GRAIN PRODUCTION AND WATER USE OF WHEAT

AS AFFECTED BY PLANT DENSITY,

DEPOLLATION AND WATER STATUS

Neil C. Turner, B.Sc.

Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Agricultural Science.

Department of Agronomy,
Weite Agricultural Research Institute,
University of Adelaide.

November 1966
CONTENTS

STAMENT

SUMMARY

1.0.0 INTRODUCTION

2.0.0 LITERATURE SURVEY

2.0.1 Solar radiation

2.1.0 Radiant Energy in Crop Growth

2.1.1 Photosynthesis

2.1.2 Photosynthesis of Field Crops

2.1.3 Growth Analysis

2.1.4 Leaf Area and Crop Growth in Cereals

2.1.5 Sources of Carbohydrate in the Grain

2.2.0 Radiant Energy in Evapotranspiration

2.2.1 Evaporation and Evapotranspiration

2.2.2 Potential Evapotranspiration

2.2.3 Advection

2.2.4 Crop Height

2.2.5 Soil Factors in Evapotranspiration

2.2.6 Plant Factors in Evapotranspiration

2.3.0 Crop Growth and Water Utilisation

2.3.1 Crop Growth and the Efficiency of Water Use

2.3.2 Effect of Water Stress on Plant Growth and Development

2.4.0 Summary and Conclusions

3.0.0 PROGRAMME OF INVESTIGATION

4.0.0 EXPERIMENT A

4.1.0 Experimental Methods

4.1.1 Site and Soil

4.1.2 Fertilizer Application

4.1.3 Wheat Variety

4.1.4 Meteorological Data

4.1.5 Treatments and Experimental Design
4.2.0 Results

- **4.2.1 Meteorological Data**
- **4.2.2 Observations on Growth and Development**
 - 4.2.3 Plant Height
 - 4.2.4 Tiller Development
 - 4.2.5 Dry Matter Production
 - 4.2.6 Leaf Area
 - 4.2.7 Light Interception
 - 4.2.8 Nitrogen Content
 - 4.2.9 Grain Yield
- 4.2.10 Grain Yield Components
 - (a) Number
 - (b) Grain Number per Ear
 - (c) Grain Weight

4.3.0 Discussion

- **4.3.1 Effects of Density**
- **4.3.2 Effects of Defoliation**
- **4.3.3 Redistribution of Nitrogen**

5.1.0 Experimental Methods

- **5.1.1 The lysimeters and Soil**
- **5.1.2 Treatments and Experimental Design**
- **5.1.3 Establishment of the Experiment**
- **5.1.4 Harvesting Procedure**
- **5.1.5 Soil Water Content**
- **5.1.6 Root Measurements**

5.2.0 Results

- **5.2.1 Observations on Growth and Development**
- **5.2.2 Crop Growth Parameters**
- **5.2.3 Grain Yield and Grain Nitrogen**
- **5.2.4 Root Measurements**
- **5.2.5 Soil Water Content**
5.5.0 Discussion

6.0.0 EXPERIMENT C

6.1.0 Experimental Methods

6.1.1 Materials Used
6.1.2 Meteorological Data
6.1.3 Treatments and Experimental Design
6.1.4 Establishment of the Experiment
6.1.5 Tilling
6.1.6 Water Use
6.1.7 Relative Water Content of Plants
6.1.8 Light Measurements
6.1.9 Harvesting Procedure
6.1.10 Spikelet Counts
6.1.11 Date of Ear Emergence and Maturity
6.1.12 Nitrogen Determinations
6.1.13 Statistical Analysis

6.2.0 Results

6.2.1 Presentation

6.3.0 Part I. Effect of Water Stress and Defoliation on the Ear and Grain

6.3.1 Observations on Plant Development
6.3.2 Observations on Apical Development
6.3.3 Plant Height
6.3.4 Tiller Development
 (a) Main Tillers
 (b) Late Tillers
6.3.5 Grain Yield
6.3.6 Grain Yield Components
6.3.7 Ear Number
6.3.8 Spikelets per Ear
6.3.9 Flower Number per Spikelet
6.3.10 Grain Number per Floret
6.3.11 Grain Size
6.3.12 Grain Nitrogen
6.3.13 Commentary on Part I
 (a) Water Stress
 (b) Leaf Removal
 (c) Grain Yield and Grain Nitrogen

6.4.0 Part II. Effect of Water Status and Defoliation on Growth and Water Use
SUMMARY

A study was made of the effects of plant density, defoliation and water status on grain production and water use by wheat under community conditions. The role of the flag leaves and lower leaves in grain production and water loss was assessed and the effects of water stress on the ear and grain were followed.

Three experiments were conducted during 1964 and 1965. Experiment A was a field trial in which three levels of defoliation, (a) removal of all leaves at the ligule, (b) removal of all leaves except the flag leaf, and (c) no leaves removed (control), were imposed on four occasions between the boot stage and maturity. Experiment B was conducted in four large lysimeters in the glasshouse. The leaf laminae and dead material below the flag leaf were removed from half of the plots at anthesis, and the water use and root growth were followed. In Experiment C, a major glasshouse trial, wheat communities were established in long narrow water-tight boxes. The same three degrees of defoliation as those in Experiment A were imposed on six occasions from flag leaf emergence to maturity. Two water treatments were imposed; one to maintain plants under water stress, the other aimed at non-stress conditions.

The experiments showed that in a community of
plants (as in spaced plants), the lower leaves contribute little to the grain yield during the period after anthesis. However when soil nitrogen was deficient removal of the lower leaves depressed the yield of grain and dry matter. The upper portion of the shoot and the ear are the main sources of carbohydrate for the grain. Attention is drawn to the importance of the flag leaf as a source of carbohydrate for the developing ear and stem during the period from its own emergence until the emergence of the ear. The experiments also showed the vulnerability of the wheat plant to water stress during this period prior to ear emergence; water stress reduced both ear emergence and the fertility of those ears which emerged. The dependence of evapotranspiration on leaf area and on the availability of the water supply was established. Water stress did not increase the efficiency of water use and in fact decreased the efficiency in terms of grain production. Removal of the lower leaves after anthesis increased the efficiency of water use but did not increase the economic yield even in the low water regime. It is considered likely that appropriately timed leaf removal would increase yield when water stress becomes operative after anthesis.