THE PHYSIOLOGY AND ECOLOGY OF THE EGGS
OF THE PLEURODIRAN TORTOISE
EMYDURA MACQUARII (GRAY), 1831

MICHAEL BADEN THOMPSON
B.Sc.(Hons.) (Adelaide)

Department of Zoology
The University of Adelaide

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

JUNE 1983
CONTENTS

SUMMARY 1
DECLARATION vi
ACKNOWLEDGEMENTS vii

1. GENERAL INTRODUCTION 1

2. TERMINOLOGY AND GENERAL METHODS 8
 2.1 TERMINOLOGY
 2.2 GENERAL METHODS 10

3. PHYSICAL CHARACTERISTICS OF EGGS 12
 3.1 INTRODUCTION
 3.2 MATERIALS AND METHODS 17
 3.2.1 Linear Dimensions and Mass of Eggs and Tortoises 17
 3.2.2 Mass of Fresh Egg: Hatchling Relationship 17
 3.2.3 Water Content of Fresh Eggs, Embryos and Hatchlings 18
 3.2.4 Volume and Surface Area of Eggs 18
 3.2.5 Thickness of Eggshell and Shell Membranes 19
 3.2.6 Fine Structure of Eggshell and Membranes 20
 3.3 RESULTS 22
 3.3.1 Linear Dimensions and Mass of Eggs 22
 3.3.2 Female Tortoise: Egg Relationship 23
 3.3.3 Mass of Fresh Egg: Hatchling Relationship 24
 3.3.4 Water Content of Fresh Eggs, Embryos and Hatchlings 25
 3.3.5 Volume and Surface Area of Eggs 27
 3.3.6 Thickness of Eggshell and Membranes 27
 3.3.7 Structure of Eggshell and Membranes 29
 3.4 DISCUSSION 35
 3.4.1 Linear Dimensions and Mass of Eggs 35
 3.4.2 Female Tortoise: Egg Relationships 36
 3.4.3 Water Content of Egg and Hatchlings 39
 3.4.4 Thickness of Eggshell and Membranes 39
 3.4.5 Structure of Eggshell and Membranes 40
4. EGG METABOLISM

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS
 4.2.1 Oxygen Consumption
 4.2.2 CO₂ Production
 4.2.3 Lipid Measurements

4.3 RESULTS
 4.3.1 Oxygen Consumption
 4.3.2 Respiratory Exchange Ratio (RE)
 4.3.3 Lipid Measurements
 4.3.4 Q₁₀ and Maximum O₂ Consumption

4.4 DISCUSSION
 4.4.1 Patterns of Embryonic O₂ Consumption
 4.4.2 Adaptive Value of Developmental Patterns of O₂ Consumption
 4.4.3 Q₁₀ and Maximum O₂ Consumption
 4.4.4 Total Embryonic O₂ Consumption
 4.4.5 Hatching O₂ Consumption
 4.4.6 Respiratory Exchange Ratio
 4.4.7 Energy Budget

5. GAS RELATION

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS
 5.2.1 Gas Tensions in Nests in the Field
 5.2.2 Water Vapour Conductance of the Shell
 5.2.3 O₂ and CO₂ Conductance of Shell and Membranes

5.3 RESULTS
 5.3.1 Gas Tensions in Nests in the Field
 5.3.2 Water Vapour Conductance of the Shell
 5.3.3 O₂ and CO₂ Conductance of Shell and Membranes
 5.3.4 Gas Tensions Experienced by the Embryo

5.4 DISCUSSION
 5.4.1 Gas Tensions Experienced by Naturally Developing Embryos
 5.4.2 Conductance of the Shell and Membranes
 5.4.3 The Opaque White Patch
 5.4.4 Rate of Loss of Water Vapour
 5.4.5 Functional Pore Area and Number of Pores

6. WATER RELATIONS

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS
6.2.1 Field Samples 98
6.2.2 Artificial Incubation 98
6.2.3 Pyramid Experiment 102

6.3 RESULTS 106
6.3.1 Field Samples 106
6.3.2 Artificial Incubation 107
6.3.3 Pyramid Experiment 114

6.4 DISCUSSION 116
6.4.1 Field Samples 116
6.4.2 Response of Eggs to Substrates of Different Water Potential 119
6.4.3 Water Storage 127
6.4.4 Test of Water Storage Equation 127
6.4.5 Water Potential of Egg Contents 128
6.4.6 Abnormal Hatchlings 132
6.4.7 Pyramid Experiment 132
6.4.8 General Discussion 133

7. EFFECTS OF TEMPERATURE ON EGGS AND EMBRYOS 136

7.1 INTRODUCTION 141

7.2 MATERIALS AND METHODS 141
7.2.1 Laboratory Experiments 141
7.2.2 Field Nest Temperatures 142
7.2.3 Sex Ratio of Population in Lake Bonney 142
7.2.4 Incubation Time 143

7.3 RESULTS 144
7.3.1 Laboratory Experiments 144
7.3.2 Field Nest Temperatures 145
7.3.3 Adult Sex Ratios 146
7.3.4 Incubation Times 147

7.4 DISCUSSION 149
7.4.1 Field Nest Temperatures 149
7.4.2 Incubation Time 150
7.4.3 Temperature-dependent Sex Determination 151

8. PREDATION ON EGGS 156

8.1 INTRODUCTION 157

8.2 MATERIALS AND METHODS 157
8.2.1 Survey of Nesting Sites 157
8.2.2 Determining Population Age-structure 158

8.3 RESULTS 161
8.3.1 Nest Predation 161
8.3.2 Population Age Structure 163
8.4 DISCUSSION

8.4.1 Predation 165
8.4.2 Population Age Structure 168

9. IMPLICATIONS FOR MANAGEMENT 171

LITERATURE CITED 174
SUMMARY

The eggs of the Pleurodiran short-necked tortoise, *Bmydura maquarii*, are intermediate between the hard-shelled and hard, expansible-shelled eggs studied to date. Therefore aspects of the physiology and ecology of the eggs of *E. maquarii* were studied and compared to Cryptodiran species from other parts of the world. Measurements of physical characteristics of the eggs, including their mass, length, breadth, surface area, shell and membrane thicknesses, ultrastructure of the shell and membranes, and of the pores in the shell, were made to help describe and enable interpretations of experiments on the gas and water relations of the embryos.

Eggs of *E. maquarii* are 36.11 mm long x 22.02 mm wide (mean) and the mean mass is 10.423 g. There are positive semilogarithmic correlations between egg length and breadth, length and mass, and breadth and mass. Elongation is constant over the range of egg sizes. Egg mass is positively correlated with female size supporting the suggestion that egg breadth is limited by the dimensions of the mother's pelvis. Hatchlings are 48.06% of the fresh egg mass regardless of egg size or the conditions experienced during incubation. The egg is made up of yolk (37%), albumen (47%) and shell (14%). The yolk is 68% water, albumen 95% water and shell 22% water. The water content of fresh eggs and hatchlings is similar. The water content of embryos falls from 95% to 77% between the middle of the incubation and hatching. In unhatched eggs the shell is thickest around the equatorial plane (0.191 mm) and thinnest at the poles (0.155 mm). Shell from the equatorial plane is thinner (0.177 mm) and at the poles thicker (0.166 mm) in hatched eggs than unhatched ones. Membranes from the equator are as thick (0.06 mm) as those from poles of the egg.
As the structure of the shell is similar to that of other species of chelonians with well organised shells, the process of shell formation is the same. Pores are Types 1a and 3a(ii) of Board *et al* (1977) and are concentrated in the equatorial regions of the shell. There is no external cuticle. Counts of the number of pores per egg ranged from 103 to 17,720 ($\bar{x} = 3,673$) and the mean minimum diameter is 18.5μ. Lines of intense dissolution on the inner surface of the shell of hatched eggs are assumed to be adjacent to blood vessels in the chorioallantois. The shell membranes are composed of five layers of fibres of different diameter.

The pattern of O_2 consumption (\dot{V}_{O_2}) of eggs of *E. macquarti* increases exponentially during the first 80% of the incubation, peaking at 87% of the way through the incubation and then falling to 61–82% of the peak value before hatching. There is a slight rise in the rate of respiration at hatching due to the efforts of the hatchling to free itself from the egg. Equal amounts of O_2 are consumed during incubation at $25^\circ C$ and $30^\circ C$ (580 ml), and mass-specific \dot{V}_{O_2} is equal at both temperatures (110 ml.g$^{-1}$ of hatchling mass). Embryonic growth, indicated by mass, reflects the change in \dot{V}_{O_2}, increasing exponentially for the first 70–80% of the incubation and then slowing prior to hatching. \dot{V}_{O_2} is related to embryonic mass (corrected to the water content of hatchlings) raised to the power 0.862, similar to the exponent for avian embryos (0.92), which supports the idea that the cost of biosynthesis in embryos raises this exponent above that for adult animals in general (0.75). Respiratory exchange ratio (RE) of 0.61 is not significantly different at 25° and $30^\circ C$. Most lipid (94.2%) found in fresh eggs is contained in the yolk; lipid accounts for 76.7% of the energy used during incubation. Mean Q_{10} is 2.87.

The different patterns of embryonic respiration shown by chelonians may allow synchronous hatching, as in some birds. Thus deeply buried
eggs, which experience essentially the same temperatures in any one clutch during incubation, grow at the same rate and hatch simultaneously, have an exponential pattern of embryonic respiration. In contrast, eggs at intermediate depths, e.g. *E. macquarii*, experience a range of temperatures in different parts of the nest and therefore develop at different rates. The period of time between the peak of respiration and hatching may be varied in different individuals to allow the synchronous hatching of eggs at slightly different stages of development.

In natural nests in the field P_{O_2} is depressed by about 10 torr and P_{CO_2} elevated by about 4 torr over controls just prior to hatching. The maximum ΔP_{O_2} and ΔP_{CO_2} across the dry shell, calculated from weight loss data over silica gel at constant temperature are 2.1 and 1.6 torr and from conductance values across the normally partially hydrated shell and membranes measured directly are 19.0 and 7.5 torr. The shell membranes are a more significant barrier to the diffusion of O_2 and CO_2 than is the dry shell. However both shell and membranes dry out regionally during development resulting in the formation of a small white patch on the uppermost surface of the egg within 30 h of being laid. This patch grows to eventually cover the whole egg surface in some eggs, thus facilitating gas exchange through the eggshell in advance of the requirements of the embryo. The conductance of shell and membranes to O_2 and CO_2 increases with the area of the white patch reaching $2.6 \pm 1.1 \text{ cm}^3\text{ day}^{-1}\text{ torr}^{-1}$ and $4.7 \pm 1.3 \text{ cm}^3\text{ day}^{-1}\text{ torr}^{-1}$ at $30^\circ C$ for eggs with the white patch covering the whole shell.

E. macquarii does not appear to select nesting sites in the field on the basis of the hydric properties of the soil. The tolerance of the eggs to widely different hydric conditions during incubation reflects this. Eggs were incubated completely buried in, half buried in, and sus-
pended above substrates ranging in water potential from -50 kPa to -3,550 kPa. Eggs buried at -50, -110 and -220 kPa and those half buried at -220 kPa had reduced hatching rates; all other treatments recorded high hatching success. All eggs lose weight for the first third of the incubation regardless of the water potential of the substrate. Eggs in the wettest substrates gain water at an increasing rate until hatching, those on drier substrates lose water at a constant rate. All eggs suspended above the substrate sustain a net loss of water. The shells of eggs that gain water crack to accommodate it. Eggs that successfully hatched ranged from those that lost 27.5% of their fresh egg mass to those that gained 32.0%. An experiment using fluorescein and tritiated water confirmed that eggs contacting the substrate absorb liquid water from that substrate but liquid water does not flow between eggs. Water potential measurements of egg contents indicate that water is drawn into the egg against a water potential gradient of up to 320 kPa but it is not known how this occurs. Desiccating conditions experienced during incubation do not result in abnormal hatchlings in *E. maoquarii* as they do in other species. The term cleidoic is discussed with regard to the degree of water uptake by non-cleidoic eggs. Eggs such as *E. maoquarii*, which imbibe water under certain conditions, but the effect of this does not influence the size of the hatchlings, are termed "facultative cleidoic" eggs.

Nests of *E. maoquarii* in the field experience temperatures less severe than the soil surface but still experience diurnal temperature fluctuations up to 10°C. The temperature of nests rises throughout the incubation period as the summer progresses. Metabolic heat does not measurably raise nest temperatures. Incubation time in the laboratory is inversely proportional to incubation temperature. Incubation time in the field is influenced by the degree of shading of the nest. Adult sex ratio is significantly biased towards females. Sex determination in
E. macquarii is independent of incubation temperature, with a 1:1.9 sex ratio at incubation temperatures of 20, 25, 26, 28, 30 and 32°C. Temperature-dependent sex determination may be an adaptation that ensures outbreeding and has its greatest advantage in small discrete populations with relatively high rates of predation on the eggs.

On the River Murray in South Australia the introduced fox, Vulpes vulpes, takes 93% of chelid tortoise nests and other predators (water rats, goannas and ravens) take a further 2.7%. Death of eggs due to other causes is rare. The size structure of the population of E. macquarii in the Murray was compared to that of a closely related species from the Cooper Creek, which lives in the virtual absence of foxes, but which has essentially the same endemic nest predators that occur on the Murray. There are a significantly higher number of juveniles and young adults in the Cooper Creek than the Murray population. There appears to be a significant reduction in juvenile recruitment into the Murray population of E. macquarii resulting in a shift in the age structure of the population towards old individuals resulting in a gradual decline in the size of the population.