predict the energy distribution in the connected structure.
Thus it seems appropriate to present the results as a comparison
between predicted and measured energy level ratios. The pre-
dicted ratios are determined using SEA techniques as presented
in Section 3. The coupling loss factors required for the
energy distribution equations are evaluated using equations

(4,40) and (4,1) and hence agreement between predicted and ex-—

perimentally measured energy ratios shows where equations (4,1),
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(4,40) and (3,9) can be used to predict the energy distribution
in a structure.

Before closing this discussion on experimental methods
and accuracy of results, there is one other consideration to be
discussed. We wish to ensure that the measured internal loss
factor of each element, ni, is unchanged when the element is
incorporated in a structure. This assumes the optimum measuring
method is used. As mentioned previously, the measured internal
loss factor is due to the sum of the mechanical internal losses
of the element plus the loss due to radiation to the surrounding
fluid, assuming that the losses via the support system are neglig-
ible.

The losses due to radiation in an undamped metal plate
are often more significant than the mechanical internal losses,
especially near critical frequency. If this loss factor could
be assumed to be constant for all plate configurations, there
would be no problem. The plate is tested by itself to obtain
n; - When it is connected to another plate or combinations of
plates, not only has the acoustic space into which it radiates
been altered, but also the edge condition of the plate has been
altered. Maidanik (1962) has shown that below critical fre-
quency the radiation is from the plate corners and edges, hence
it is most 1likely that the radiation loss factor for a coupled
plate would be different from that of the uncoupled plate. If
additional damping is provided, the added damping on the plates
increases TN, . and reduces the overall variation of ny from the
uncoupled to the coupled condition. The increased damping also

reduces the influence of any losses due to the support system.
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SECTION 5. COMPARISON OF THEORETICALLY AND EXPERIMENTALLY
DETERMINED ENERGY RATIOS IN COUPLED STRUCTURES.

5.1. INTRODUCTION

In this section, the measured plate energy ratio levels
-of various steel plate structures aré compared with the theore-
tical energy ratio levels, predicted using the matrix equation
(3,9). The coupling loss factors required were evaluated using
the bending wave solution empirical equation (4,40) to obtain
tij,which was substituted into the coupling loss factor equation
(4,1). Bending wave solution average transmission coefficients
were used for all the coupled structures investigated as the
maximum value of P b in any structure at the highest excitation
frequency used was much less than 50m/s. Additional damping
was added to each plate and its internal loss factor was exper-
imentally measured using the point contact excited steady state
method discussed in Section 4.5.3. The appartus and expefi—
mental procedure used to measure the loss factors are described
in Appendix D.

The physical characteristics of all plates used are
listed in Table 5-1. The measured internal loss factors of
these plates are presented in Table 5-2.

Single join structures were investigated first. Four
two-plate, two three-plate and one four-plate single join struc-
tures were tested. Other plates were then added to some of
these single join structures, and strﬁctures were coupled
together to form three multi-join structures, two of which
contained only two-plate joins and one contained two, three and
four plate joins. Table 5-3 shows a line sketch of each coup-
led structure, together with the lengths of join between the
coupled elements. The coupling loss factors required, evaluated

at 1000Hz, are also listed. The coupling loss factor at any



91.

TABLE 5-1.

LIST OF EXPERIMENTAL PLATES

plate Agea Thickness Mass Modal Density
No. m mm. kg, n(f)
1 0.140 0.99 1.168 47.4x1073,
2 0.171 1.24 1.654 46.0x107°
3 0.118 1.27 1.290 31.3x1073
4 0.195 0.79 1.214 82.9x107 >
an 0.186 0.79 1.152 79.3x107°
5 0.201 1.27 2.133 53.0x10"°
5A 0.179 1.27 1.872 47.3x1073
6 0.185 1.27 1.957 48.7x10”>
6A 0.139 1.27 1.460 36.7x107 3
7 0.293 1.27 2.416 63.1x107°
78 0.178 1.27 1.800 47.1x1073
8 0.124 1.27 1.265 32.7x1073
9 0.388 1.27 3.865 102. x10°3
10 0.245 1.27 2.435 64.4x10" >
11 0.200 0.79 1.287 85.3x10” >
12 0.314 1.57 3.947 66.9x107 3
13 0.280 1.57 3.552 59.8x10 >

14 0.237 1.57 2.968 50.5%10 >



Hz
400

500

630

800
1000
1250
1600
2000
2500
3150
4000

5000

3.24

4.80

7.50
12.2
16.2
23.4

47.3

3.29

3.05

5.18

5.70

8.40
13.1
30.0
30.3

45.4

2.46

4.03

PLATE INTERNAL LOSS FACTORS (x1000)

TABLE 5-2

4,4A 5,5A,6,6A

2.39

2.20

4.16
5.42

11.8

4,56

18.4
18.1
31.9

30.5

3.59
6.92

2.43
2.56
2.98
2.64
3.77

4.18

7.17

‘26
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TABLE 5-3
LIST OF COUPLED ELEMENTS

Plates are shown in edge view except for those
denoted 3 or 6A which are in plan view.

' Coupling Loss
Element Nos. Coupling Lengths Factors at lkHz

and Sketch Metres X1000
1 = =
Py = 7.31
. L34 = 0.223 N34 = 5.39
5 L56 = 0.13 n56 = 2.39
6 Ngs = 2.60
9 Lgqig = -561 Ng 10 = 5.33
|10 _ Nog = 8.48
L711= L811= 0.421 n711 = 1.55
N1 7 =1.19
7 -
1 B
Ng 7 = 9.45
8 .
= 1.19

M18
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TABLE 5-3 (cont'd)

LIST OF COUPLED ELEMENTS

Coupling Loss

Element Nos. Coupling Lengths Factors at 1lkHz
and Sketch Metres ‘ X1000
9 = = =
o Lo1o = Y1012 Moo= 1+%6 MNygg= 247
‘2—"——' = L9 12 = 0.561 Ng 12 = 2.49 Nip9= 3.94
1
Nyg12= 3-81 M= 3-8L
Mg 10 0.731 "0 9 1.16
Common length Ng 12—'1.17 Ny99~ 1.79
9
n = 1.17 n 2.00
13 10 L = 0.561 913 139
" Nyg12= 1-8% Nyp19°= 1-79
N1g13= 1-85 MNy310° 2-00
nyp13= 2-91 N3 3-26
le = ,354 Ny, = 7.12 Ny q = 7.31
1
&3 L) 6a = .359 N ea= 7-04 mgyy= 9-09
- L2 6a = . 352 Ny en = 7.47 Nea 2 9.40
5A le = ,354
L16A = .359 As for the previous
structure
1 69 LlSA = 305 plus
3 L2 68 ~ . 352 n15A= 6.10 Nepa 1™ 5.99
= ,352 9.35

Lon 6a Noa6a=- 722 Neasa”™
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TABLE 5-3 (cont'd)

LIST OF COUPLED ELEMENTS

Element No. Coupling Lengths

and Sketch Metres
common length
9
Lg 10,12,13 -°6!
13 10 Ly = .223
L3 12 = .223
14 12 _ o
L4A 12 = .416
_155\ L4A7A = .360
L = _,434
7A LA A 12
L.7A 14 = . 394
L = ,425

1314

Coupling Loss
Factors at lkHz

X1000

Ng 1= 0-731 Ny g
Ng12= 1-17 N1a9
Ng13= 1-17 M3
N1012= 183 M1210
N1013~ 185 M1310
N1213~ 2-91 My312
Nyga = 539 M4a3
Ny, = 6-10 Npy 5
Naan12= 136 N1 4n~

Naa 78 = 0-644055 40 =
Noa12= 6:60 Ny 9n =
Ny314= 6:23 My 437

Non14a= 7-13 M98~
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other frequency can be evaluated from these values since nij
is proportional to (w)0'5.

In all experiments, only one element at any one time
was directly excited by a non contacting external source and
all the energy ratio levels presented in this section are relat-
ive to the directly excited element.

The experimental procedures and instrumentation used to
measure the energy ratios of the coupled structures are discussed
in Appendix D.

In Section 5.2., the single join structure results are
presented and discussed, and in Section 5.3, the multi-join
structure results are presented. In Section 5.2, the two
plate single join structure results and the three and four plate
single join structure results are presented separately.

The single join structure results are used to determine
the bounds within which the agreement between predicted and
measured energy ratio levels is satisfactory. In order to do
this, parameters to define the bounds are required as well as a
criterion for acceptability.

The lower bound is related to the number of resonant
modes in the excitation frequency bandwidth N+ where for each

element

Ni = 0.23nif (5,1)

as all tests were carried out using one third octave broad band
noise. The possibility that an upper bound may exist was
mentioned in the literature review of Section 3, as a consequence
of the inequality (3,3(b))- If both sides of the inequality are
multiplied by (nifL then (3,3(b)) can be written as R, < 1 where

Ri' a modal overlap factor, is
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R. = n.nif (5,2)

There is an Ri and Ni value for each element at each
‘excitation frequency. Hence, for four plates at a single join,
there are four Ri and four Ni values which are applicable to
that structure. Only one R and one N is required as a para-
meter. The parameters used in Section 5.2 to determine the
lower and upper bounds are Nmin and Rmax where Nmin is the
lesser of Ni and Nj and Rmax is the larger of Ri and Rj when the
energy ratios between elements i and j are being considered,
irrespective of the values of N and R of any other plates at
the common join. A suitable criterion for satisfactory agree-
ment between predicted and measured energy ratio levels is that
the level difference be not greater than #2dB.

In Section 5.2, the results-are presented as a level
difference in dB between measured and predicted plate energy
ratios. In Section 5.3, the predicted and measured energy
ratio are plotted against frequency for each individual multi-
join structure. The results are discussed with reference to
the upﬁer and lower bounds determined from the single join struc-

ture results in 5.2.

5.2. SINGLE JOIN STRUCTURES

5.2.1. Two Plate Joins

The theoreticél energy ratios of the four single join
structures, shown in Table 5-3, were predicted as described in
Section 5.1. The energy ratios, with one element directly
excited in each case, were measured as described in Appendix
D. The measured and predicted energy ratios of the four single

join structures and the measured and predicted level differences
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TABLE 5-4

PREDICTED AND MEASURED ENERGY RATIOS

Two plate coupled structure - Plate Nos. 1l & 2.

frequency El/EZ g§¥§l EZ/El g?;?%
Hz Meas. Pred. dB : Meas. Pred. aB
400 .432 .814 -2.75 .476 .758 -2.02
500 . 805 .810 ~-0.02 . 811 .753 0.32
630 .732 .754 -0.13 .613 .766 -0.97
800 .680 .677 0.02 .754 .596 1.02
1000 .543 .613 0.53 .793 .547 1.61
1250 .569 .471 0.82 .526 .426 0.91
1600 .301 .324 -0.31 . 340 .298 0.57
2000 . 347 .243 1.54 .339 .140 3.86
2500 .250 .166 1.79 .427 .129 5.20

3150 .188 .080 3.71 1.15 .081 11.51
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TABLE 5-5

PREDICTED AND MEASURED ENERGY RATIOS

Two plate coupled structure - Plate Nos. 3 & 4.

Frequency E3/E4 gi??l | E4/E3 gi;;%
Hz Meas. Pred. aB ) Meas. Pred. 3B
400 .105 .292 —4.4; .260 1.524 ~-7.68
500 .085 .246 -4.64 .307 1.504 -6.90
630 .272 .257 0.25 .532 1.433 -4.31
800 . 365 .276 1.21 1.14 1.373 -0.81
1000 .200 .264 -1.22 .732 1.293 -2.47
1250 .176 .267 -1.81 .861 1.250 -1.62
1600 .219 .244 -0.48 .735 .696 0.24
2000 .149 .164 -0.41 .680 .682 -0.01
2500 .255 .174 1.67 .449 .555 -0.92
3150 .218 .173 0.87 .692 .573 0.82
4000 .160 .151 0.24 .613 .419 1.65

5000 .163 .097 2.24 .296 .190 1.92
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TABLE 5-6

PREDICTED AND MEASURED ENERGY RATIOS

Two plate coupled structure - Plate Nos. 5 & 6.

requency  25/% el B/ s
Hz Meas. Pred. aB * Meas. Pred. aB ‘
400 .372 .493 -1.23 .321 .435 -1.32
500 .164 .351 -3.30 .386 .314 0.89
630 .346 .418 -0.81 .343 .370 -0.33
800 1.029 .321 5.06 .237 .287 ~0.82
1000 .450 .314 1.56 .203 .280 ~1.40
1250 .165 .205 -0.96 .192 .185 0.15
1600 .242 .101 3.79 .179 .092 2.89
2000 .390 .093 6.22 .163 .085 2.82

2500 121 .049 3.91 .092 .045 3.11
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TABLE 5-7

PREDICTED AND MEASURED ENERGY RATIOS

Two plate coupled structure - Plate Nos. 9 & 10

Level Level
Frequency  F9/F10 Diff. Ey0/Eg Diff.
Hz Meas. Pred. I;,dB Meas. Pred. dB
400 .832 1.392 -2.23 .650 .576 0.53
500 .783 1.400 -2.52 .565 .579 -0.11
630 1.066 1.347 -1.02 .520 .564 -0.35
800 1.282 1.330 ~0.16 .545 .559 -0.11
1000 1.032 1.332 -1.11 .600 .560 0.30
1250 1.488 1.284 0.64
1600 .936 1.143 -0.87 .412 .503 -0.87
2000 .966 1.133 -0.69
2500 1.109 .916 0.83 .472 .429 0.41
3150 .884 .866 0.09 .498 .411 0.83
4000 .903 .678 1.24 .460 . 340 1.31

5000 .841 .407 3.15 .497 222 3.50
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in dB are presented in Tables 5-4, 5-5, 5-6 and 5-7.

The +2dB criterion of acceptability is applied to each
jevel difference result which has a particular value of Rmax and
N oin associated with it. Fig. 5-1 represents a plot of the

éorresponding values of Rm and Nmin for all the two plate test

ax
results and shows which results met the 12dB criterion. It is
then used to determine the upper and lower bounds. The bounds
indicated are such that 95% of the data points within those
bounds meet the *28B criterion. Because of the possibility of
experimental error and the statistical spread of results, it is
unreasonable to place the bounds so that all the enclosed data
points meet the +2dB criterion. The data points are in groups
of two because for each Nmin and Rmax coordinate, there are two
results, the Ei/Ej level difference and the Ej/Ei level differ-
ence. A series of curves are formed by the data points because
both N in and Rmax increase with frequency, and from equations

(5.1) and (5.2), it can be seen that for each structure, the

slope of the curve at any point is given by

Rmax/Nmin = (nn)max/0'23nmin (5.3)

It is coincidental that 3 of the 4 sets of two coupled plates
have similar values for this factor, and this accounts for the
grouping of.the data points. The lower bound is Nmin = 6, and
bl
the upper bound is R__- = 1.0.
max
The presentation in Fig. 5-1 is used to determine the
bounds but does not indicate how the level differences vary with
Nmin and Rmax' The variation is shown in Fig. 5-2 and Fig. 5-3

respectively, where the level differences are presented as a

mean value tone standard deviation. Individual data points are
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shown where insufficient results are available to present a mean
value and standard deviation. In Fig. 5-2, all data points
where Rmax > 1.0 have been omitted to avoid masking the effect
of Nmin on the level differences. Similarly, in Fig. 5-3, all

‘data points where N_, < 6 have been omitted.
Inspection of Fig. 5-2 shows that as Nmin decreases
below 6 the spread of results increases and the measured energy
ratio tends to be less than the predicted’energy ratio.
The dependence of the level difference on the modal
overlap factor R is much more distinct. Fig. 5-3 shows that as
R oax increases, the spread of results does not increase markedly

(except at one particular value of Rm x), but there is a distinct

a
change of slope of the general line of mean values at approxi-
mately Rmax = 1.0. The measured energy ratio is greater than
the predicted energy ratio for Rmax > 1, but the results show
that this upward trend can be approximately predicted by adding
2dB to the originally predicted energy ratio level for each
doubling of Rmax above 1.

Both parameters R and N in are proportional to fre-

ax
quency. Generally, if the internal loss factors of each plate

are approximately of the same order, then

Nmin = 0'23nminf
and
Rmax = ninmaxf
. _ _ d
The upper and lower limits Rmax 1 and Nmin 6 can be relate

to frequency and hence the frequency range in which the coupling
loss factor prediction technique can be directly applied to a

structure, assuming third octave band excitation, is given by
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L <f<— (5,4)
o'23nmin " Prmax
where N, is the lower bound and R, is the upper bound. It can

-be seen from (5.4) that for the two plates, there is a value of
n, at which the upper and lower frequency bounds coincide and
there is no directly usable frequency range. For two coupled

element structures,

Ru Dhmin
n. = 0.23 = (5,5)
1 NL nmax
= 0.038 n_../n
min’ "max

that is, the internal loss factors of two coupled element struc-
tures must be much less than 0.038 for there to be any usable
frequency range. As previously discussed, the frequency range

can be extended upwards to at least five times the upper limit

i Rmax \2/3 , e mot .
by adding 10log R to the predicted energy ratio level
(V]

for R > 1.
max

5.2.2. Three and Four Plate Join

The theoretical energy ratios for the two three plate
and one four plate single join structures, described in Table
5-3, were evaluated as described in Section 5-1. The energy
ratios of each structure were measureé, as described in Appendix
D. The measured and predicted energy ratios and the level
difference between them, in 4B, for all three and four plate
single join structures are listed in Tables 5-8, 5-9 and 5-10.

The +2dB criterion is again used to determine the upper

and lower bounds in Fig. 5-4 and the mean and standard deviation

of the level differences are plotted against Npj, and Rmax in
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TABLE 5-8(a)

PREDICTED AND MEASURED ENERGY RATIOS

Three plates at a common join - Plate Nos. 7, 8 and 11.
Plate 7 directly excited

Frequency ES/E7 giggf Ell/E7 gi%??
Hz Meas. Pred. dB Meas. Pred. dB
500 .345 .399 ~-0.64 .322 .631 -2.92
630 .266 .395 -1.72 .454 .567 0.97
800 .499 .392 1.04 .590 .608 -0.13
1000 .295 .380 -1.10 .382 .552 -1.59
1250 .325 . 371 -0.58 .655 .473 1.41
1600 .305 .358 -0.70 .463 .465 -0.01
2000 .458 .320 1.56 .463 . 330 1.47
2500 .191 .286 ~1.74 .443 .271 2.14

3150 .344 .251 1.37 .568 .158 5.55
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TABLE 5-8(b)

PREDICTED AND MEASURED ENERGY RATIOS

Three Plates at a common join - Plate Nos. 7, 8 and 11l.

Plate 8 directly excited

Frequency E7/E8 gi¥§% Ell/EB
Hz Meas. Pred. dB Meas. Pred.
800 0.610 1.430 -3.70 0.832 1.167
1000 0.606 1.359 -3.51 .855 1.053
1250 1.288 1.324 -0.12 1.248 .902
1600 1.033 1.243 -0.80 .817 .878
2000 0.826 1.079 -1.16 .. 771 .630
2500 0.948 0.870 0.38 .716 .495
| 3150 1.43 0.737 2.88 1.101 .288
4000 1.06 0.596 2.50 .907 .226

5000 0.839 0.330 4,05 .471 .0911

Level
Diff.
dB
-1.47
-0.90
1.41
-0.31
0.87
1l.61
5.82
6.03

7.13
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TABLE 5-8(¢)

PREDICTED AND MEASURED ENERGY RATIOS

Three Plates at a common join - Plate Nos. 7, 8 and 11.
plate 11 directly excited

Frequency E7/E11 gigi% E8/E11 gi??%
Hz Meas. Pred. dB Meas. Pred. dB
500 .262 .483 -2.66 .308 .254 0.84
630 .496 .493 0.03 .125 .258 -3.14
800 .400 .460 -0.61 .394 .243 2.10
1000 .326 .421 -1.11 .221 .225 -0.09
1250 .520 .413 1.00 .169 .221 -1.17
1600 ".522 .362 1.59 . 247 .197 0.98
2000 .500 .275 2.59 .372 .156 3.77

2500 .595 .204 4.64 . 396 .122 5.11
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TABLE 5-9(a)

PREDICTED AND MEASURED ENERGY RATIOS

Three Plates at a common join - Plate Nos. 9, 10 and 12.

plate 9 directly excited

Frequency ElO/EQ g???% E12/E9 gi??%
Hz Meas. Pred. dB Meas. Pred. dB
400 .247 .482 -2.92 .362 .501 -1.41
500 .447 .505 -0.53 .604 .539 0.49
630 .291 .452 -1.92 .407 .468 -0.61
800 .395 .451 -0.50 . 317 .476 -1.77
1000 . .463 .463 0.00 .689 .498 1.41
1250 .274 .434 -2.01 .352 .467 -1.24
1600 .207 .364 -2.44 .310 .405 -0.70
2000 .260 .336 -1.11 .349 . 348 0.02
2500 .255 .255 0.00 .267 .285 -0.29
3150 .314 .242 1.14 . 430 .283 1.82
4000 .563 .176 5.05 .469 .219 3.31

5000 .293 .0817 5.05 .425 .119 5.54
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TABLE 5-9(b)

PREDICTED AND MEASURED ENERGY RATIOS

Three Plates at a common join - Plate Nos. 9, 10 and 12
plate 10 directly excited

Frequency E9/E10 gigi% E12/E10 BE??%
Hz Meas. Pred. daB Meas. Pred. dB
500 .909 1.178 -1.13 .754 .827 -0.40
630  .574 1.036 -3.13 .684 .715  =0.17
800 1.094 1.028 -0.27 .928 .726 1.07

1000 .657 1.055 -2.06 .741 .758 -0.10

1250 .680 .973 -1.55 .649 .710 -0.39

1600 .783 .779 0.02 .691 .607 -0.56

2000 .803 .720 0.48 .796 .523 1.82

2500 .504 .513 -0.07 .513 .426 0.80

3150 .623 .479 1.14 .571 .422 1.31

4000 1.153 .332 5.41 .994 .329 4.80

5000 .635 .162 5.93 .573 .181 4.98
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TABLE 5-9(c)

PREDICTED AND MEASURED ENERGY RATIOS

Three Plates at a common join - Plate Nos. 9, 10 and 12.
pPlate 12 directly excited

Frequency E9/E12 gi??% E10/E12 gi??%
Hz Meas. Pred. dB Meas. Pred. dB
500 .515 1.210 -3.67 .382 .796 -3.19
630 1.826 1.131 2.08 .643 .754 -0.69
800 .697 1.106 -2.10 .613 .740 -0.82
1000 .718 1.111 -1.90 .678 .743 -0.40
1250 .975 1.044 -0.30 .458 .706 -1.88
1600 1.048 .863 0.84 .712 .605 0.70
2000 .693 .852 -0.90 .544 .599 -0.39
2500 .630 .619 0.08 .480 . 460 0.18
3150 .655 .572 0.59 .644 .431 1.74
4000 .685 .411 2.22 777 .327 3.76

5000 .914 .219 6.21 .741 .189 5.93



TABLE 5-10

PREDICTED AND MEASURED ENERGY RATIOS

Four Plates at a common join - Plate Nos. 9, 10, 12 and 13.

plate 10 directly excited

prequency 9/El0 Dife. E12F10 DifE. E13/E10 DSt
Hz Meas. Pred. dB Meas. Pred. dB Meas. Pred. dB
400 .412' .918 -3.47 .538 .640 -0.75 471 .604 -1.08
500 .203 .958 -6.75 .224 .694 -4.92 .222 .617 -4.44
630 .344 .820 -3.92 .446 .578 -1.12 .276 .557 -3.06
800 .291 .791 -4.34 .235 .576 -3.90 .318 .532 -2.24
1000 .544 .818 -1.77 .507 .611 -0.81 .442 .552 -0.96
1250 .336 .720 -3.31 .255 .548 -3.32 . 337 .492 -1.65
1600 .716 .535 1.26 .455 .444 0.11 .495 .406 0.86
2000 .510 .466 0.39 .417 .351 0.75 .489 .324 1.79
2500 .336 .312 0.31 .307 277 0.43 .321 .267 0.81
3150 .256 .286 -0.47 .290 .273 0.27 .275 .253 0.35
4000 .375 .185 3.07 .313 .201 1.94 . 306 .188 2.11

5000 .566 .0825 8.37 .390 .0989 5.96 .324 .0962 5.27

AN
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Fig. 5-5 and 5-6 in a similar manner to the presentation of the
two coupled plate results in 5.2.1.

Again Nm'

is the lesser of N, and N, and R is the
in i | max

greater of R, and Rj when considering the level differences of
'Ei/Ej and Ej/Ei irrespective of the values of N and R of the
other plates at the join.

The bounds deduced from the data in Fig. 5-4 are N_. = 9
and Rmax = 0.8. In this case, approximately 90% of the data
points within these bounds meet the +2dB criterion. Half of
the remaining 10% of data points within the bounds but not meet-
ing the *2dB level difference criterion are from results involv-
ing a specific plate (plate number 10) excited at a specific
1/3 octave band, (centre frequency 1250Hz). This indicates that
either the experimentally measured internal loss factor of plate
10 in the 1250Hz band is in error, leading to an erroneous pre-
dicted energy ratic, or the number and/or spacing of resonant
modes in that band is far from the assumed statistical average.

As in 5.2.1, the data points with R ___ > 0.8 have been
omitted in Fig. 5-5, as have those data points with Nmin < 9 in
Fig. 5-6. The standard deviations of the level differences are
generally greater in both Fig. 5-5 and Fig. 5-6 than for the
respective two coupled plate results. The mean energy levels
of each plate were evaluated from mean square acceleration levels
determiﬁedlfrom measured acceleration levels at 8 locations on
each plate. In the 2 plate experimeﬂts, 10 measurement loca-
tions were used on each plate. In Appendix D, in which the
accuracy of measured results are discussed, Fig. D-5 shows that
the 95% confidence limits of the experimentally measured plate
mean square acceleration levels does not increase by more than

0.2dB for a reduction in' the number of measurement locations

from 10 to 8, hence it appears to be unlikely that the increase
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in the standard deviation of the energy ratio level differences
is due to the reduced number of measurement locations. It is
probable that the increase spread of results for the 3 and 4
plate single join structures compared with the two plate struc-
ture results is because the evaluation of the power flow in a 3
or 4 plate coupled structure is further removed from the original
SEA extension to evaluating power flow between two lightly coup-
led elements from the basic concept of power flow between two
coupled oscillators.

Inspection of Fig. 5-5 indicates that for Nmin < 9, the
mean value decreases slowly with decreasing Nmin but the standard

deviation increases. The standard deviation generally decreases

with increasing Nmin with the exception at N .. 18. This
large standard deviation is caused by some results involving
plate 10 at 1250Hz 1/3 octave band excitation previously men-
tioned. When these results are omitted, the mean value and
standard deviation are as shown by the dashed line.

It can be seen in Fig. 5-6 that the variation of R ax
does not appear to affect the standard deviation of the level
differences but, as for the two coupled plate results, there is
a distinct change of slope of the mean values of the level diff-
erences for R __ > 0.8. Again, it appears that this upward
trend can be approximately predicted by adding 2dB to the pre-
dicted énergy ratio per doubling of Rmax above R . = 0.8.

The effect of omitting the poor results involving plate 10 at
1250Hz excitation is not as pronounced as it is in Fig. 5-5,
since the particular data points affect the mean value and stan-
dard deviation at two values of Rmax' 0.08 and 0.12. As in

Fig. 5-4, the mean values and standard deviations with these

data points omitted are shown dotted in Fig. 5-5.
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The bounds determined from the two plate data presented

in Fig. 5-1 are slightly different from those determined from
Fig. 5-4 for the three and four plate single join structures.
It seems likely that the bounds are impossible to define exactly,
hence to avoid unnecessary complications when considering multi-
join structures, we have assigned a lower and an upper bound for
all single join structures. These bounds Nm' = 6 and R.m =

in ax
1.0 will be used when discussing the results in Section 5.3.

5.3. MULTI-JOIN STRUCTURES

5.3.1. Two Plate Joins

(a) The measured and predicted energy ratios of a coupled
structure comprising plates 1, 2 and 6A, connected as shown in
Table 5-3, are presented in Figs. 5-7, 5-8 and 5-9 where the
directly excited plates are 2, 6A and 1 respectively. The
frequency at which Nmin = 6 is noted in each figure, i.e. the

frequency at which the lower of Ni or Nj is equal to 6 when con-

sidering the energy ratio Ei/Ej' Above Rm = 1, the adjusted

ax

predicted energy ratio is also shown.

As there are three interconnecting plates, there is a
second energy flow path through the third plate which affects the
energy ratio Ei/Ej' This being so, then it seems probable that

the N, and R

k k
in determining N_ .
: min

values of the third plate k, should be considered

and R for the structure. If the inclu-
max

sion of the Nk and Rk values of the third plate restrict the

frequency range determined by Nmin and R ax from elements i1 and

j only, then the frequency at which Nk = 6 is noted and the pre-

dicted energy is adjusted above Rk = 1. As the upper bound

frequencies approximately coincide only one adjusted predicted

average ratio is shown in each of the graphs.
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Inspection of Figs. 5-7, 5-8 and 5-9 show that all the
measured and predicted energy ratios are within *2dB between
the two frequency limits determined by N2 = 6 and R, = 1. In
addition, the agreement for N, < 6 was also within #2dB in all
.cases except for two results; the energy ratio EZ/EGA at 400Hz
and El/EZ at 500Hz. At frequencies above the upper bound
(above 1600Hz) the measured energy ratios are generally in closer
agreement with the adjusted predicted level for the tests where
plates 6 and 2 were directly excited. However, when plate 1
was directly excited, the measured energy ratio was predicted
more closely by the unadjusted theory.

(b) Plate 5A was added to the previous structure to form
a four plate coupled structure where only two plates are coupled
at any one join. The predicted and measured energy ratios
El/EZ' ESA/Ez and EGA/EZ' plate 2 being externally excited, are
shown in Fig. 5-10. As there are three energy flow paths to
each element, the gquestion of which N and R values should deter-
mine the fregquency bounds again arises. For each energy ratio
considered, the N_.. lower frequency bound for the two elements
involved is shown as well as the most restrictive lower bound
of the four elements, determined by N6A = 6 at approximately
700Hz. The upper frequency bound for the two elements involved
is determined in each case by R, = l, and Rep = 1 determines the
most restrictive upper frequency bound. The adjusted predicted

energy ratios are shown for both R2 > 1 and R5 > 1 except for

A

the E5A/E2 ratios where the R2 > 1 adjustments are not required.
Inspection of Fig. 5-10 shows that for the three sets of

results presented, the differences between the measured and the

predicted energy ratios are within *2dB between all the bounds

shown, although the lower bound for El/EZ and ESA/EZ (N2 = 6 at
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approx. 550Hz) is close to the 500Hz result which shows a larger
level difference of approximately 3dB in each case. The 2 sets
of upper bounds are too close to each other to determine whether
one should be used rather than another. For all three energy
ratios, the measured results were closer to the prediction for
R.max > 1 than for the 'corrected' predicted energy ratio except
in the 2000Hz band.

It is interesting to compare the predicted and measured
energy ratio level differences for El/EZ and EGA/EZ for both the
three plate structure (Fig. 5-7) and the four plate structure
(Fig. 5-10) at Rmax > 1. The adjusted prediction is more accur-
ate for the three plate structure but the unadjusted energy ratios
are closer to the measured energy ratios for the four plate
coupled structure. None of the physical parameters of the plates
have been altered; area, thickness, internal loss factors and
coupling loss factors for elements 1, 2 and 6A are the same in
each case. The only alteration is the changed boundary condi-
tions of the plates 1 and 6A at the edges connected to plate 5A.
This demonstrates that the adjustment to the predicted energy
ratios for frequencies above Rmax = 1 must be regarded as a very
approximate guide only.

The results shown in Figs. 5-7 to 5-10 show that the
measured levels are within +2dB of the predicted levels over the
bounded- frequency range and often within +2dB of the adjusted

predicted level where R is greater than 1.0. Except for

ax
one result, (Fig. 5-8, El/E6A at 3150Hz) the level difference
was greater than +2dB only where the measured level was less

than (a) the adjusted predicted level for Rmax > 1, and (b) the

predicted level for N . < 6.
min
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5.3.2. Two, Three and Four Plate Joins

The structure comprising eight plates, described in
Table 5-3 was excited by directly exciting plate 14. The
measured energy ratios E3/E14’ E9/El4.and E12/E14 are compared
with the theoretical energy ratios, predicted as described in
Section 5.1. The theoretically determined energy ratios and
the measured energy ratios are presented in Fig. 5-11.

Tt is difficult to determine which elements should be
used to define the upper and lower bounds which should be applied
to the whole structure. It seems likely that there are some
elements of the structure which would not cause the energy levels
of other elements to alter greatly when their parameters are
altered or the element is removed. Plate 3 is an example of
this when considering the energy ratio E9/E14‘ It is probable
that those elements which when altered, would cause a significant
change in the energy levels of other elements, would be those in
the most direct energy transmission paths. On this basis, the
pounds shown in Fig. 5-11 are determined from the elements which
appear to be in an important location in the structure. Also
the most restrictive bounds are included, these being N3 = 6 and
R4A = 1.

It would appear to be needlessly restrictive to use N3
and Rsa to determine the bounds when considering E9/E14 and
E12/E14: However the difference between the adjusted predicted
energy ratios for R4A > 1 and R9 > 1 are too close to each other
to determine whether one element more than the other is control-
ling the response. Similarly, no conclusion can be made regard-
ing which lower bound should be used. In nearly all lower fre-

Quency bands, the measured energy ratios are in good agreement

with the predicted energy ratios well below the expected lower
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frequency bounds determined by N7A = 6 Or N14 = 6. Again,
where the measured and predicted energy ratios differed by more
than 2dB, the measured ratios were less than the predicted ratios.
The lower than expected measu;ed energy ratios E9/E14 and
Elz/E14 in the 1250Hz third octave band, well within all the
frequency bounds, demonstrates that the coupling loss factor

prediction technique used in this work, although generally
predicting the energy distribution satisfactorily

within the upper and lower frequency limitations, cannot be
relied upon to give an accurate prediction in all cases. The
poor agreement between predicted and measured energy ratio levels,
discussed in 5.2.2 was also associated with plates 9 and 10
excited by a 1250Hz third octave band random signal. It should
be noted, however, that even for these relatively poor results

at 1250Hz, the predicted and measured energy ratio level differ-
ences are within 3dB. In many engineering applications, a pre-
diction of energy distribution in a structure to this order of

accuracy would be acceptable.
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SECTION 6. CONCLUSIONS

A set of power balance equations written in a matrix
form, Equation (3,9), enables the vibrational energy distribution
in a connected structure to be evaluated, provided the coupling
loss factors and internal loss factors are known. In order to
apply this SEA technique to multi-plate structures, a simple
means for calculating average coupling loss factors, for up to
four plates at a single join, has been presented.

The coupling loss factor is related to an average trans-
mission coefficient which can be calculated from an empirical
equation. This equation very closely approximates the average
transmission coefficients calculated using bending wave trans-
mission theory and extensive computer integration procedures.

For an error in the predicted coupling loss factor of
less than 2dB, the effect of longitudinal and transverse wave-
fields, generated at the join need not be considered when
Qab < 0.018, i.e. for steel Pab < 50ms_1. The wave transforma-
tion should be considered for Qab > 0.036. In the region between
these limits, the bending wave solution can generally be used
unless the structure contains two consecutive joins where the
plate thickness ratios are greater than two to one. In such a
structure, longitudinal and transverse wave generation should be
considered when evaluating the coupling loss factors.

When considering thick structural elements or high fre-
guencies, i.e. Qab > 0.036, the transformed longitudinal and
transverse waves transport energy, some of which is transformed
back to bending wave energy in subsequent plates. This addi-
tional bending wave energy can be allowed for in the matrix
equation by using a 'corrected' bending wave to bending wave

transmission coefficient to evaluate the required coupling loss



134.

factor. values for bending to bending, bending to longitudinal
and bending to transverse wave average transmission coefficients
for each of the joins are required to determine the 'corrected'
pending to bending transmission coefficient. There does not
lappear to be any simple relationships enabling these coefficients
to be determined, either by relating them to normal incident
coefficients or to bending solution coefficienté, hence empiri-
cally obtained charts relating the general solution transmission
coefficients to the more easily evaluated bending solution co-
efficients, or time consuming computer evaluations, are still re-
quired.

The vibrational energy distribution in single join struc-
tures of up to four plates with arbitrary coupling strength, can
be predictedl ' \ to an accuracy of t2dB'with at least 90%

l

confidence within the upper frequency bound (Rmax = 1) and lower

frequency bound (Nmin = 6). The frequency range can be extended
to Rmax approximately equal to 5 with an adjustment to the pre-
dicted energy level for 1 § Rmaxf's' In the extended range,

the energy levels can be expected to be within *2dB in the major-
ity of measurements, with differences larger than 2dB generally
such that the measured level is less than the predicted level.
Agreement between predicted and measured energy levels in general
multijoin structures can be expected, generally within +2dB and
within 3dB_over the extended frequency range.

It is more difficult to state which elements should be
used to determine the upper and lower frequency bounds when con-
sidering a multijoin structure. It is thought probable that
the N and R values of those elements in the major vibrational
energy transmission paths would be those which determine the

upper and lower frequency bounds for the structure, but further
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experimental work is required to determine whether this is so.

Further experimental work is also required to investi-
gate the validity of SEA fo; thick structures, that is with
,Qab > 0.036.k For the structures where the bending, longitudinal
and transverse waves are required to accurately predict struc-
tural energy distribution, it may be useful to produce charts
or tables of the three average transmission coefficients tBB,
tBL and TBT for various typical plate joins at specific frequen-
cies. This would save a designer much computing time but is not
warranted until the relevant experimental work has been carried
out.

In conclusion it should be noted that SEA has been shown
to be-applicable to real structures with arbitrary coupling
strengths, where the internal loss factor of each element in the
structure was not only accurately determined, but was such that
it would not alter significantly from the uncoupled state to the
coupled state. However, for lightly damped metals, where radi-
ation controls the measured internal loss factor, this is not so.
In bolted, rivetted or spot welded structures additional losses,
which need to be considered as part of the element internal loss
factor, occur at the join, mainly due to air pumping. The
estimation of the internal loss factors of elements in existing
structures is difficult because of these variables. It would
be usefﬂl for further research to be undertaken to investigate
the dependence of the apparent internal loss factor of an ele-
ment on the type of join and structure configuration. This
could then be used to estimate the internal loss factors of
elements in existing structures.

Provided the internal loss factors of the elements in

a coupled plate structure are known, the vibrational energy

*see postcript Page l4a.



136.

distribution can be predicted within definable fre-
quency limits, which depend upon the modal density and modal
overlap characteristics of the elements involved, as well as
the accuracy and the level of confidence re_quired_ by the
designer. The upper limit applies only to the coupling loss

factor prediction method and is not necessarily a limitation

of SEA.
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APPENDIX A. ENERGY DECAY IN A TWO DIMENSIONAL FIELD

The procedure is analagous to that used to determine
the energy decay in large rooms (Beranek, 1971(1)). The energy
density of the field, Dp is due to all bending waves travelling
"in all directions with equal probability. The power lost at
an edge AL where another plate is coupled is DngALT/n. This
is completely analagous to the 3-D expression for power lost at
a surface of a room. This energy loss is for one reflection.
As the wave travels through the medium there are internal (and
radiation) losses which can be represented by

Dp(x) = D, e X (A,1)

where x is the distance travelled by the wave and m is a propaga-
tion loss factor. The amount of power reflected back into the

plate at edge AL is DngALr/ﬂ where
r = 1-t (Arz)

The same method as is used by Embleton (Beranek, 1971(1)) to
achieve the reverberation time formulae for rooms, is applied.
The time required for the total energy to undergo one reflection
only is At and the energy density is

Ly/bp 2by/ty -md

Dp(At) = Do(rl U ¥ - (A, 3)

where d is the distance travelled by the waves in At, i.e.

At = d4d/C
/ g
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where
a = wAp/LT
is the mean free path and Cg is the group velocity of the bending

T
time t, the energy density is

waves. IL.. is the perimeter of the plate of area Ap. After

L,/L L, /L L C t/mA_ ~-mC t
- 1’-T 17T T g P g
Dp(t) Do(r1 r, s . oG 3 ) e
c t
= D expl| - g (- L:ln r,) —-mC_t (A,4)
i g
TA
P
Since 10 log eX = 4.34x
10 log (0_(£)/D) =—|23%Cg (s, In rpt +mCt|dB
P o TA i i g
p
(a,5)
The reverberation time T for a 604B decay is then
60TA
S P (A,6)

- - +
4.34cg[ L, (1-T) *w mAp]

Assuming there are no losses at the edges, i.e.

T, = 0, then
i

60 4.4nm
T = = = secC.
4.34Cgm wnq
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hence
wn
e e (A,7)
C
9
For the case where there are no internal losses,
m=n; = 0, and changing Ap to Al
m
60 Al 4.4nw
T = =
-4.34CgELi 1n(l—Ti) mnlz
Since Cg = 2Cb = 2w/k1,the coupling loss factor n,, can be
written

0.0505 x 4 (-ILi 1ln(1-T,))

kl Al

2 (-ZLi ln(l—Ti))

i klAl
For a plate with only one join of length L
n - __2_ _L__ ('11’1(1"'1'12)) (A’g)
12 m Ak
171

which is equation (4,4) of the text. If Ty is substituted

for -1n(l-7,)in a similar way as ag,p 18 substituted for -1ln(1l=a)

in room acoustics, (A,8) becomes



140.

ZLi(T

2 12!

m klA1

Nyy = (A,10)
This is applicable where the join between two plates has 2 or
more values of T12 associated with it. This occurs when more
than 2 plates are connected at a common join but the lengths of
join for each are not equal. For example, (A,10) is required
to evaluate the coupling loss factors at the junction of plates
4A, 72, and 12 in the 8 plate test structure, described in
Table 5-3. The length of join between plates 7A and 12 is
Loa12 = 0.434m. However, the joins connecting plate 4A to
these two plates are less, L4A A = 0.360 and L4A 12 = 0.415.
Considering Naa 12 7 Ln\lZ has one value along the length of
the 3 plate join and a different value for the remaining length

of L7Al2 . A similar approach is required to evaluate Nan 12°
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APPENDIX B. SOLUTION OF SIMULTANEOUS EQUATIONS TO OBTAIN
TRANSMITTED AND REFLECTED WAVE AMPLITUDES.

Bl. BENDING WAVE FIELD ONLY

From the displacement equations (4,13) and (4,14) and

the boundary condition that

w. = 0at x, = 0
i
then Y
0O = 1+ al + a1
]
0 = a_ + a
n n
therefore
L}
a; = —(l+a1) (B,1)
]
a, = -a, for n = 2, 3, 4 (B,2)

Substituting (B,1l) and (B,2) into (4,13) and (4,14) and differ-

entiating with respect to x,., the derivatives are

awl = ik._cosao,+k Jl+sin2u + a. (-ik,cosa.tk Jl+sin2a )
— 1 171 1 1 1 11 1
Bxl x1=0
(B,3)
Wy = a (-ik _cosa_+k J1+sin2u ) (B,4)
— n n n n n
oax_|x_=0
n
2 422 2 2 N2 .2 .2 . 2
3w = al( klcos o kl(l+51n al) klcos oy kl(l+51n al)
2 _
Bxl 1~0
. 2 _ 2
= 2klal 2kl (B,S)
2
0 = -2k%a (B,6)
5 nn
X =0
nin
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The second boundary condition that

Wy ow
_ 2+ = —B gives the three equations

axl axn

} . 2 2
kl(lcosal+Jl+51n al) + alkl(J1+sin ul-iCOSal)
= ak_ GJl+sin2an-icosan) (8,7)

Summing the bending moments about the join leads to

k2 + a,D k2 + a.,D k2 + a,D k2 = 0 (B,8)

(1+a,)D k) + a;Dyk, 3D3k3 + 34Dk,

To solve for Ay (B,7) is rearranged and the term Bi substituted

where
, _ 2 . ;
B. = \/1+51n o. = 1 coso., for j =1, 2, 3, 4
J ] J
B,* = \/l+sin2a + i cosa
1 1 1
a3 = a2k2B2/k3B3 (B,9)
a, = azszz/k4B4 (B,10)
= 4 - *
a, (azszz lel )/le1 (B,11)
and

l+a1 = (a2k2B2-2iklcosal)/le1 (B,12)
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With these relationships appropriately substituted into

(B,8) and rearranged,

\ 3
21lelcosalk3B3}c4B4

.a =
2" kK, ko k,[Dyk ByB3B,+D kB BB, +D

1kok3ky 1ByB3B+D kB BB, +D3k 3By ByB +D4k4BleB€]

3717274

which reduces to

21k1c03qlB3B4
a. = (B,13)
2~ < [p.p.5 +P252p.B.B,+23538 B, B,+ 4 4B.B,B
2] 727374 N 17374 Dk 17274 D k. 17273
171 171 11
Using the parameters
Xi3 T Ky
_ 2 2
iy = D k5/D;kj
(B,13) becomes
21i cosa1B3B4
= ' (B,14)

a
2
4 Y,. B B.B.B

X12 s .43 172374

=1 X449 B.
j 13 5

a. can be found by following the same procedure as before and

3
this leads to

2i cosoelB2 4
a = = = (BIlS)
x13| & Y43 ByB,B3By
=1 %43 By |

and similarly for a,-
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The general form for n = 2, 3 or 4 can be written

cosal B.B. B

2 22 2B3By
B
*n = 4 :n. B ; B.B | FElA0%
5 1] 1727374
= Ry By

which is equivalent to equation (4,16).
Equation (B,14) is substituted into (B,11l) and using
(DEN) as a shorthand notation for the bracketed expression'in

the denominator of the last three equations

2icoso.B,B,B,- B, *(DEN)
a, = 127374 1 (B,17)
Bl(DEN)

This can be rearranged to give

Y12 Y13 Y14
- v — = H - %
BlBl*(X B3B4+X B2B4+X B2B3) + B2B3B4(21cosa1 Bl )
a, = 12 13 14
Bl(DEN)
4 ¢, B,B,B
n=2"1n B 1727374 B.*
= n X 1
*
Bl(DEN) Bl
4 B.B.B.B
: )
(% In 17273 4) + B2B3B4
= n=2 x1n ' n

(B,18)
(DEN)

which is equivalent to equation (4,15).
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B2. BENDING, LONGITUDINAL AND TRANSVERSE WAVE FIELDS.

As vj = 0 at xj =0 for j =1, 2, 3, 4, Eguation

(4,48, g, h, i, j ), amplitudes cj and bj can be related by

C. = b.,sinf./cosy. B,19

With (B,19) substituted where applicable, and the terms common
to all the displacement equations omitted, as discussed in

Section 4.4, the displacement equations and their derivatives

at x. = 0 are:
J
b.
uj < =0 = (cosBjcosyj+sinBjsian) 635%; (B,20)
]
ou. 5
= -ib. .cos“B.+g.sinB.siny.) (B,21)
. J(pJ BJ q BJ £ '
Jlx.=0
J
for j =1, 2, 3, 4.
L
Wy ~ = 1 + a; + a1 (B,22)
x.=0
1
oy | | frraina) !
g;— = 1klcosal—1klcosoh§1-k1 1+sin aq) a4y (B,23)
1 xl=0
azw - !
1 _ 2 2. .2 2 2 . 2
ax2 = —klcos 0y klcos ulal+k1(1+51n al) ay (B,24)
1 xl=0
83w
1 . 3 ,..3 .3 3 D M5 '
3x3 = —1klcos al+1klcos ayay k1(1+51n al) a, (B, 25)
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and for n = 2, 3, 4

w = a + a' (B,26)
nly —g n n
n
awn 2 ;
— = -ik cosa a -k Jl+sin“a_ a ' (B,27)
n nn n n “n
an
x_=0
n

el = -kzcosza a + k2(l+sin2a )a_' (B,28)
2 n n'n n n’ “n
axn
x =0
n
%
seall = ik3cos3a a - k3(1+sin2a )l‘sa A (B,29)
n n'n n n n
Yy
Ny =0

Twelve linear equations are obtained by substituting
the above relationships into the boundary equations (4,48).
Considering continuity of linear displacement, (4,48a-£f), using

the previously defined parameters X, and wij and introducing

3

H. = cosB.cosy.+sinB.siny. B, 30
j BJ YJ BJ 1 YJ (B,30)

the following are obtained.

cosY3Hlb1 + cdsY1H3b3 =0 (B,31la)

3 [ =
HlbI + cosyl(a2+a2) =0 (B,31b)

i = =
-cosy,a; + cosy,a; - sz2 = -cosY, (B,31lc)



a, + a,'+ a, + a,'

1

47.

-1

-— ' -
Hlb cosyl(a4 + a4) 0

1

' —
-cosy4a1 + cosY4al + H4b4 =

-cosy,

(B,314)

(B,31le)

(B, 31f)

Considering continuity of angular displacement (4,48k,1,m),

: Y e 2. .
-icoso,a; (1+sin ui)al + X1pC080, *+ X 1) l+sina

and summing bending moments (4,48n),

2 . 2 j
cos alal + (l4+sin ul)al +

n

4
z

2

cosza
1

~-icosa
1

(B,31k,1,m)

(—wlncoszanan+wln(1+sin2an)aﬁ)

(B, 31n)

summing forces in the two directions perpendicular to

the y axis give the remaining two equations required.

5

. 3 . 2 1.5 v .
icos alal—(l+51n ul) al—lF

. .3 .
- 1x13¢13cos u3a3+x13¢13(1+51n‘a3

where F.. = E.t.p./D.k
J JpJ/ 1

13

3
1

Since qjsinyj = pjsinBj

2
12 (cos 8,

2 .
)l 5

icos3a
1

2

v
a3+iF

2
14(cos B4+

9; | . 2
+§—91n8281nY2) 2

dg . . =
5;51n8451ny4)
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(coszﬁj + g? sinBjsian) = 1
hence
icos3a1a1 - (1+sin2al)l'Sai-;Flzbz-ixl3wl3cos3a3a3
+ x13w13(1+sin2a3)l'sa;+iFl4b4 = icos’a, (B310)
Similarly

. . 3 . 2 1.5 * .,
1Fllb1+1x12w12cos uzaz-x12¢12(1+51n az) a2-1F13b3

5 3 . 2 1.5_~n

These 12 linear equations can be solved simultaneously
to obtain the wave amplitudes for any incident angle Oy To
obtain the transmission coefficients, these equations must be
solved for a large number of incident angles. The computing
time required to solve the equations is reduced by eliminating
the bj terms leaving 8 simultaneous equations to be solved.

The following relationships

- _ 1
.bl = (a2+a2)cosyl/H1
‘l
b2 = (l+al+a1)cosY2/H2
- (B,32)
b3 = —cosY3Hlbl/cosYlH3

b = —cosY4H2b2/cosY2H4
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are substituted into the appropriate equations of (B,31).

At this point, the analysis, which has been completely
general, is restricted by the assumption that the four plates
are of the same material. The longitudinal wave speed is then
the same for each element independent of its thickness, hence

the subscript can be omitted from the H, cosy, siny, p and g

terms. Equations (B,32) become

b _ L

h = —(a2+a2)cosy/H

L}
b, = (1+al+al)cosy/H
(B,33)

b3 = —b1
b4 = -b2

The resulting 8 equations are presented in matrix form Ax = B

where
#-a K il cosza i
1 1
. 3
ai i Hcos a1+(F12+F14)cosY
a, 0
< =- aé ] B = -i cosal/x12
a3 -1
al -i cosa./x
3 17413
a, 0
a' -i coso,/x
| 4 L. 1’714




—cos’.zml l+sin2-al —\plzcoszm2 ¢12(1+sin2a2) —¢l3cosza3 \p13(1+sin2a3) —\pl4cosza4 wl4(l+sinza4)

. = . 3 . 2 LS
i(HcosBr,,l - —{H(1+sin2al)l'° : 0 —1Xl3wl3Hcos ay x13w133(1+51n 3) 0 0
(:-‘12+E'M)cos~(} +1(F12+F14)cosy}
| 3 i H{l+sin2 )1'5 3 . 2 1.5
o o 1 Xlz¢'12HCOS 32 —El}dl?_ cy 0 0 _ixl4wl4ﬂcos a4 Xl41pl41-1(]_+51n %)
_(gll+E‘l3)cosy +1(?11+El3)cos Y]
. .2 0.5 .
-icosa, —-(l+sin otl) icosaz (l+sin2a2)o'5 o 0 0 o
X12 X12
1 1 0 0 1 1 Q 0
i .2 0.5
-icosa, - (1+sin"a,) 0 0 icosaq (1+sin2a3)0‘5 0 0
X13 X13
0 0 1 1 0 0 1 1
. . 2 0.5
~-icoso - (l+sin u.l) 0 0 0 0 icosa4 (1+sin2a4) 0.5
X14 X14

‘06T
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The sinaj and cosaj terms are transformed to expressions
containing sinal. For any set of plates, sinul = s is the only
variable.

A computer programme is used where the above equations
are set into a Simpson's Rule integrating routine. The various
transmission coefficients are calculated using the derived wave
amplitudes. A listing of the programme used is given in

Appendix C.
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C.1. COMPUTATION OF THE AVERAGE TRANSMISSION COEFFICIENT - BENDING WAVE- SOLUTION

OO OOOOOOOOOOO0O

DOOOOOO

APPENDIX C. COMPUTER PROGRAMMES

PROGRAM TRFC4 (INPUTsOUTPUTsTAPES=INPUT»TAPE6=0UTPUT)

CALCULATES TRANSMISSION FACTOR F (IJ) FOR UP TO 4 PLATES OF SAME
MATERTIAL BUT DIFFERENT THICKNESSFS=---CONNECTED ALONG A COMMON
JOIN JOIN ANGLE NOT TIMPORTANT

LOSS FACTOR(IU)=2LF¢IW)/(PIYA(DIKI(D)
L IS LENGTH Of JOIN

K(I) IS WAVENUMBER IN PLATE I

A(I) IS AREA OF PLATE 1

F(IsJ) IS TRANSMISSION COFFFICIENT TOR(I«J)
~LN(1=TOR(I+J)) =LN=- IS ALSO CALCULATED

-R= IS RATIO TOR AVERAGE/TOR NORMAL INCIDENCE

ANGLE FOR PLATES I AND J

TF12 BASED ON DIRECT SUBSTITUTION INTO POWER FLOW EQUATION
F12N IS F1l2 CALCULATED AT NORMAL INCIDENCE ONLY

THIS PROGRAM ONLY CALCS F(IJ) FOR I LESS THAN J
FIID)=F(INSART(T(I)/T(1))
EXTERNAL TCPWsDENZ2+DNPwsRCFF
32 WRITE(691)
1 FORMAT(1H134X924HTRANSMISSION COEFF TORIJYs50X+27HTF12 IS TRANSMISS
110N FACTORs//}

WRITE(6+2)
2 FORMAT(4X92HT193X92HT293Xs2HT393X+2HTA9B8X9s3HF12911Xe3HF13911X0

13HF14911X93HF23+11X93HF 24+ 11X s 3HF 349 10X94HTF12910X 9 4HF 12N)
PLATE THICKNESSES T1 Té T3 T4 IN FIRST & FIELDS OF DATA CARD
STH FIELD IS CONTROL 0 (LEAVE BLANK)=-=-CONTINUE
S P NEW PAGE _
R R e STOP AFTER TKIS CARD
FOR 3PLATES  T4=0
FOR 2 PLATES T4=0 AND 13=0

Al



35

40

55

«~0

A5

@~ ow

W W
u &

10
11

READ(5¢6)T19T29T39T4+510
FORMAT (SFS5.2)
IF(T1)42+4297
1F(T2142+4298

TR12=T2/T1
IF(T3)460+34,34
IF(T4)40+35+35
TR13=T3/T71

TR14=T4/T1
[F(1.-TR12)9,10510

21231 ./SQRT(TR12)

c0T0 11 )

212=1.

CALL SMPSN(TCPW9T9129TR139TP1Q9.0o21290.00019109511959129NoIPIZ)
Al12=1.-SP12

F12==ALOG(A12)

Fl3= 0

Fla=.0

F23=.0

F4=.0

F34=,0

R12=$P12/TCPH(.09TR1291R139TR14)

*e€ql1

‘R13=.0

Rl4=.0 -

RZB!,O::

R24=.0

Rk34=,0

SP13=,.0:

Splatoaj

SP23=.0!

SP24=,0"

SP34s3,.0

CALL SMPSN(RCFFuTRlaoTP13,T9149.0,1.0-0.0001olooSIloSPll.Nclpll)
CALL SMPSN(DEN2sTR12sTR134TR14+.0921210,0001+105ST14DN125N+TD12)



CALL SMPSN (DNPWs TR12yTR134TR145,041,090,0001+109S11+50124N+1512)
RS12=TR12#TR12
FN12=3,14162SP12/RS12
70 &D12=3,1416/RS12-DN12-5D12
FP12=RN12/RD12
TRNM=TCPW (.09 TR129TR135TR14)
AN12=1.~-TRNM :
F12N=~ALOG(AN12)
75 IF(T3)40+12413
12 IF(T4)40+30+44
13 TR21=T1/T72
1R23=T3/T12
TR24=T4/12 _
a0 1F(1.=-TR13)164415,15
14 213=1./SORT(TR13)
cO0TO 16
15 213=1.
16 1IF(1.-TR23)17+18,18
RS 17 223=1./SQRT(TRZ3)
GOTO 19
18 223=1.
19 CALL SMPsu(Tcpu,Tﬂla,Tﬁlz.TRla..0.213,0.0001.10,511.5P13.N.1913)
" caLL SMPSN(TCPH»TR2391R21yTRZ#s.0o223q0.0001910oSIloSP23.N.1P23)
F13==ALOG(AL1D)
A23=1 .°SP23
F23==-ALOG (A23) :
R13=SP13/TCPW(.0,TRI3¢TR14,TR12)
95 R23=SP23/TCPW(.0+TR23+sTR21+TR24)
IF(T4)40530+20
20 TR3G=T4/13
TR32=T2/73
TR31=T1/73
100 1F(1,-TR14)2122,22

AN



110

115

120

125

130

21
22
23
24
25
26
27

28
29

30

4

46

31

214=1,7SQGRT(TR14)
G0T0 23

214=1.

IF(1.+TR24) 249254925
224=1.,/SQRT (TRZ4)
GOTO 26

224=1.
IF(1.-TR34)27+28,428
734=1./5QRT(TR34)
cO0Y¥0 29

234=1,
CALL SMPSN(TCPWsTR149TR124TR139,0+Z14+0,00019105ST1+SP144NsIP14)

CALL SMPSN(TCPWsTR249TR219TR23040922490.00019109S11+SP24sNs1P24)
CALL SMPSN(TCPWsTR34+TR31+sTR329¢0923490.00015109S11+SP344N+IP34)
Ala=] +=SPl4

Fl4s=-ALOG(Al4)

A24=].-5P24

F24=-ALOG{A24)

A34=] .,~SP34

F34==-ALOG(A34)

R143SP14/TCPW(,0+TR14+TR12+TR13)
R24=SP264/TCPW(.0,TR24+TR2]15TR23)

R34=SP34/TCPVW (. 097R3491R32QTR31)

SUMT=,.0

SUMT= SP1105912‘5P1303914
WRITE(694)SP129SP139SP149SP239SP249SP349TRNM

FORMAT (22X s IHTOR 1X96(E10.3+4X) 910XeE14.3)
WRITE(6946IR12:R1I39R149R23+R249R34

FORMAT (22X9s 1HR93X96(E10c3s6X))
WRITE(6e31)T1oT2sT3eT4oF12sF13sF149F23+sF244F349FP12,F12NeSP11,
1SUMT

FORMAT(ZX’4F5¢2'lXQZHLN’lX97(EIO.394X)0510.3/
122X +6HTOR11=2sE10.3910X9s8HSUM TOR=,E10.3//)

IF(IP12)50+51550

"GST



135

140

145

150

OO0

51
52
53
54
55
56
S0
57

40
41

42
43

44
45

33

IF(IP13)50+52950

IF(IP14)50553+50

IFSIPZB)SOoSQ,SO

IF(1P24)50+55s50

IF (IP34)50+56550

1F(ST0)32+3+33
WRITE(6sST)IP11sIP1QsIF13,IP14s1P23+1P24,1P34

FORMAT (2Xs43HSIMPSON RULE CRITERTA NOT MgT - ERROR CODESs2X+712)

IF(ST0)3293+33

WRITE(6941)T1eT2eT3+T4

FORMAT (2Xs4FSe2+5X931HCATA CARD ERROR -VE THICKNESS,)
IF(STO0)3293+33

WRITE(6943)T19T2+T3s74

FORMAT (2Xe4FSe295X935HCATA CARD ERROR Tl OR T2 =-VE- Ok Q)
IF(ST0) 3293433

WRITE(6+45)T1eT24T36T4

FORMAT (2X94FSe295X916HERROR  T330 T4#09)

IF(STO)32+3+33

STOR

END

SUBROUTINE SMPSN(FvH'YozaA$BQDEL9IMAX;SIIoS;NoIER)

BASED ON LIBRARY SIMPSCN RULE ROUTINE FOR FUNCTION F (X)

THIS ROUTINE INTEGRATES FUNCTION F(XoWosYelZ)

THE NUMBER OF ELEMENTS ARE DOUBLED EACH REPEAT UNTIL OESIRED
ACCURACY (DEL) IS MET CR MAX. NO. OF REPEATS (IMAX) IS MET

SIl=.0
S=.0
N=0
FA=B8-A

*9GT
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15

20

25

20

35

N

19

20
22

23
26

25

1F(BA)19919+20
1ER=1

RETURN

1F (DEL) 22922923
1ER=2

RETURN

IF CIMAX~1)24924925
1ER=3

FETURN
Xx=BA/2.+A
NHALF=1

'SUMK=F(X9W9Y§Z)’BA*2./3.

sgsunxo(F(A,w,Y.Z)oF(B,w,YsZ))’8A/6.
0028 I=2+IMAX

SIl=S

S=(S-SUMK/2.) /2.

NHALF=NHALF®2

ANHALF=NHALF .
FRSTX=A0(BA/ANHALF)/2.

SUMK=F (FRSTXsWsYeZ)

XK=FRSTX

KLAST=NMALF-1

© FINC=BA/ANHALF

26

28

29
30

CO 26 K=1sKLAST

xK=XK+FINC ;
5UMK=SUMK0F(XK9N9YvZ)
SUHK=SUMK'2.‘BA/(3.“ANFALF)
S=S+SUMK
IF(ABS(S?SII)'ABS(DEL“S))29o28928
CONTINUE

1ER=4

¢0TO0 30

IER=0

N=2®NHALF

RETURN

END

“LST



FUNCTION TCPW(XsWsYsZ)

CALCULATES TRANSMISSION COEFFICIENT AT XaSIN(ALPHA 1)

WMCO=(1,0=X%X2W)# (1, ,0=-X%X)
TCPW2Waa2 ,S#SQART (WMCO) RASQ(XoWeYs2Z)
RETURN

END

FUNCTION ASQ(XsWeYeZ)

COMPLEX SQeSUSUe A
A:(O.92.)‘SQ(XQY)‘SQ(XQZ)/5USQ(X9W9Y92)
ASQ=REAL (A) ##2+ATMAG(A) 282

RETURN

END

FUNCTION SQ(Xow)
COMPLEX SQoSMsSP
SQ=SP (X s W) =SM(Xs W)
RETURN

END

“89T
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FUNCTION SP(Xow)
COMPLEX SP
SP=CMPLX (SQRT (l.eX#X2w) 20,)
RETURN

FND

FUNCTION SM(Xew)
COMPLEX SM
WM2=],=X&EXEW
wM=SQRT (ABS (WM2) )
SM=CMPLX (0, s WM)
IF(WM2)1s292
SM=(0.9=1,)#SM
RETURN

END

FUNCTION SUSQ{(XsiWeYs2Z)
COMPLEX SUSQeBMXsBMWsBMYBMZ9A9BsCsD+SQ
A=SQ(X’I.)

R=SQ(XsW)

C=SQ(XeY)

D=S8(Xe2)

aMXx=B®C&D

GEMw=W#82 ,50A8CHD
BMY=Y&82,50A2B2D
gM2=2%22 ,5%A88%C
SUSQ=BMX+BMW+BMY +BM2
RETURN

END

*6ST



FUNCTION DEN2(XsWoeYoZ)
ONE INTEGRAL EQUATION IN DENOMINATOR FOR POWER BALANCE APPROACH

REN2=SQRT (1.=X2X) 2ASQ(XoWoYeZ) ®w
RETURN
END

FUNCTION DNPW(XsWeYsZ)
ONE INTEGRAL EQUATION IN DENOMINATOR FOR POWER BALANCE APPROACH
FSzwWéw
wM=1 -0°X’X¢w
YM=] . =X8X*Y
2M=]  =X#X®Z
IF(WM) 19292
1 wM=,.0
2 IF(YM)39494
3 YM=,0
6 1F(ZM)S+6+6
S 24=.0
6 SUNP=H°'Z-5*ASQ(XvHoY’ZQ‘SQRT(HM)OY*‘Z.S*ASQ(X¢Yglyw)*SQRT(YM)
-x.zﬂz.susmx.z,u,n¢som’(zm
DNPW=SUMP/RS.
RETURN -
END )

*09T1
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FUNCTION RCFF{(XoWsYel)

CALCULATES REFLECTION COEFFICIENT
COMPLEX SUSQsSSQPsA

A==SSOP (XoWseY92) /SUSQ(XswWsYs2Z)
RCFF=REAL (A)B¥ -+ ATMAG(A) #%2
RETURN

END

FUNCTION SSQP(XsWeYeZ)

FOR PLATE 1 AT X=SIN(ALPHA 1)

COMPLEX SQ.SSQPOBMX;BMW’EMY98M29APSQ.SPQSM;BOCyo

R=S5Q(XeW)
C=SQ(XsY)
r=SQ(Xs+2)

| EMX=B#C#D

APSQ=SP (X913 +5M(Xels)
EMWsWa22,54CsD#APSQ -
RMY=Ya#2,5eB2#D*¥APSQ

 pMZ=2#82,5#B#CTAPSO

SSQP=BMX+BMWeEBMY +BMZ
RETURN
END

"T9T
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COMPUTATION OF THE AVERAGE TRANSMISSION COEFFICIENT - GENERAL SOLUTION

17
1

16
10

22

FROGRAM TFBLT(INPUTQOUTPUT'TAPES!INPUTvTApE6=0UTpUT)

DIMENSION TD(Q)97(4)970R(493)9T11(493)9WMT(493)¢TFC(493)fDIFF(493)
19F$Q(4)9TNM(493)

CALCULATES TRANSMISSION FACTOR F(1J) FOR UP TO 4 PLATES OF SaAME
MATERIAL BUT DIFFERENT THICKNESSES=-=---CONNECTED ALONG A COMMON |
JOIN === BENDINGs LONGT. AND TRANSVERSE WAVES CONSIDERED

L 0SS FACTOR(I9J)=2LF(loJ)/(PI)A(l)K(I) ---FOR BENDING WAVES

L IS LENGTH OF JOIN

K(1) IS WAVENUMBER IN FLATE 1

A(1) IS AREA OF PLATE 1

F(Isu) IS TORBB TRANS. COEFF
OR TFCBB=-LN(1-TORBB) BUT BENDING WAVES FROM INCIDENT
LONGT. AND TRANSVERSE WAVES. TORRL AND TORBT MAY NEED 70 BE
CONSIDERED AFTER THE FIRST JOIN OF A STRUCTURE «
WRITE(691)
FORMAT(1H1s5Xi76HTRANSNISSION FACTORS = RENDING: LONGT. AND TRANSV
1ERSE WAVE FIELDS CONSICEREDe//)
CENTRE FREQUENCY 1IN FIRST DATA FIELD
4 PLATE THICKNESSES IN MMe IN NEXT 4 FIELDS===T1 FIRSTsT2sT35T4,
AND PLATES 1 AND 3 OPFOSITE AND PERPENDICULAR TO 2 AND 4.
6TH FIELD IS CONTROL 0 (LEAVE BLANK) ===CONTINUE
leemmmroemeeom==== NEW PAGE
) P i STOP AFTER THIS CARD
T1 AND T2 MUST BE +VE
READ(SolO)Fv(TD(I)’I=194)oSTO
FORMAT(6F6.2)
0O 22 1I=1+4
T(I)=TD(1)/1000.
RTF=SQRT(T(1)*F)
po2 I=1ls4
FSQ(I)=(54.4’T(I)/T(1)/RTF)*“2

*Z91
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50

55

11
120

3

4

S

6

7 FORNAT(2X0F592164(F5.2v3X)oElO.392X91H191193E12.396X’lHl9Iln3E12.3

8

9 FORMAT(ZXiF592X94(F5.2’3X)9E10.302X91H191193E12.396X91h191193E12.3

15

88

20
18

wRITE (69120) '
FORMAT(QXQlHFoéXoZHTl96X92HT296X92HT396X’2HT496XQ3HF5095X,3HT0R9
l6X¢2HBBolOXo2HBLolOX;ZhBTo10X03HTFC,6X92HBB’10X92HBL910X92HBT)
cAaLL SMSNZ(TQF’oO’la’oOl’lO’TNM’TIl’TOR,N’IER)

rPoa I=1.4

CO4 J=1e3

WMT(19J)=1e=TOR(IsJ)

TFC(IoJ)==ALOG(WMT (14J))

IF(IER=4)895+8

P06 I=194

06 J=1+3

CIFF(I+J)=TOR(I+sJ)=-TI1(1sJ)
NRITE(697)F’(TD(N)9N=114)o(FSQ(I)119(TOR(IQJ)9J’103)9Io(TFC(IoJ)o
1J=193)913194)9((TII(Iod)sJ3193)913194)0((TNM(I’J)9J=113)913194)

1/3(41X9EIO.392X91H191193E12.396X91H191193512.3/)/2X9

217HDEL NOT SATISFIEDs4OXs }SHPREVIOUS VALUES/4(55X93E12+3/1/2Xs
3z8HTOR NORMAL INCIDENCE ONLYs/4(55X9e3E12.3/)7)

c0TQ 15
hRITE(699)F’(TD(N)9N3194)9(FSQ(I)9[!(TOP(I’J)9J3193)v19(TFC(IoJ)9
10=193)9Ix198) s ((TNM(Isu)9J=1ls3)s1=194)

1/3(41X9E10.392X’1H101193512.396X91H101193E12o3/)/2X9
228HTOR NORMAL INCIDENCE ONLY 9 /4 (55X93E12.3/)7)
SUMT=.0

D088 N=ls4

0088 M3ls3

SUMT=SUMT+TOR (NeM)

WRITE (6520) SUMT

FORMAT (2Xs16HSUM OF TOR(I+4J)=vEL2.3//)
IF(STO)17+16418

STOP

END

€91
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SUBROUTINE SMSNE(TstALsAHyDELoIMAXvTNMosllasyNyIEP)
TH1IS PROGRAM APPLIES SIMPSONS RULE TO A SET OF FUNCTIONS

INTEGRATED FROM AL TO AH.

OF REPEATS IS SET BY IMAX.

THIS IS BASED ON A LIBRARY PROG

IN TRIS PROGRAM THE
REDUCE COMPUTING.

INITIAL NUMBER OF ELEMENTS IS SET 7O 128 TO
“MAXe. OF 3 RUNS IS SET THEREFORE MAX. OF 512

ELEMENTS USED IN FINAL RUN.,
DIMENSION T(4)9SII(493)9S(493)oSUMK(4,3)9TBX(4)9TLX(4)9TTX(4)y

1TBL(4) o TLL(4) »TTL (4
2TCAH(4493) sFSQ(4)
£02 1=l.4

po2 J=1,3
STI1(Ied)=.0
S(IsJd)=.0

BA=AH-AL
IF(BA)19+19,20
1ER=1

RETURN

1F (DEL) 22922923
1ER=2 3
RETURN
IF(IMAX=1)2644+24%925
T1ER=3 ”

RETURN

X=BA/2.*AL:

NHALF =264

)9TBH(4)9TLH(Q)!TTH(4)9TCX(4,3)vTNM(4o3)o

CALL SOLVA(TeXeFoFSQeTCX)
CALL SOLVA(TsALsFoFSQsTNM)
CALL SOLVA(TsAHsFsFSQsTCAH)

003 I=1+4
£03 J=1.3

SUMK (TeJ)2TCX(1+J)2BAZZ./3.
S(I,J)=SUMK(19J)0(TNM(le)+TCAH(IoJ))*BA/6.

ACCURACY IS SET BY DEL AND MAX. NUMBER

RAM FOR A SINGLE VARIARLE FUNCTION

AN
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TEST RUN IMAX=3

TMAX=3

0028 'L=2y IMAX

NHALF=NHALF®#2

ANHALF=NKRALF
FRSTX=AL*(BA/ANHALF)/2%

CALL SOLVA(TsFRSTXQEyFSQoTCX)
CO4 I=le4

004 J=193

S11(1+J)3S(1sJ)
S(I!J)=(S(I’J)~SUMK(IoJ)/Z.)/Z.
SUMK(Tes J)ETCX(19J)

XK=FRSTX

KLAST=NHALF=-1

FINC=BA/ANHALF

0026 K=1oKLAST

xK=XK+F INC

CALL SOLVA(TyXKQFyFSQQTCX)
£026 I=1l.4

0026 J=1e3
SUMK(I;J)‘SUMK(qu)*TCX(I'J)
pos I=1s4

005 J=1.3

SUMK (T J) =SUMK (15 J)#2.98A7 (3. 2ANHALF)

S(I90)=S{1sJ)+SUMK(TsJ)
o6 I=l.4
D06 J=1.3

IF(ABS(S(I.J)-SI](IoJ))-ABS(DEL“S(IsJ)))6928928

CONTINUE
GOT0 29
CONTINUE
1ER=4
~f0T0 30
1ER=0

AN
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N=28NHALF
RETURN
END

SUBROUTINE SOLVA(T9SsFGeFSQsTOR)

THIS SETS UP REQUIRED MATRIX FOR INCIDENT ANGLE ==--S=SIN(ALPHA 1)
COMPLEX WAVE AMPLITUDES FROM MATRIX SOLUTION ARE USED TO CALCULATE
THE TRANSMISSION COEFFICIENTS FOR THE PARTICULAR VALUF OF S.

TORBRB (1sN)=TOR(Ns1) IN PROGRAM

TORBL (1sN)2TOR(N.2) IN PROGRAM

TORBT (1sN)=TOR(Ns3) IN PROGRAM

DIMENSION A(B9B) yB(8) s X (16) sCM2(4) sCP2(4) +EM(4) 9EP (4) sEHM(4)
lCIP(é)QCIM2(4)’CIP2(4)oCM(4)gCP(A)9PSM(4)9PSP(4).T(4)¢TD(“).

2#5Q(4)’BSQ(4)9CSQ(4)9TGR(493)9EHP(4)9F(4)QCIM(4)95CR(208'40)9TR(4)
JeAL(4) 9 AT (4) o FSQ(4)

COMPLEX AsBsCCOMsHICOHIAL 9 AT s X1T4 9 X5T8sQ
CO 70 N=l+4
0O 70 M=1+3
TOR(NsM)=.0
A(Ss1)3(Lles0s)
A(S92)=(1es0.)
A({S+5)=(1les0.)
A(Ss6)=(les0.)
A(7+3)=(les0,)
A(7,4)=(I-90.)
5(797)3(1090.)
A(7+8)=(les0s)
R(S)=(=1.90.)
TF=T(1)*FQ
RTF=SQRT(TF)

"991
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109

111

113

CB2=21=S%#S/(3.59E~-04%*TF)
2=ABS(CB2)

CB=SQRT(2)
SC=S/(3,20E-02¥%RTF)
CC2=1.-S#S/(1.024E~03%#TF)
7=ABS (CC2)

CC=SORT ()
SB=S/(1,90E=-02%RTF)
CCOM=CMPLX(CC20,)

HS=SB®#SC

HC=CB#®#CC

H=CMPLX (HC+HS»0,)
IF(CB2)9+2+2
H=CMPLX (HS s =HC)
IF(CC2)4+292

H=CMPLX (HS=HCs0,)
CCOM=CMPLX(0.9-CC)
COH=CCOM/H #(0e9s~1,)

DO 3 N=l+4
CM2(N)=1.'S*S*T(N)/T(I)
2=ABS (CM2(N))
CM(N)=SQRT(2)
CP2(N)=1.+S#S®T(N)/T (1)
CIMZ(N)=(1e=SES)8T(N)/T(])
CIP2(N)=(1.+S2S)#T(N)/T(])
CP(N)=SQRT(CP2(N))
CIM(N)=SQRT(CIM2(N)}))
CIP(N)=SQRT(CIP2(N))
FSMIN)=CM2(N)#*(T{N)/T(1))w=2
PSP (N)=CP2(N)*(T(N)/T(1))##2
EM(N)=(CM(N)*SQRT(T(N)/T(l)))**3

“L9T
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65

70

75

a5

Q0

EP(N)=(CP(N)*5QRT(T(N)/T(l)))**3
FIN)=S44%T(N)/T(1)/RTF
FSA(N)=F (N)#F (N)
A(ls1)=CMPLX(-CM2(1)+0.)
A(le2)=CMPLX(CP2(1)+0,)
A(le3)=CMPLX(=PSM(2)4+0.)
A(1e4)=CMPLX(PSP(2)s0.)
A(l+5)=CMPLX (=PSM(3)+0.)
A(1+6)=CMPLX (PSP (3)+0.)
A(le7)=CMPLX(=PSM(4)50.)
A(1s8)=CMPLX(PSP(4)+0.)
A(291)=CMPLX(0.9eM (1))
A(2+2)=CMPLX(=EP(1)9+04)
A(295)=CMPLX(0e9s=EM(3))
A(246)=CMPLX(EP(3),50.)
A(343)=CMPLX(0.9EM(2))
A(394)=CMPLX(=EP(2)4+0.)
A(397)=CMPLX(0ee~-EM(4))
A(3¢8)=CMPLX(EP(4),+0.)
A(GeY)=CMPLX(0s9=CIM(2))
A(492)=CMPLX(-CIP(2)4+03)
A(493)=CMPLX(0.sCM(2))
A(4s4)=CMPLX(CP(2)4+0.)
A(6+1)=CMPLX(0e9s=-CIM(3))
A(692)=CMPLX(=CIP(3)+0.)
A(6+5)=CMPLX(0.9sCM(3))
A(696)=CMPLX(CP(3)4+0.)
A(8s1)=CMPLX(0e9=-CIM(4))
A(892)=CMPLX(=CIP(4)+0.)
A(897)=CMPLX(0.9CM(4))
A(8+8)=CMPLX(CP(4)+0.)
B(l)==A(1s1)
B(2)=CMPLX(0.9EM(1))
B(a)=A(4s])

B(6)=A(641)

89T



R(8)=A(8s1)
F4=F (2) +F (4)
95 F13=F (1) +F (3}
IF(CM2(2))10+11
10 A(493)=A(493)%(0.0-1,)
A(393)=A(393)%(0,9tls)
1 IF(CM2(3))12+13513
100 12 A(6+5)=A(6e5)%(0e9=T1.)
A(2+5)1=A(295)%(0,9+1,)
13 IF(CM2(4)) 144595
14 A(Bs7)=A(Bs7)%(0,s=-1,)
A(3,7)=A(3’7)§(0.9010)
1n5 S A(291)=A¢241)-F24%COH
A(292)=A(2+2)-F24%#COH
A(3+3)=A(3+3)-F13#COH
A(3,4)=A(3,4)-F13#COH
B (2)=B(2)+F24%COH
110 31 IF(T(3))20,15916
1S IF(T(4))20+179+18
16 IF(T(4))20e1997
20 WRITE(6+33)
33 FORMAT (2Xs10HDATA ERROK)
115 DO 32 M=1:4 -
DO 32 N=1+3
32 TOR(MsN)=e0
RETURN
C ~CLINIT= Is AN AyALIABLE LIBRARY ROUTINE 70 sOLVE COMPLEX MATRIX
120 C EQUATION AXe=B THIS IS NOT REPRODUCED HERE.
17 CALL CLINIT(A989X949l9CET9EX9CNR.SINGUL$895CR)
L=2
K=9
cO0TO 11
125 18 CO 63 J=5+6
0062 I=1,8

N

691



130

135

140

145

150

155

160

OO0

62
63

64

68

19

11

2l

A(Je I)=A(J+24])
B(J)=B(J+2)
C064 J=5+6
D064 I=146
A(leJd)=A(19J+2)
CALL CLINIT(A9BoXs0691sDETsEXsCNRsSINGUL+»089SCR)
K=13

L=4

LO 68 I=9.12
x(I+4)=X(1)
X(I)=.0

¢0TO0 11
CALL CLINIT(A9BoX906919DET9EX9sCNRySINGUL+089SCR)
K=9
L=3
¢070 11
CALL CLINIT(AsBsX98s19sCETsEXsCNRySINGUL»089SCR)
K=13
L=4
X(I) ARE THE PROPAGATING AND NON=PROPAGATING BENDING WAVE
AMPLITUDES.
FIND LONGT. AND TRANSVERSE WAVE AMPLITUDES FROM X (1)
0021 I=1sKsb
J=(1+3)/4
ASQEUI=X(I)EX(I) +X(T+1)#X(T+])
Q=CMPLX(X{(3) s X(4))
X1 T4=CMPLX (X (1)9X (2))
X1T4=(1e904)+QeX1T4
Q=CMPLX(X(S)+X(6))
XST8=CMPLX (X (7) sX (8))
XST8=Q+X5TR
AL (1) ==-COH®XSTS8
AT(1)==SR#X5T8/H

“OLT
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170

175

180

185

190

S8
57
56
60
67

66

65
23

26
28
25

26
29
27

80
22

AL (2)=COH®X1T4

AT(2)=SB#X1T4/H

IF(L=-3)56+57+58

AL(4)==AL (2)

AT(4)==AT (2)

AL(3)==AL (1)

AT(3)==AT (1)

o0 60 J=lsL
BSQA(J)=REAL (AL (J))2#2+AIMAG (AL (J) ) ®*2
CSQ(U)=REAL (AT (J) ) 2#2+AIMAG(AT (J) ) ®%2
IF(CIM(1))67+674965

0O 66 N=lsl

NO 66 M=1,3

TOR{(NsM)=,0

TOR(1s1)=1,0

GOT0 22 .

DO 22 N=1lsL

IF(CM2(N))23+23+24

TOR(N91)=.0

GOTO0 28

TOR(Ns1)=EM(N)RASQ(N) /CM2(N)/CIM(])
IF(CB2)25925+26

TOR(Ns2)=,0

GOTO 29
TOR(Ns2)=F(N)*BSQ(N)#CE/CIM(1) /2.
IF(CC2)279+27+80

TOR(Ne3)=.0

GOT0 22

TOR(N93)=0,320%#F (N)®CSC(N)#CC/CIM(])
CONTINUE

RETURN

END

"TLT
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COMPUTATION OF VIBRATIONAL ENERGY RATIOS OF A CONNECTED STRUCTURE.

PROGRAM ENCAL (INPUT,OUTPUT, TAPES5=INPUT, TAPE6=0UTPUT)
CALCULATES ENERGY RATIOS FOR CONNECTED STRUCTURES OF UP TO 10
ELEMENTS --—--—--- USING POWER FLOW EQUATIONS
LAST ELEMENT ONLY DIRECTLY DRIVEN ----ELEMENT (N)
DIMENSION CL(10,10),PL(9),A(10,10),CLF(10,10),PN(10)
READ(5,1)N, (PN(I),bI=1,N)
FORMAT (12,1013)
WRITE(6,14) (PN(I),hI=1,N)
FORMAT (1H1,5X,19HPLATE ENERGY RATIOS//6X,10HPLATE NO.S,101I5//)
=N-1
WRITE(6,2) (PN(I),I=1,M)
FORMAT (4X, 1HF, 8%, 8 (2HER,I12,10X) ,2HER,I1,//)
READ(5,3)((CL(I,J),J=1,10),I=1,N)
READ COUPLING LOSS FACTORS --- CALCULATED AT 1000HZ
1ST CARD cL 11,12,13,14,---ETC
NEXT CARD CL 21,22,23,24,---ETC _
CONTINUE FOR N CARDS - CL(I,I) DUMMY VALUES E.G. ZERO
ALL LOSSES ENTERED X1000.
FORMAT (10F7. 3)
DATA CARD 1ST FIELD ---FREQUENCY
REMAINING FIELDS---INTERNAL LOSS FACTORS FOR PLATES 1 TO
N-1 IN ORDER. DRIVEN PLATE LOSS
FACTOR NOT REQUIRED

CONTROL--- F=20000. NEW SET OF DATA FOLLOWING

F G.T.20000 ---- STOP
READ (5,5)F, (PL(I),I=1,M)
FORMAT (F6,9F7. 3)
IF (F-20000.)13,11,12
F=F/1000.
RF=SQRT (F)
DO 6 I=1,M
CL(I,I)=.0

"L
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SUMF=.0

po 7 J=1,N
CLF(I,J)=-CL(I,J)/RF
SUMF=SUMF+CLF (I,J)
CLF(I,I)=-(SUMF~PL(I))

Do 9 I=1,M
CLF(N,I)=CL(N,I)/RF

DO 8 I=1,M

Do 8 J=1,N

A(I,J)=CLF(J,I)

CALL ASOL(A,M,1)

F=1000.*F

WRITE(6,10)F, (A(I,1),I=1,M)
FORMAT(ZX/ZX,FS,ZX,Q(E10.3,4X))
GOTO 4

STOP

END

“ELT

SUBROUTINE ASOL(A,N,M)

THIS IS A FAST MATRIX SOLVING ROUTINE WITH NO CHECKS
USEFUL WHERE DET. OF A IS NOT NEAR ZERO.
REFERENCE (HEMMERLE - 1967)

DIMENSION A(10,10)

L=N+M

pol I=1,N

A(N+1,L)=1.0/A(1,1)

DO 2 J=2,L

A(N+1,J-1)=A(1,J) *A(N+1,L)

Do 3 J=2,N

DO 4 K=2,L

A(J-1,K-1)=A(J,K)-A(J,1) *A(N+1,K-1)
A(J-1,L)=-A(J,1) *A(N+1,L)

po 1 J=1,L

A(N,J)=A(N+1,J)

RETURN

END
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APPENDIX D.APPARATUS AND EXPERIMENTAL PROCEDURE

D.1l. INTRODUCTION

In order to predict the energy distribution in a connected
structure, using Equation (3,9), the internal loss factors of the
‘individual elements are required, and these internal loss factors
are obtained experimentally. Experimentally measured energy
ratios are required to compare with the predicted energy ratios.
That is, the experimental work involved the accurate measurement
of uncoupled plate internal loss factors and the steady state
energy levels of the plates comprising the test structure.

In this appendix, the apparatus required and experimental
procedure used to measure the internal loss factors and plate
energy ratios are described. In D.2, the structure support
system and associated external drivers are described. The
general instrumentation used and its calibration is discussed
in D.3. Both steady state and decay methods of measuring the
internal loss factors are described and discussed in D.4. The
method of measuring the plate energy ratios is included in D.5,
followed by a general discussion on the expected accuracy of

the experimental results in D.6.

D.2. TEST STRUCTURE SUPPORT SYSTEM

D.2.1. Requirements

Wwhen measuring the loss factor of an element, it is
important to reduce any losses via the support system to a
degree where they are small compared with the measured loss.

In some early tests, the plates were supported by long
piano wires from the ceiling. During the tests it was noticed
that the strings were vibrating and accelerometer measurements
showed that energy was being transferred into the ceiling. A

support system which would block this energy flow was required.



CLAMPING BAR
SUPPORT
BLOCK
SUPPORTED
POWER PLATE
MEASUREMENT
TRANSDUCER — —
ADDED MASS
CROSS SLIDE
ADJUSTMENT
HANDLE
FI1G. D-1 STEADY STATE MEASUREMENT OF THE PLATE

INTERNAL LOSS FACTOR

SUPPORT WIRES

NON CONTACT
(ELECTROMAGNETIC)
DRIVER

ADDED DAMPING
MATERIAL

DECAY METHOD MEASUREMENT THE PLATE

FI1G. D-2
INTERNAL LOSS FACTOR
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The other requirement was that the system should support
the plate and the non contacting driver such that the distance

between plate and driver was maintained during all tests.

D.2.2. Support Block

The support block is shown in the photographs Fig. D-1
and D-2. The plate to be supported was clamped firmly into a
steel block, 250mm X 100mm x 50mm. The clamping was achieved
by six high tensile set screws acting on a clamping bar, set
into a milled slot in the block. The bar was grooved along the
length of the clamping face so that the plate was gripped by an
edge rather than a smooth surface. Each plate was cut so that
it was held only at a maximum of three support points each
approximately 20mm wide. The bar was clamped sO that the
pottom edge of the bar and the bottom surface of the block were
flush. This ensured that no losses would occur from vibration
or air pumping between the plate and a clamping surface overhang.
The block was supported by four piano wires connected to an over-
head beam.

The extreme impedance mismatch between the plate edge
and the relatively massive block reduced energy losses to the
support system. Accelerometers were placed on the support beam
and no measurable outputs were obtained when the supported

structure was excited.

D.2.3. Point Contact Driver Support

The steady state measurement of the internal loss factor
required the measurement of input power to the plate whose loss
factor was being measured. Although the mini shaker driver and
transducer eould have been mounted on the same plate support

block, as was the electro magnetic driver, there would have been
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required a provision for adjusting the position of the driver
relative to the plate in at least two directions, apd perhaps
all three directions in space, to facilitate the lining up of
the transducer and the mounting hole -in the plate. (See descri-
ption of the transducer in Appendix E.)

To avoid the complicated mounting requirements, the
input power transducer and mini shaker were mounted on a Cross
slide which was rigidly connected to a free-standing frame.

The shaker was mounted such that its drive action was
horizontal and the cross slide allowed horizontal adjustment
in a direction perpendicular to the shaker movement. The
four piano wires supporting the clamping block were able to be
individually adjusted vertically. This not only enabled
vertical position control of the plate relative to the input
flow transducer but also allowed a fine degree of control of the
orientation of the plate to the transducer. If the transducer
was attached firmly to the plate when it was not normal to the
plate, the bending moments exerted on the force transducer
could cause false readings, which would indicate incorrect input
power levels. The fine control on plate orientation allowed

this problem to be reduced to a minimum.

D.3. INSTRUMENTATION AND ITS CALIBRATION

It will be seen later, in D.4 and p.5, that experimental
individual plate internal loss factors and steady state plate
energy levels can be determined from two types of measurements
(a) acceleration levels at a number of different points on the

plate i to obtain the mean square acceleration level <ai> and

{b) the average power input, Pi into the directly driven plate i.
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D.3.1. Acceleration Measurement

The acceleration levels on the plates were measured using
a Briiel and Kjaer accelerometer type 4344 in conjunction with a
F.E.T. voltage follower and third octave band spectrometer.
The band limited signal was averaged in a long time averaging
circuit and the voltage output was displayed on a digital volt-
meter. A schematic diagram of this circuit is included in Fig.
D-3, where the point contact driver is shown. The same meas-—
urement method was used for electromagnetic (non-contact) excita-

tion.

D.3.2. Input Power Measurement

The average input power was determined using the relation-

ship

1 /T
P, = —/{’ fci(t).vi(t)dt (D,1)
T

O

where fci(t) and vi(t) are the instantaneous values of the
applied force and velocity at the point input to the directly
driven plate 1i.

A transducer (Fig. D-4), described in Appendix E, was
used to measure the force and acceleration simultaneously at
the input point of the plate. The acceleration signal was inte-
grated to give velocity, and the two signals were third octave
band limited and then multiplied. (See Fig. D-3)

The multiplier incorporated an Analog Devices AD530J
integrated circuit connected for use as a multiplier.. The
instantaneous output voltage was averaged to give the time

averaged product of fc(t).v(t).
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Phase compensation was used to of fset any additional
phase changes between the two instantaneous signals, introduced

by the circuit.

D.3.3. Calibration

The third octave band spectrometer, multiplier and long-
time averaging circuit each have gain and zero drift control.

A pure tone (1000Hz - 3 Volts R.M.S.) was used as a reference
signal for the gain setting of the averaging and multiplier
circuits. The zero drift and gain controls were set before the
calibration of the transducers and all settings were checked at
least once every three hours during experimentation.

The method used to obtain the calibration constant for
the power input measurement, P, watts/volt, is included in the
description of the power flow transducer in Appendix E.

A standard reference accelerometer was indirectly used to
determine the calibration constant for the plate accelerometer.
The accelerometer on the transducer was calibrated using the
reference, mounted back to back, as described in Appendix E.

The plate accelerometer response was then compared with the
transducer accelerometer response by mounting them back to back.

The plate accelerometer calibration constant (PA)c is then

<A S
(PA)c = (TA) KEQE§£ metres/secz/volt. (D.2)
<fplate”

where <Apowe£>is the average voltage reading of the power flow

transducer accelerometer and <Ap1ate> is the average voltage
reading of the plate accelerometer measured simultaneously.
(TA)c is the calibration constant of the accelerometer

on the power flow transducer.
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In all cases, the excitation was third octave band
limited and the measurement of each signal was through the same
circuitry as that used in all experimental data recording.

A list of the calibration constants is given in Appendix

E, table E-1.

D.3.4. Mass Loading

A mass loading factor (ML) was applied to the measured
plate mean square acceleration levels to compensate for the
reduced acceleration level measured due to the accelerometer
mass loading the plate. This was determined from, (Beranek,

1971 (3))

a;/ay = zp42p+jwma)

where arp is the measured plate acceleration level
a5 is the unloaded plate acceleration level
Ma is the added mass

and Zp is the mechanical impedance of the test plate.

[tag/ag?l = 1222 ] +]o?n?
= 1/1+ | mm/ZFJz (D,3)
hence (ML) = l+|wm/ﬁd2

For steel plates,

wm/2 = mf/14. 5t

Where m is accelerometer mass (kg.) and t is the plate thickness

in mm.
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The mass m was that of the accelerometer plus a typical
amount of beeswax used to connect the accelerometer to the plate,

and was 2.38gm.

D.4. INTERNAL LOSS FACTOR MEASUREMENT

D.4.1. Steady State Method

The internal loss factors of the uncoupled plates were
determined from the measurements of input power and mean plate
energy level during steady state excitation. From equation

(4,63) where dEi/dt =0

The steady state energy level for a plate of mass m is

2

2
E, = mg<ai>/u (D,5)

1

where <ai> is the mean square acceleration level of plate i,

hence the internal loss factor can be expressed as,

n, = (w/m) (P, /<al>) (D, 6)

Each test plate was supported from the clamping block
and was directly driven by the mini shaker via the power input
transducer, as shown in Fig. D-1. The force and velocity signals
were multiplied and averaged to give a voltage Vp with the phase

compensator set for the particular bandwidth being investigated.

P. = V_P_ watts (D,7)
i p ¢
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The plate acceleration was measured in ten different
locations over the plate surface to obtain the mean square
acceleration voltage <V§> from which the mean plate energy can

be determined

_ 2 2, 2
Ei = (ML)imi<VA> (PA)c/w (D,8)
and from equation (D,6)
w v_P
“WoToa (ML) 2p = (D,9)
i i <VA>(PA)i

The experimentally obtained internal loss factors for

each plate are presented in Table 5-2.

D.4.2. Decay Methods

Energy decay tests were carried out on two plates to
compare the internal loss factors measured using conventional
decay methods with those obtained during steady state excitation.

The majority of results were obtained using a Briel &
Kjaer Reverberation Processor type 4422, which uses the
Schroeder-Kuttroff double pulse method, and the remainder were
measured using the standard pause method.

The longtime averaging RMS circuit consisted of a pre-
cision full wave rectification circuit with a variable response
averaging circuit. The acceleration signal during the decay
tests was fed into this circuit with an appropriate response
time selected. An Analog Devices 755N logarithmic amplifier
was used to convert the averaged RMS signal to a logarithmic
output which was displayed on a storage cathode ray oscilliscope,

(CRO). The decay slope was used, in conjunction with the CRO
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voltage and sweep time settings, to obtain reverberation times,
hence loss factors. The results of these measurements are

discussed in Appendix E.

D.5. PLATE ENERGY RATIO MEASUREMENT

After individual plates had been welded to form a
connected structure, it was supported from the clamping block
such that the electromagnetic driver was able to directly excite
the appropriate plate. Fig. D-5 shows a three plate single
join structure supported from the clamping block.

The plate ‘énergy ratios were determined using Equation
(D,8), where the mean square accelerations were obtained from
ten measurement chations over each plate for two coupled plate

@
structures and eiéht points for three or more plate structures.

Since the samelaccelerometer was used to measure the

plate acceleration level on all plates, the absolute acceleration

levels were not required and the plate measured energy ratios

are given by,

_ : 2 2

D.6. ACCURACY OF EXPERIMENTAL RESULTS

o

Although the voltage signals were measured through the
instrumentation to an accuracy of *4%, the least accurate com-
ponent being the multiplier with a sﬁeé%fied error range of *2%,
the accuracy of the internal loss factors, and energy level ratios,
were determined by the accuracy of the measured mean energy

jevels of each plate. The mean energy level is proportional to
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the mean square acceleration level, which is the mean of the
square of a number of separate readings of the time averaged
acceleration levels, measured at different locations on each
plate. Since the plate time averaged response is not uniform
over the plate, the accuracy of the determination of the mean
square acceleration level, hence the mean plate energy 1eve1, is
related to the number and locations of the measuring points.

The measuring points were randomly selected within small
areas which were spread generally over the plate surface.
Locations near plate edges, joins and driving points were avoided
as much as possible to reduce any near-field effects.

The accuraé§ of the mean square values depends on the
number of point readings used to obtain the mean square value.
Tests were carried out on two plates at different frequencies
to investigate the deviation of results about a 'true' mean.

This 'true' mean square level was determined from a large number
of point measurements. The 2 sigma points for different fre-
guencies and different numbers of point measurements used to
obtain a mean square value are shown in Fig. D-6. This indicates
that the 95% confidence limits, applied to thé mean square accel-
eration levels measured at different frequencies using 8 or 10
measurement locations, are less than *1.3dB. At higher fre-
quencies the 95% confidence limits decrease to +0.5dB. These
limits determine the overall accuracy of both internal loss

factor and energy ratio results.
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APPENDIX E. TRANSDUCERS AND INSTRUMENTATION FOR STEADY STATE
MEASUREMENT OF LOSS FACTOR

E.l. REQUIREMENTS

The average input power to the test plate can be measured
by sensing the instantancous force and velocity at the input
point to the plate. The time average integral of their product

is the input power.

fb(t).v(t)dt (E,1)

= [

o

It is essential that the phases of the two input signals be very
carefully preserved prior to their introduction into the multi-
plier circuit in order to measure the correct input power,

Fig. E-1, previously shown as Fig. D-3, shows the required

circuitry and is repeated here for convenience.

E.2. EBANSDUCER CONSTRUCTION AND THEORY

The power flow transducer shown in Fig. E-2 consists of
an annular piezo-electric crystal clamped between two brass
bosses by a 3/16 inch U.N.F. brass bolt. A mica wafer
separates the signal electrode from the grounded boss at one
end and the other boss forms the shield. A B. & K. type 4344
accelerometer was bonded to the head of the compression bolt.
The 3/16" thread of the compression bolt is compatible with the
mini shaker driver. The body of the accelerometer and the brass
bosses and bolt share a common ground in the signal circuit.

The signal from the accelerometer is integrated to give
a velocity signal. The voltage from the clamped crystal is
proportional to the axial strain, hence it is proportional to
the axial force. The clamping bolt helps to protect the crystal
from damage if accidental shear forces or bending moments are

applied.
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The transducer is described by the mobility circuit
shown in Fig. E-3. In this circuit Ml is the dynamic mass of
the shaker and metal on the shaker side of the force transducer,
represented by a capacitance, as is Mz, the mass on the plate
side of the force transducer. The spring rates, K, of the com-
pression bolt and of the piezo—electric crystal are represented
by inductances. Real losses, C, the damping mechanisms, are
represented by resistances, where C is proportional to 1/R.

In the circuit, the current, i, is analagous to force, fc, and
the voltage drop between two points is analagous to the relative
velocity between those points, the velocity of the plate at the
input point, Vv, is analagous to the voltage across Zp, V. The
real loss CL represents any losses due to the accelerometer

lead movement.

Referring to the mobility circuit, the power into the
test plate is <f,.v> which is equivalent to <ip.V> in the
mobility analogy. The use of the symbols <> will indicate the
time average of the contained quantity.

<i_.V> = i, —-i,-1i.). = i - <i,. - <i_.
1p A% <(i i, 1L) v> <i. V>- <i,.V> i, v>

3 3 2

(E,2)

Since the impedance M2 is purely reactive, i2 and V are

in quadrature, hence <iZ.V> is zero, and therefore

<1p.v> = <13V> - <i_ V> (E, 3)

Both CB and CC are very large as both crystal and bolt
have very low mechanical resistances, hence i5 and i8 are

negligible, hence
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= l +i (Er4)

The ratio of iG/i7 is always the same, depending on
relative moduli of elasticity and areasof the bolt and crystal,

thus

(E,5)

where K is a constant to be determined by calibration.
Hence i

<i V> = <i_. V> - <i_.
1p v K <i, v> <ip v> (E,6)

<iLV> represents any work done on the accelerometer lead or any
other energy loss from the plate side of the transducer. This
could include any acoustic radiation from the piston-like vib-
rating bosses. These losses are small and were compensated
for by the phase compensation circuit during calibration.

when the plate is not attached, the only nett work done

is attributable to these losses, <ipV> = 0
P = <i_.V> = Kn<i V> (E,7)

This power reading PL' can be set to zero during calibra-

tion, hence after calibration

Pp = Kn<17.v> (E,8)
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E.3. INSTRUMENTATION

The integrator was pbased on a B.&K. type 1606, where a
high gain cathode follower was followed by a passive integration
oircuit. When the sigﬁal was integrated, it was phase shifted
by approximately, but not exactly, 90 degrees. The amount of
error varied with frequency. A slight phase difference also
occurred between the two signals through the 1/3 octave band
filters. This also varied from pand to band.

The phase compensator shown in Fig. E-1, allowed the phase
of one of the signals to be altered to compensate for the varia-
tions mentioned above and any unwanted energy josses at the
treﬁeducer. This unity gain circuit was based on a previously
published phase shifting network. (Baker, West and Hunter, 1973.)
Some components were altered to suit this application,but it was
pasically the same circuit. A ten turn potentiometer with an
attached counter allowed a specific phase shift to be set for

each 1/3 octave pand of interest.

E.4. CALIBRATION PROCEDURE

Calibration constants were required for the velocity
and force signals.

These were both referenced to a standard test accelero-
meter which was mounted back to back with the transducer accelero-
meter.

The transducer accelerometer and referenoe accelerometer
signals <ATRANS> and<AREﬁ>were measured for each 1/3 octave
pand, using a long time averaging R.M.S. circuit and digital
voltmeter. The force and velocity signals were measured in
each band with the previously determined phase compensatoxr

setting. The signal monitored was the squared signal from the
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multiplier, i.e. <V§> and <V2>. All signals were measured at
a particular amplifier setting of the spectrometers which had
been previously calibrated using their internal reference signals.

The transducer accelerometer calibration constant was

determined from

<Ar f

(TA)c = (RA) d.;netre/s;ec /volt

c  <BppaNs

where (RA)c is the known reference accelerometer calibration

constant.

The velocity calibration constant

<
(TAY, BrRANS

w <V2>

metres/sec/volt.

and the force calibration constant

<ArRaANS”

2>

F = M_(TA) newtons/volt
c c c

were multiplied to obtain the power flow calibration constant

P = F V watts/volt
cc

since the force and velocity signals were calibrated
through the multiplier, then P, was related to the multiplier
output directly for specific amplifier settings on the spectro-

meters. The calibration constants are listed in Table E-1.
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Mc was the calibration mass used. This comprised an
added mass screwed onto the mounting stud plus an experimentally
determined equivalent mass which is M, in the mobility circuit.
M2 was not just the mass of the boss, bolt head and accelero-
meter because the compression bolt connected the two bosses
directly. The effect of this was unknown and hence M2 was
determined experimentally.

Various size masses were added to the transducer and the
force and acceleration voltages measured in different bands and
with different levels of excitation. Force/acceleration ratio
was plotted against added mass, (Fig. E-4), and the line was
extrapolated to the force/acceleration = 0 ;axis. The negative

intercept indicates that the equivalent mass M2 was approximate-

ly 11 grams.

E.5.E§ANSDUCER—PLATE IMPEDANCE MATCHING

When the impedance mismatch between transducer and plate
was great, the power measurement was small even with near maxi-
mum input force and velocity voltages to the multiplier. The
fluctuations in the output due to the random nature of the
exciting signal became significant compared with the average
value. The only way to improve this was to increase the degree
of matching between the plate and transducer impedances.

The point impedance into an infinite plate is purely
resistive and a finite plate contains a reactive (stiffness
determined) component as well. The transducer/driver impedance
is determined almost entirely by its mass.

The initial attempt to match the impedances was to make
the driver/transducer look like the plate. The transducer mass

was reduced to a minimum and the driver was made to resemble a
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multimodal plate. The mini shaker excited a small stiff plate
which had rolled mesh attached to its edges. This then gave a
response similar to a large multimodal plate. The transducer

was attached to the small plate (driver) and to the test plate,
that is, a multimodal plate driven by a multimodal plate. Two
serious problems were encountered with this approach which caused
its abandonment. The two problems were that the dynamic effect
of the accelerometer lead was increased since the total mass
was small, and the response of the unloaded transducer was poor
due to small but significant transverse accelerations introduced
by the bending movement of the driving plate. The force and
acceleration signals should remain in phase and the ratio between
them should be constant during a sine sweep when the load was
purely massive. This was not achieved when the transducer was
plate—mounted, although it was achieved when the transducer was
driven directly by the mini shaker.

A more successful second attempt involved the addition
of a mass at the driving point of the plate so that locally, the
driven plate impedance looked more like the mass-controlled
transducer impedance.

The masses on each side of the force transducer were made
approximately equal, that is, the dynamic mass of the driver
and driver side boss, Ml' was approximately equal to M2 plus the
added mass. This mass was then used as the added mass during
the force calibration procedure. As the mass of the transducer
was now large, the effect of the lead was reduced significantly.

The average power factor increased from typically 0.05 to
0.20 with some readings up to 0.5. Although this was not per-
fect matching, it was sufficient to reduce the fluctuations to
a maximum of approximately two percent of the power input meas-—

urements.
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E.6. TRANSDUCER TESTING

The direct calibration of force and acceleration, and
hence velocity, transducers, allowed the power calibration constant
P, to be determined. A direct determination of this constant
would have been better pbut this did not seem feasible because of
the very small power jevels involved.

A comparison between plate internal loss factors seemed
the only way of testing the transducer, but this was not good
since the rationale for developing the transducer was that the
steady state determination may measure loss factors which control
in the steady state but are not readily meésured using the decay
methods. However, steady state internal loss factors were
measured using the procedure outlined in Appendix D. One of
the damped plates was used to obtain decay measured loss factors.
These loss factors are presented in Fig. E-5 (swift & Bies, 1975).

The difference of about 2dB over the large range of results
eliminates any errors due to additional losses, e.d. at the plate/
transducer join, otherwise the linear differences should be the
same at all frequencies, which 15151early not the case.

¢ The similar overall pattern indicated that the transducer
was measuring loss factors. The two possible conclusions are
thatlthe steady state measurement does show a larger loss factor
whiéé controls in the steady state situation, or that there was
a calibration error.

The calibrations were checked and another plate tested
using the Schroeder-Kuttroff reverberation processor. During
these decay tests, some repeatable initial decay slopes (about
1dB) were noticed. These were increased to a measurable size,
by adjusting the CRO voltage gain and sweep rate; the initial

slope was then measured to obtain the loss factor. These results
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are presented in Fig. E-6 where the agreement between the short
1 or 2dB decay results and the steady state measurements is good
in a number of third octave bands.

The agreement between these initial decay slope measured
loss factors and the steady state measured loss factors, combined
with the fact that the rechecked calibration constants agreed
with those originally used, indicates that the steady state method
is measuring the plate internal loss factor which controls the

steady state response.
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TABLE E-1. CALIBRATION CONSTANTS

Acceleration and Velocity Amplifier gain setting - 60dB

Force Amplifier gain setting - 100d4B
Acceiéigzeter Velocity _ * Force Power
Frequency (IZ’A)c Vc Fc Pc

Hz m/s” /volt m/s/volt N/volt watts/volt

400 3.67 .5?1 .183 .0951
500 f .198 .103
630 .215 .112
800 .206 .107
1000 .202 .105
1250 ; .210 .109
1600 .551 .203 .106
2000 .524 .212 111
2500 .540 .210 .113
3150 .552 .227 .125
4000 .584 .231 .135
5000 = .625 .253 .158
6300 .ﬁf 712 . 289 .205
8090 -: .968 416 .403
10000 - 3.%7 .835 .514 .429
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REVIEWER'S COMMENTS AND AUTHOR'S REPLIES

(Supplement to PhD thesis "Vibrational Energy Transmission in Comnected Structure” by P.B. Swfit)

Page Line
No. Paragraph No. Reviewer's Comments Author's Reply
2nd page Last 7 "these bounds™ - basis for these These comments are mainly related to the lower bound and
of "bounds" is rather ephemeral-- references are made to Prof. Lyon's book "Theory and
Summary should use better established Applications of Statistical Energy Analysis". 1In retrospect,
analysis (Ref. 1).% the author agrees that it would have been more informative
. o e, 21 s h N; i i th
3 1 13,14 Thesie limiting ne. of modes” to use the product N;N:, rather than Nj, t? 1nvestlgate e
i i 1 rE lower bound, however, the references relating to this, (and
no--required basic limiting o) . -
. : to specific minimum values for the minimum number of modes-
number of interacting modes:, . ) A <
cee later discussion Reviewer's reference 4), had not been sighted by the author
: as Prof. Lyon's book was not available when the data was
3 1 15 "broad band analysis" - no, processed or when the wajor part of the thesis was written.
see Ref. 2,
3 1 19 "limits are not well defined",
perhaps, but are better defined
than the thesis assumes--see
Ref. 1.
6 1 1 discussion of bounds is mis-
leading since it is based on
mistaken -ideas about the limits
10 3 "no values for the minimum
number of modes, ete'".See Ref. 4
96 Eq. (5.1) The lower bound
should be determined from the
effective number of interacting
modes
9 Weak coupling discussion is mis- This point was recognised, i.e. weak coupling is not a
leading. Ref. 3, the weak necessary assumption; see author's comments on P.10 of the
coupling assumption is not used text. However, the weak coupling assumption has often been
to get Eq. (3,2) used by others, as discussed by Fahy (1974).
14 1 discussion of weak coupling -

same comments as before

* The Reviewer's refersnces are listed on the last pace of thiag attachment



No. Paragraph No. Reviewer's Comments Author's Reply

11 1 The condition on modal overlap The development of R; =f%g;ﬁ‘< { in the text is based on
stated here is not correct. published works as referénced in the text. Prof. Lyon
In simple terms, the suggests that these works, or the interpretations of these
reverberant field should works, are incorrect and that there is no upper bound.
dominate the direct field.
The direct field is formed The author accepts this in so far as Crocker & Price (1969)
by modal coherence, and, obtained zood results using SEA with R;>> 1; in fact the
therefore, too much modal co- agreement was poor at R;< 3, however, it is interesting to
herence is a limit to SEA note that as Prof. Lyon suggests,
applicability. An estimate
of this limit is when kdp < 2 Ri < Ffara,
where k = 2 77/), , d = mean free implies that there is an upper limit, although not at
path, 7 = loss factor Rj = 1. This area needs further investigation.
)Z <—2—-: wn; <2-—L—c n':#kbp: £
Thus, the '"modal overlap should
be smaller than the ratio of the
plate edge length to a bending
wavelength, not unity.

20 3 The Lyon-Scharton paper assumes
statistical independence of modes,
not specifically lack of modal
overlap.

97 Eq. (2.2) This limitation has
already been discussed.

13 1 15 "reciprocity relation" is better This relationship is often referred to as reciprocity -

described as a "consistency
relationship".

see P122 of Prof. Lyon's reference.
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24,25

At this point, the proper role
of a "box" in figure (3.1)

should be noted: 1i.e., it is a

collection of similar modes,
not a structural element. 1If
one continues to associate an
SEA "box" with a subsystem,
then equipartition between all
mode (wave) types in that sub-
system has been assumed.

The review in page 8 states the assumptions used in looking
at a connected structure from the SEA view point.

27

39,40

Eqgs. 4.8 and 4.9. These
relations assume a lack of
diffusion in the vibration
field which is inconsistent
with the SEA model. These
relations are surely useful
in some calculations but not
in an SEA calculation in which
it is assumed that the power
incident on an edge of the
structure can be related to
reverberant vibration levels.

This discussion should point
out that the parameter
properly related to mi; is ¢
The TF factor is deficient
for reasons pointed out above.
The -1n(1-Zij) factor related
to decay, not the steady
state situation for which SEA
is developed. (Of course, a
decay rate experiment can
determine -1n(1-%) from which
T can be found).

ij-

The same (travelling wave) model is used to determine both

T i and TF, . relationships; T., from its definition and

Tﬁij directiy from substitution’into the power flow equations.
The closeness of the two results (fig. 4.3) show that there is
little difference between them, T.. being used because of
shorter computation time. 1]
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43,44

The use of T(0) to determine T
assumes that there is no
special construction at a

join that would 1:ad to
coincidence effects at
finiteo —— this should be
pointed out,

The use of € (0) with factors M and T is purely an empirically
derived mathematical convenience to allow an easier

procedure for calculating T. There are no join-type
restrictions which should not also apply if & was determined
using the longer method, i.e.

= [T ds e 2y (4.23)

50 £f

99 ff

This discussion has an in-
consistency. Only bending to
longitudinal and transverse
motion is included. However,
if the plates were large

enough so that there are
resonant modes of this kind,
why are such modes not

included in the energy storage?
Transverse and longitudinal
modes and not the modal overlap
may be the key to the higher
transmission found in the

data at high frequencies.

Section 5.2 The increasing
ratio of Eexpt/Etpeq a8
frequency increases
indicated that there is

some mechanism not accounted
for by the theory (the SEA
model) and not a limitation
of SEA as such (See Ref. 5)

Generally, the experimental plates used would have their
lowest longitudinal mode at 5 or 6 kHz, where-as most of
the results showed greater transmittad energy from that
predicted starting at 2 kHz and few results were taken at
greater than 4 kHz. However, the point raised by Prof.
Lyon is worth further investigation.
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62

It appears that while F2 is a
ratio of the squars of longitu-
dinal to bending wave impedance,
the parameter Q is related to
average modal separations.

Aside from a constant, it is of
the order of nynj, b/n2i,b

where ny is the modal density
of longitudinal waves. Since

Rib = yh = O

a value of P< 50 means Q<K 0.02
or n, € 0.002. The restriction
of P amounts, therefore, to
requiring that the modal density
of the system for bending waves
is about 50 times that for
longitudinal waves. The
correspondence of this

condition with £ = 2 kHz is
consistent with the lowest
longitudinal modes occuring

in this frequency range.

The values of P and Q are based on mathematical predictions
derived from considering travelling wave interaction at a
join; the derivation does not consider resonant modes at

any stage. It is interesting, that considering the modal
densities of the different wave fields could lead to similar
restrictions.

68 ff

In an SEA context, this discuss-
ion would be better placed by
considering when longitudinal
and transverse modes of
structural elements might have
to be.considered as additional
SEA boxes.

This is not necessary as the transverse and longitudinal
waves are not considered to be resonant but are forced by
the incident waves.
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77 4 The concern about point drive Fahy (1970) suggests that there is a problem.
relates back to the relation Experimental results also showed that there is a problem
between the energy contained (P.79 Fig. 4.14). Further work carried out in the
in direct vs. reverberant Mechanical Engineering Department, University of
fields. I don't see the Adelaide after the completion of this thesis, has shown
problem here if the dissipation that generally, the energy ratios obtained when point-
is primarily in the rever- driving at one point differed from the energy ratios
berant field. obtained using non-contact excitation.

78 15 The force from the non-contact
excitation is also applied over
a small area, and modal coherence
is not eliminated.

85 2 From preceeding discussion,
I doubt that this concern
is justified.
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