A Study of Sheep Epithelial Intermediate Filament Gene Expression.

or

(sK1.15 and Friends)

Lesley Alexandra Whitbread, B. Sc. (Hons.)

Department of Biochemistry,
Faculty of Science,
The University of Adelaide,
Adelaide, South Australia.

Abstract

This thesis presents results from a molecular investigation of sheep epithelial intermediate (IF) keratin genes. A cDNA library was constructed from sheep rumen epithelium mRNA from which two type I and two type II keratin IF cDNA clones were isolated. The clones have been called K1.15, K1.4, K2.5 and K2.6 according to a new nomenclature suggested by Powell and Rogers in Keratinocyte Handbook, (Leigh, I., Watt, F., and Lane, B., eds., book in preparation, (briefly K2.5=K5, K1.15=K15). The cDNA clones were sequenced and their expression patterns studied in several tissues (rumen, oesophagus, tongue, skin and wool follicle) using cRNA in situ hybridization. K2.5 and K1.15 are expressed in the basal layers of the rumen epithelium and K2.6 and K1.4 in the suprabasal layers. Two of the cDNA clones, K2.5 and K2.6, are the sheep equivalents to keratins K2.5 and K2.6 identified in other species and the expression patterns of the sheep genes resemble those identified for these keratins in human tissues. One cDNA clone, K1.4, appears to code for a novel type I keratin IF, having the highest identity to a mouse hair-related type I IF (86% in the 2B coil with the mouse 48K IF) but little homology in the variable C-terminal domain. K1.4 is not expressed in the wool follicle but is expressed in the suprabasal layers of rumen epithelium and in tongue.

A more detailed study of the sheep K1.15 gene was undertaken and it was isolated from a cosmid library and completely sequenced. In sequence it is almost identical to the human K1.15 gene but in oesophagus, the only tissue for which human K1.15 in situ hybridization expression data are available, the expression of the human and sheep genes differ. Sheep K1.15 is expressed in the outer root sheath of the wool follicle and in the germinative cells of many epithelia (tongue, oesophagus, hoof, skin) including those cells in the follicle bulb which are in contact with the basement membrane that separates the dermal papilla. To date, no other IF gene expressed in those follicle bulb cells has been conclusively identified.

To study the control of the K1.15 gene, with a focus on the regulation of its follicle expression, transgenic mice were produced using a fragment containing the entire K1.15 gene and including 8kb of 5' flanking and 600bp of 3' flanking DNA. A total of ten transgenic mice were created and of these seven were found to express the transgene in a pattern resembling that seen in the sheep. The expression pattern of the transgene in the hair follicle bulb appears
slightly different to that in the wool follicle, with expression being more patchy in the proliferating bulb cells of the mouse hair during anagen. A very high level of expression of the transgene occurs in the cells surrounding the club end of the dormant hair during the catagen and telogen phases of the hair cycle.

Initial studies of the promoter of the K1.15 gene were undertaken using a 2.5kb fragment containing the promoter and 5' flanking DNA in a construct linking it to a reporter gene. Transient transfection of CHO cells demonstrated the ability of this promoter to drive expression in those cells. This work, in conjunction with the transgenic mouse experiments represents the beginning to defining the regulatory elements that direct expression of the K1.15 gene in epithelial tissues.
Table of Contents

Abstract .. ii
Table of Contents ... iv
List of Figures .. x
List of Tables ... xiii
Acknowledgements .. xv
Declaration ... xvii
Abbreviations .. xviii

Chapter 1

Introduction ... 1
 1.1 General introduction ... 1
 1.2 Intermediate filaments ... 2
 1.2.1 General background .. 2
 1.2.2 The evolution of IF ... 3
 1.2.3 Features of the α-helical rod domain of IF .. 3
 1.2.4 Features of the end domains of IF .. 4
 1.2.5 Function of IF .. 4
 1.3 The keratin type I and type II IF .. 5
 1.3.1 General features of keratin IF ... 5
 1.3.2 The keratin type I and type II IF multigene family ... 6
 1.3.3 A new nomenclature system for keratin IF ... 7
 1.3.4 The pair rule of keratin expression .. 8
 1.3.4.1 The expression and features of the K2.8/K1.18 pair 8
 1.3.4.2 The expression and features of the K2.7/K1.17 pair 9
 1.3.4.3 The expression and features of the K2.5/K1.14 pair and K1.15 10
 1.3.4.4 The expression and features of the K1.16/K2.6 pair 10
 1.3.4.5 The expression and features of K1.13 and K2.4 .. 11
 1.3.4.6 The expression of K1.12 and K2.3 .. 11
 1.3.4.7 The expression and features of K1.10 (K1.9), K2.1 and K2.2... 11
 1.3.4.8 The expression and features of K1.19 ... 13
 1.3.4.9 Hair keratins .. 13
 1.4 Features of the type I and type II IF genes .. 14
 1.4.1 Linkage ... 14
Chapter 2
Materials and methods ... 22

2.1 Materials .. 22
 2.1.1 Tissue .. 22
 2.1.2 Bacterial strains 22
 2.1.3 Bacteriophage strains 23
 2.1.4 Phagemid strains .. 23
 2.1.5 Plasmid strains ... 23
 2.1.6 Enzymes .. 23
 2.1.7 Radiochemicals .. 23
 2.1.8 Molecular biology kits 24
 2.1.9 General chemicals and reagents 24
 2.1.10 Cell culture reagents 25
 2.1.11 Media and buffers 25
 2.1.12 Miscellaneous .. 26

2.2 Methods .. 27
 2.2.1 DNA Methods .. 27
 2.2.1.1 Ethanol precipitation 27
 2.2.1.2 Isolation of plasmid DNA 27
 2.2.1.3 Restriction enzyme digestion and analysis of DNA 27
 2.2.1.4 Agarose gel electrophoresis of DNA 27
 2.2.1.5 Polyacrylamide gel electrophoresis 28
 2.2.1.6 Phenol extraction 28
 2.2.1.7 Isolation of DNA from gels 28
 2.2.1.8 DNA subcloning 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.9 Preparation of labelled DNA</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.10 Deletions with nuclease Bal 31</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.11 Deletions with Exonuclease III</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.12 Preparation of single-stranded M13 DNA</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.13 Preparation of single-stranded Phagemid DNA</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1.14 DNA sequencing</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1.15 Southern transfer</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1.16 Grunstein’s colony screening</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1.17 Preparation of high molecular weight sheep genomic DNA</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1.18 Screening of bacteriophage 1 libraries</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2 RNA Methods</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2.1 Total RNA Preparation</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2.2 Poly (A)+ RNA extraction</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2.3 Northern transfer</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2.4 In vitro transcription</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3 Construction of the cDNA library</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3.1 cDNA synthesis</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3.2 Alkaline agarose gel electrophoresis of first strand cDNA</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3.3 Klenow end-fill</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3.4 Size selection of cDNA</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3.5 Ligation of cDNA into pUC19</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4 Tissue in situ hybridization</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5 Autoradiography</td>
<td>35</td>
</tr>
<tr>
<td>2.2.6 Cell culture techniques</td>
<td>35</td>
</tr>
<tr>
<td>2.2.6.1 Maintenance of CHO cell cultures</td>
<td>35</td>
</tr>
<tr>
<td>2.2.6.2 Cell counting prior to transfection</td>
<td>35</td>
</tr>
<tr>
<td>2.2.6.3 Protocol for transient transfection of CHO cells</td>
<td>36</td>
</tr>
<tr>
<td>2.2.6.4 Harvesting of cells for SAT assay</td>
<td>36</td>
</tr>
<tr>
<td>2.2.6.5 Serine acetyltransferase (SAT) assay</td>
<td>36</td>
</tr>
<tr>
<td>2.2.7 Production and detection of transgenic mice</td>
<td>37</td>
</tr>
<tr>
<td>2.2.7.1 Preparation of the DNA fragment for microinjection</td>
<td>37</td>
</tr>
<tr>
<td>2.2.7.2 Identification of founder and bred transgenic mice</td>
<td>37</td>
</tr>
<tr>
<td>2.2.8 Computer programmes</td>
<td>37</td>
</tr>
<tr>
<td>2.2.9 Containment facilities</td>
<td>37</td>
</tr>
</tbody>
</table>
Chapter 3
Isolation and sequence characterisation of four sheep epithelial IF cDNA clones

3.1 Introduction ... 39
3.2 Results .. 40
 3.2.1 Isolation of rumen (A)+ RNA ... 40
 3.2.2 Construction of a rumen epithelial cDNA library .. 41
 3.2.3 Detection of recombinants containing Intermediate Filament sequences 41
 3.2.4 Characterisation of IF cDNA clones .. 42
 3.2.5 Sequence of sK1.15 cDNA .. 43
 3.2.6 Comparison of sK1.15 sequence with type I sequences from human and other species ... 43
 3.2.7 Sequence of sK1.4 cDNA .. 44
 3.2.8 Comparison of sK1.4 sequence with Type I IF sequences from human and other species ... 45
 3.2.9 Sequence of sK2.5 cDNA .. 46
 3.2.10 Comparison of sK2.5 with type II IF from human and other species 46
 3.2.11 Sequence of sK2.6 cDNA .. 47
 3.2.12 Comparison of sK2.6 with type II IF from human and other species 47

3.3 Discussion ... 48

Chapter 4
The characterisation of expression patterns of sK1.15, sK1.4, sK2.5 and sK2.6

4.1 Introduction ... 51
4.2 Results .. 52
 4.2.1 Selection of probes for in situ hybridization analysis .. 52
 4.2.2 Analysis of expression patterns of sK1.15 ... 52
 4.2.3 Analysis of expression patterns of sK1.4 ... 53
 4.2.4 Analysis of expression patterns of sK2.5 ... 53
 4.2.5 Analysis of expression patterns of sK2.6 ... 54
 4.2.6 Analysis of the expression patterns and a comparative analysis of sK1.4 and sK2.6 expression .. 54

4.3 Discussion ... 56
 4.3.1 The expression pattern of sK1.15 ... 56
 4.3.2 The expression pattern of sK1.4 ... 59
 4.3.3 The expression pattern of sK2.5 ... 60
 4.3.4 The expression pattern of sK2.6 ... 60
4.3.5 The co-expression of sK1.15 and sK2.5 ... 61
4.3.5 The co-expression of keratins sK2.6 and sK1.4 62
4.3.6 Final remarks on the characterisation of the keratin IF cDNA clones 62

Chapter 5
Isolation and sequence of the sK1.15 gene .. 64
5.1 Introduction ... 64
5.2 Results .. 64
 5.2.1 The screening of sheep genomic libraries for clones encoding sK1.15, sK1.4, sK2.5 and sK2.6 ... 64
 5.2.2 Characterisation of the sK1.15 containing cosmid, cosmid 45 65
 5.2.3 Sequencing the sK1.15 gene .. 67
 5.2.4 Sequence of sK1.15 gene ... 67
 5.2.5 Comparison of nucleotide sequence of K1.15 and sK1.15 68
 5.2.6 Comparison of the amino acid sequence of K1.15 and sK1.15 69
 5.2.7 Analysis of the promoter region of sK1.15 69
5.3 Discussion ... 71
 5.3.1 Isolation of the sK1.15 gene .. 71
 5.3.2 Comparison of the amino acid sequence of sK1.15 to human K1.15... 72
 5.3.3 Comparison of the nucleotide sequence of the sK1.15 gene to the human K1.15 gene ... 73
 5.3.4 Sequence analysis of the promoter region of the sK1.15 gene........ 73

Chapter 6
Expression studies of sK1.15 in transgenic mice and a preliminary study in tissue culture .. 76
6.1 Introduction ... 76
6.2 Results .. 76
 6.2.1 Creation of mice transgenic for sK1.15 76
 6.2.2 In situ hybridization analysis of expression of sK1.15 transgene in transgenic mice ... 77
 6.2.3 Expression of the sK1.15 transgene in the hair follicle 77
 6.2.4 Analysis of expression of the sK1.15 transgene in the interfollicular epidermis, tongue and forestomach epithelium 79
 6.2.5 Analysis of a 2.3kb promoter element from sK1.15 in transient transfection studies in CHO cells ... 79
6.3 Discussion ... 80
 6.3.1 Analysis of general expression of sK1.15 gene in transgenic mice ... 80
6.3.2 The expression of sK1.15 in the outer root sheath of the transgenic mice. 81
6.3.3 The expression of sK1.15 in the bulb of the follicle in the transgenic mice
.. 82
6.3.4 The expression of the cys E gene in CHO cells using the 2.5kb promoter
fragment from sK1.15.. 83

Chapter 7
Final discussion and conclusions... 84

Bibliography.. 90