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“It 1s plain, then, that it is of ultimate causes that we must
obtain knowledge, since it is when we think that we have grasped
its first cause that we say that we know a thing.

Now causes are talked of in four different ways: one cause is
the being and essence of a thing, what it is for a thing to be what
it is (for the reason why a thing is as it is, 1s ultimately reducible
to its definition, and the ultimate reason why a thing is as it is,
is a cause and first principle); a second is a thing’s matter and
substratum; a third is the source of its movement; and the fourth,
the counterpart to the third, is the purpose of a thing and its good

- for this is the goal of all generation and movement.”

ARISTOTLE

Xiv



Abstract

This thesis is concerned with the statistical design and performance estimation of
very large scale integrated circuits.

Variations in fabrication processing parameters cause circuits to operate over
a range of speeds bracketing the required design speed. Thus some chips will not
meet timing specifications. It is important to economically predict the proportion
of manufactured circuits that will meet the design criteria, as this information is
ultimately vital for determining whether a given design should be produced at all.

Modern regular design methodologies have given designers the chance of greater
freedom of enterprise amongst small and independent applications businesses. To
keep the promise of successful and economically viable production of VLSI systems
offered to us by these design methods I argue that is necessary to reliably and
inexpensively predict the timing statistics of the system under consideration.

Independent designers are inhibited in this regard due to the excessive expense
presently incurred in attempting to do this, since about 500 simulations are needed,
irrespective of the number of parameters undergoing variation. This contrasts with
one simulation to establish the nominal or designed operating speed.

This thesis argues that one heuristic method of solving this problem is by
creating new timing simulators which are fast enough because they take advantage
of the inherent parallelsim in the operation of the actual circuit.

Part One: Motivation demonstrates the necessity for this design tool by
examining the intimate relationship between design yield and the economics asso-
ciated with the design cycle.

Part Two: Methods completes an study of existing methods which are, or
which might be, used to obtain this information, using a fabricated and simulated
design of mine as an example. I make a definite rejection of all of these methods
as impractical, for a variety of reasons.

Part Three: New Ideas introduces a number of new ideas for stochastic
simulation, including: stochastic differential equations, parameterized curve fit-
ting, and an analogue-model structure of mine, with which I had hoped to make a
major breakthrough in simulation speed. I am forced to reject these, but the last
one leaves a useful legacy, as it leads directly to the idea investigated next, where
I concentrate on what I determine to be the only remaining feasible method: a
digital method involving a novel algorithm.

My idea is based on the recognition that real transistors operate without global
information; their own state and the state of their nearest neighbours suffices for
their operation. Thus we might achieve the same sort of fast parallel simulation by
exactly the same method, viz., by arranging transistor models in a communicating
array, similar to their actual placement in the leaf cell. The implementation of
these ideas leads me to a completely new approach from quite a different field,
based on notions from economic game theory. This is shown to be reasonable by
analysing the abstract nature of the new simulation model. The definition of such
a system and the results of simulations are presented.

Part Four: Evaluation assesses the ideas investigated in the thesis in the
light of current practice, and considers possible directions for future research.
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Part 1

Motivation

“When the storm rages and the state is threalened by shipwreck, we can
do nothing more noble than to lower the anchor of our peaceful studies inio

the ground of eternitly.”

JOHANNES KEPLER



Chapter 1

Introduction

To fulfil the promise of successful production of VLSI systems offered to us by reg-
ular and hierarchical design methods, it 1s necessary to obtain the timing statistics
of the system under consideration.

One practical method of doing so is by creating new timing simulators which

take advantage of the inherent parallelism in the operation of the actual circuit.

1.1 The Thesis

Variations in operating speed of computer systems, arising from fabrication
parameter uncertainties, have an intimate relationship to and profound effect
on the decision to fabricate the system. The research for acceptable speed in
simulation of the timing spread leads to the possible application of ideas and
methods quite remote from the field of electronic engineering. It 1s argued
herein that statistical simulation of VLSI circuits, being important for the
question of whether a system should be produced, implies the necessity of an

array processor architecture for simulating the behaviour of VLSI circuits.

1.2 Why I Consider it Important

The nature of the microelectronic system design field has altered fundamen-

tally and irrevocably in recent years. This is partly due to the rapid spread
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of design methods, such as those of Mead and Conway [MC80], which have
profoundly affected attitudes towards the design of VLSI circuits.

This thesis addresses a subset of techniques for optimisation in Integrated
Circuit design, in that it aims at a heuristic, iterative and interactive method
that can be used by single workstations.

Digital circuits are so called because their initial stable state and final sta-
ble state are all that are of interest - how they got there is usually irrelevant.
However, there 1s a class of digital circuits for which it is of great interest,
how they got there, because it tells us how fast they operate. This class
interfaces to an unforgiving external world that produces data and demands
results at a high and uncontrollable speed.

The search for acceptable speed in simulation of the timing spread leads
to the possible application of ideas and methods quite remote from the field
of electronic engineering, as we shall see in this thesis.

Available techniques centre around large computers, large companies and
large universities [BHSV81]. But how are independent designers to break
in, to prosper? This thesis helps to answer to this question, because it

investigates the means needed to decide whether to produce a VLSI design.

1.3 Systems Production

Industrial designers of VLSI systems are vitally interested in the question:
‘can the system be produced profitably?’ Perhaps this ranks equally with
the question: ‘can the system be designed at all?’

Much recent research effort in Australia has gone into ‘how’ to design
cells, chips and systems; somewhat neglected has been ‘whether’ to do so.
My research into needs in this area has shown that it involves the production
of new hardware and software tools for VLSIC design, which are suitable for
industrial use on low-cost designer work-stations.

It turns out that statistical considerations dominate the design of tools

necessary for answering the profitability question. To create a useful aid to



decision-making, we need to combine stochastic models of chip fabrication
and of circuit operation with the realistic uncertainties of the marketplace,
to form an integrated system.

This thesis investigates many proposed methods and discusses some ways

of implementing possible tools in a practical way on small systems.

1.3.1 Missed Opportunities

There are systems that are not produced because it seems they are not prof-
itable, but that actually should be produced, because they are profitable;
and there are systems produced that seem profitable, but which are actually

not. Both are bad, and both can be avoided by a “statistical” design.

1.3.2 Expectations

For the practical designer, as distinct from the researcher, who really will
want a large number of chips from a design- fabrication run at $40000-$50000
per run, a very important consideration must be: what is to be the propor-
tion of good chips? When designing to customer specifications this is vital.
However it is clear that variations in process parameters for each layer, and
variations in actual operating conditions, will mean a spread of timing be-
haviour in the chips. How can these myriad effects be assessed, and thus the
need for a re-design determined?

The most important tool for this is SPICE or SPLICE or one of the much
faster recent tools. However, even with the faster programmes there is an
inherent problem - they either take too long for this purpose, or they are too
inaccurate, as will be seen.

Maly [Mal90] describes techniques that can be employed not only to de-
sign a chip so that it meets a set of functional specifications, but so that it will
have adequate yield when manufactured. He urges the premise that CAD in
the future must be concerned with the entire product life cycle, from speci-

fication through qualification. Along these same lines is the growing feeling



that to be competitive it is important to take an integrated view of CAD
and CAM. This view is motivated by the fact that actual success of a chip
design depends on the ability to manufacture the chip with sufficiently high
yield to make it profitable.

Strojwas and Sangiovanni-Vincentelli [SSV86] in their review of statistical
techniques, feel strongly that the relevance of the field of stochastic design is,
if anything increasing, and that the bottleneck is still circuit analysis. Yield
maximisation approaches have to be extended to cover all significant causes
of failure, and have to be supported by physically based models. Research
efforts should be focused on economic aspects of VLSI design, manufacturing

and testing. New approaches should integrate all these considerations.

1.4 Stochastic Modelling

Maly, Strojwas and Director [MSD86) point out that, due to inherent fluctu-
ations in any integrated circuit (IC) manufacturing process, the yield, nomi-
nally viewed as the ratio of the number of chips that perform correctly to the
number of chips manufactured, is always less than 100 percent. As the com-
plexity of VLSI devices decrease, the sensitivity of performance to process
fluctuations increases, thus reducing the manufacturing yield. Since prof-
itability of a manufacturing process is directly related to yield, the search
for computer-aided methods for maximising yield through improved design
methods and control of the manufacturing process has intensified dramati-
cally. Statistical approaches to yield modelling and optimisation have been
under development for a number of years. For the most part, these meth-
ods can be separated into two categories: parametric yield estimation and
optimisation techniques and catastrophic yield estimation and optimisation
techniques. In general, parametric yield optimisation has been formulated
as a lolerance assigument or design centring problem. However, due to sim-
plified assumptions about circuit element characteristics, these approaches

have been proven successful only for discrete circuits with a relatively small



number of designable parameters. All of the physical phenomena that affect
manufacturing yield are taken into account.

Spanos and Director [SD86] stress that the IC manufacturing process is
subject to inherent statistical fluctuations of material quality and equipment
performance. Characterisation of these fluctuations 1s important if perfor-
mance of the manufacturing facility to be simulated and optimised. The IC
process consists of at least 3 distinguishable hierarchical entities, namely the
chip, the wafer, and the lot of wafers, and variations should also be modelled
hierarchically.

Mei and Dutton [MD83] also feel certain that technology modelling will
become increasingly important in future VLSI fabrication, considering that
typical VLSI circuits consist of more than 100,000 transistors on a single chip
less than 1cm? in area with the minimum device feature size on the order of
1ym or less. Models for simulating both lithographic and etching steps have
been subjects of intensive research, since many physical parameters such as
grain size and active concentration of dopants change during processing, and
consequently modify other processing constants such as diffusion constants
and oxidation rates.

Benkoski and Strojwas [BS87] note that simulation is the best means
to verify the behaviour of VLSI circuits from both the logic viewpoint and
from the timing viewpoint, but that, unfortunately, while strict hierarchical
design methodologies have been developed in order to manage the complexity
of the design process, the simulation task has not benefited from the same
attention. In addition, in today’s technology, the assumption that process
parameters are constant between dies, or even within a die, is no longer
valid. As a result, statistical verification of the timing is now sought. Since
statistical analyses require repeated runs, the cost of each simulation is even
more crucial. Moreover, in order to perform a meaningful analysis of the
variations of the process parameters, the simulation accuracy must be further
improved.

Yang et al [YHC*86] echo this when they identify the major problem



in statistical circuit design for MOS VLSI as the prohibitively expensive
computational requirements.

Scaling of feature size progressed more rapidly than scaling of process
tolerance. So at micrometer and sub-micrometre geometries used now in
VLSI, statistical variations of device characteristics can be very significant.
These variations in device characteristics result in corresponding variations
in circuit performance and must be considered in VLSI design.

Lightner [Lig87] appreciates that simulators are used for a variety of rea-
sons; because systems implemented in silicon cannot be effectively bread-
boarded, to produce a verified specification of the system performance, to
verify performance of portions of the design against specification, to test the
design for possible failures.

However, Saleh et al [SGC*89] remind us that circuit simulation is a
very time-consuming and numerically intensive application, especially when
the problem size is large as in the case of VLSI circuits. The time-domain
transient analysis is the most computationally expensive in terms of CPU
times. Programs such as SPICE2 were originally designed to simulate cir-
cuits containing up to 100 transistors, but have been routinely used at some
companies to simulate circuits containing over 10,000 transistors, at great
expense.

The problem is that these programs take a long time to run. That might
be viewed as simply an essential thing to put up with, but there is a more
important and more subtle consideration to be noticed: that very fact of
a long time deters designers from investigating the effect of all errors and

tolerances in parameters.

1.5 A New Approach?

It seems that a fruitful new approach might be possible, based on a new
approach to the simulation process. In fact, after examining a number of

software and hardware methods for speeding circuit simulation, a pseudo-



breadboard idea occurs and is examined, but needs to be discarded. However,
it leads to a related digital method that is full of promise, especially in view of
current trends and advances in wafer-scale integration. Examination of this

derivative idea comprises the bulk of this thesis, and is not without surprises.

1.6 TUnaddressed Problems

1.6.1 Parameter Variations

No small system software tool addresses the effect on a circuit design of
parameter variations, even though they are an inescapable aspect of the
design and fabrication cycle. There are no typical parameter variations: the
range of values depends mainly on the fabrication houses, once the process

has been decided on.

1.6.2 Longest Path-Criterion

The so-called ‘worst-case’ or longest-path time is often extracted from leaf
cells by circuit simulation and used in the hierarchical simulators. But is it
the relevant time to extract? Along the longest path, there are wide process
variations which will make even the longest path even longer (or shorter).

Which time should be taken? To answer this requires statistical simulation.

1.6.3 Example of Timing Variation

Modern nMOS circuits use clocking frequencies of 10 to 15 MHz, which
means that the combination parts between clock signals are working in times
of about 60 nanoseconds up to about 100 nano- seconds. To see what we
have to contend with, consider an actual example of a leaf cell used in a
multiplier structure, described in Chapter 3.

Using nominal values of capacitance, resistance and threshold voltage, the

nominal longest path is 51nSec. Using the extreme variations of these three



parameters yields times of 33nSec and 75nSec as the maximum and minimum
times. In order to run at 15MHz (66nSec period) redesign of the cell appears
mandatory; in reality, however, there is no indication of whether this is true or
not; perhaps only 5% of all chips would take longer than 60nSec: a stochastic
simulation would be needed to show this - there is simply no other way of
doing it. This is important because re-design is time-consuming (because all
stages of the CAD system have to be revisited) and will probably result in
greater power consumption (because the chip has to work faster). Re-design
in the case of this example may now be a waste of time because 95% may
be to specification; the nominal and the worst case approach to design can
often be simply misleading.

On top of this there are cases where cells of this type are cascaded into
larger structures - what are the mean and spread now? Does the usual
high-level simulator provide the answer easily? Is it important to know the

answer? Chapter 6 develops a possible way around this.

1.7 How to Simulate - A New Way

What is to be simulated? To build up the timing statistics of the system, it
1s necessary and sufficient to obtain the timing statistics of leaf cells on the
critical timing path. Figure 1.1 on page 10 summarizes what is expected in
this regard.

In this thesis we shall see what turns out to be a practical and, under
some circumstances, a fast approach: we attempt to ‘breadboard’ the VLSI
circuit, and much of Part III is concerned with showing that this is feasible.

Part IV argues that the algorithms developed in Part III have a wider

significance.
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Chapter 2
Economic Considerations

In this chapter I discuss the important influence of economic considerations on the

design cycle.

2.1 Statistical Considerations

The most difficult decision faced by the independent designer group is
whether to proceed to fabrication and production of their design. Myriad
compromises are involved and the highly non-linear and discontinuous na-
ture of the problem makes the only practical method one which maximises
the probability of success by running hundreds of scenarios and compiling
their statistics. This is true in the area of design, fabrication and marketing.

The greater the range of proposed systems that can be evaluated, the
better for everybody. The cost of evaluation is extremely high, particularly
of redesign, which fact favours entrenched companies. If the cost of deciding
whether a design should go ahead can be made negligible then an impor-
tant barrier to the entry of newcomers is removed, and more rapid progress

through extra production and experimentation can take place.
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2.2 Profitable Design of VLSI Circuits

Mozumder [MS90] emphasizes that with increasing complexity, VLSI circuits
and process technologies are being pushed to their limits, and fluctuations
in IC manufacturing are becoming the predominant factor of profit loss in
fabrication lines.

Riley and Sangiovanni-Vincentelli [RSV86] also note that what has lim-
ited the rewards of shrinking device dimensions is not any set of deterministic
relationships, but the variations in realised device dimensions from circuit to
circuit which results in variations in performance, which in turn significantly
degrades the economic value of the totality of circuits produced.

The aim of any VLSI manufacturer is to maximise the total profit while
meeting all design constraints on the product. The profit is affected by a
number of factors. The inherent process fluctuations cause significant yield
loses, and this results in a drop in the profit.The total profit is affected by
the different fabrication and assembly costs and the revenue associated with
fabricated IC’s. These costs and profits are in turn dependent on several
aspects of the particular fabrication process that the IC’s undergo. Some of
the processing steps are performed on entire lots, and hence the total cost
associated with such steps will not depend significantly on the number of
wafers. Other processing steps are performed on individual wafers and the
costs associated with such steps depend on the number of wafers. After the
wafer processing stage, the wafers are divided into individual chips and these
are probe-tested. The chips that pass these tests are assembled and packaged
into IC’s. These IC’s then undergo functional tests.

Thus it is evident from the profit maximisation framework that the design,

control, and diagnosis phases of a VLSIC are strongly coupled.

2.2.1 Market Yield

There are many decisions to be made during the - design phase, as indicated

by Sze [Sze83]. The selling price of the system is a function of the number and
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nature of the desirable features contained within the system (on the chips).
The die size is determined by the number and complexity of these features.
The size of the fabricated die is determined by the technology. The cost of
each die is set by the technology, number of wafer starts and wafer yields.
The yield is strongly determined by the size of the die. The ultimate cost
of the system is determined by the cost of each die and how many may be
sold. The ultimate returns in the investment are determined by the excess
of selling price over cost and the number sold. The number sold is partly
determined by the selling price and the number of desirable features . . .
Thus a full circle is turned: whether the system should be produced at all
only makes sense if the number to be made is estimated. This gives the cost
of each possible course of action. But the number to be made only makes
sense if 1t is asked: what is to be done with them? How many may be sold?
At what prices? Thus the probability of events remote from the design phase
itself appear to be vital for practical exploitation of VLSIC products. It is

clear that a more comprehensive, integrated view of all phases is needed.

2.2.2 Design Yield

One way to manage the complexity of the VLSI structures is to design hier-
archically.

Circuits may be considered as being composed of leaf cells [MC80], and if
the leaf cells are properly characterised then much may be deduced concern-
ing the statistical behaviour of the circuit and system timing. By knowing
the characteristics of the leaf cells, and the interconnections between the leaf
cells, one can perform timing verification and obtain the characteristics of
the composition cell.

Timing estimates are usually obtained for the nominal operating condi-
tions and for the worst case. Neither of these times sufficiently characterise
the circuit behaviour for fabrication purposes. These two figures give the

designer almost no confidence at all when predicting the actual performance
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of the chip.

The problem with running only the nominal case is that no idea of the
possible spread of results is obtained; if the spread is large this is a very
dangerous omission. Even if it is small, greater confidence in the design is
assured if the spread is known.

The problem with worst-case methodology is that it is performed with
an extreme set of parameters which renders the predictions unnecessarily
pessimistic. Truly reliable predictions may only be made if all the variations
are taken into account from the start of the simulation. The greatest un-
certainty about actual performance arises if these parameter variations are
ignored, and only ‘ezact’ values are used; this 1s worse than useless when vast
sums need to be committed for chip fabrication.

If stochastic simulation shows that (say) 50% of all returned chips should
meet specifications then the cost of each chip is known (from the manufac-
turing yield and the design yield). If this cost is unacceptable then the leaf
cells of the chip may be redesigned so that a greater percentage of chips will
meet the specifications; this makes a larger chip and leads to a lower yield
(using the same process). Only a model which takes account of all costs and
profits in a statistical fashion can show whether the redesign was useful or

necessary.

2.2.3 Fabrication Yield

The fabrication yield from a run is needed to obtain the final yield for calcu-
lating chip cost. There a many formulae available from various sources which
give an estimate of the mean yield based on the process and the chip area. An
extension of the above example might point this up: consider a design yield
from stochastic simulation of 50% and a fabrication yield of 30%; this gives
a net yield of 15%. Suppose the cells are redesigned to give a design yield
up to 90%, leading to a larger chip with perhaps a fabrication yield down

to 15%: the net yield now becomes 13.5% which is a little worse overall! A
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redesign of the architecture itself might now be indicated.

It is clear that the need to obtain these figures implies a mathematical
model of greater scope than normally associated with chip design alone.

Peltzer [Pel83] raises the possibility that wafer-scale integration (WSI)
can improve system reliability, by the use of redundant circuits, and thus
reduce the yield loss caused by small random defects; however, WSI demands
a sizeable investment in computer-aided design.

McMinn [McM82] remarks that, as feature sizes have reduced, the size
of dies have doubled with no loss in yield; this means that designers can
dramatically increase the amount of circuitry. The tradeoft between die size
and projected yield is an important consideration when partitioning the sys-
tem for a custom chip. eg for a typical (then!) 5 micron silicon gate nMOS
process with 4-inch wafers and 5 critical mask levels , slightly more than
doubling the area causes a near 6-fold decrease in yield.

Tsaur and Chen [TC86b] demonstrate the spread of processing parame-
ters in very small feature-size CMOS devices, with effective channel lengths
of 0.7 to 4um. The threshold voltages are found to have a 99% spread of
240mV. The propagation delays are about 95psec at 5V, which are accept-
able ranges for 5V devices, but would have to be reduced for lower voltage
and submicrometer devices.

Styblinski and Opalski [SO86] have developed a set of tools. Their premise
is that, as ICs become increasingly complex, and geometries smaller and
smaller, it is becoming more and more difficult to achieve acceptable manu-
facturing yields, even if the normal design fulfils all design constraints. The
manufacturing yield is composed of two parts: the technological yield and the
design (or parametric) yield. The former is a result of catastrophic failures.
The latter is a result of the sensitivity of circuit performance to IC device
parameter variations, caused by unavoidable variation of the manufacturing

conditions from device to dcvice and from chip to chip.
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2.2.4 Manufacturability

In a very important and wide-ranging paper, Maly [Mal89] explains the con-
cept of design for manufacturability, and lists tasks and CAD tools dealing
with manufacturing aspects of the design of modern VLSI circuits.

Traditionally, computer-aided design (CAD) tools are applied to create
a nominal design of a VLSI circuit - the design which meets desired nom-
inal functional specs. In reality, however, the nominal design, along with
the manufacturing process, must be very often modified to maximise man-
ufacturing yield. Such maximisation must be performed during the design
to achieve an acceptable level of initial manufacturing yield. It also must be
performed during fabrication in order to achieve the maximum rate of yield
improvement in the entire product development cycle.

A typical approach to the design of VLSI circuits, and IC design is pro-
duced by using given “nominal” characteristics of the VLSI circuit elements.
In the general case, however, they are random and may be so large that some
of the fabricated ICs may have unacceptable performance.

Manufacturing yield! is directly related to the manufacturing profit - the
most important figure of merit of any manufacturing activity, because it is a
measure of the incentive to reinvest in the product line.

In general, the VLSI product development cycle must be seen as a pro-
cess of a number of decisions performed iteratively by using uncertain in-
formation: the first is a necessity to predict performance of the IC using
incomplete and uncertain data; the second is the existence of random en-
vironmental factors which disturb prototyping and manufacturing steps. In
the modern/fabrication facilities, the vast majority of defects are small (in
the range below 2 ym).

For a new product planning-phase one must decide: which technology
should be chosen and what should be the die size, expressed in terms of

the number of transistors and the area of the die? In the case of a system

lthe ratio of fabricated IC chips with acceptable performance to the total number of

produced chips
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composed of a number of different IC’s , one may also ask whether the system
components should be fabricated on a number of small dies or on one, large-
area, common substrate?

Usually the answer to such questions is not trivial because it involves
a number of not very well-defined tradeoffs, as well as various competing
objectives. In general, however, one can assume that the optimal technology
and the size of an IC are such that they result in a maximal manufacturing
profit. But the profit is a function of the yield which is, in turn, a function
of applied design rules and the die area. Consequently, in order to determine
the economic viability of a new IC one must know relationships between
design rules, die area, and yield, and the relationship between yield and
manufacturing profit, for all available technologies.

The key to the strategic design decisions is yield prediction, which can
take into account: the actual characteristics of the process disturbances caus-
ing yield loss; the relationship between yield and topology of an IC layout,
with a special emphasis on geometrical design rules; and yield improvements
that can be achieved through the application of various redundancy strate-
gies. None of these three aspects of yield prediction can be handled without
the aid of the computer.

One of his major conclusions is that a yield model must express yield
losses in terms of the die size and IC layout characteristics rather than in
terms of the IC area alone. Such a need becomes more and more pronounced
with the decrease of the minimum feature size of modern technologies.

In particular he notes that there is more and more evidence that large-area
integrated circuits, including WSI, will soon become economically feasible,
and concludes that design for manufacturability through the application of
redundancy techniques that are becoming established in the WSI field seems
to be very promising and in the future should be used much more often.
But this will require better yield-prediction tools, that can be used early
in design cycle, and which are accurate enough to predict specific modes of

circuit malfunctions well. The problem is that smaller IC elements are more
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sensitive to inherent fluctuations of the device dimensions, doping levels and
SO on.

Thus Maly considers that key components of a set of yield tools should
therefore be: process simulators, device simulators and yield and performance
predictors. A whole spectrum of methodologies have been developed to solve
the yield maximisation problem, but a majority of them have a circuit-
optimisation bias, and therefore have been developed on a strong theoretical
basis, with less stress on the process realities and manufacturing-related con-
straints. A special group of theoretical approaches form the methods using
Monte Carlo techniques to estimate yield and to perform yield optimisation
as well.

The most important point he makes from the perspective of this thesis
is that, although circuit simulation tools are the oldest amongst CAD tools,
they still form a major bottleneck to design for manufacturability. This is
because parametric yield evaluation requires full accuracy of simulation, and
therefore simulators matching the complexity of SPICE must be used.

He concludes by noting that a long list of theoretical and practical prob-
lems must be solved before manufacturability-oriented CAD tools can be
used in anyone package, mainly because of a traditional split among cir-
cuit/systems design, process development, and manufacturing mentalities;
but also because many theoretically elegant but inherently inefficient algo-
rithms and procedures cannot be directly applied to VLSI circuit/process

design because of the size of the modern VLSI circuit.

2.3 New Design Tools

Variations in process parameters and actual operating conditions will mean
a spread of timing behaviour in the resulting chips. New tools are required
to assess this spread and hence help to determine of a redesign is necessary.

The most important tool for this a a leaf-cell circuit simulator. All meth-

ods eventually aim at producing the only truly significant statistic: the joint
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accumulated distribution function. This shows the proportion of leaf cells
which have completed operation at any time, given the process variations.
Thus it also shows the yield of the chip design in terms of the timing opera-
tion specifications. This may be combined with the fabrication yield to give
the net yield of the design itself.

However, the problem is subtle. In IC fabrication processes, yield max-
imisation, as attempted by the quality control system, does not imply profit
maximisation. A lot that is rejected at an intermediate stage results in zero
yield but saves the cost of future processing steps and frees up the fabri-
cation equipment. The freed-up resources could then be used to produce a
lot with a much higher yield. Therefore the objective of the control system
will be profit maximisation as opposed to yield or though-put maximisation,
whereas the objective in design for manufacturability is to develop a design
that minimises the sensitivities of the output performances of the fabricated
IC’s to the random disturbances affected the manufacturing process. These
are slightly different.

Thus Mozumder [MS90] hopes to achieve profit maximisation using a
unified framework where both quantity and quality controls are used as part
of statistical process control on a fabrication line.

Riley and Sangiovanni-Vincentelli [RSV86] point out that the reason that
expected economic gain is not usually the explicit criterion for engineering
design selection is that an explicit economic model is generally not readily
available. Nevertheless, inclusion of explicit economic models in engineer-
ing design is the ideal, and a truly advanced design methodology should
incorporate such models. Fortunately, incorporating revenue models, which
are heavily based on statistical methods, into the design methodology does
not introduce the need for radically different knowledge bases or software
capabilities, once the problem is already statistical in nature.

Spoto, Coston and Hernandez [SCH86] have created a Statistical Analysis
Menu which integrates process, device, and circuit characterisation functions.

Their opinion is that the increasing competitiveness of the IC industry will
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eventually dictate the use of such an integrated system on all product and
cell developments in order to squeeze out as much performance and area as
possible, and in particular to avoid overdesign of products.

Gallivan et al [GJIMW91] have noted that in recent years, all U.S. super-
computer manufacturers, and dozens of mini-supercomputer vendors have
entered the market with some form of general-purpose parallel-processing
system. This might be a good thing from the point of view of faster simula-
tion, but judgement should be reserved and this issue is addressed at some

length in Part IV.

2.4 Some Observations

CAD for VLSI circuit manufacturability must be able to cover a large variety
of design problems on all levels of design abstraction generated by all phases
of the device development cycle.

The first important observation indicated by the discussion above is that
manufacturing CAD, which is IC performance-oriented, is perhaps more than
any other kind of CAD affected by limitations of available computers. Such
design tasks, involving simulation or optimisation steps, performed on the
low levels of design abstraction (transistor and below), are very computation-
intensive and not all of them can be solved with the existing tools and avail-
able hardware.

Computing power capable of producing the necessary statistics is, in large
companies, already devoted to projects they judge important. Such power
will cost a lot to divert to speculative ventures.

If the promise in the computer circuit revolution initiated by the new
design methodologies is to be realised, then even slightly-capitalised groups
need to be able to enter the field. The greater freedom to cheaply determine
whether a design should proceed to market means that both a greater range
of possible systems can be tried and that once it is determined that a system

may be economically produced, then existing large capital groups can become
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involved. However, up to that stage they tend to inhibit new developments,
which the main reason that the ability to try new methods should be available
to the poorest (in terms of computing power) as well.

This need cannot be ignored in the era when VLSI is approaching ULSI,
and when almost everybody understands that the true engineering and eco-
nomic achievement is not merely the design which can be successfully sim-
ulated and tested on the first silicon, but the design which can be easily
manufactured in large quantities - an IC designed for a high level of manu-

facturability.

2.5 Significant Conclusions

This thesis presents results of importance to independent designers of VLSI
circuits and systems, especially those who are not associated with a large
company or do not have access to large computing facilities.

Profitable production of VLSI chips and systems depends on net yields
from design and fabrication, amongst other factors. Increased yields may
be obtained by using a smaller feature size or a different design algorithm.
However, the effect on profits of either course of action cannot be assessed
without adequate mathematical models, and these have to be included in the
design cycle itself.

It turns out that statistical considerations dominate the design of tools
necessary for answering the profitability question. To create a useful aid to
decision-making, it is necessary to combine stochastic models of chip fabri-
cation and of circuit operation with the realistic uncertainties of the market-
place, to form an integrated system.

On single-user designer workstations, this set of very complex and inter-
related constraints might conveniently be investigated by simple, heuristic
and interactive methods, using accurate stochastic models. Such models are

investigated in the Part III.
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Part 11
Methods

“Philosophers are as free as others to use any method in searching for

truth. There ts no method peculiar to philosophy.”
KARL POPPER



Chapter 3

Circuit Timing

Characterisation

Here I explain what is meant by an adequate characterisation of the timing
behaviour of a circuit . This is tllustrated by completing a statistical stmula-

tion of a leaf-cell from an already-fabricated circuit .

3.1 Types of Circuits

There are many aspects to circuit characterisation, such a logical behaviour,
timing and waveform behaviour, density of packing, the manufacturing tech-
nology (nMos, cMOS, hMOS, vMOS, &c.), the feature size (5,4,3,2,1 microns
and below), and power dissipation. However, as far as predicting whether or
not the circuit will work the important characterisations are those of logic
and timing. Logic has been well explored elsewhere, in the literature and in
practice, and attention here will be on timing.

The relative importance of logic or timing simulation depends on the

circuit under investigation.

Clocked Systems In clocked systems, combinational logic occurs be-
tween clock lines and is almost exclusively the subject of investigation,

and both logical behaviour and timing are crucial to the success of the

23



design.

Data Path Systems These systems are unclocked and it is the logic be-
haviour that is paramount in the first instance. However, the status
nodes which wait for a ‘true’ or ‘ready’ signal from all inputs (from pro-
cessing elements) are effectively ‘clocks’; all transient behaviour waits
for them to ‘fire’ and so even data-path systems are a subset of clocked
systems, in this sense. Thus once again it is the behaviour of pro-
cessing elements between nodes which becomes important. This covers

“handshake”-operated sequential (asynchronous) logic, too.

Cascaded Combinational Logic Systems These, such as array multi-
pliers, are also unclocked, and once again logical behaviour is required
to be verified and timing predicted, so that stochastic studies are im-

portant.

3.2 Timing Simulations

Timing estimates used to be made by hand using the TAU model. However,
with circuits now held in a database it is much more convenient and accurate
to extract the circuit and submit it to computer simulation using programmes
such as SPICE [NPSV89], SPLICE or QRS [P0i83]. In doing so it is typical to
consider the ‘worst-case’ for process parameters. The result of the simulations
is a time of operation for the nominal operating conditions, and a worst case
time.

However, as has already been seen in the discussions of economic justifi-
cation, because many of the important parameters that determine the timing
behaviour are not tightly defined, this will often not be the best or even a
useful characterisation. The slowest time of operation is obtained using ex-

treme parameter values that, taken together, produce an extremely unlikely
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combination in practice. In this sketch

fastest nominal time slowest
time time
) time
actual
proportion
finished

designed operating time

the fastest operating time, on the left, falls somewhat below the fabricated
fastest time, by an unknown amount that can only be predicted using a
stochastic simulation. So instead of the complete distribution curve, shown
below the time axis, the only values available are the fastest, the nominal
and the slowest times.

Since the actual nature of the distribution function is unknown, and in
particular the circled fabricated times are unknown, these three figures by
themselves give the designer almost no confidence at all in predicting the

actual performance of the chip at the designed speed.

3.3 Leaf Cells

Considering that all the main types of circuits may be composed of leaf cells,
then if the leaf cells are adequately characterised statistically much may
usefully be said about the statistics of the circuit containing them.

A leaf cell typically has a small number of inputs and a small number of
outputs. A change in the voltages at the inputs (consequent on clock or ready
signals) cause a change in the outputs. This change takes time — a different
time for different values of process parameters such as feature size, transistor
size, threshold voltage, capacitance and resistances of layers of metal and

silicon.
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The prediction of this time is needed for a redesign decision, but it is not
a definite time of operation; rather, there is a spread of possible times due
to the spread of possible parameter values during fabrication. The greatest
uncertainty about actual performance arises if these parameter variations are
ignored, and only ‘exact’ values are used. This is useless when large sums
need to be committed for chip fabrication. Thus the importance of a full
stochastic simulation — it is only if all these variations are taken into account
from the start that truly reliable predictions may be made.

In addition to the single-cell case, there are cases where suitable cells are
concatenated to form larger structures, such as ripple adders and their like.
What is the mean operation time and what is the spread of times in this
case? Downs [DCR82] does not think that the usual high-level simulators

can easily provide the answer. This problem is addressed in chapter 5.

3.4 Monte-Carlo Simulation Example

Typical nMOS circuits, available when the bulk of the present simulations
were carried out, use clocking frequencies above 10 MHz. This means that
the combinatorial parts of the circuits between clock signals are working in
about 100 nanoseconds.

An actual example of a leaf cell used in a multiplier structure ,designed
by the author, is fully characterised by Monte Carlo methods to demonstrate
the desirable and attainable results of stochastic simulation. The simulations
are all carried out on a IBM 370/3033 CPU using the SPICE 3B.1 program
[NPSV89]. The leaf-cell is shown in Appendix A. It has been fabricated,
tested, and it works [*N-bit Multiplier’, Author’s Publications]. Shown below,
the sum, carry, ¢ & y inputs pulse from 0 to 5 volts and the cell produces

new sum and carryoutputs. Operation finishes when both the sum and carry



reach a high of 2.4 Volts.

SUM
j - full

adder
x & y pass

CARRY through
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Xy
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New
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New
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3.4.1 Fabrication Parameter Variations

It is usual to calculate with variations around the nominal values out to the
30 or three standard-deviation point. For a gaussian distribution this means
that practically 99% of all possible values lie within two extremes. Variations
in some of these quantities are correlated during fabrication, [Coh83] [BS87]
[CYC84] [DCR82|, in which case the correlations are incorporated into the
simulation by the sampling technique described in Appendix B. The table

overleaf
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Process NoMINAL | MIN. | MaX. | CORRELATION
PARAMETER VALUE 30 30 COEFFICIENT
enhancement V¢, 085V o6V | 1.1V 0.3
depletion V4, 275V |34V |21V
enhancement 7: 0.62 0.57 0.67 0.1
depletion ~: 0.65 0.60 0.70
sheet resistivity:
(ohms per square)
diffusion 10 0.9 1.1 0.2
polysilicon 20 0.9 1.1
metal 0.030
line width: metal 1 0.9 1.1 0.2
line depth: metal 1 0.9 1.1
line width: polysilicon 1 0.9 1:1 0.2
line depth: polysilicon 1 0.9 1.1
capacitance:
(pf per sq micron)
diffusion to substrate 0.000010 0.9 1.1 0.2
metal to substrate 0.000003 0.9 1.1 0.2
polysilicon to substrate | 0.000040 0.9 1.1

summarises the nominal values and the spread of the process parame-
ter values used in the simulations. These values are for simulation purposes
only. Although they are based on some parameters that were assumed for a
Multi-Project Chip fabrication, they do not correspond to any actual process.
Correlations are assumed between bracketed neighbouring pairs of parame-
ters in the table. The simulations are carried out at a fixed temperature of

27.0 degrees Centigrade and a fixed operating voltage of 5 Volts.

3.4.2 The Longest-Time Path

First the input ‘decks’ for 256 SPICE runs by editting the voltage input
‘card’ on the nominal deck. This allows the four inputs to change from
all combinations of 0000-1111 to all combinations of 0000-1111. These 256
simulations were run over- night. This took 64 minutes of CPU time plus 15
minutes of editting CPU time: a total of 79 minutes at $2000 per CPU hour,
giving a nominal cost of $2650 just for accurately determining the longest
path.

Note that there two processes are intimately related: if a fast method of
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doing individual SPICE runs is found then a convenient method of obtaining

both the longest path and the stochastic simulation is found.

3.4.3 ‘Monte-Carlo’ SPICE simulation

500 separate SPICE simulations were then run. Each one: generated random
numbers for sampling the parameters from given Gaussians (truncated at 3-
sigma); editted the nominal SPICE ‘deck’ to create a new deck for the run;
and submitted that job for background execution. Each simulation was for
150nSec. The nominal deck is shown is Appendix F. Each run took about
30 seconds of CPU time but about 70 seconds of elapsed; time the total
stochastic simulation for the leaf cell took just under 4 hours of CPU time
and just under 10 hours elapsed time. The nominal cost was $2000 per CPU
hour; this leaf cell thus cost $1333 to simulate. (This cost is for internal
users, and thus somewhat under-estimates the total cost).

The next day (these large jobs run overnight) all the results were analysed
by another set of programmes. They scanned each output file to find the time
at which both the sum and the carry were ready (defined as both reaching
2.4 volts from 0 volts). At the same time, the value of the sum and carry
separately at every 5nSec over the period 0-150nSec was stored in a histogram
at every 0.1 volts within the range 0-5 volts.

Using nominal values of capacitance, resistance and threshold voltage, the
nominal longest path is 100nSec. Using the extreme variations of these pa-
rameters yields times of 64 nSec and 155 nSec as the minimum and maximum
times. However, when process parameters are correlated, extreme parame-
ter values cannot be chosen independently, so the worst cases will actually
produce rather misleading times — the extremes might not be attainable in

reality.



3.5 The Significant Statistical Distributions

3.5.1 Probability Density Distribution

The nominal voltage waveform and the probability density functions for both
the sum and the carry were compiled. The sum is shown in figure 3.1 on
page 31. and the carry is shown in figure 3.2 on page 32. They are interesting
because they show a multi-modal nature as time goes on, i.e., they do not

remain strictly gaussian.

3.5.2 Accumulated Distribution Function

The first important result is the scatter histogram in figure 3.3 on page 33
showing the spread of finishing times. This shows that there is a spread of
‘ready’ times about the mean of 100 nSec, from 70 nSec up to 145 nSec. The
distribution is skewed and sharply cut off at the fastest finish time.

From this is derived the second important result, the accumulated joint
distribution function, shown aboveit. This is found by integrating the scatter
histogram. Here joint means those cells for which both the sum and the carry
have together reached 2.4 V. Thus it shows the proportion of leaf-cells that
have completed operation at any time, and so it ultimately shows the yield

of chips in terms of the design requirements.

3.5.3 Manufactured Operating Speed Distribution

The third important result is the spread of operating speeds of the chips.
This is shown in figure 3.4 at the bottom of page 34.

Shown above it is the final important distribution derived from it by
integration. It shows the proportion of circuits operating at least as fast as a
given speed. Combined with the fabrication yield this can give the net yield
of the design itself and hence is the most useful graph for deciding whether

a re-design is necessary.

30



150

4 T T T T L T T T T T T T T = T
2= ]
i s |
o
B - -
©
>
(O] s —
_2 i i i i 1 i 1 1 i | i 1 i 1
0 50 100
ncnoseconds
So0
[_L; 400
A
[a W
g
w
Q
w2

Figure 3.1: SUM: NOMINAL & PROBABILITY DENSITY FUNCTION

31



voltage

0 50 100 150
nanoseconds

100
80

&0

scaled P.D.F.

e

@‘S“‘“\

Figure 3.2: CARRY: NOMINAL & PROBABILITY DENSITY FUNCTION



proportion finished

density proportion finished

1.0

0.8

©
o

©
~

0.2

0.0

function — finish times

distribution
I 1 " =

| L L i I L i i L I

50 100 150
nonoseconds

200

probability density function — finishing times
¥ " 1 ' T ! ! I ! ! I ! !

N R Y

50 100 150
nanoseconds

Figure 3.3: SPREAD OF FINISHING TIMES

33

200



manufactured minimum speed distribution
T I T T T l T T T T T =

100 L) L T T T T T T T T
:g 80| _
0 "
£ -
“g =
o 60 —
‘6 e
Eh B ~
c
£ [ ]
C
2 40 =]
Q) = -
o
u b=
< b
o N
8 -
e 20 2
O 1 1 ' | I .
0 5 15 20 25
MHz
manufactured speed distribution
25 i l T T T ;,j T L] Ll I T T T L] T
20— —
° Ir .
[ ] - =
()]
a = -
n N -
(=] 15 == —
o . 2
c
£ i 4
C
E = -
) B ] -
E,‘ 10— -
C ™ -
) 5 N
o
1] = -
a L -
5 — _
0 i 1 | i r 1 1 1 ' | " i ) i 1 i ' n 5 ]
0 5 10 15 20 25

MHz

Figure 3.4: SPREAD OF MANUFACTURED MINIMUM OPERATING SPEEDS

34



3.6 Conclusions and Evaluation

Timing predictions for digital systems in VLSI circuits are made using var-
ious simulation programs. Statistical simulation is necessary when process
parameters are not tightly defined; this is particularly important when pre-
dicting design yields, to help in deciding whether the circuit may be produced
profitably at the designed speed.

These simulations make it clear that nominal design can be quite mislead-
ing for clocked systems. Only some form of stochastic design gives complete
confidence in the results.

The only distribution of real interest is the accumulated joint distribution,
which shows the time at which a given proportion of cells completed their
task. From this, all decisions regarding re-design and fabrication can be
made, since the speed and ultimately cost of each working chip may be
obtained from it.

It is further suggested by the plots obtained that 500 runs is sufficient
to get a very good timing characterisation. This is confirmed by other re-
searchers — for example, Brayton finds that “Typically, at least 100 trials
would be required to obtain a reasonable estimate for [the accumulated distri-
bution]” [BS80] [BHSV81], others with more recent computing power [BS87)
[SO86] [MSD86] [Kob82] [DCR82] quote between 300 and 3000 runs to get
a good estimate. In addition, rather fortunately, “...the size of the sample
does not depend on the number of parameters” [BHSVS8I].

The results of these simulations suggest that, for those intending fabrica-
tion at remote foundries, nominal design gives a dangerously false picture of
the yield. Some form of stochastic design is necessary to give a measure of
confidence in the results. It is already known that close to 500 simulations are
necessary. Thus on the face of it stochastic simulation is a time-consuming

business. The rest of this thesis sets out to deny that this is necessary.
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Chapter 4

Existing Methods

In this chapter I review past and present methods of both stochastic and circuit

stmulation methods and identify areas needing further research.

4.1 Statistical Simulators

Design centering is the art of designing an IC to minimize the sensitivity of
its fabricated performance! to the random disturbances affecting the man-
ufacturing process. This is slightly different to the aims of this thesis, but
there is substantial overlap.

Maly [Mal82] discusses a yield estimate algorithm which applies a learning
procedure to a Monte Carlo approach. As sampling proceeds, information
about the sample location is used to improve the efficiency of the yield esti-
mation procedure.

Koblitz [Kob82] presents a graphical method for a design centering step,
beginning with 100 Monte Carlo samples, which he regards as a small num-
ber. Past random samples of the Monte Carlo analysis are used in an up-
dating process, as an assessment criterion for the next iteration. This way,
the number of random samples can be reduced in each subsequent step; a

reduction overall in the sample size of about 50 percent. He attaches great

le.g., timing, power dissipation, or whatever is important for the application
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importance to choosing an appropriate number of random samples in Monte
Carlo analysés.

Downs, Cook and Rogers [DCR82] describe an approach to statistical
design for large circuits, based on partitioning a system into subsystems.
They expand the distribution function in an Edgeworth Series, and consider
3000 Monte Carlo simulations are required to give a 95% confidence interval
on the yield, requiring 215 minutes on a PDP 11/40.

Canepa, Weber and Talley [CWT83] develop a standard worst-case design
procedure on a short-channel NMOS II1 process. Most of the fabricated chips
exceeded their performance specifications. Interestingly, they find that their
program caught many fatal errors in the layout that could not be have been
found by anything short of a chip-level circuit simulation.

Styblinski and Ruszczynski [SR83] apply an SA? algorithm to the yield
optimisation problem. The yield estimator needs 300-1000 Monte Carlo tri-
als. However, for circuit analysis that is excessive. They discuss parametric
sampling, yield prediction and quasi-importance sampling, but the SA ap-
proach requires only a few extra samples each iteration.

Herr and Barnes [HB86] discuss a statistical design tool developed for
production lines, using new MOS models of real processes. They stress the
importance of considering parameter correlations from the outset.

Nassif, Strojwas and Director [NSD86] point out that yield prediction at
each step of a process is prohibitively expensive and instead the IC design is
usually verified under worst-case conditions. Parameter sets (threshold volt-
ages, transconductances etc) are obtained from test structures but the corre-
lation coeflicients between device parameters are traditionally not taken into
account. Device parameter distributions are estimated, extreme values for
each parameter are chosen and combined to obtain extreme (worst) values of
circuit performance. However, such combinations are unrealistic; the prob-
ability of simultaneous occurrence of these combinations is extremely low.

Hence the results of such an analysis will always be much too pessimistic.

2Stochastic Approximation Technique
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Correlations arise because different devices share processing steps, suggest-
ing that worst-case analysis should be performed in terms of some lower
level set of parameters, which will result in proper correlations between de-
vice model parameters. With the FABRICS tool they find that greater than
90 percent of the computational cost in the application of worst-case analysis
methodology is the cost of circuit simulation. They conclude that full Monte
Carlo simulation of complete ICs is not feasible, and worst-case analysis is
an attractive alternative to verify an 1C design.

Yang et al [YHC*86] start with the definition of parametric yield® and
develop a statistical model using only interdie variations, since these are
found to be much larger than those on one dic. They show that current
and capacitance of MOSFETS are primarily affected by: length reduction,
width reduction, gate oxide thickness and flat band control, and create a
quasi-physical circuit model with 9§arametersl Their statistical parametric
yeeld estimate method, to within 5 percent accuracy, requires several hundred
simulations to get a reasonable yield estimate, so they conclude that Monte
Carlo has limited use for routine circuit designs.

Spoto, Coston and Hernandez [SCH86] explain that soon after varia-
tions in the fabrication process were found to cause parametric yield losses,
the worst-worst case method was applied to the verification process and re-
sulted in many overly designed products. Worst-worst* case was justified
at the time because models were inaccurate and parametric data was ei-
ther sparse or nonexistent. Their system integrates process, device, and
circuit-characterisation functions. Using it, designers will no longer have to
overdesign products to ensure their success.

Stein’s method [Ste86] finds possible distributions for parameters which
minimize the expected cost of producing design. Given simulation results for
one parameter distribution, Stein gives a fast method which takes only a few

exlra samples, based on their demonstrated importance to the result, rather

3fraction of defect-free circuits meeting operating range performance specifications

*Worst-worst means extreme values without regard to parameter correlations
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than redoing all the Monte Carlo simulations for a different distribution.

Styblinski and Opalski [SO86] develop a set of design centering tools
within the FABRICS system. They note that the size of circuit that can be
optimized 1s limited by the amount of time that can be devoted to optimi-
sation and a major factor is the time taken by the SPICE circuit simulator.
The overhead introduced by the optimization methods themselves is found
to be negligible.

Alvarez et al [A*88] discusses a new theoretical method for design cen-
tering, which uses information from parametric disturbance studies.

Mozumder, Strojwas and Bell [MSB88] concentrate on the statistical
modelling of the process stage, while Director, Maly, Strojwas, Mozumder,
and Bell, in a series of important papers [DMS88] [MSB88] [DMS8S8] [Str89]
[Mal90] provide a consistent set of methods for increasing the fabrication

yield.

4.2 Circuit Simulation

All the statistical techniques discussed above rely heavily on circuit simula-
tion. Hon [Hon87] and Harrison et al [HNSB90] provide a good overview of
circuit simulation tools within the CAD environment.

Newton [New79] recognised that while circuit simulation techniques can
provide accurate waveform analysis of circuits of building-block complexity,
the requirements of a c.ircuit simulation become prohibitive as circuit size
increases. Timing simulators can improve speed by two orders of magnitude
while maintaining acceptable waveform accuracy by using node decoupling
techniques and simplified lookup models for nonlinear devices, but the speed
of timing simulation is insufficient for the analysis of large circuit blocks.

Yang and Chatterjee [YC82] recognise that statistical variation of param-
eters must be accounted for, and that parasitic capacitance and resistance
are more dominant in the determination of transient response of integrated

circuits as the feature sizes shrink and circuit density is increased. They
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present a comprehensive circuit simulation model for MOS short channel be-
haviour, incl-uding a model for the fringing capacitance due to finite gate
thickness.

Vladimirescu and Pederson [VP82] describe Classie, a simulation program
developed to narrow the speed performance gap between circuit simulators
and timing verifiers.

Coughran et al [CGR83] report a damped-Newton method, proved effec-
tive in simulation, using splines for functional models of transistors.

Werner [Wer84], noting that the simulator is effectively the breadboard
for system engineers doing custom IC design, reviews available switch-level,
gate-level, functional-level, behavioural-level and mixed-mode simulators.

Newton and Sangiovanni-Vincentelli [NSV84] give an overview of circuit
simulation programs, and methods used to improve the performance of con-
ventional circuit simulators for the analysis of large circuits. They cover
table look-up methods, direct methods and relaxation methods. For the di-
rect sparse-matrix methods on which standard circuit simulators are based, a
major drawback with the use of timing analysis is that tightly coupled feed-
back loops, or bidirectional circuit elements, can cause severe inaccuracies
and even instability during the analysis.

Tsao and Chen [TC86a) describe MOTIS3, a fast-timing, multilevel
mixed-mode simulator, with an automatic voltage step control scheme for
optimising speed and accuracy. Circuits are first partitioned into subcircuits,
and the simulator procésses the subcircuit as one element, allowing event-
driven techniques to be used for controlling the simulation mechanism and
the circuit simulation techniques for circuit block evaluations. The waveform
relazation technique allows the compute time to be reduced at the expense
of accuracy and vice versa. Up to 30,000 transistors have been simulated.
They conclude that fast-timing simulation is about three orders of magnitude
faster than conventional circuit simulation, and accurate to 5%.

Ruehli and Ditlow [RD93] discuss the SCALD timing verifier, using a cal-

culus of 7 logic values to verify designs, and employing: the sparse tableau
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analysis method; modified nodal analysis method ; implicit integration meth-
ods; and spafse matrix techniques.

Benkoski and Strojwas [BS87] draw attention to the concept of solving
for the time needed to cross a predefined voltage interval, as opposed to the
formerly universal approach of computing the voltage reached at the end of a
given time interval. This approach fits within event-driven frameworks, but
1s not general because it is only applied over a short time interval, rather
than over a full waveform.

Bryant [Bry88] introduces switch-level simulation; Lee and Rennick
[LR88] create ASIM, a compact IGFET model; Brocco [Bro88] review tech-
niques of block construction for CMOS circuit models; and Cox, Burch and
Epler [CBES86] discuss the circuit partitioning problem with an eye towards

useful parallel processing methods.

4.2.1 Timing Verifiers

Hitchcock [Hit82] explains that timing verification consists of validating the
length of path delays and checking the width of clock pulses. His program
TA® generates standard deviations for the times so that a statistical timing
design can be produced rather than a worst case approach. The accuracy
of the answers is only as good as the accuracy of the delays calculated for
each block, and assumes that the delays can be combined as for Gaussian
distributions.

Jouppi [Jou87] shows that these block statistics of Hitchcock are assumed
to be independent of the state of the circuit, so need to be compiled only
once every design iteration. He describes TV, a MOS VLSI switch-level
timing verifier, which analyses circuits with 40,000 transistors in under 30
minutes of VAX 11/780 CPU time. An interactive timing advisor provides
incremental timing analysis. There are accuracy/speed tradeoffs involved in

this approach. Jouppi, like Canepa previously, considers that analysis must

5Timing Adviser - for clocked, sequential machines
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be performed on the entire design at once.
Banerjee [Ban88] presents a tutorial on timing verifiers within the context

of design verification in the CAD environment.

4.2.2 Relaxation Methods

Hageman [Hag81] shows how systems of linear algebraic equations can be
solved either by: direct methods, for systems of moderate size; or iterative
methods, used primarily for solving large and complex problems for which,
because of storage and arithmetic requirements, it would not be feasible or
it would be less efficient to solve by a direct method.

Nevanlinna [Nev89] analytically attacks the question: how long to iter-
ate?, because one of the main problems in iterative processes is to predict
from the computed data when the true solution is already well approximated.

The relazation procedure is an iterative method. Southwell [Soud3], the
prime originator of this method, and also Shaw [SF53], both give a good
explanation of this method, which was devised for the computation of stresses
in frame-works and was shown to have application to other problems in
engineering science. They assert that “discarding orthodox for relaxation
methods, any problem that can be formulated can be solved”.

Relazation 1s a means whereby simultaneous equations may be solved,
not exactly, but with steadily increasing approximation. Relaxation, or lig-
uidation, of residuals is achieved in a number of steps, by applying the basic
rule of relaxation at each step; the aim of every step is to change the value
of the currently largest residual to zero. It can be applied to differential
equations in their finite-difference formulation. Inaccuracies can be reduced
by successively halving the time interval, errors do not accumulate at each
step and high accuracy is not required.

The essential feature of the relaxation method: it fixes  attention, not
on the quantities whose values are required, but on the quantities whose

values are given. Thus it has wider application than can be established by



rigorous argument. It will still be possible that the solution is not unique;
but this queétion is for physical intuition to decide.

Newton and Sangiovanni-Vincentelli [NSV84] concentrate on relaxation
methods for the solution of the set of ordinary differential equations describ-
ing the circuit under analysis. The two most common methods used are the
Gauss-Jacobi and the Gauss-Seidel. Relaxation methods are ideally suited
to exploit any latency of the circuits, but are not guaranteed to converge.

The first successful application of relaxation methods to electrical-circuit
analysis was in timing simulation. Timing simulators have proved success-
ful when applied to constrained IC design methods, but have not been as
successful in the custom-design environment. Since there is no way to guar-
antee accuracy for an arbitrary connection of MOSFET’s unless at least two
relaxation iterations are performed per time step, timing simulators have
produced incorrect results in some situations.

An important assumption required by relaxation based electrical simu-
lators is that a two-terminal capacitor be connected from each node of the
circuit to the reference node (ground or supply).

Iterated timing analysis applies relaxation techniques at the nonlinear
equation and its convergence properties are proven. The waveform relazation
method applies relaxation techniques at the differential equation level.

Newton and Sangiovanni-Vincentelli [NSV84] and Lelarasmee and
Sangiovanni-Vincentelli [LSV82] both describe RELAX, a Waveform Relax-
ation MOS simulator. The algorithm used in RELAX assumes that the
circuit consists of unidirectional subcircuits with no feedback paths. The
method analyses a decomposed subcircuit for the entire simulation time in-
terval, as opposed to only one time step, before proceeding to analyse another
subcircuit. It is possible to show that this technique will always converge to
the exact solution of the circuit differential equations provided that there is a
grounded capacitor at every node in the circuit. Therefore the accuracy and
reliability of this technique is guaranteed for most practical MOS circuits. If

the subcircuits are processed according to the flow of signals in the circuit,
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the solution converges in just two iterations.

Experience simulating MOS digital circuits using RELAX2 shows that
most MOS digital circuits without logic feedback loops converge in less than
ten iterations. However, circuits with logic feedback loops may take many
more iterations to converge, and the number of iterations required is propor-
tional to the length of the simulation interval.

Iterated Timing Analysis, which can be derived from timing analysis, is
accurate and fast, for large digital circuits.

The stability, consistency, and order of accuracy of the Implicit-Implicit-
Explicit (IIE) method has been determined and the method is very promising
for circuits with floating capacitors.

Newton and Sangiovanni-Vincentelli conclude that timing simulation al-
gorithms are fast and rather accurate for the electrical simulation of MOS
circuits with no tight feedback loops. Simulators using these methods provide
accurate waveform information with up to two orders of magnitude speed im-
provement for large circuits. It is clear that relaxation-based algorithms for
electrical simulation are well suited to the use of special-purpose hardware.

They conclude that the WR algorithm can handle floating capacitors
and pass transistors satisfactorily, and RELAX can be at least one order of
magnitude faster than SPICE2, for the same accuracy.

Dumlugol et al [DOCMS87] discusses a mixed-mode switch electrical im-
plementation of the Segmented Waveform Relazation Method, an efficient
waveform relaxation method for circuit-level simulation of large-scale digital
MOS networks. The underlying idea is to decompose the large system of dif-
ferential equations into subsystems, each of which is integrated independently
on the given time interval, taking into account inputs from other subsystems
from their state at the previous iteration. They note that the problem with
timing simulation is that sometimes a wrong result can be produced without
notice, so it has not found wide acceptance in the user community, except
for certain classes of circuits.

Casinovi and Sangiovanni-Vincentelli [CSV88] discuss modern simulators,

44



such as SPLICE or RELAX, which are based on relaxation methods because
these methods are better suited to exploiting circuit latency and multirate
behaviour. In all cases, their speed of convergence can be extremely slow,
depending upon the numerical values of the elements of the circuit. They
conclude that in the near future the application of relaxation methods to
circuit simulation will remain confined to digital circuits in which no tight
feedback loops are present.

Finally, Overhauser, Hajj and Hsu [OHH89] propose a scheme for auto-
matic mixed-mode timing simulation. and Schneider [Sch91] gives a sufficient

condition for the convergence of the Waveform Relaxation Method®.

4.3 Fabrication Simulators

Garcia and Sriram [GS82] note that the main CAD tools for the design
phase are the various types of simulators, but as design complexities shift
from a circuit to a system level, other hierarchical simulators will become
more important to the design process. In particular, the need for a set of
models of the fabrication stage is recognised.

Mei and Dutton [MD83] write that with typical VLSI circuits consists
of more than 100,000 transistors on a single chip less than 1 centimetre
square with the minimum device feature size on the order of 1picometer or
less, models for simulating both lithographic and etching steps are necessary
and have been subject ﬁo intensive research, for example, the 2-D process
- simulation model, SUPRA, developed at Stanford University.

Lightner [Lig87] notes that wide use of workstations and personal com-
puter based CAD systems is increasing the demand for efficient and accurate
multi-level simulators, not only spanning the logic and behaviour levels but

including the circuit and switch levels as well.

Salso referred to as the Picard-Lindelof iteration



4.4 Simulation Acceleration

4.4.1 Simulated Annealing

Kuh and Ohtsuki [KO90] criticise the ‘sea-of-gates’ design style which calls for
efficient algorithms which deal with hundreds of thousands of gates. Previ-
ously useful algorithms based on simulated annealing or other random meth-
ods have become unusable: even for them the computation time is unbearable

in spite of the growing accessibility of faster computers.

4.4.2 Software Speedup

Saleh et al [SGC*89] know that time-domain transient-analysis circuit sim-
ulation is a very time-consuming and numerically intensive application, es-
pecially in the case of VLSI circuits. To improve performance without sacri-
ficing accuracy, a variety of parallel processing algorithms have been investi-
gated. Both standard direct methods and relaxation-based approaches such
as waveform relaxation, iterated timing analysis and waveform-relaxation-
Newton are explained and their problems explored. They consider paral-
lel direct methods, model evaluation, sparse system solver, iterated timing
analysis and parallel relaxation methods. In particular, the forms of paral-
lelism available within the direct method approach, used in programs such
as SPICE2 and SLATE, and within the relaxation-based approaches, such
as wave-form relaxation; iterated timing analysis, and wave-form-relaxation-
Newton, are described.

For example, parallel circuit simulation programs based on nonlinear re-
laxation have been developed for the BBN Butterfly, and the Sequent mul-
tiprocess. A number of parallel simulators using direct methods have also
been developed primarily related to general-purpose multiprocessors with a
shared-memory architecture having a limited number of processors.

They conclude that the convergence speed of relaxation methods depends

on the degree of coupling between the equations in the system and the order
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in which the equations are processed. If some equations are tightly coupled

convergence can be very slow.

4.4.3 Hardware Speedup

The evolution of technology provides the opportunity of forming large proces-
sor ensembles working closely together. Instead of building a small number of
extremely powerful supercomputers it is most promising to develop methods
for distributing large jobs over many computers of the usual size. These are
manufactured in large numbers and therefore are cheaper. Multiprocessors
come in various sizes, ranging form two processors connected by a simple
serial link to computers with tens of thousands of processors connected by a
complex communications network.

Arden and Ginosar [AG82] explain that, historically, the large processing
rates characteristic of supercomputers have been produced by two different
approaches to concurrency. In the first, or pipeline approach, operations
are divided into small roughly equal duration units which can be executed in
parallel using very high performance circuits. In the second approach concur-
rency is more macroscopic. A relatively large number of simpler processors
can execute simultaneously on larger parts of the algorithm being executed.
They argue that the former has been more successful, but that the latter
holds more promise for future general computation since the simpler proces-
sors provided a modularization that is compatible with anticipated VLSI cir-
cuit capabilities, and the need to accommodate relatively large computations
“on chip”. They discuss a number of examples:the distributed, extensible,
MP/C is a MIMD machine with a dedicated-path network; the Colombia
Homogeneous Parallel Processor is another proposed MIMD); the Minerva, a
single bus MIMD, and the Dynamic Computer both have a similar organisa-
tion to the MP/C; the Cm* and the X-Tree both have processor-to-memory
communication systems; the Divided and Conquer computer (DAC) is a mul-

ticomputer with a binary tree interconnection network; and the binary tree
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machine proposed by Bentley and Kung is similar to the DAC.

Levendell, Menon and Patel [LMP82] present the architecture of a special-
purpose computer for logic simulation using a distributed processing network
based on an interconnection of low cost microcomputers. The circuit to be
simulated 1s partitioned into subcircuits and each subcircuit is simulated in
a separate microcomputer. Thus, several microcomputers can be simultane-
ously simulating several elements activated by parallel signals. A combina-
tion of the cross-point matrix and parallel bus can be used to simulate circuits
containing both simple and functional elements. The speed/performance ra-
tio of the simulator is expected to be greater than two orders of magnitude
compared to traditional simulation methods implemented on general-purpose
computers.

Bondurant [BKB82] discusses the parallel-pipeline array processor archi-
tecture of the Honeywell Array Processor, designed for military applications.

The Yorktown Simulation Engine [DKP83] is a programmable machine
which can simulate up to 1 million gates at a speed of over 2 billion gate
simulations per second. It is mentioned here because custom transistor-
level FET designs, including pass transistor logic and charge sharing, can be
simulated by converting the source network description into a functionally
equivalent gate network.

Fromm et al [FHJ*83] considers the EGPA Pyramid, a hierarchical multi-
processor operating system, and discusses interconnection structures such as
time shared or common bus systems, crossbar switch matrix, and multiport
memory.

Gottlieb et al [GGK*83] present the NYU Ultracomputer, a shared-
memory MIMD parallel machine composed of thousands of autonomous pro-
cessing elements. The design is a general purpose MIMD machine with
a message switching Omega-network. Their simulations lead them to reject
SIMD machines in favour of the MIMD model for certain types of simulation.

Ambler [Amb85] intends to exploit the inherent parallelism in circuits

by modelling transient operation node-for-node on an array of cooperating
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microprocessors - transputers - with 10-100 processors under control of a
mainframe computer. This method exploits the circuit’s latency - only 10%
of its logic is active at any moment. For example, a circuit with 1 million
nodes could be partitioned into 400 node modules and the modules simulated
in series on a 400-processor array.

Dettmer [Det86] discusses a transputer design used for graphics. Each
IMS B003 has four T414 32-bit transputers with 256 kbytes of DRAM per
transputer. The transputers are organised in a particularly simple way.
There is one master transputer and 39 slave transputers which receive work
from the master.

May and Fuge [MF86a] discuss the T800, developed as part of the Euro-
pean Esprit parallel-computer-architecture project.

Gabriel [Gab86] introduces and discusses a wide range of massively par-
allel computers, their communication networks and memory arrangements,
such as the Goodyear Massively Parallel Processor, built in 1979. This ma-
chine is a 128 x 128 grid of 64-bit, 100-nsec processors, each with 1024 bits
of RAM, and packaged eight per chip.

The major problem to solve in building a massively parallel computer is
how to interconnect a very large number of processors and memory modules.
There is a class of connection strategies whose hardware requirements grow as
log(n); this family uses a network known as the omega or butterfly network,
a member of a class of networks called shuffle-exchange networks. This is
the communication architecture used by the Bolt, Beranek and Newman
Butterfly computer.

Another application of the omega network is the hypercube or Boolean
n-cube. It takes at most log(n) time to transmit a message through an
n-dimensional hypercube. The Connection Machine, a SIMD computer com-
prising 65,536 (2'°) processors connected as a Boolean n-cube, uses the hy-
percube connection scheme.

The NON-VON computer is discussed. There are two categories of pro-
cessors in the NON-VON, the small processing element (SPE) and the large
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processing element (LPE). SPE’s operate in SIMD mode under the control
of the LPE’s. NON-VON can support SIMD, MIMD (multiple-instruction
multiple-data), and MSIMD (multiple SIMD) operations. Algorithms such
as relaxation are naturally performed on such processors because the struc-
ture of the processor matches the structure of the problem and the problem
solution Gabriel concludes that for n > 10, 000 the cost of the crossbar switch
is prohibitive and its size unmanageable.

Charlesworth [CG86] discusses supercomputing with replicated VLSI,
and explores the operations of: the CMU Systolic Array Computer; Intel’s
Personal SuperComputer (iPSC); the 16-processor C.mmp; and the FPS-
164/MAX matrix supercomputer.

Dumlugol et al [DOCMS87] consider hardware acceleration of switch elec-
trical waveform relazation methods on parallel computers where a number
of processors communicate over a parallel bus. Such algorithms are well
suited for parallel computation since several subnetworks can be simulated
concurrently on different processors over time intervals containing multiple
time points. The Gauss-Seidel WR algorithm, together with the timepoint
pipelining method, allow substantial acceleration on parallel computers, but
acceleration drops for more than about 16 processors. They discuss an ad-
vanced timing-simulation method which does not suffer from the accuracy
and stability problems of previous timing simulators and which substantially
increases the algorithmic parallelism. Speed gains over the direct method of
more than an order of magnitude are obtained with SWRM.

Odent, Claesen and De Man [OCD89] discuss the problem of feedback
loops in parallel relaxation-based simulators.

Soule and Blank [SB88] look at the subset of logic simulation on general
purpose machines, while Peipho and Wu [PW89] offer a good comparison of
RISC architectures.

August et al [ABHS89] devote a paper entirely to the Cray X-MP.

Lopez and Valimohamed [LV90] introduce the concept of a software en-

vironment for developing engineering application systems for multiprocessor
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hardware (MIMD). Distributed-memory, or loosely coupled systems, are net-
works of computing elements each having its own memory. No memory is
globally accessible. Communication and data transfer in such systems are
accomplished by “message passing”, e.g., the Hypercube and the Intel iPSC.
They conclude that a large percentage of software research in parallel com-
puting has been directed at defining new forms of old algorithms that are
more suited to a specific type of MIMD computer.

Ortiz [OPP91] describes the Connection Machine, a hypercube-connected
network of clusters of 32 processors, each of which is connected to 64K of
random access memory, a 32-bit floating point processor (FPP) and a FPP
chip. Machine configurations range from 8K to 64K processors. Message-
passing between arbitrary processors in handled by a hardware router. Stiller
[Sti91] looks at the next model: the Connection Machine-2. The CM-2 has
a fine-grained SIMD architecture with 64K processing elements controlled
by a standard front end interface. Each processing element is bit-serial, has
between 8K and 128K bytes of bit-addressable RAM, and is connected in a
binary 16-cube.

Lin and Wu [LW92] also explore the n-dimensional hypercube (binary
n-cube): a highly concurrent loosely coupled multiprocessor consisting of 2™
identical processors. Each processor of node has its own local memory. They
conclude that the meshes of processors are very suitable for implementing

many iterative or recursive algorithms in parallel.

4.4.4 Parallel Systems

Swartzlander and Gilbert [SG82] examine three of the classical design op-
tions: high speed monoprocessors, array processors and distributed proces-
sor. A common design theme is that the most efficient algorithms are all
multiple instruction stream, multiple data stream (MIMD) devices. They
conclude that the crossbar arrangement has been used only in those instances

in which maximum interconnection flexibility is required and where there are
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a relatively small number of nodes. Parallel and pipeline processors lack the
required flexibility for many supersystems applications, so attention has been
focused on distributed networks. The later approach appears most desirable
for supersystems, but requires improved interconnection networks.

Teja [Tej85] also considers architectures that distribute the processing to
multiple fairly-independent CPUs. Somewhere between a simple reassign-
ment of routine tasks to slave processors and true parallel processing is a
class of high-powered computers whose architectures are best described as
distributed. Sequent Computer Systems’ Balance Computer, for example,
allows system configurations with as few as 2 or as many as 12 processors.

Agrawal and Jagadish [AJ88] examine the important issue of how to par-
tition the circuit for simulation on a class of parallel architectures.

Lewis [Lew88] presents the design of a hardware engine for timing simula-
tion using a nodal formulation and the forward Euler integration algorithm to
solve the differential equations that model the circuit, and a multiprocessor
structure with a high-band width interconnection network to support parallel
simulation. This éterated timing analysis method exploits circuit latency and
uses multirate integration. The speed of this accelerator is extremely high,
allowing the simulation of circuits with over 100 000 transistors in under one
second per simulated clock cycle. Each node has a capacitor with one ter-
minal connected to ground, and no other capacitances are allowed. He only
simulates accurately enough to avoid the problems of switch-level simulation
and obtain correct logical results and reasonable timing accuracy.

The circuit is partitioned into a number of subcircuits, where each sub-
circuit can be an arbitrary collection of nodes and the devices connected to
them. Each processor is responsible for simulating the nodes in one or more
subcircuits. The simulation of a subcircuit may require knowledge of voltages
of nodes in other sub circuits, possibly on other processors.

AWSIM uses an 11 bit representation because the intended application
does not require high accuracy. It has been used to simulate designs con-

taining up to 13,000 transistors. The net speedup due to multiprocessing is
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about 9 times, for 32 processors.

Lewis admits that the principal disadvantage of Awsim is its poor mod-
elling of parasitics and inability to handle floating capacitances. Further-
more, many timing simulators are more accurate than Awsim because of
better algorithms and device modelling. Finally, they run on general-purpose
hardware that can be used for many different tasks.

However, one of the surprising aspects of this machine is the use of a
forward Euler integration algorithm, long discarded for most software imple-
mentations because the poor stability of this algorithm results in a small time
step. As a result, an algorithm which appears to be obsolete for software im-
plementations results in an inexpensive hardware implementation with good
performance. Once again, notably, the ability to perform a timing simulation
on the entire chip was found to be essential for design verification.

Other multiprocessor simulators use an event-driven message passing
scheme include MSPLICE, a multiprocessor implementation of ITA using
shared memory, and Event-EMU of Ackland and Clark [AC89].

Renterghem [Ren89] describes in detail the transputer of INMOS, de-
signed to facilitate loosely coupled multiprocessor system. It has a multi-
tasking kernel and schedular embedded in the microprocessor’s microcode.
A transputer can pass messages faster to surrounding transputers than to
transputers that are not directly connected to it (messages have to be routed
through one or more other transputers). In a transputer system, there is
no bandwidth saturation as the system size increases, no capacitive load
penalty as more transputers area added and no communication bus con-
tention. Transputer systems normally act as coarse grain size computers.

He discusses various forms of applicable parallelism, including: geometric
parallelism; algorithmic parallelism; data parallelism; and hybrid forms of
parallelism.

Hayes and Mudge [HM89] review a range of multiprocessors, all having
a few dozen processors connected to a shared memory over a common high-

speed bus. Examples are the Sequent Balance and the Encore Multimax. For
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the BBN Butterfly and the RP3, a key feature is the omega-type multistage
interconnection network that connects the processors to the shared memory.

The earliest study of hypercube computers was published by Squire and
Palais of the University of Michigan in 1963. Their stated goal was to design
a computer “where the emphasis is on the programmability of highly parallel
numerical computations, with hardware cost a secondary consideration™ .

With the advent of the single-chip microprocessor in the early 1970’s sev-
eral other proposals for microprocessor-based hypercubes were made. IMS
Associates announced a 256-node commercial hypercube based on the In-
tle18080 micro-processor, but it was never produced.

The Colombia Homogeneous Parallel Processor, which would have con-
tained up to a million processors, was proposed in 1983 and not built, but
the 64-Node Cosmic Cube was built in 1983. In 1985: Intel delivered the
first production hypercube, the iPSC; NCUBE Corporation produced the
NCUBE/ten; and System 14/n came out from Ametek. Other parallel com-
puters were the Caltech/JPL Mark 3, the Floating Point Systems T Se-
ries, and the Intel iPSC/2. The Connection Machine series manufactured by
Thinking Machines Corporation employs up to 2!¢ simple processing nodes.

They find with their CL algorithm, the speedup is reasonable for up to 16
processors, and that little is gained by increasing the number of processors
beyond that. Hayes and Mudge conclude that high hardware cost was clearly
a major reasons why these early hypercube designs were never implemented.

Duncan [Dun90], Hennessy and Patterson [HP90] and Skillicorn [Ski91] all
provide useful surveys and models of parallel architectures and quantitative
and computational methodologies.

Vaughan [Vau92] introduces the basic idea underlying the multiple-
virtual-ring (MVR) message-passing system, with its protocol of taking
a divide-and-conquer approach to information-distribution policies in dis-
tributed systems, and investigate networks of up to 20 homogenous proces-

sors. He concludes that the implementation of a divide-and- conquer philos-

“my emphasis
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ophy does not imply an increase in the overhead of information distribution,
and that much work remains to be done on the effect of system size, interpro-
cessor distance and distance between subsystems in networks of more than
100 processors.

Steven et al [SAFT92] studies the iHARP processor, which fetches a 128-
bit long instruction word from an instruction cache every processor cycle.
These are often called VLIW (very long instruction word) architectures.

Bogineni and Dowd [BD92] invent an optical interconnect system, with
which they hope to ease the backplane interconnection problem; while Clark,
McColm and Stark [CMS92] address some of the related problems facing

certaln architectures.

4.5 Conclusions

Important issues, including some unaddressed problems, include:

Form of the Distribution This has not yet been discovered, but this fact
1s addressed in Part II1 of this thesis.

Number of Monte Carlo Simulations Estimates of the number needed
average around 500 Monte Carlo runs. Thus the circuit simulation task

is the overwhelming bottleneck. This is also addressed in Part III.

High Accuracy High accuracy is generally considered necessary, with less

that 1 percent often quoted.

Modelling Strategies There are many methods, dominated by relaxation,

in software, and by distributed MIMD architectures, in hardware.

Conclusions normally reached are: that the convergence speed of re-
laxation methods depends on the degree of coupling between the equa-
tions in the system and the order in which the equations are processed.
If some equations are tightly coupled convergence can be very slow.

Against this, it has to be borne in mind that the relaxation method
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was invented at a time when there was only very rudimentary comput-
ing machinery, and that, in any case, the MIMD architecture has some

real problems as the scale increases.

Whole-Chip Simulation There seems to be a recurring desire to simulate
large parts or all the chip circuit at once. Although this may in cases be
due to irregular design methods, it seems to be a genuine requirement.

However, it is none-the-less alarming to find Jouppi [Jou87] noting that:

‘Recently, integrated circuits themselves have become so large that their tim-

ing is not easily understood by their designers’
in the context of making the point that

‘stmulations must be pieced together by making assumptions about the inter-
action of design blocks. These assumptions are complex and prone to error.
To eliminate these assumptions, analysis must be performed on the entire

design at once.’

Migration to Workstations All the tools reviewed here have been devel-
oped and are available on mainframe computers in large production
companies or universities. Large companies have quite different aims
from small designer groups, who desire remote fabrication of limited

runs.

Werner [Wer84] notes that workstation-makers are investigating the use

of commercially available array processors to speed up logic simulation.

None-the-less, none of the stochastic methods have migrated but since

the overheads are small that should present no problems.

In this thesis, heuristic methods will be preferred, rather than a full
design centering implementation, to get a feel for how well designs will
manufacture at remote sites. Suitable methods for this are addressed

in Part IV,
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Part 111
New Ideas

“I speak without ezaggeration when I say that I have constructed 3,000
different theories in conneclion with the eleciric light, each one of them rea-
sonable and apparently likely to be true. Yel in two cases only did my exper-
tments prove the truth of my theory.”

THOMAS EDISON



Chapter 5
Concatenated Structures

Processing-parameter variations occurring during fabrication of VLSI circuits
cause a statistical spread in circuit-element operating times.

This spread is easily found for single leaf cells, but not for concatenated
structures (adders, etc.) due to long time and large size constraints on the
simulator. Here I invent an accurate method of obtaining the spread of con-
catenated times directly from the spread of the operating times of just the first

two cells of such a concatenated structure.

5.1 Introduction

The effects of fabrication-parameter variations on the operating time of a
single leaf cell have been investigated in a previous chapter. From these
results it might be argued that the effect is small and that the spread of
times is not large enough to be of practical concern. It will soon be seen that
this is definitely not so. The reason that the spread becomes very significant
in real circuits is that the time of operation of most circuits depends on
subsystems which are made by simple concatenation of a leaf-cell; ripple
adders and parity generators are examples of this. Thus an initial small
spread of finishing times for a single cell can become greatly magnified in

the final concatenated structure, which might consist of from 8 to 24 cells or
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more.

In these cases the statistical behaviour — that is, the spread in the finish-
ing times of the circuit element — under conditions of uncertainty in process
parameters becomes a much larger and less general problem. It is larger
because many more cells are involved in the circuit simulation. It is less gen-
eral because this very size prohibits the application of the single-cell methods
without some adaptation.

Consider a simple shift register, or actually a sequence of cascaded or
concatenated inverters (like a ring oscillator, perhaps). A signal allowed to
‘pulse’ into the first cell (via a clocked line) has a given distribution of times.
However the input to the next cell is quite different in general from this initial
signal and so the next cell has a different delay and a different distribution
function. If the output of each cell is input to the next then a formidable
problem (for SPICE) is faced with a single 16-bit register. However if only
the first and second cells need stochastic modelling then the distribution
function of the overall register is obtained with huge savings in both money
and time. Thus this algorithmic approach to statistical modelling of large
registers reduces it to practicality.

Thus there appeared a need to obtain structural timing statistics from
simple cell statistics, as an inexpensive way of determining design yield,
rather than having to stimulate an entire structure consisting of many iden-

tical cells.

5.2 The Heuristic Stage

While developing another application using cascaded inverters, the results
produced by 150 stochastic SPICE simulations of the cascaded inverter tim-
ing showed that, after the first cell (which is a special case) the mean finishing

time of each stage increased linearly with the stage.
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5.3 An Hypothesis

These results suggested that the distribution for n stages might be obtained
with some accuracy by suitably combining the results from the first stage
alone with the results from the first two stages considered jointly.

In what will be referred to here as the TIME method, it is proposed
that for each finishing time resulting from a Monte-Carlo simulation, the
finishing time of the nth stage is predicted by linear extrapolation of the

time differences between the second and first cells - 1.e.,

t t

ty 2 n
\St
0. = time

(n-1) 6t

The cumulative distribution is then formed directly from the histogram
of these predicted times.

This hypothesis was strengthened by a systematic experiment involving
a cell cascaded into an 8-bit adder. The experiment is described in detail

below.

5.4 Testing the Hypothesis

This TIME method was tested in a systematic study using an adder cell
adapted from a multi-project chip design, described in Appendix A.

The actual spread for an 8-stage adder was produced by running 200
SPICE simulations, sampling the process parameters from gaussian distri-
butions. The spread at each stage is shown in figure 5.1 on page 64. The

output voltages from each stage were fitted by a piece-wise linear fit and this
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was used as the input to the next stage in the adder, thus:

oulput

original input fi d
rst = secon
cell cell

piece-wise
linear
fit to curve

when a further SPICE simulation was done on the next stage. This then

becomes the equivalent of:

original input "
first

second
cell

cell output

This procedure avoids making the simulator twice as large as for a single
cell, since two cells are not being simulated at once, but only one cell (the
first) during the first stage, and then only one cell again (the second) during
the second stage, when the output from the first stage is fed in as input to
the second cell. This elementary process was repeated for the whole 8 stages,

ultimately producing

/ 1 2 3 4 5 6 7 8 f_

The spread of process parameter values used in the simulations cover three

standard deviations (99% of all samples) and these spreads have already been
summarised in the table on page 28. The values roughly approximate those
used for making timing predictions for AUSMPC-5/82; however the spreads

were for simulation purposes only and do not correspond to any particular
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process.

5.5 Experimental Results

The extreme finishing times found below demonstrate quite clearly that the
spread becomes very significant as an initial small spread of finishing times

in the single-cell is greatly magnified in the 8-cell final structure.

STAGE | MINIMUM | MAXIMUM
TIME nSec | TIME nSec

1 45 98

2 88 222

3 130 296

4 173 421

5 215 477

6 256 620

7 298 659

8 340 819

Interestingly, it is found that it is not the variance, skewness and kurtosis
themselves that increase linearly with each stage. Rather, the quantities that
increase linearly with each stage, and are plotted later, are the related mean

linear measures: (compare definitions on page 89) .

H > -

Shown next is a table of these related mean linear measures for the 8-
stage cell experiment, along with the predictions of each of these parameters

made by the TIME method described above.



STAGE | MEAN | VARIANCE | SKEWNESS | KURTOSIS
Actual

1| 64.939 0.840 -0.373 0.302

21 122.108 1.548 -0.707 0.567

31178.993 2.288 -1.052 0.838

41 236.118 3.009 -1.389 1.105

51 293.250 3.731 -1.726 1.372

6 | 350.403 4.453 -2.064 1.639

7| 407.571 5.175 -2.401 1.907

8 | 464.766 5.898 -2.738 2.174
Predicted

8 | 465.119 5.816 -2.705 2.156

The results in figure 5.1 on page 64 show the timing histogram for each
of the 8 stages (cells of the ripple-carry adder) from zero to 800 nanoseconds.
The spread increases at each stage and the mean time also increases linearly
with each stage. Figure 5.2 on page 65 shows the overall statistics of this
computer experiment: the top plot showing how the statistical moments
develop with each of the 8 stages of the adder; the middle plot showing the
cumulative distribution for each stage, from 0% cells finished operation up
to 100% done over 0-800nSec; and the bottom plot showing the proportion
of chips operating at least at a given speed.

Figure 5.3 on page 66 shows the comparison of the actual and predicted
distributions. Plotted on top of one another on the same graph, and almost
indistinguishable because they match so well, are the predicted and actual

cumulative distributions.

5.6 Evaluation and Conclusion

The TIME method is found to be astonishingly accurate. This is confirmed
using a x?* test by fitting the predicted probability density function to the
actual one, using this method. It is found that with 23 degrees of freedom,
x> = 1.5, which means that the probability of a worse fit than this one (by
chance alone) is effectively 100%. Thus the fit obtained here can scarcely be

improved upon.
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Further experiments were carried out which examined the effect of sam-
ple size (i.e., the number of Monte-Carlo SPICE simulations) on how well
the predicted distribution fitted the actual distribution. The TIME method
quickly reached a high level of agreement and maintained it as the sample
size increased. For a sample size chosen at random between 25 and 150 the
TIME method has a very high probability of producing a predicted cumula-
tive distribution in good agreement with the actual cumulative distribution
for the 8-stage cascaded system.

The TIME method, which requires stochastic simulation of only the first
two cells of an n-cell concatenated structure, one at a time, produces the
required statistics with great accuracy, and this is done at vastly reduced cost
when compared with a full simulation involving the whole n cells. However,
the validity of the algorithm depends on the structure not extending too far
across the chip, in order that parameters remain essentially constant across
the structure. This is usually the case. If it is not, then the methodology
used in the TIME method simulations can also be used to carry out this

simulation, i.e., parameters varying steadily across the chip, as well.
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Chapter 6

Direct Statistical Method

Recognising that exact fabrication knowledge is unobtainable, I decide to look
for a new mathematical model which incorporates parameter variations from
the outset. I hope to produce the statistics with just one simulation of an

enlarged system of equations, but the method turns out to be too inaccurate.

6.1 The Quest for a New Model

In the case of remote fabrication, exact parameter values are unobtainable
- only statistical knowledge is really available. This suggests that a new
model based frankly on a statistical approach may be more fruitful and could

produce a much more realistic simulation than current deterministic ones.

6.1.1 Deterministic Models

The equations of development of voltage and current in circuits are effec-
tively given as a set of first order, ordinary differential equations in the state
variables, voltage and current.

They are:

where:
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z 1s a column vector containing the state variables, and

f(z,1) ref)resents a column vector containing functions of the above vari-
ables and the time.

There are two major aspects which have not been addressed in these
equations.

First, each of the state variables is not known exactly at the beginning
of the simulation. This uncertainty in the initial conditions leads to an
uncertainty in the final values of the state variables.

Second, many of the fabrication parameters (not state variables) occur-
ring in the equations are not only imperfectly known, but if the same specified
simulation was to be run many times, then each time their complete time-
history would be different as different actual values are used in the simula-
tion. Each parameter is really only known statistically, 1.e., the mean value
is specified and the variance about the mean is known or at least estimable.

The effect of this is also to introduce a statistical uncertainty into the
state variables.

If each state variable is initially a random variable, then the whole simu-
lation becomes a stochastic process, whose value at any time is also a random
variable - that is, each component of the state is defined no longer by a def-
inite number, but by probability distribution. This gives the probability of
that variable having a value which lies in a small interval around a definite
number.

By treating circuit ar;alogue behaviour as a stochastic process rather than
a deterministic one, it should be possible to take account of the influence
of variations in fabrication properties and initial conditions on the timing
behaviour of the circuit. It appears that in order to gain reliable simulation
of the effects of these uncertainties, stochastic differential equations have to

replace deterministic ones.
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6.2 FEquations of the New Mathematical
Model

The new equations are thus to be sought in the literature of stochastic pro-
cesses and a suitable formulation for the present purpose has been presented
by Sage and Melsa [SMT71].

The first stage in the derivation is to obtain the equation for the time-
development of the probability density function for the state vector defined
by the set of equations which determine the voltage and current at each node
in the circuit.

Then, assuming that each state variable starts out as a gaussian distri-
bution, characterised by a mean value and a variability about that mean
value, and in addition assuming that it continues to develop approximately
as a gaussian distribution, a useful approximation can be derived which de-
fines the mean value and the variance for each variable at all times. The
distribution of finishing times can then be obtained from this by integration.

The interesting points turn out to be:

o that the equations for the mean state are the same as already occur
in the existing models for the deterministic state, and so all previous
predictions may in fact be re-interpreted as predictions of the average

value instead;

e and that the equations for the covariances are decoupled from the mean
state equations, and so may be appended to the existing models without

disruption.

In addition, the uncertainties in all fabrication parameters may be con-
veniently modelled by taking them into the definition of the state (although
this creates some extra variables) with equations of the form dc/dt = 0, since,
although they are initially sampled from gaussian distributions, they do not
thereafter alter during the simulation. Even though they do not themselves

alter, the effect of the variability of theses parameters is transferred to the
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variance of the other variables via a matrix occurring in the set of equations,
and through the off-diagonal elements of the variance matrix.
The main variations ocurring in fact and also considered in the simula-

tions have already been summarised in the table on page 28.

6.3 Representation of Uncertainties

It may be seen from the previous discussion that there are two sets of un-
certain values: the initial values of the state variables, and the value of
parameters in the equations for the state variables. A study of the theory
of probability (such as is covered by Papoulis [Pap91]) makes clear that: the
initial values may be represented as random variables; the parameters and

the state variables may be represented as stochastic processes.

6.3.1 Random Variables

A random variable is a real function whose value is determined by the out-

come of a random experiment.

..chosen with this probability

value of random variable..

In our case, the initial values of state variables may equally probably be
more or less than a mean value. 'I'he values of the variables are continuous,
and so the most useful representation is the probability density function,
which specifies the probability that the random variable lies between two
very close values.

More formally, if the random variable may assume a value z and p(z) is
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its probability density function then p(z)dz is the probability that the value

lies between = and z + dz. For gaussian distributions, important later,

1 N2 /0 2
—(z-%£)?/20
T) = ——e¢
p( ) V2ro?
where:

Z = mean value of variable z;

0? = variance of distribution about the mean value.

6.3.2 Stochastic Processes

A stochastic process is an infinite collection of random variables

{z(t),te[0, T}

describing the evolution of a natural phenomenon. That is, a stochastic

process is a time-function, depending on the outcome of an experiment.

B
sample produces this function /‘\/

from
here . .

If the experiment is carried out many times, then many different time-

functions result, as illustrated.

produce these functions
—

- —_— B

e _— -

samplas /

from
here 7

At any given time, the value of the process is a random variable; it is the
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probability- density-function composed of all possible time-functions passing

through that particular value of time, seen below.

|
DD* i

Ultimately the stochastic process is described by the change of the mean

value and the standard deviation of a random variable with time, as below.

spread

mean path

time

6.4 Treatment of Uncertainties

The original deterministic equations of motion have been analysed, and two

groups of variables identified:

e the state variables, which are stochastic processes, starting out from

their initial conditions, which are random variables;

e fabrication parameters in the equations, which are random variables

but which are constant throughout the simulation.



6.5 Continuous Stochastic Dynamical Sys-

tem Model

Current deterministic models take no account of the effect of uncertainties in
initial states or parameters. This new model does so directly. It achieves this
by treating leaf-cell transistor simulation as a stochastic process. Equations
for propagation of variance produce the necessary performance statistics dur-
ing each simulated run.

The model aims to produce, in one trajectory, what the Monte-Carlo
approach produces in many. It takes its equations for the state of the
circuit from the statistical literature [SMT71]. The equations for the time-
development of the state are of the same form as in the deterministic model.

It is assumed that each state variable commences as a gaussian distribu-
tion, characterised by a mean value and a variability about that mean value,
and continues to develop approximately as a gaussian distribution. These
equations, along with variance equations appended to the state equations,
produced the mean state and the variance directly as functions of time for

each variable.

6.5.1 Stochastic Differential Equations

The equations governing this set of stochastic processes may immediately be
written down in a general form.
If there are n state variables, and m parameters which have been singled

out for random treatment, then for t>0,

dz(t)
dt

= f(z(t),1)

where:
z is an n by 1 column vector containing the state variables;
f1s an n by 1 column vector of function of the x variables;

t 1s the time.
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Following the methods and terminology used by Sage & Melsa [SM71] and
Jazwinski [Jaz70], this is called a continuous stochastic dynamical system of
equations, or simple a CSDS Model. The initial conditions for the equations
are the values of the state variables each expressed as a random variable with

a given probability density distribution.

6.6 Solution of Equations

In this section the general solution of the stochastic dynamic system of equa-
tions is derived. It turns out that in order to obtain practical solutions
various approximations have to be made. Instead of obtaining the full prob-
ability density function as a function if time, only the mean and variance as
functions of time can reasonably be calculated, and for gaussian distributions

this is all that is needed to give a reliable picture of the simulation process.

6.6.1 The Probability Density Function

If the deterministic simulation is run over and over, using random samples
of the stochastic processes representing the parameters, then the statistics of
the state vector may be compiled in terms of its probability density function
of time.

The same function may be obtained theoretically under certain general
assumptions, the chief of which is that the process is a Markov process, which
the present one clearly is, as described by Arnold [Arn74].

Gilman and Skorohod {GST79] discuss the mathematical conditions for
uniqueness and existence of this solution, and all the functions used in the
present case satisfy them.

Jazwinski [Jaz70] gives a readable derivation and McGarty [McG80] gives
some useful examples as well. However, Sage & Melsa [SM71] follow their
derivation with equations for the mean and variance which are more useful

for a computer implementation, and their notation is adopted.



6.6.2 Equation for Probability Density Function

The stochastic differential equations have already been derived from the de-
terministic equations and are dz(t) = f(z(t),t)dt.

Using the results for integrating stochastic processes of this type, Ash
[AG75]), Wong [WonT71], Arnold [Arn74], and Sage & Melsa all obtain an
equation for the conditional probability density function (given the initial

distributions of the state variables) as the function p in the equation

d—;: + trace% =0
where p = p(z,t) = joint conditional probability density function such

that p(z,t)dzidz,...dz, is the probability that variable z; lies between z;

and z; + dz,, etc., given the initial distributions of zy, ..., x,;

f = f(z,t) has already been defined:

‘trace’ means the sum of the diagonal elements of a matrix.

In the system to which this equation will be applied, i.e., the multiplier
leaf cell used as an example, the vector z contains about 100 nodes and thus
about 200 state variables, viz., the voltage and current at each node. Even
if this partial differential equation is solved, the result is a function of 200
variables at any one time. Just to specify this function is quite impractical.
Fortunately, it is only necessary to know the development of the mean values
of the state variables, along with an estimate of the variability to be expected
about this mean value, 'in order to gain a clear picture of the trajectory.
Sage and Melsa[SM71] go on to give a useful approximation for these two
quantities.

However, it should be noted that on some non-linear stochastic systems
of the type studied here, initially-normal distributions may, under some cir-
cumstances, develop into markedly non-normal, multi-modal distributions
as time progresses. The mean and variances then do not of course give, by
themselves, a good representation of the process, and care must be exercised

in the interpretation of the results.
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6.6.3 Equation for the Mean

Once the equation above is derived, the mean value of z as a function of time
may be approximately obtained by: transforming the stochastic differential
equation, multiplying by z(¢), and averaging by integration. To complete the
integration the vector function f(z,t) is expanded about the mean value of
z (called £) as a Taylor series, on condition that no particular z(t) ever gets
very far from the mean. The resulting integration introduces the variance
matrix from cross product terms such as z;z;. The result is approximately
o= FGO, )+ V() : 0f(3(t), )

where:
#(t) = a column vector containing the mean values of each corresponding
state variable;
f = f(z,t) are the original (deterministic) functions;
f(&,t)isf(z,t) evaluated at = = &;
V = V(t) is the covariance matrix (zk element=FE(z; — #;)(z; — £x)) )
F = 0f/0z (ik element=0f;/dx});
V18 =¥, Vir0?/0z;0xy is an abbreviation for this operator.

6.6.4 Equation for Variance

A useful approximation for the variance matrix V(t) is obtained by Sage and

Melsa ([SMT71], who expand the expression for the variance

then multiply by the probability density function defined by the equation,
integrate over all the z variables, and expand f(z,t) in a Taylor series about

the mean z = #, producing the propagation equation for the variance

dv of(, af7(z,
0 _ Gy vy 2LED LD

?

where the ‘’ notation has already been defined.
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6.7 Implementation of the Solution

The notation for mean value will be dropped, since all state variables are

now mean values,

6.7.1 Propagation Equations

The equations are:

dz/dt = (1+%V:8)f (6.1)
dV/dt = FV 4 (FV)T (6.2)

Each diagonal element of the matrix V contains the variance of the cor-
responding state variable, interpreted as a near-gaussian distribution about

the mean value, z.

6.7.2 Treatment of ‘Constant’ Random Variables

All of the fabrication parameters in the equations (such as the capacitance) do
not change during the trajectory but are sampled from an initial distribution
at t = 0 (i.e., at fabrication). The correct method of treatment for these is
to declare them as state variables with no rate of change. In this way the
influence of their variability can be transferred to the variance of the other
state variables via the F' matrix and the off-diagonal elements of the variance
matrix. This is a general feature of the equations.

The quantities in question have already been listed on page 28 and this

yields an extra 15 state variables with equations of the form dz/dt = 0.

6.7.3 Number of equations to integrate

For a system with n state variables there are n equations for the state vari-
ables, plus the equations for the terms of the variance matrix, V(t), to be
integrated. This is a symmetric matrix, so the whole lower diagonal part

may be ignored, giving just (n * n — n)/2 4+ n equations for the variance.
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Thus the total number of equations to be integrated is

n(n+1)/2.

In the case considered here, n is about 200, so there are 20,000 equations.
This is a massive system to implement. Before doing so, there are some tests

that can easily be carried out to determine whether it would be worth-while.

6.8 Direct Statistical Model Results

The voltages at nodes inside a leaf cell and the variances of those voltages
may be obtained directly in one integration of this system of simultaneous
equations describing the analogue behaviour of the digital circuit (the leaf
cell), viz., equation 6.1 and equation 6.2 on page 78.

From these equations, it can be appreciated that for this method to work,

three tests must be satisfied:

1 the first equation is a good approximation, i.e., no z(t) gets too far from
the mean of all the simulations. This means that the deterministic
simulation starting with the mean values must be identical to the mean

of all the simulations.

2 the assumptions used to derive the approximate, practical solution are

valid, i.e., the distributions start and continue as near-gaussians.

3 using the real mean and variance (from the experiments) in the equations

must produce the actual cumulative distribution function.

To assess whether this would work in practice, without actually imple-
menting the extra equations, imagine that they have in fact been imple-
mented and integrated to obtain the best possible values!.

The direct method of obtaining the statistics is as follows. If the outputs
of the cell mentioned above are called C,S,X,Y and the voltages are c,s,x,y

at time t, then the joint probability density function is

lie. the actual ones for x and V , obtained from the 350 runs
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fCSXY(C7Saxa y’t)
and the required probability
P{carry ready & sum ready & X ready & Y ready at time t}

is given formally [Pap91] by

/oodc oods /ooda: /oody fesxy (e, s,z,y;t) = F(t)
2 24 Ja2a

4 24

This integration finds the part of the function, illustrated below, which
is above the plane and beyond the 'ready’ state (2.4 volts).

Now it is not known whether the process really is jointly normal, or if the
outputs in fact develop as normal distributions, but absolutely no use of the

results may be made unless this is so. If it is so, then it follows that

fosxv(e,s,z,y;t) = exp{—1/2XTV (1) X }//(27)3 det V (¢)

where X is the vector of the carry and sum and V(t) is the covariance ma-
trix just integrated from the equations dV/dt = FV + (FV)T. The function
fosxy () may be obtained numerically from this expression.

The best estimates of the mean and variance are the actual mean and vari-
ance obtained from the Monte-Carlo simulations already carried out. So a
direct comparison may be made of the actual F(¢) (straight from the Monte-
Carlo results) and the predicted F'(t) from the formula (using the best pos-
sible value of V(t) constructed from the data). This has been done and the

comparison is shown in figure 6.1 on page 81.
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6.8.1 Linear vs Non-linear?

The next question of interest is: do the linear equations apply, or do the
non-linear corrections need to be added? This is easily answered, because
the equations for the mean trajectory in the CSDS case are the same as
those in the deterministic case, provided they start with the mean values
and there are no non-linear corrections. If they are not the same, then non-
linear corrections are needed.

It appears that this term can be ignored, except in the cases where the
variances are getting large, (especially where they are initially large); it may
then make an important difference to the dz/dt equation, producing a mean
trajectory that is not the same as a deterministic one starting with the mean
initial values.

The results of this comparison are shown: for the sum, in figure 6.2 on

page 83; for the carry, in figure 6.3 on page 84.

6.8.2 Agreement between Methods

The second question of interest is: does the CSDS model give practically
the same results for the mean trajectory and its dispersion as a simulation
by Monte-Carlo methods? This is answered by solving the system by both
methods once again. The sum and carry are plotted as their equivalent
gaussian probability- densities, with the Monte-Carlo (350 runs) above and
the CSDS (1 run) below: for the sum, in figure 6.4 on page 85; for the carry,
in figure 6.5 on page 86.

6.9 Comparisons and Conclusions

The results of the two approaches are presented in graphs of the probability-
density-functions for the sum and carry voltage. The Monte-Carlo results
are compiled from 350 trajectories with initially-sampled gaussian states; the

continuous stochastic dynamical system (CSDS) model results come from a
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single trajectory using the same initial Gaussian distributions. Reference
to these graphs makes it clear that the mean values are well represented by
the CSDS model, but that the scatter about the mean value (the dispersion),
whilst remaining gaussian and of approximately the correct form, is too large

at each time step.
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Chapter 7

Parameter Fitting Method

Another likely approach is to assume that the spread of finishing times 1is, for
one reason or another, well represented by a known function. Here I discover
that this function is closest to the Erlang distribution, and that the number

of necessary simulations might be reduced somewhat by knowing this.

7.1 Fitting to Known Functions

The form of the distribution of finishing times has already been obtained
for the single-cell case and the concatenated-structure case. To match the
form of a known function to these cases it is necessary to match measures
of the forms. The best measures of the form of a distribution function are
the central statistical moments: mean, variance, skewness and kurtosis. The
parameters of the distribution can be calculated from the estimated measures.
It might be possible to get a good estimate of these measures by running just
a handful of simulations. This would provide a significant time saving over

the methods already described.

7.1.1 The Central Statistical Moments

Where finishing times from N simulations are gathered, the most important

measures of the form of the distribution function are:
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the average value of the time
1N
mean = 4 = -— ) T;
H N ; 1
the concentration of times near the average
1 N
variance = 0’ = — » (z; — p)’
N H
how unsymmetrical the distribution is

o 1 N
skewness = — Z:(a:i —p)?
N 1=1

and the character of any tails of the distribution
.1 X .
kurtosis = — > (z; — p)*.
N =1

The cumulative distribution function F'(¢) is the probability that the time
is at least equal to ¢ and it is formed by integrating these probability density

functions

P = [ Cf(r)dr.

where

f(t) = the probability that the values lie in an interval §¢ about t¢.

Taking N samples, with replacement, from an effectively infinite popula-
tion gives the average value of the mean is x4 and the variance of the mean

is 02/ N. It has been seen that recommendations average N = 500.

7.1.2 Restriction on Distribution Functions

From the above definitions it can be seen that an unusually large sample value
would distort the skewness and kurtosis much more than it would distort the
mean and variance. This happens because of the higher powers involved.
This means that attempting to fit a proposed function based on these higher

moments would lead to a very misleading result.
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Thus, if a small number of samples is desired, it is much safer to only
consider distributions which are completely determined by the two low order
independent parameters, the mean and variance.

Suitable distribution functions of this type may be found in the com-
prehensive Table of Probability Functions [Luk75] and include: erlang, beta
family, F(k,m) family, lognormal, gaussian, pearson type 3, weibull and ez-
treme value.

Of these, the only ones found to come close to being good fits were: the
Beta, Normal, Eztreme-Value and Erlang distributions. These are studied in

detail below.

7.2 Possible Distribution Functions

7.2.1 the Beta distribution

parameters «, 3

mean = Py
variance = of
(a+B)(a+p+1)
a—1 _ #\B-1
faﬁ(t) . ‘ B((la ;))
with the Beta function
Beg) < DTG

Pla+8)
The time axis is scaled to the interval [0,1] and the mean and the variance

are scaled accordingly.

7.2.2 the Normal (Gaussian) distribution

parameters y, o

mean = (i

variance = o*
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1,t—p

Suo(t) = #wl’[—g( )]

ag

7.2.3 the Extreme-Value distribution

parameters a, 3

mean = a +yf

. (7B)?
variance = ~———
6
v = Euler's constant = 0.5772156649...
t—«
r =

p
faﬂ(t) = le(—r—e_’).
g

7.2.4 the Erlang (Truncated Gamma) distribution

parameters a, k

1
a=—
©
— (Hy2
b=(4)
_ (ak)k tk—l Cﬁakt/ F(k) lf t > tcritical
Jar(t) = { 0 otherwise

7.3 Experimental Data

7.3.1 Single Cell

The mean finishing time for the single leaf cell was ¢ = 100nSec and the

variance o2 = 202nSec?. This was based on 500 simulations. The graph at

the top of figure 7.1 on page 92 shows the mean (lower line) and the variance

(upper) of the finishing times as more and more simulations are done. The

estimate of the mean time settles very early, but the estimate of the variance

is quite erratic until at least 100 simulations have been done, and really only

gets near the population value after 150 simulations.
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7.3.2 Concatenated Structure

The mean for the concatenated 8-cell ripple-carry adder structure was y =
497nSec and the variance was 02 = 5947TnSec?. This was based on 465
simulations.

The graph at the bottom of figure 7.1 on page 92 show the mean (left)
and the variance (right) of the finishing times as more and more simulations
are done. The estimate of the mean time settles early, but the estimate
of the variance is erratic and only gets near the population value after 300

simulations.

7.4 Results of Fitting

The experimental results from these simulations were used to estimate the
population statistics (mean, variance, skewness and kurtosis). Then the dis-
tribution functions were plotted against the data to give an initial indication

of goodness-of-fit. These are summarized in the tables below.

7.4.1 Single Cell

experimental | 100.341 | 202.233 1706 | 124039

FUNCTION parameters Mean | Variance | Skewness | Kurtosis

Beta Family a="7.2 100.3 202.2 -5 117925
p =182

Normal p = 100.3 100.3 202.2 0| 122695
o= 14.22

ExtremeValue a=934 100.3 202 3187 | 209992
B =11.08

Erlang w = 0.010 100.3 202 815 | 127622
k = 49.786

The top four graphs in figure 7.2 on page 94 show the proposed fit to the
probability density function plotted with the data for the Beta, Gaussian,
Ezxtreme-Value and FErlang distributions. The Beta and Gaussian are ruled
out at this stage, but the Fztreme-Value and the Erlang look promising.

The bottom four graphs in figure 7.2 on page 94 show the proposed fit to
the cumulative probability function plotted with the data for the Beta, Gaus-
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Erlang both show small discrepancies near the extremes of the distributions.
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The two graphs above show the proposed fit to the cumulative probability

function plotted with the data for the Eztreme-Value and Erlang distribu-

tions. Both show small discrepancies near the extremes of the distributions.



7.5 Chi-Squared Test of Fitness

These tests by eye have eliminated the obviously-worst fits; however, a x? test
is the most appropriate mathematical test of how well the proposed function
matches the given distribution [Bra75].

In order to test which, if any, of these functions fits these data the best,
the distribution of times is divided into K groups containing the observed
frequencies o;, and the proposed function is used to calculate the expected

frequencies e;. The statistic

K (01_ _ 61_)2

=1 €

i1s formed and at a predetermined nominal value of probability a with
K — 1 degrees of freedom, the fit is rejected as not a significantly good fit if

o 2 Ll (O,‘ . 6,‘)2
Probability(x}_, >= >  ~——) <= o
€;

=1
The table following summarizes the results. The Eztreme Value distri-
bution and the Erlang distribution prove to be very good fits to the actual

distribution.

function cell degrees | value concatenated value

of freedom | of x? | degrees of freedom | of x?

Beta 30 71 79 87900
Normal 35 65 84 311
ExtremeValue 27 29 59 63
Erlang 32 35 74 89

7.5.1 Single Cell x2 Result

The top four graphs in figure 7.3 on page 97 show how the value of the
critical x? value alters as more simulations are run. It is shown for the Beta,
Gausstan, Frtreme-Value and Erlang distributions. The upper line is the x?2
value itself, whereas the lower line is the critical value below which it must fall
if the fit is to be accepted as a good one. The Beta and Gaussian distributions
are definitely unacceptable, but the Frtreme-Value looks promising in the
long run, and the Erlang is a significantly good fit after just 30 simulations

have been run.
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7.5.2 Concatenated Structure x? Result

The bottom two graphs in figure 7.3 on page 97 show how the value of the
critical x? value alters as more simulations are run, only for the Eztreme-
Value and Erlang distributions. Both the Ertreme-Value and the Erlang are
accepted as significantly good fits after 250 simulations. and as usefully good

fits with only 30 to 100 simulations.

7.6 Conclusions

The results are consistently better for the Erlang distribution than for the
Extreme-Value distribution. The Erlang distribution is a good fit for both the
single-cell case and for the concatenated-structure case, whereas the Eztreme-
Value distribution does not perform as well overall in the single-cell case.

It is not surprising that the Erlang does so well. It was tried because
of the recognition of the similarity of the underlying process from which it
derives: that of passing a signal through a set of inter-related transistors in
a leaf cell, compared to that of being served by a set of queues in teletraffic
systems, as described by Takacs [Tak62]. It has the immediate advantage,
by virtue of being effectively truncated at the lower end, of reflecting the
fact that there is a fastest operating time for the leaf cell. This makes it a
physically more natural candidate for the distribution function than any of
the others.

However, any real hope of significantly reducing the number of simulations
by this method has been removed by these results. It is true that good fits
have been obtained after some 30 simulations. But if only 30 simulations
are tried then the likelihood of an accidentally-large rogue value occurring
is high, and this would surely distort that measures, then the parameters,
then the distribution, and finally the accuracy of the percentage of finishing

times.
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Chapter 8
Analogue Simulation Method

O.K. So this is a mad idea. But it has some interesting consequences!

8.1 Breadboarding a VLSI Circuit

The simulation of MOSFET circuits has gone a long way over recent years
into a great deal of mathematical modelling, until, with the advent of practi-
cal VLSI systems, there seems to be a retreat from the ultimate sophistication
of the very accurate models to simpler, faster, yet hopefully still-adequate
models which will handle more nodes and longer real times.

It occurred to me that a fruitful new approach may be possible, based on
a fundamental reassessment of the situation.

Consider for a moment the ultimate ‘simulation’ of a MOS circuit - the
circuit itself - that is, in effect, a bread-boarding of the circuit. Of course this
is not really feasible (except on multiproject chips for special sub-systems).
But what of the next step from this? We can go to equivalent non-calculative
methods - after all, a MOSFET itself is the best judge of what its state
should be - but failing an actual breadboard circuit, can’t perhaps the SPICE
MOSFET models be used exactly as they are (that is, an arrangement of
resistors, diodes, current sources and capacitors) to give the same result?

That is, can’t they be laid down in silicon? No faster ‘simulation’ would be
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Figure 8.1: TypicaAL MOSFET MODEL USED IN SIMULATION PROGRAMS

possible - thousands of simulations could then be run in a few seconds!
This idea determined the next step in this thesis, and, although it ulti-
mately failed, it proved a vital step towards the digital idea described in the

next chapter.

8.2 Circuit-element Model

In this non-calculative method I proposed to use a configurable SPICE equiv-
alent circuit MOSFET (an arrangement of resistors, diodes, current sources
and capacitors) like that shown in figure 8.1 above, after [ON86].

This was intended as an heuristic step towards creating a system of re-
configurable transistor models on silicon, so that simulations may be done
extremely fast in hardware rather than by mathematical models on special-
purpose or on general-purpose computers.

The unique feature of this one is the fact that it performs no logical deci-
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sions during the simulation, the operations being performed in an inflexible
stream; they also perform no mathematics, in the usual sense of the word, to
produce the state of the transistors in the circuit. This is equivalent, in the
breadboard case, to simply placing actual transistors where they are meant

to be - they then behave as only they know how to behave.

8.3 Specification of Analogue Chip

I was so mesmerized by this idea that I designed and fabricated a test
structure via the Commonwealth Scientific and Industrial Research Organ-
isation AUS-MultiProjectChip/8/83 scheme [‘Analogue Test Structure, Au-
thor’s Publications| before I had fully realised its potentially fatal flaw.

Reference to the plot in figure 8.2 on page 102 shows two inverter struc-
tures, identical except for an extra ‘always-on’ transistor in the right-hand
one. Each inverter is composed from the usual simplified equivalent circuit
model for an inverter. The capacitive loadings on the input and output lines
are switchable to any combination of 0,1,2,4 loads. The extra transistor is
to simulate the effect of a different threshold voltage. The Input/Output
pad functions are labelled; small probe pads are present so measurements of
voltages at input and output can be made.

The inverters have a pullup ratio of 6:1 and pulldown of 1:1 and 1.5:1 re-
spectively. I intended that the switches would be composed of ‘native-mode’
transistors (doubly ion—f)la,nted to achieve almost zero threshold voltage) but
this could not be done on this MPC.

The probe pads were for monitoring for various combinations of capacity
switched in by the four select lines. An important feature was how much
the structure can be slowed down accurately relative to the real operation of
such inverters (at their proper scale). Thus comparison could be made with

SPICE models.
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8.4 Fatal Flaws in the Idea

8.4.1 Timing Correspondence

The objections to this are: that the threshold voltage adds to the switched-
in voltage; that the transistors run so fast that their operating time and the
time taken to pass signals along their interconnecting wires are not to the
same scale; and the power rating is wrong. Thus the first requirement is to
slow down the models so that the overall system behaves correctly, and to
cancel out or minimise the threshold voltage problem.

To ensure that this method is foolproof in providing accurate operation
times, configuration C, taking time S in a mainframe simulation, and taking
time T on silicon, must map consistently and smoothly. Only in this way
can we be sure that doing 150 runs in “silicon space” can map properly onto
“mainframe space” - i.e., that the P.D.F. is obtained by ”calibrating” the
silicon model by doing two mainframe runs, and then doing all the other 150
runs on silicon. I cannot find a foolproof method of doing this.

In addition, Mei and Dutton [MD83] show that there could be problems
obtaining enough area for the right ratios of the necessary analogue compo-

nents.

8.4.2 Flexibility

Another objection to this approach is that the model may not be flexible
enough to allow assessment of certain parameters (e.g., body effect) and
to allow improvements in the sub-micron area to be incorporated without
altering the silicon model; this means that a new chip would need to be

designed and made. This would be expensive, and is a fatal drawback.
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Chapter 9
Digital System Simulator

Following the failure of the analogue model proposed in the previous chapter,

I naturally turn my attention to a digital rendition of the same idea.

9.1 Introduction

It appears worthwhile at this point to examine in detail a method which is
close to the natural way transistor arrays operate, which is in accord with the
good points urged by Hillis [Hil82]; implements the model of computation,
of Smitley and Iobst [SI91]; and which might fit nicely into future system

architectures.

From here, there are two broadly discernable directions that might be

taken in modelling transistor systems:

e use a few, large, expensive, sophisticated processors, or

e use many, small, cheap, simple processors.

These alternatives have quite different implications for memory arrange-
ment and microcode choice; however, they might after all amount to about
the same thing as far as cost is concerned.

However, the class of problem for which one is devised can change when

new techniques (sequential or parallel processing), new algorithms (as will

104



be seen), and new architectures (such as neural networks) are devised.

A lot of effort [ACS85] [BD92] [BJS90] [CMS92] [Sch89] [LMP82] [PR82]
[SI91] [Vau92] has already gone into distributed processor architectures of
this first type. They have produced many very good machines. But their de-
velopment has meant neglect of natural architectures which it seems, notably
by Hillis [Hil82], might now be re-examined with some profit. Recent work
by Wilding et al [WTHPI1] Distante et al [DSSSG91] and Schaefer [Sca91]
confirm that it is time to re-evaluate this architecture.

How do these alternate specifications: many, small, simple, cheap, help

determine the architecture?

many these are device-oriented rather than node-oriented.

small if they are small they have little on-chip memory for their own mi-
crocode. Thus they have to get their instructions externally. This
means that they cannot run as independent processors - they run ei-

ther as datapath computers or in lockstep.
simple means that they are based on the RISC! approach to design;
cheap implying high yields and mass production.

It is known that any given single transistor can only use neighbouring
state information in order to act. They do not have physical access to global
information. Thus a new model might be sought in the form of a natural
array processor, with only nearest-neighbour connections allowed.

The requirement for global information - for one transistor to ‘know’ the
state of another - is the source of intervention by the host workstation in
the simulation process. Since all the current accurate timing and analogue
simulators use global information, then it is necessary to create a new kind

of simulator - what might be termed a contact simulator.

IReduced Instruction Set Computer



9.2 Rationale for Digital System Design

SIMD systems have often been examined previously, but only for very regular
algorithms, such as matrix solutions, rather than for circuit simulation in the
way proposed here. The success of the MIMD distributed architectures in the
circuit simulation field has seen SIMD relatively neglected and left to much
of its original applications. However, now that certain MIMD limitations,
related to the maturity of the architecture and discussed in Part IV, are
becoming more widely appreciated, there might be a new future for an SIMD

architecture with many simple processors in circuit simulation after all.

9.3 Aims of Simulation

The aim of these chapters is to determine sufficient detail needed in the PEs

to be able to write a simulator for the array and answer the questions:
o What is the best convergence algorithm?
e How many bits are needed to produce a given accuracy?
o How long will a simulation take?
e What is the best transistor model?

When this is done the performance of this system can be compared with
other methods of achieving the same result. The system simulation in this
thesis concentrates on evaluation of convergence algorithm, bits accuracy and

time taken.

9.4 Design Considerations

Kung [Kun87] reports that to get maximum speed-up from array processors
requires relatively little inter-processor communication. An array of transis-

tor models, running in parallel (concurrently) and testing their nearest circuit
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neighbours by communicating their state to them, satisfies this requirement
in the first instance.

Each p.e., in reality, will calculate its state from neighbouring information
and produce new state values to be exchanged.

If each p.e. contains its own transistor mathematics, and parameters,
then the prime question is: under what conditions is convergence of the
solution guaranteed? This is discussed by Nevanlinna [Nev89].

How can the one model be used for two transistors that might be funda-
mentally different? - e.g. an enhancement nMOS and a depletion nMOS?

How are the transistor models in the processing elements to be laid out
on a circuit board? And how will they interconnect?

If a leaf cell is to be “partitioned” into neighbouring transistors, assume
that in general each processing element, or p.e., contains a transistor model.

Decisions need to be made about:
e the architecture of the simulator;
e the form of the array processor;

o the independence of processing elements;

the simulation strategy;
o the partitioning algorithm;

the mathematical model.

the solution algorithm

All these points are now examined.

9.5 Simulator Architecture

There are two aspects to the system architecture:
e the choice of decomposition grid;
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e the PCB layout or equivalent.

9.5.1 Choice of Decomposition Grid

On a grid of processing elements, each of which models a transistor, connec-
tions to neighbouring transistors can be made in many different ways (sce
Cantoni et al [CFLI1]) but not so that the wires go over an intervening cir-
cuit - wires could short out by touching. So one fundamental restriction is
that only nearest neighbours connect.

On a normal VLSI wafer, each processing element might be mapped onto
the array so that it connects to any number of nearest neighbours; some, after
rotational symmetry and mirror-imaging, are shown in figure 9.1 on page 109.
Some of these connection schemes are impractical or contain contradictions,

because all elements are to act identically and simultaneously,

1 nearest neighbour means that no voltage and current can propagate

beyond each two.

=

i
u

—T
=

basic element

2 nearest neighbours means that influences can only propagate in one

dimension or in closed loops, as shown below:

B Lr
3

3 nearest neighbours means that when they are placed in sequence on the

—

|
Y

basic element

E
b




Figure 9.1: GRID OF INTEGRATED CIRCUITS OR PROCESSING ELEMENTS
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grid as shown below:

™

although each set of six can be made to exchange data consistently,
separate sets encounter a contradiction (circled) when expanded across

the grid. So this is an impossible case.

4 nearest neighbours presents no such problems, as illustrated below.

A A

It

| |
A A
e
|

Note that four is the minimum number of neighbours if want the set

to be device-based; each p.e. containing a transistor model needs four

connections: drain, base, source and substrate.

However, with four nearest neighbours, while easiest for initial simula-

tion and requiring little storeage, it takes longer for changes to get to
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the boundary and back, as shown below.

influences propagate
from one side to the
other in no less than

10 steps. ]

5 nearest neighbours is possible to arrange as shown, but not on a rect-

angular grid.

6 nearest neighbours presents no consistency problems, but note that six
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neighbours allow faster propagation of influences than four, as shown.

influences
propagate from
one side to the
other in no more

than 8 steps
N

7 nearest neighbours cannot be laid out on a rectangular grid so that

they connect consistently, and when laid out as shown

the fatal flaw is exposed at the points circled where wires have to cross
over to connect 7 nearest neighbours; this is explicitly forbidden in this

system.

8 nearest neighbours is problem free, like 4 nearest neighbours. In addi-
tion, although requiring twice the storeage of four nearest neighbours,
eight nearest neighbours allows faster movement of influences to the
borders - only five steps per 6 by 6 set, compared with 8. Thus in the

long run it cannot be practically written off without an investigation
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of which influence predominates.

influences
propagate
from one

side to the
other in no
more than
5 steps

9.6 Form of the Array Processor

In order to make a start on a definite model, this still-numerous set will be
restricted so that only manhattan-geometry links are allowed - this elimi-
nates the sets with 5,6,7 and 8 neighbours, since all of these necessarily have
diagonal links. However, this does not rule out the possibility that the 5,6
or 8 cases might work quite well; this is discussed in Part 4. The efficacy
of these architectures is left to future research and they are not used as the
basis for the present heuristic simulation.

This restriction leaves five sets as shown here.

| 2 3
7 i o i

e M i 2 2t 2 o) 3 4
3 4 ’_

For the reasons explained above, the smallest symmetric set without di-

agonal links that will connect and communicate properly is 4 nearest neigh-

bours, so it is chosen for the simulation architecture.

9.6.1 PE Layout

According to the arguments of Hillis [Hil82], it makes sense to layout the

array so it runs in lockstep as an SIMD mesh-connected computer. It is mesh-
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connected because that is the way real leaf-cells arrange their transistors. .

It 1s Sing]e Instruction Multiple Data because each p.e. depends only on
its 4 nearest neighbours’ state and the transistors are all the same and take
the same time to solve the equations.

Thus it makes sense to choose a SIMD tesselated computer architecture
rather than a datapath or distributed bus. This is shown schematically in
figure 9.2 on page 115. The microcode that drives the transistor model is in
the top part and is easily altered.

In view of current trends in parallel architectures, the important issues

of pipelining and scaleability are addressed in Part V.

9.7 Independence of Processing Elements

How can elements, containing different models, run in lockstep? If M is the
equation for the first model and M, for the second, then a linear combination

can be taken

oM + M,

with conjugate coefficients (0,1 or 1,0) and this is used in every element; this
is quite general.

However, if the PEs are required to compute their state in step, and the
same, single model is used by all p.e.s, then the time taken for the array
to agree on the values for the timestep depends only on the slowest p.e. -
thus any advantage in having faster p.e.’s finish early is negated. This is a
potential disadvantage of the SIMD method.

The fact that each p.e. works in parallel? is to be simulated on a sequential
machine® rather than a parallel one. Thus much care needs to be taken to
ensure that values are not overwritten too soon.

It is achieved thus: at each timestep the transistor model is applied in

turn to each p.e.; then they each exchange any necessary neighbour values

2computes its internal state simultaneously with all the others

3a SUN/SPARC workstation
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(as p.e.s); and this step is repeated until convergence.

Consider 2 such exchanging information ‘a’ and ‘b’

a b

r—

In reality, they will swap these simultaneously. In the current simulation,

this is done by the following sequence, conceptually:

NF BF BE D

This has to be done carefully like this so that the values are not overwrit-

ten at an early stage.

In general, then, for every p.e., using compass notation:

N
n

S

S

o All the elements take in edge values of 4 neighbours into temporary

storage;

e Then all elements overwrite the old value with the new value just ob-

tained.

This i1s a general feature of the simulation programme.

9.8 The Simulation Strategy

It has seen that the leaf cell is the smallest structure from which it is possible
to calculate the systems statistics. Thus this system is designed to carry out
circuit simulation of leaf cells. It accepts voltage inputs and produces voltage
and current outputs under interrupt control from a host workstation.

In this section the minimum set of definitions and postulates necessary
to define the array processor and sufficient to allow a simulator program to

be written for assessing its behaviour are set up.
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A leaf cell is that stage of a modular design of a VLSI circuit at which
the function can be conveniently replaced by circuit elements (transistors,
wires) that implement the {unction. It is composed of an array of processing
elements. 1f it is designed by regular and hierarchical methods then it already
has the right structure for a statistical investigation — otherwise it might not.

A processing element is that part of a circuit bordering at most a single
transistor. Its function is to simulate the behaviour of a transistor at that
place in the circuit.

Real transistors in a leaf cells sense the voltages of its nearest neighbours
and produces currents consistent with those voltages. In this digital simu-

lators, a processing element must contain or have access to a mathematical

@

{V;i} l"l‘

model of transistor action, represented by

It must contain its own voltages and currents and the parameters p of
the model:

set of sufficient transistor

S model parameters

p= model equations

After calculation of its own currents from its own voltages it needs to
adjust to the nearest neighbours by reading and comparing their {V I} set.

Thus conceptually it now looks like

N _—inner (own) state variables

w ‘l’ E
i |y .
i outer (neighbour)
“Il i state variables
own v,i

neighbour's Vv',i’

S
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9.9 The Partitioning Algorithm

The following nomenclature defines the relevant parts of the simulator.

Processing Element A processing element is the model of that part of a
circuit contained within a border drawn around at most a single tran-
sistor, topologically connected to its nearest neighbours in the actual

circuit. It is represented by the symbol

L1

]

Array Processor The array processor is conceived to be laid out in the
form shown in in figure 9.2 on page 115. In general it is of any dimension

necessary to span the circuit transistors.

Canonical Form The canonical form of a processing element is that which
has an equal number of ports on each side. If the number of ports is

‘n’ then it is denoted by = (n) or by the symbol

Tt

n@ n

11

Any transistor model can be represented by the processing element
7(1), having only one connection per face to its nearest neighbours.
This is because transistors have 4 connections: a gate, drain, source and
substrate. The substrate is often connected to the source, however, or
can be modelled inside the element. Each processing element contains

the mathematical model of at most a single transistor.
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Decomposition Every processing element may be decomposed into a larger

number of elements containing at most only one transistor.

Structure Theorem A leaf cell of a VLSI circuit may be simulated by
mapping its transistors and their connections onto an array processor

such that the “nearest neighbour” property is conserved.

This means that the structure of the modeller is quite different from
others found in electronics that map sub-sections of the circuit onto a

linear set of processors essentially at random.

The mapping leaves open what might be put within a processing ele-
ment. The view adopted here is that the most appropriate entity to

occupy one processing element is one transistor.

These specifications simplify the mathematics inside processing elements,
at the expense of their proliferation.

To illustrate this, consider the example of a flip-flop circuit, used through-
out these simulations in its nMOS realisation, and specified through its var-
ious development stages in figure 9.3 on page 120.

To get an idea of the way that processing elements proliferate a rough
decomposition of the adder cell, already used as an example of cell charac-
terisation, is shown in figure 9.4 on page 121. This shows that a grid of 121

elements are needed for just 35 transistors.

9.10 The Mathematical Model

The system requires access to:

processing element specification i.e., the contents of the p.e. as speci-

fied by the parameters of the model;

the mathematical model i.e., the equations used in every p.e..
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9.10.1 Processing Element

Consider the situation of each processing element containing either one tran-
sistor model or one resistor network, with voltages and currents in each at

the east, north, west and south edges, arranged and defined thus:

W) I

S

For the transistor model, a very simple one-equation representation of source-
drain current as a function of source and gate voltages is given in Appendix

D thus:

VGS == Vwest _Vsauth

VDS e ‘/north_Vs‘outh

Lo = ﬂea(VGS+6)(1 _ e—aVDs)
Lsouth = —Inoren
Ieast =0
Iwest =0
Vsubstratc =0

where the parameter a shapes the characteristics, the parameter 3 scales
the drain-source current (in mA), and 8§ models depletion-mode transistors.

The leaf cell is conceptually divided into many small sections; each section
contains a processing element. Each has parameters of the model contained
in the element, «, 8; each has information from the neighbouring elements;
there is a common algorithm which works on each element in turn, without,
of course, destroying the internal data, because really the algorithm is acting

on all elements at the same time.
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The orientation of the p.e. is simply specified by saying which face
(N,E,W,S) the gate is on; the rest follows the orderly rotation of the ba-
sic transistor.

I shall show later that, using my idea of using the opposite voltage and
current as if it was correct for the time being, that we get very fast con-
vergence, and that this method can easily be shown to have a very sound
graphical justification; so it occurs to me, that perhaps, in the case of four
nearest neighbours, where there is absolutely no possibility of a graphical
visualisation and hence approach to the solution, then I could use the same

method - which might also lead to a fast iteration in the more complex case.

9.10.2 Physical Laws

The physical laws of current continuity and voltage continuity imply that at
each boundary between elements the voltages are the same and the currents

are the same. This follows from Kirchoff’s Laws [Chi69], viz:

Kirchoff’s First Law that there can be no accumulation of electricity at
any nodal point of a network means that the currents on adjoining

faces are equal;

Kirchoff’s Second Law that the electric potential of every point in a net-
work must be single-valued means that the voltages on adjoining faces

are equal.

Each element, on each iteration, is required to so adjust its own volt-
ages and currents that they more closely match its neighbour’s values. Ac-
cording to Lightner, [Lig87] this does not make Kirchhoff’s laws part of the
model equation in order to simplify them away; however, it does reverse the
approach taken by most simulators, which involves explicit or implicit con-
struction of the Thevenin equivalent circuit. The present method has its
compensations, however: it makes it very easy to decide if the true solution

is already well approximated and the iteration can be stopped, thus solving
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one of the main problems in iterative processes [Nev89]; and during the tim-
ing simulation a wrong result cannot be produced without notice, one of the
major concerns expressed by Dumlugol [DOCMS7].

To do this, use is made of the

Uniqueness Theorem There is only one solution for the voltage and cur-
rent between two processing elements in a linear array; the proof de-

pends on the fact that the transistor characteristics are positive and

strictly-increasing.

3 F i
v vV —»
0 5

0 5
physically... current plots...

9.10.3 Local Knowledge

The solution algorithm is also constrained by the hypothesis adopted at the

outset as the basis for the array simulator,

local knowledge postulate Each processing element is prevented from
knowing what is happening in every other processing element, except

the nearest neighbours.

This is not only by hypothesis, but is the situation in which real transistors
find themselves. Each knows only this: that each other element is going to
follow the same strategy, and that each element knows what the four nearest
neighbour voltages and currents are.

Each element knows that it can autonomously alter each of its four volt-
ages (on the four edges), and that it can calculate the effect on each of its
four currents (out of the four edges); and that it can tell what it ought to
do to move closer to the (i,v) values of its nearest neighbours. But it does
not know what its neighbours are going to do at the same time. Of course,

it could ask them; but then they, to know what they will be doing, will have
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to, in turn, ask their nearest neighbours, and so on, leading to just the sort

of complex information-exchanging situation that we are trying to avoid.

9.10.4 Nearest Neighbours

The idea that the circuit may be modelled by mapping it exactly leads to a
fundamental restriction not present in the mapped models already described.
If each transistor is to sense only its nearest neighbours, then each one
can have no global knowledge of any kind - indeed, no knowledge of even what
is happening on just the other side of its neighbour, since this is ultimately
global.
Thus these two conditions apply:

Transistor Model FEach processing element contains a model of transistor
operation sufficient to produce the currents through its four faces given

the voltages on its four faces; that is:
in = IN(VN, VE, vw, Us);

iE' = iE(’UN,'UE,'Uw,’Us);
tw = tw(vN, vE, Vw, Us);

ts = ts(vN, vE, vw, Us);

Information Access Fach processing element has access to only that state
information that its nearest neighbours can provide; i.e. - in practice,
only the voltage and current at the common interface between elements.

Absolutely everything else, explicitly or implicitly, is unavailable.

This postulate encapsulates the vital difference between this method and all
previous ones. If the system could not be made to work under this restric-
tion, then we would have had to fall back to one of the random distributed-
processing models with all the expense and complication that they entail.
The postulate means that we only have to focus on one processing element

- which we shall now do.



9.10.5 ‘Phantom’ Edge Elements

Each processing element has four nearest neighbours, except along the edge
of the array. To treat edge cells identically with interior cells in all algorithms,
it is sufficient to create a set of ‘phantom’ elements. These are situated all
around the array. Their function is to provide any driving inputs to the cell,
and to allow the same algorithm to be applied to all processing elements
without exception - since they are part of an SIMD machine - particularly
where they an element has to receive data from a really non- existent edge
cell.

Thus in general we are always dealing with:

Dealing with even four neighbours at once is even not necessary algorith-

mically; it can be cut to two by these definitions:

Face Each processing element has four faces labelled N,E,;W.S for north,

east, west and south.

N
W :
e S
Partner Each processing element has two partners - those to its North and
East. north pirtner

® 1z
east partner

Now, if each processing element only has to consider its voltage and current
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relationships with its partners,

this allows each processing element’s South and West faces to be dealt
with by other processing elements — for which they are really North and East

faces — according to the diagram:

PG

9.10.6 The ‘Partner’ Algorithm

By the fundamental postulate, each processing element can only ‘see’ the
state variables at the ‘face’ between itself and the next one.
For definiteness, consider two transistors (as perhaps in a nMOS invertor

structure) connected source to drain as in the diagram.

\'
—>>

L1 [ ]
T I | T

0

Regarding, for the present, the voltages across this composite structure
as fixed at 0 and 5 volts, there is a common voltage v at the face between
them which in the quasi-static approximation pursued here, allows a unique
current 7 to flow across the face. No other voltage results in this current. Now
consider that each processing element has its own idea, however obtained, of
what the voltage on that face should be at this timestep, i.e., consider the

situation as if it were:

u v
011 —> T |5
T i J ) —

The left p.e. considers u to be the correct voltage at the face, producing

a current ¢ through its west face; whereas at the same time the right p.e.
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considers v to be the correct voltage, producing a current j through its east
face (which is the west face of the other p.e). If the currents ¢ and j differ,
then, since this is physically impossible here, one or both of them are wrong

in this assessment . . .

9.11 The Solution Algorithm

Since neither processing element has any ground for supposing that it pos-
sesses a more accurate estimate of the common face voltage, then an ingenious
method of coming to an agreement emerges, which, as it turns out, is a more
general statement of the venerable and powerful Newton-Raphson iteration
technique for finding the roots of a function — no wonder it works so well!

The idea 1s this: since neither processing element is in a privileged po-
sition concerning the estimate of the voltage, then imagine that each one,
for the time being, (as it were, for argument’s sake) agreed to consider, just
temporarily, that the other processing element had in fact got hold of the
correct value of inter-p.e. face voltage, and proceeds to calculate what its
own face current would be if this were so.

Consider the diagrams below:

0 L ').. ’_;.: i c ...physical
_|_‘ T :I_
...voltage and
/ .\ current plots
0 u—>» 5 0V s

On the left is a plot of the typical current in the left transistor; on the
right is a plot of the typical current in the right transistor.

If the left p.e. is correct in its assessment of the face voltage, then we are



at the point A in

i A

whereas if the right p.e. is correct we are at B in

—

\"

If, by my suggestion, we allow the left p.e. to try the voltage supposed
by the right p.e., we get the point C' in

(A)

0 v | u

whereas if we allow the right p.e. to try the voltage supposed by the left

p.e., we get the point D 1n
B)

0 v u | 5

Now consider these graphs superimposed on the same scale

B. D

which allows it to easily be seen that rather than averaging the mis-
matched voltages and currents, a better guess for the solution would simply

involve the point of intersection of the lines BD and AC in

B
A

C

This idea, tried out on transistor models joined in this fashion proved that
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in all cases, and no matter where the starting values of u and v, the system
converges to very high accuracy within four iterations of this procedure. ‘
This rapid and strong convergence is surprising at first. It was only later
realised that the procedure was practically equivalent to the Newton-Raphson
method for finding the root of a function of one variable - in this case, the

difference in currents calculated by each p.e., which is if the form

1

i(v)-j(v) V—

and thus the excellent behaviour of the algorithm was explained. The

mathematical reason for this is shown in Appendix C.

An Aside...

Now, this must look like a silly thing to do - to fail to immediately recog-
nise and use Newton’s method to solve the currents between the processing
elements. And, indeed, if the primary concentration is on the nodes of the
array then it would be.

But the point of view motivating this simulator concentrates rather
on devices. This is a subtle difference which turns out to have profound
consequences?, so in addition to being a silly oversight it also turns out to be
instrumental in opening up a new paradigm for the array processors of the

future. This is taken up in Part IV in the Evaluation.

4explored in the Game Theory chapter 11, later
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9.11.1 Conclusion

Thus is solved the simple case of 2 linear p.e.’s. with fixed end voltages.

The next simplest case is somewhat intimidating.

The first two p.e.’s. can very quickly (as above) come to a solution for
the voltage u - but the value of u, reached by this method, depends on
the value of v, which is being determined at the same time, by the same
method . . . depending on u. So there is a potentially intricate and implicit
parallel determination which threatens to demand global information, thus
destroying the postulate on which this approach 1s based.

The simplest way out of this impasse is to solve for the currents as if there
are two sets of independent pairs of elements. This tactic works, as will be
seen.

After all, we already have a technique that works for the case that we can
visualise; we know it is equivalent to a powerful and well-studied iteration
algorithm; so why not leave it to its own devices, i.e., let it have its head at

the level at which it 1s known to produce the correct result?

9.12 Global Strategy with Local Informa-
tion

In short, my hypothesis, to be judged by its results, is to let each p.e. solve
its voltage/current relation with each neighbour, pairwise, in turn, without
considering what the other p.e.’s. are doing at the same time. When that is

done they can each take a look at the results of these individual calculations
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and redo them if the result is too different from previous ones. For example,

each p.e. @

@ = |®
©

comes to an agreement, by this algorithm described above, on the value

of u with its Northern partner and, separately, on the value of v with its
Eastern partner, all the while using fixed values of end voltages at a, b, ¢, d.
(The west and south faces are taken care of by other p.e.’s. to the west and
south, at the same time).

Four iterations are done (from previous ‘pair’ experiments this is suffi-
cient); each p.e. signals that it is ‘done’ or ‘not done’ to its North and East
partners, these signals being ultimately collected by an AND process out at
the top right hand corner of the array (like the global-or line in the CM-2
[SI91]); and the process is repeated until convergence, if and when it occurs.

The next two chapters report what happens.



Chapter 10

Bargain Method

In which I try out my new proposal for very fast analogue timing simulation
of microelectronic systems by mapping transistors onto an array of digital

mathematical models of transistor operation, on the hypothesis that the bar-

gaining analogy is sound.

10.1 The Array-Processing Model

The model of a circuit discussed in the previous chapter has been studied by
implementing it as a C programme run under the UNIX operating system
on a Sun SPARC workstation.

The results of that study, broadly speaking, are:

e such a model would work, fast enough to be interactive in the sense

already described for programmes of this nature and scope;

e for bistable circuits with feedback, some very general indication of the
initial conditions produces a solution- otherwise it takes a very long

time to converge;

o for straight-forward circuits of the combinational type, the solution can

be started from any initial condition;
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e it does not appear to converge in this simple unimproved form for

circuits containing pass transistors.

A detailed examination of the process by which this processor-array idea

has been assessed is presented in the following sections.

10.2 Results

The embodiment of this approach to array-processor simulation has been
realised in the computer programme described in Appendix D. All of the
technical and mathematical considerations and definitions necessary to get
it working are described there. A summary is given here concerning its
behaviour as a simulator of integrated circuits. The results of investigations
into the array-modeller are very encouraging, and are presented in graphical

form in the following pages.

10.2.1 Convergence

Circuit behaviour has been found and characterised as:
weak and oscillating convergence for feedback systems unless the ini-
tial state is unambiguously specified - then it is strong; rapid and strong

convergence for non-feedback systems.

10.2.2 Circuits Used

Initial encouraging results were obtained on simple gates such as inverter
rings and NOR gates.

All the detailed simulations reported here are carried out on a feedback
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Figure 10.1: ARRANGEMENT OF FLIP-FLOP CIRCUIT ON GRID

circuit comprising a set-reset flip-flop, shown here.
+5

Q Q

reset set

0

It was chosen because it has a feedback path and is bistable, so is a non-
trivial circuit, in the sense that if the algorithms do not work on this they
probably will not work on any circuit.

The circuit is decomposed on an 8 x 8 grid of processing elements as
shown in figure 10.1 on page 135.

The simulator produced the correct behaviour through the full set and
reset cycle. However it took over 2000 iterations when started from zero!,
as presaged by its early behaviour in figure 10.2 on page 136, whereas it
was much faster when the bistable nature of the circuit was unambiguously
removed. [t was sufficient to indicate a ‘0’ or ‘3’ volt level at the start. The
set of startup voltages used for all these simulations is shown in figure 10.3
on page 136. The set and reset signals are pulsed in sequence, and this full

simulated sequence of voltages is shown in figure 10.4 on page 137.

li.e. there was no indication of the final state - ‘flip’ or ‘flop’
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Figure 10.3: NON-ZERO STARTUP VOLTAGES AND ELEMENTS
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10.2.3 Rate of Convergence

It is shown in this chapter that the convergence rate - how many iterations
are needed until the voltages are close to the final result - varied widely
and was greater when the input drivers were changing fastest. This is to be
expected, since the nodes are most out of balance at those times.

However, it is found that the system has to be quite close to the final
state if not too many iterations are needed. If it is just a small way from it
then the iterations rise dramatically. Once the system is a long way from the
solution it gets ‘saturated’ in the sense that the number of iterations does

not increase much at all. These results are shown in figure 10.5 on page 139.

This result suggests that any improvement in convergence speed should
be sought at those parts of the overall waveform where most iterations occur.
This is seen to be where the voltages at all nodes are most out of balance,
either because of rapid driving-voltage change, or at startup where the initial
voltages are not yet settled and an approximate guess must be made. Thus
this investigation now concentrates on the startup point in the waveform,

shown in figure 10.5 on page 139 to need just under 1800 iterations.

10.2.4 Number of Elements

The results of simulation of rings of oscillators also show that there is a
slightly more than linear increase in the time taken to converge as the size
of the grid of the array, that is the number of possible processing elements
along each side, increases. This reflects the fact that influences propagate in
both directions; it is surprising that the rate of increase is so slight, really.

These results are shown in figure 10.6 on page 140.

10.2.5 Accuracy

The simulator was run finally with varying numbers of bits in the mantissa

by masking all real number operations. Double-precision real numbers in the
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SPARC processor conform to the IEEE format?. They are stored in eight

successive bytes in the form:

63 51 0

11-bit

exponent -«— 52-bit fraction -

sign of fraction
so that, for example, if the case of 8 mantissa bits accuracy is being

investigated, then the set of byte masks is:

63 51 0
T11111111111117111100040000. . ... ...... 000000¢00000009
255 255 240 0..0. 0

Y y y y y y

The full set of masks® is shown in the C program in Appendix E.

The exponential function is implemented to high accuracy by using the

2]IEEE Standard for Binary Floating-Point Arithmetic
3for 1 up to 53 bits
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simple arithmetic operations + — */: e” is expressed as 1/e~%, and where

z > 1 it 18 successively halved until z < 1; then the series solution
e®=1—z+2*/2...(—z)"/n!

1s used since 1ts maximum error is known to be less than the last term.
Finally the result is multiplied by itself the same number of times that it was

originally divided, i.e., effectively computing e” from

(es/mym

10.3 Newton-Raphson Iteration

The criterion used in this implementation, by default, is that when then
four face voltages match exactly,the mismatch between the four face currents
vanishes. Mathematically, the measure of the mismatch is

(2n — Z'no)z + (tn — inO)z + (2 — in0)2 + (¢ — in0)2
and for this to vanish it is trivially done by choosing the currents to be equal.
This is what would be done here by the Newton-Raphson iteration if it was
taken to convergence, which it is not.

The Newton-Raphson iteration technique described in general in Ap-
pendix C was used in these solutions. It was found that in all cases, and
no matter where the starting values of the initial voltages, that the system
converged to very high accuracy within four iterations of this procedure. Be-
cause the number of mantissa bits is an important parameter in this study,
the effect of the number of mantissa bits on this convergence behaviour was
investigated and is shown in figure 10.7 on page 142.

Even down to 8 bits the convergence in no more than 4 iterations is
observed. This rapid and strong convergence is not even usually used in
simulations. It is normal [NSV84] to just obtain the first iteration and use
that as the starting point. In these simulations it is found that this is a sound
procedure, making less than one percent difference overall to the number of

1terations needed.
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10.3.1 Overview of Behaviour

To show what can be achieved, the proposed system is started up from a
given initial set of node voltages. Starting up from all zero nodes leads
to an arbitrary situation and very long iterations (in excess of 2000), so
startup is from a rough approximation to the initially expected state shown
in figure 10.3 on page 136.

It is perhaps astonishing that it converges at all. However, it is the pur-
pose of this study to verify that there is any validity the economic analogies
that this approach is based on, and because real-life bargaining analogues
converge somewhat roughly, this provides an initial measure of confidence
that this array must, too.

The criterion for convergence can be either one of:

e the present current and voltage on the face differs negligibly from the

previous current and voltage on the face;

e all over the model array the voltages match and produce currents such

that the maximum mismatch is smaller than a specified amount.

The second criterion is chosen because it is similar to the familiar re-
laxation method criterion [Sou43]. The case started is with the maximum
number of mantissa bits (53) initially, and 1gA convergence criterion, which
is quite tight. Starting from the voltages on the nodes already given in fig-
ure 10.3 on page 136, the voltages on the faces N72 and N77 are traced and
the maximum mismatch of currents is recorded.

Next examined are three important extensions to this bargain method
which are: the smoothing method, where this zig-zag is largely suppressed;
the look-ahead algorithm, which gives some speedup; and the profit criterion,
which enters the new realm of game theory, explored in the next chapter.

The convergence properties of the four methods are show in figure 10.8
on page 144, where the unimproved bargain method is the upper curve and

the various improvements make up the lower three plots. Typical startup
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Figure 10.8: COMPARISON OF MAXIMUM RESIDUALS FOR ALL METHODS

voltage waveforms are shown in figure 10.9 on page 145, where this time the
unimproved voltage is the zig-zag one.
Briefly, indicative numerical results for 53-bit mantissa, 1uA convergence

criterion, are summarized in the following table:

METHOD ITERATIONS | RMS DIisT. Zero Start
pure bargain 1784 iterations 0.014mV | 2183 iterations

bargain plus 965 iterations 0.133mV | 2144 iterations
smoothing
bargain plus 602 iterations 0.0134mV | 1918 iterations
smoothing plus
lookahead

bargain plus 966 iterations 0.0114mV | 2206 iterations
profit criterion

where: the RMS Dist. is the root mean square distance of all the startup
voltage nodes from all the voltage nodes of the true final solution; and Zero
Start means that if the system is started up from all-zero nodes, it comes up
into the ‘flip’ stage rather than the ‘flop’ state, and takes somewhat longer.
In addition, indicative numerical results for 53-bit, 1000 A convergence

criterion, including the relazation method results for completeness, are sum-

marized in the following table:
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METHOD ITErRATIONS | RMS DisT.
pure bargain || 662 iterations 1.14 mV

pure relax 265 iterations 130.5 mV
profit 1 X 5 59 iterations 51.0 mV

where the profit 1 x 5 method is described in the next chapter.

10.3.2 Relaxation Method

Normally the relazation methodis applied to the linearlized differential equa-
tiations. Herein the quasi-static approximation there are no differential equa-
tions so it is applied directly to the array for purposes of comparison with
the other methods.

Using the relazation method the voltages show a characteristic step-like
convergence; the voltages on each face of an element inexorably but slowly
moving towards the final value. The maximum residual does not decrease as
inexorably, however, since liquidating the residual at only one face can allow
it to increase at another. This behaviour is shown in figure 10.10 on page 146

and figure 10.11 on page 146.
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10.3.3 Pure Bargain Method

In the system using this plain bargain method the voltages show a charac-
teristic zig-zag convergence; voltages on opposite faces of an element doing
opposite adjustments, because the current equations for the current mis-
matches on all four faces are being solved independently of one another; but
the maximum residual steadily decreases, eventually taking 1784 iterations to
reach the 1uA convergence criterion. This behaviour is shown in figure 10.12
on page 147 and figure 10.13 on page 148.

To put the voltage behaviour in perspective over the whole waveform,
figure 10.14 on page 148 shows the development of selected nodes over many
iterations. However, this does not reveal the fine detail, which is presented
in figure 10.15 on page 149. This voltage behaviour continues for a very long
number of iterations in this fashion, no matter which nodes are examined.

In the mechanical case there are oscillations produced, too, so it is ex-
pected that here the voltages will show the same oscillations. The maximum
residual also shows the oscillations, superimposed on the step-like reduc-
tion characteristic of the relazation method and is shown in figure 10.16 on

page 149.

147



0.6 1

T
2! _ x\/J .-

15 20 25

Figure 10.13: PURE BARGAIN METHOD - STARTUP VOLTAGES ON OPPO-
SITE FACES

3.5

2.5 #p

voltage

0 -

HHHHHE T HH B R

0 S 1015202530354045505560657075808590951010111112121313141415
05050505050

iterations

Figure 10.14: BARGAIN METHOD: SELECTED VOLTAGES FROM STARTUP

148




3.26355

3.2635

3.26345 +

voltage  3.2634 +

3.26335 +

3.2633 -

3.26325 +—+—t+—"F—Ft—+—"+—"~F+—"——ttt————————+—

50 50 50 50 50 50 50 SO SO 50 51 51 51 51 51 51 51 51 51 51 52 52 52 52
0o 1 2 3 45 6 7 8 9 0123 45867 8901 23

iteration

Figure 10.15: PURE BARGAIN METHOD - VOLTAGE CONVERGENCE AFTER

500 ITERATIONS

0.000022 -+
0.00002 =

0.000018 -

0.000016 = l !' | ‘ 1
0.000014 \ . | ) { -
maximum  0.000012 -+ . | ; ”H
residual (UA) oc.o0001 -+ ‘\ \
0.000008 -
0.000006 -+

0.000004 =

0.000002 -1

O

1217171212 1717317121217 1717 171721212 171717171717 171718
00 04 0B 12 16 20 24 28 32 36 40 44 48 52 S6 60 64 68 72 76 B0 84 BB 92 96 0O

iterations /

Figure 10.16: PURE BARGAIN METHOD - MAXIMUM RESIDUAL AFTER

1700 ITERATIONS

149



The solution voltage comes down fast initially and then reduces more
slowly. This is because the algorithm depends on the distance from the
solution, it is driven by the current mismatch that it experiences - the smaller

that gets,the slower the convergence.

10.4 Speedup Ideas

It must be admitted that none of this is particularly fast. So, for this array
processor model study, how can speedup be achieved?

Over the whole driving voltage waveform, there are three main methods

possible:
e speed up convergence between time steps;
e speed up convergence during one time step;
o develop new algorithms that work differently.
Each one of these is investigated in this thesis, and the results found are:

speed up convergence between steps requires getting close to startup

point, which it will be shown cannot be done in general.
speed up convergence at one step leads to smoothing and lookahead.

develop new algorithms eventually produces the game theory approach
that acts as a type of simulated annealing in that it jolts the system

out of a rut to help it converge.

10.4.1 Speedup between Driving Steps

The aim is to closely predict the next set of voltages on each face for each
element by using the last few values. This is found to fail because these pre-
dictions have to be actually very close indeed to the correct value, otherwise

large increases in iterations occur.
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The study that proves this is reported here. As illustrated in the diagram

below, parabolic prediction of the next face voltage using the last 3 values

processing
element

is attempted. A large number of random starting points is chosen for the

face voltages throughout the array. As illustrated next, the sets of starting

starting value sN volts
true solution tN volts

g 4

cC

& 3

83

. c <
processing § s
element ®
=z

55

g a

starting value sE volts
true solution tE volts

starting value sS volts
true solution tS volts

voltages on the faces of each element - sy, sg, ss, sw - are chosen at random.
Then the system is run until 1gA convergence is reached. The distance of

the initial set of startup voltages from the true final solution is measured by

the Root Mean Square voltage difference per face per element

Y. ((sv—tw)? 4 (sE — tB)* + (s5 — ts)? + (sw — tw)?)/4/64

elements

Each point on these graphs represents a sampled starting set of node
voltages and the corresponding number of iterations needed to get to within
1pA convergence. In this way, the effect of starting some distance from the

true solution on the final number of iterations can be guaged.
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The results show a very tight spread over a considerable range of startup
position, shown in figure 10.17 on page 152. This shows that it is necessary
to start extremely close to the actual solution to get a significantly reduced
number of iterations - if just a small RMS distance away, which is quite
likely, the number of iterations increases very sharply, and so the startup
point might just as well be a long way from the actual solution, without
taking any trouble to get it close. This is seen more clearly in the expanded
section near the start of the plot, in figure 10.18 on page 153, where the
iterations jump from zero to almost 140 within a quarter of a millivolt of the
true solution.

Also shown, in figure 10.19 on page 153, is the result over a wide range
of RMS distances from the true solution, showing that there is a point after
which the iterations, and the standard deviation of the iterations, start to
increase at a further rate.

It is concluded that this inter-step prediction is very unrewarding since
it is found to be very likely to get too far from the true value by parabolic

interpolation. The results from 1000 A convergence criterion, done to check
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consistency, are slacker but show a similar shape - the startup has to be very

close to benefit from reduced iterations and this is found to be impractical.

10.4.2 Speedup by Smoothing Method

Given the Bargain Method, there are two ways of possible improvement: one
is to consider smoothing the inevitable oscillations over past values; the other
1s to consider smoothing somehow over present values.

Past values leads to the smoothing+lookahead method in this chapter.

Present values leads to the game theory algorithm in the next chapter.

The oscillations continue on a small scale for a very long time, just re-
ducing slowly, as already seen in figure 10.16 on page 149.

Since it is impractical to start off very close (for all faces) then other
methods must be tried. In an attempt to dampen the inevitable oscillations
arising from independent and uncoordinated solutions on each face, it is

possible to examine:
e using a linear predictor;
e weighting of previous values;

e least squares best fit.

10.4.3 Linear Predictor

This uses a criterion like adaptive linear predicting in signal processing
[Pap91]. The new voltage on each face is predicted from the voltages ob-

tained at the last 3 iterations by using coefficients a, b, ¢ in the form

‘/predicted = av—l + bV—2 + CV—B

so that when the next values are smoothed and the actual value computed,

a, b, c are chosen so that the mismatch is minimised by the differential process

) Z (‘/predicted - ‘/actual)2 =0

faces
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Figure 10.20: EFFECT OF WEIGHTING PREVIOUS VALUE OF VOLTAGE

with respect to a,b,c. This is solved for a, b, c and the new voltage pre-
dicted. It is found that this scheme produces a very erratic set of predictions,
and ultimately takes more, not less, iterations. So the linear predictor idea

fails, presumably due to the erratic and zigzag nature of the voltages as they

converge.

10.4.4 Weighting of Previous Values

The next attempt to dampen the oscillations is by weighting the next guess
by various previous values, for example the previous 1 or 2 values.
The results in figure 10.20 on page 155 show that weighting the current

face voltage by the previous one via the weight w thus:

Vnez‘t e ‘/current + w‘/previous

produces a very strange graph indeed - in fact, only if the weight w =

0.042 is a sharp minimum achieved.
This sharp minimum, occurring at very low weighting, is confirmed by

the following results, where this time 2 previous values are used i.e.
Vne.rt . ‘/current + A‘/_l + BV_Q
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where various combinations of weighting of 2 previous values are tried.

The results are seen to be similar at two different convergence criteria
and show minima for small values of the previous valued point only. The
various graphs shown in figure 10.21 on page 157 represent different values
of the coefficients A,B where: A goes from 0 to 10 along the horizontal axis;
B goes from.0 to 10 for each curve, with B = 0 at the bottom and B = 10
at the top. The iterations are given as a percentage of the no-weight case for

ease of comparison.

10.4.5 Least Squares Best Fit

It is seen that it is not possible practically to find the optimum weight by
the methods of linear prediction since the curve is not differentiable at the
optimum. What can be tried next? Since the voltage oscillates between two
series of values, then the simplest averaging method is to fit a straight line
of best fit through the last few points. This has been tried, and it is found
with the last 6 points a fairly stable result is obtained. Thus on all 4 faces of
each element the next voltage to start with is got from fitting a least-squares
best fit through the voltages at the last 6 iterations.

The top figure 10.22 on page 158 shows how fast the array converges when
there is no LSQ smoothing. Contrasted with this is the marked improvement
using the LSQ smoothing technique, shown in the bottom graph for the same
case.

The next graph in figure 10.23 on page 159 shows the effect of this 6-point
LSQ smoothing on a typical startup face voltage - the LSQ takes place from
iteration 6 onwards, and the zig-zag behaviour observed before in figure 10.13
on page 148 has been substantially eliminated.

As the iterations proceed the voltage on the N face of element 72 is shown
in figure 10.24 on page 159 regularly and smoothly converging.

Interestingly the overall pattern of convergence expressed in terms of re-

duction of maximum residual has a strong linear-log character (also observed
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in other similar systems) as shown in figure 10.25 on page 160.

10.5 Look-Ahead Ideas

Since it has been seen that a trend is established along the two tangents to
the upper and lower set of oscillating points, then it is natural to expect
that extrapolation of the predicted value could get to the correct value
more quickly. Ideally, a different amount of extrapolation would be needed
for each element and each face, i.e. an adaptive scheme is required; however,
to try out the extrapolation idea, just the same value for all elements is used,
on the basis that if it will not work for this case and reduce the iterations,
then investigation of further adaptive cases will not be fruitful; whereas if it

does work then there is scope for future research into adaptive methods.
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Figure 10.26: VOLTAGE SMOOTHED WITH LOOK-AHEAD APPLIED

The lookahead scheme works as shown in this diagram.
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The results are unexpected. It is found that in fact it is not possible to

anticipate too far ahead. If extrapolation ahead by more than 1 iteration is

attempted then an increase in the number of iterations occurs again instead of

a decrease. Improvement in the number of iterations can be quite dramatic,

however, depending on how much lookahead is done and when.

The effect on the voltages is shown in figure 10.26 on page 161.

The effect on the convergence, measured by the maximum residual, is

shown in figure 10.27 on page 162.
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Figure 10.27: RESIDUAL SMOOTHED WITH LOOK-AHEAD APPLIED

A certain amount of experimental investigation found that improvement

in iterations depended on how much lookahead is used and where in the

iteration process it is used. It is found, for example, that this figure below is

amount of
lookahead
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the profile producing minimum iterations (106 iterations with 7 changes) and
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this figure next is the profile producing maximum iterations (581 iterations
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with 7 changes). Note that the minimum curve zigs where the maximum
curve zags, as would be expected if they are producing opposite effects.

Thus a systematic study of lookahead tactics was carried out. In default of
the ideal situation* an exhaustive random experiment chose both: a random
set of LA® values between 0 and 1 (since it is already known that > 1 is no
good); and a random set of iteration points at which to change the LA value.

500 samples were run to convergence at the 10pA criterion, the results
being summarized in figure 10.28 on page 164.

The standard deviation of the spread also is shown in figure 10.29 on
page 164.

Both these results show that:

e if a LA tactic is to be done, then it is best not to do it timidly, ¢.e. do
lots of LA changes;

e it is possible do badly by random methods;
e it is possible to do much better than the average random choice;

e thus research into an optimum adaptive algorithm is highly desirable.

4an adaptive method for each element and for each face

5Look-Ahead
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10.6 Accuracy versus Number of Bits

Figure 10.30 on page 165 shows how the bargain + smoothing + lookahead
system convergence behaves as the number of mantissa bits is reduced; this
information is needed to decide the architecture of processing elements.

A straight line can be drawn through the regions where convergence sud-
denly fails to occur at each criterion; this the prescribes the minimum num-
ber of mantissa bits necessary for that criterion to be workable. The critical

number of bits thus found is shown in figure 10.31 on page 166.

10.7 Operations Count per Iteration

Since all the operations with real numbers are masked in the C program to
obtain the effect of using various mantissa bits, it is a simple matter to count
all the operations at the same time. This gives a basis for estimating how long
the real array simulator, if built, would take under various conditions. This

data is used in Part 4 to compare the various strategies that are investigated
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in Part 3.
The bargain+smooth-+lookahead method, across a wide range of mantissa

bits® is found to use a steady number of operations per iteration, summarized

in this table.

OPERATION | NUMBER PER ITERATION
multiplication 500
division 312
addition 280
subtraction 218

The next bar graph summarises the relative percentage of operations, for

53 bits over the whole simulated waveform, on average 100 iterations per

Sfrom 12 bits up to the maximum of 53 bits
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To give a rough idea of time taken, the total number of counted operations
is around 400 million operations per waveform for the 2004 A criterion, and
around 270 million for the less stringent 400p A criterion; once an architecture
for the processing elements is known, the real simulator time can be estimated
from the cycle time and the cycles per operation.

For interest, rough estimates for the bargain+smooth+lookahead method
are given in the next table, assuming a 100 nanoSecond clock cycle and

approximately 200 multiply operation cycles per bit.

BiTs | CrRITERION | TIME | MSEC | ITERATIONS
16 500 0.7 18 9
16 400 0.8 18 10
16 300 0.9 18 12
16 200 1.1 18 15
24 500 1.0 9
24 400 1.1 10
24 300 1.2
24 200 1.5
28 500 1.2 33 9
28 400 1.3 33 10
28 300 1.5 33 11
28 200 1.8 33 13
28 100 2.5 33 18

In this table, BITS is the number of bits in the mantissa; CRITERION
is the convergence criterion in pA; TIME is the estimated mins. to carry
out 100 simulation; MSEC is the real time per iteration in milliSeconds; and

ITERATIONS is the mean number of iterations per timestep over 150 time
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steps. :

In addition, rough estimates for: the pure bargain method, 53 bits, 5uA
convergence is 49 mins., with an average of 170 iterations over 150 timesteps;
the bargain+smooth+optimal lookahead method, 53 bits, 5uA convergence is
16 mins.,, with an average of 170 iterations over 150 timesteps; and the bar-
gain+smooth+optimal lookahead method, 16 mantissa bits, 5uA convergence
i1s 40 seconds, with an average of 9 iterations over 150 timesteps, taking
18mSec per iteration.

The convergence accuracy, as measured by the RMS? distance over the
whole waveform from the true values of  and Q at various convergence

criteria for 16 bits is indicated in the table:

CONVERGENCE CRITERION | Q ACCURACY | Q ACCURACY
500 pA 0.269 mV 0.124 mV
400 pA 0.205 mV 0.103 mV
300 pA 0.162 mV 0.083 mV
200 pA 0.119 mV 0.064 mV

10.8 Conclusions for Bargain and Smooth

and Lookahead

The methods investigated converge in a characteristic zig-zag fashion. Most
iterations are needed when the driving voltages are most out of balance.
Various tactics were tried to improve convergence rates in these areas, but it
was found that simple least-squares smoothing was remarkably effective in
the first instance. ’

Success with other methods was produced on an ad hoc experimental ba-
sis. However, general success with those methods depends on the application
of adaptive prediction techniques to get the best use of each technique at each
iteration. The lookahead tactic particularly can produce large improvements
under these conditions.

The behaviour of the best algorithms was limited by the number of man-

tissa bits used: any number from 12 to 24 bits were necessary depending on

“root mean square
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the accuracy of convergence required.

It was found that the bargain method and its variants have a characteristic
operation-count profile, which can be used to estimate the total real time for
100 simulations. Thus it can be used to compare the tactics, and to compare
them with other algorithms. It can be very useful in assessing algorithmic
improvements, since fewer iterations achieved can be more than offset by the
extra time taken by calculations in a more complex algorithm.

There are storeage implications, speed and cost trade-offs involved in the
various tactics examined. For example, varying weights meant that using
the same weight for all faces of all elements requires : storage of 3 previous
voltages - 3 real numbers per element; whereas a more flexible tactic of using
a different weight for each face of each element, while no doubt producing
a faster convergence, would require storage of 3 weights per face - 12 real
numbers per element - thus making the element more complex and expensive.

Concentrating on interstep speedup is not found to be worthwhile because
of the need, and the inability, to get very close to actual values of all nodes
to reduce iterations much. Therefore effort needs to be concentrated on
speeding up the internal iterations within one timestep instead.

The improvement is greatest only in the early stages of the iteration.
Later, as it gets closer it gets slower, as usual. So it appears that the conver-
gence might be considered in two fairly distinct phases, the early one being

quite substantially sped up, the latter requiring a different approach.
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Chapter 11

Game Theory

In this chapter I study the application of economic game theory to the problem

of array convergence and find that it works surprisingly well.

11.1 Why try Game Theory?

The germ of the idea that Game Theory might be applicable to speeding up
convergence, or even to the problem of just achieving convergence, came from
the fundamental reinterpretation of the Newton-Raphson iteration technique,
described in Appendix C. It seems that there are still things to be discovered
about this technique, as Frangois Robert confirms in his exploratory work on

discrete iterations [Rob87], writing:

“One may for example refer to the algorithmic . . aspects of
Newton’s method . . . seems to me to be the most fascinat-
ing algorithm in numerical analysis . . . shows a remarkable
practical efficiency even though there exists relatively few global

convergence results.”
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Figure 11.1: COMPARISON OF MODELLING METHODOLOGIES

Consider the possible method of modelling the economic behaviour of
communities and the analogous possible method of modelling arrays of
processing elements in digital microelectronics suggested in figure 11.1 on
page 171.

It has been discovered in this thesis that there is a strong similarity be-
tween iterative economic-bargaining and the Newton-Raphson iteration tech-
nique (shown by the bold arrow at the bottom of the figure). The similar
structure of each modelling chain above the bottom boxes suggests that there
might exist a similar strong correspondence at every level of the chain.

Thus it is possible that a more formal application of game theory methods
might prove useful, by adapting known bargaining strategies to the purpose

of reducing the oscillations that occur during some of the iterations.
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The model used for this study is the flipflop circuit at the start-up situa-
tion because it takes by far the most iterations to converge and in which the

most speed improvement is possible.

11.2 Elements of Game Theory

According to Moeschlin and Pallascke [MP80] and Ichiishi [Ich83] a Game

has the features defined and explained below.

11.2.1 Definition of a Game
players: there is a set of more than one decision-makers, called players ;

moves: at specified instances, one or more players must make decisions by

choosing amongst a set of specified alternatives;

choices: each situation determines which of the players is to move, (the

moves may be simultaneous) and the range of choices;

endplay: certain specified situations define the end of that particular play

of the game;
payoffs: the outcome of each play has payoffs;
strategy: rational players strive to maximise their expected payoff.

Furthermore, game theory recognises that if a choice must be made be-

tween two actions, then the realm of decision-making is that of:

certainty if each action is known to lead invariably to a specific outcome;

risk if each action leads to one of a set of possible specific outcomes, each

outcome occurring with a known probability;

uncertainty if either action or both has as its consequence a set of possible
specific outcomes, but where the probabilities of these outcomes are

completely unknown or are not even meaningful.
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11.3 Development of Game Theory Model-

The above definitions suggest that each processing element is an individ-
ual making decisions under uncertainty, confirming that useful convergence
strategies might be sought in the literature of game theory.

It has been shown how the NR! iteration can be re-interpreted in GT?
terms as a bargaining strategy. If economic game theory methods are to be
tried then it is necessary to identify quantities from the electronic sphere
that are analogous to quantities in the economic sphere. This identification
can only be tentative, like the application of this whole technique, and its

justification depends on the final results of the simulations.

11.3.1 Identification of Game Theory Quantities

It seems reasonable to try the correspondences below, which are summarized

in figure 11.2 on page 174:

price & voltage The voltage between adjacent faces, being initially in dis-
pute between the processing elements and having to be determined by
an iterative process until equal, suggests that the voltage in electronics

is the analog of price in economics.

quantity < current Since at the negotiated price the currents flow that
are equal from one element to the other, it is reasonable to suppose

that the current in electronics is the analog of quantity in economics.

outlay & power Since total payment out of one face of an element is in
economics just price x quantity then it is reasonable to take it that the

outlay is the analog of voltage * current or power in electronics.

exchange rate < mathematical weight In order to allow an emphasis

to be placed on the inputs of some elements rather than others it is

INewton-Raphson

2Game Theory
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useful to establish what is the analog of an exchange rate between

countries, or a risk loading between individuals.

profit & power The nett outflow, or the algebraic sum of the outlays
through each of the four faces, in economic terms leaves the element
with a surplus or deficit, and since in electronics that same quantity is
the nett power, or heat dissipated, in the element, then it seems natural
initially to identify the maximisation of net profit as the criterion for
elements. This suggests the adoption of the analogy nett profit < nett
outlay. This will be important when players attempt to maximise their

payoffs.

11.3.2 Application to VLSI Simulation

So far the elements of the model have been tentatively identified with their
economic counterparts. The next step is to identify each feature required of
a game in terms of the SIMD contact model already investigated.

With reference to the features of a game described above, the following

identifications with the processing array seem plausible:

players: The decision-makers (players) are the processing elements. There
is a set of five decision-makers consisting of the main processing ele-
ment and its four nearest neighbours, shown in figure 11.3 on page 176.
Technically, this means that each element is participating in a 5-person
non-zero-sum co-operative game. Game theory literature shows there
are no general theoretical results for such an advanced game, so every-

thing that follows will be quite heuristic.

moves: Since the array is SIMD then all elements move simultaneously and

independently within these alternative alterations.

choices: At each iteration, all elements make decisions by choosing amongst
a set of specified alternatives. So far the only choice has been the result

of the first NR iteration, but this is not realistic; there are at least 3
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distinct choices each face may make at each iteration. Each element
on each face can either choose N-R 3, IP * or F-F 5, as illustrated in

figure 11.4 on page 177.

For the 4 independent faces of each element this yields 3 x3x3x3 = 81

possible alternative combinations, given in this table:

combination | north | east | west | south

1 N-R N-R | N-R N-R
2 N-R N-R | N-R IP
3 N-R N-R | N-R F-F
4 N-R N-R 1P N-R
5 N-R N-R IP P
6 N-R N-R P F-F

81 F-F F-F F-F F-F

Notice that this point of view treats NR as a special case of GT®.

3the just-calculated Newton-Raphson bargained price
4its initial price, i.e., at the start of this iteration
Sthe face-to-face partner’s price, i.e., the neighbouring element face

Swhere the first combination in the table is invariably chosen
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endplay: Obtaining the first NR iteration defines the end of that particular
play of the game - this corresponds to the usual single iteration loop.
The end of the whole game occurs when adjacent voltages and currents

are equal within the specified tolerance.

payoffs: So far the payoff of each outcome is proportional to how well the
voltage and current pairs match on all four edges, being largest when
the maximum mismatch between currents on each face is smallest. But
if the set of choices is greatly expanded as above then a more general

notion of payoff needs to be adopted.

Following the economic analogy the most obvious, and perhaps reason-
able, payoff is the net profit. This has already been identified with the

net power entering the element.

The net profit for the element is thus calculated from

profit=3_ (xp)q

N,E,W.S

where the sum is take over all four faces; x = the exchange rate (weight)
in the adjacent face; p = the price (voltage) on the element’s face; and

q = the quantity (current) entering the element’s face.

strategy: In the existing model each element maximises its payoff by reduc-
ing all four current mismatches at once. It does this by choosing the

NR first-iteration value for all 4 faces simultaneously.

However, with this greatly-expanded range of possible face voltages, it
is necessary to choose one of the 81 combinations by a rational method.
Once again invoking the economic analogy, it would be reasonable for

a bargaining element to choose on the basis of maximising its profit.

So what will be called the profit method means that at each play of the
game, each element computes the profit it would gain if it used each one

of the 81 combinations above. The element then uses that combination
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Figure 11.5: ILLUSTRATING PROFIT CRITERION AT COMBINATION 6

of voltages which produces the maximum profit as the basis for starting
the next iteration.

For example, as illustrated in figure 11.5 on page 179, if after calculating

the 4 bargained prices for the four faces, it turns out that combination

6, namely

North Face N-R bargained price
East Face N-R bargained price
West Face Initially-Proposed price
South Face | Face-Face partner's price

produced the maximum net profit out of all the 81 combinations, then
those values of face voltages would be used as the starting-point for the

next iteration. That is, the NR values are not always used.

Thus it is seen that the Newton-Raphson iteration technique applied to

the convergence of the array simulator is a special case of a game theory
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method, and the first NR value can be used as a good starting point in the

more sophisticated game theory algorithm discussed above.

11.4 Experimental Results

Since NR is a basic game theory method, this investigation distinguishes two

cases by different nomenclature, thus:

the smooth method where the NR price, reached by a process of bargain-
ing without convergence, is accepted straight away as the final price
for each face - this is how the model is already run, i.e. in the previous

chapter where the voltages are smoothed over the last 6 iterations.

the profit method where the NR price is reached by bargaining without
convergence, and then the criterion of maximum profit is applied to
determine whether this NR price will be used or whether the element
will stay with its own initially-proposed price or use its face-to-face
partner’s price on each face for this play. Only voltages at the current

iteration are considered.

It needs emphasizing that if combination 17 is invariably chosen (the
bargain method ) then this is the method already investigated. The profit
method thus generalizes the bargain method .

The model described above was set up and run, with interesting results.

11.5 Effect of Frequency of Operation

When the profit method is applied at each iteration, the system improves
for a few iterations and then it locks up, and no further convergence occurs.
This seems an unpromising start for game theory, and forces the observation

that two extreme behaviours are observed at the outset:

7in the combination table, earlier-(page 177)
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o if the profit method always operates® then the system locks up after
a few iterations and does not converge; this produces what might be

regarded as an infinite number of iterations.

o if the profit method never operates then the situation remains that
of the Newton-Raphson bargaining technique which has already been

investigated - the bargain method - which is known to converge.

The question arises: what happens in between these two extremes?

To find out, the system was then run so that the profit method was only
applied every second iteration instead of every iteration, with the default bar-
gain method applying otherwise. Once again, however, the system improved
for a few iterations and then it oscillated widely without further convergence.
This seems very unpromising indeed.

At last, however, the system was run so that the profit method was only
applied every third iteration instead of every iteration, with the default bar-
gain method applying otherwise, as before. This time, by contrast and quite
surprisingly, the system showed very fast convergence. In fact it is found
that applying the profit method every 3rd, 4th, . . . etc. . . iteration caused
convergence to occur in the usual way.

The results are shown in figure 11.6 on page 182. From this it can be
seen that after a frequency of application of every 3rd iteration the rate of

9 varies within a narrow range with a minimum of 78 iterations

convergence
occurring at a frequency of every 20th iteration. From then on the number
of iterations to convergence gradually increases until reaching the bargain

method value of 419 iterations, where it stays.

8i.e., at every iteration

9measured by the number of iterations
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Figure 11.6: EFFECT OF FREQUENCY OF APPLICATION OF GAME THEORY

11.6 Effect of Range of Choices

It is found that these results are practically unchanged if, instead of the
81 combinations resulting from 3 price choices on each face, only the 16
combinations resulting from 2 price choices are allowed: the bargained price
and the initial price. This is correspondingly faster to simulate, and all

subsequent investigations use this reduced range of choices.

11.7 Effect of Delaying Profit Criterion

To see what happens when the profit methodis delayed, this next study allows
the bargain method to operate for a while, only later commencing the profit
method . The results are shown in figure 11.7 on page 183.

The upper plot shows that, at the tight convergence criterion, there is
some small advantage in delaying the operation of the profit method , but
since it is not known how many iterations it will take to converge before
the simulation is carried out, and thus how long to delay, then this post hoc

advantage is totally worthless in practice.
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10 convergence crite-

In any case, the lower plot shows that, at the looser
rion there is no advantage at all in delaying, and that it is best to start the

profit method from the very beginning of the simulation.

11.8 Effect of Exchange Rates

Since the exchange rate parameters are available for variation it is natural
to study whether they make any difference to the convergence speed.

The meaning of the exchange rates and their mode of operation are both
illustrated in figure 11.8 on page 184. The default exchange rate value for all
8 x 8 elements is 1.

The study starts with a given case: 1000 pA convergence criterion and
applying the profit method every 5th iteration. Then for each processing

element in turn, the exchange rate is varied from i1ts nominal value of 1 and

0and probably more commonly-used
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the number of iterations to convergence recorded.

The results for two elements of the array, one in row 7 column 5, the other
in row 8 column 4, being representative of the behaviour of all elements, are
shown in figure 11.9 on page 185.

The graphs show that as the exchange rate passes somewhere near the
nominal value!! the convergence rate of the array changes fairly abruptly in
a step, from one stable value to another, for better or for worse. In fact,
simulation at just the three exchange rate values of 0, 1 and 2 produces all
the information that can be got about the effect of exchange rate variation.

When the values of exchange rate that produce, individually, the fastest
convergence are tried all at once, sometimes a slightly faster iteration is
achieved but mostly it is not - this is a very complex non-linear system.

For example, if the rates are changed as shown below then the number of
iterations 1s 78 rather than the individual minimum of 80; but at the tighter

1 pA convergence criterion the analogous case produces an increase rather

Hdefault=1
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than a new minimum, as shown below.
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11.9 Convergence Behaviour

In contrast with the original bargain method the voltages on certain nodes
now have no zig-zag component. This is because the values on each face are
being determined by taking into account what is happening on the other faces
of the same element to some extent, rather than solving them independently.
This is seen in figure 11.10 on page 186. In addition, it is noticeable that the
maximum residual, shown in figure 11.11 on page 187 reduces more quickly in
the early stage than the bargain method but thereafter reduces more slowly.

This is a general feature of the method, as will be seen later in this chapter.

11.9.1 Startup Scatter

As in the bargain+smoothing case, fascinating results are obtained from a
statistical study of the startup phase of the simulator.

Some 800 random starting voltage sets were run to convergence at both
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the 1uA and the 1000 A criteria, using a 1 x 5 game theory frequency algo-
rithm. The results of these experiments are shown in figure 11.12 on page 188
and in figure 11.13 on page 189.

It does not seem to matter how far the system starts from the true solu-
tion, it still converges and saturates. But if it starts too far away!? then it
can converge into the ‘flip’ state instead of the ‘flop’ state.

Thus there seems no point in trying to get ‘close’ to the final solution
before iterating. Look at the region in the figure say 2-2.5 mV from the
true solution. In that small spread of distances, get an 1immense spread of
iterations - from 106 up to 740. Most of the rapid increase takes place very
close to the origin, especially in spread of iterations, as measured by the
standard deviation. Changing driving voltages will always be making the
distance greater than 1mV, unless an impractically-large number of timesteps
is used to counteract this.

These results are really saying that the profit method algorithm is a very

12¢ g., if all voltage nodes are initially zero
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sensitive beast indeed!®. For consider: if the voltage at each face differs from
its neighbour by as little as 1 milliVolt, like the illustration below of part of
the array, then the RMS voltage difference over the whole array is only 1mV,

3.203V

3.204V
1.916V 1.915V

but depending on just how this 1mV difference is distributed at each face
over the array the system can take anything from as little as 1 iteration to

as much as 500 iterations - an incredible difference!

11.9.2 Accuracy versus Iterations

A study was done over a wide range of convergence criteria to see the effect of
two important characteristics: the number of iterations to convergence, and
the final accuracy of the solution!*, both of which rise as the convergence
criterion becomes more stringent.

The results in the log/log plot in figure 11.14 on page 191 show the nature
of this variation for a 1 x 5 profit method. In this range of criteria, an increase

in accuracy is paid for by a proportionate increase in iterations.

11.10 Effect of Bits on Accuracy

Up to now the studies have been carried out at the maximum accuracy of
53 bits. Since all aritmetic operations are masked in the C program, studies

can be done for any number of bits from 1-53.

13certainly as regards initial conditions

14as measured by the RMS voltage error
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11.10.1 Convergence at Fixed Criterion

The 1 x 5 profit algorithm starts to fail at about 13 mantissa bits. The
results in figure 11.15 on page 192 show that at various convergence criteria
the distance of the whole array from the true solution!® is satisfactory from
53 bits down to 14 bits, below which it begins to diverge seriously from the

true solution.

11.10.2 Critical Number of Bits

Consider now the number of bits required for a given accuracy, by setting the
number of bits and then seeing how close the system can come to matching
the face currents at each node.

For a given startup voltage set'® the smooth and the profit method were
run with mantissa bits varied in the interesting range of 8 to 24 bits. After

the system has settled down to whatever long-term behaviour it can get out

15as measured by the RMS voltage error

16the same one used in all these simulations
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of that number of bits, (5000 maximum iterations allowed) we see how close
each method comes to a complete match of face currents. Of course, they did
not converge when very few bits are used. But at some stage of the iteration
process there is a smallest mazimum residual which measures how well the
system matches currents (given that the voltages match perfectly) over all
the processing elements. This smallest mazimum residual was recorded.

The two cases examined are:
smooth which is the bargain + 6-point LSQ smoothing;
profit which is the bargain + 1 x 5 profit criterion.

The results are summarized in figure 11.16 on page 193.

Now, these results are amazing. They show that the profit method is
consistently better than the smooth method. That is, given a level of maxi-
mum current mismatch!? to be achieved, the profit method achieves it with

one whole mantissa bit less than the smooth method.

"measured by the maximum residual
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To offset this it takes more operations. This is shown next in a study of

the convergence at various criteria producing the total arithmetic operations

per timestep.

It is worth noting that when the original optimal lookahead is tried, the

results are actually worse than for no lookahead at all - i.e., each bit-set run
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has its own optimum LA set.

11.11 Operation Count

In contrast to the smooth method, the profit method produces, over the range
of 12 to 53 mantissa bits, and over a wide range of random profit criterion

frequencies, the characteristics for the number of arithmetic operations sum-

marized in the following table.

OPERATION | MEAN NUMBER PER ITERATION | RANGE
multiplication 860 593-1281
division 530 375-765
addition 500 312-671
subtraction 250 187-375
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Figure 11.17: PROFIT METHOD: MEAN ARITHMETIC OPERATION PRO-

FILE

The reason for the large spread is that the more frequently the profit criterion
is applied the more calculations are needed overall, and so the greater mean
number of operations are required per iteration. The incidence of that varies

with the accuracy required.

11.11.1 Operation Profiles

The mix of operations for the 10004A convergence criterion is summarized in
the operation profile shown in figure 11.17 on page 194. The profiles hardly
change with number of bits and frequency of application, even though the
cases represented range from 40 - 662 iterations, and from 4 - 49 million
operations overall from the startup situation.

By way of comparison, the full set of operations carried out by the proces-
sor array is counted and presented in the set of profiles shown in figure 11.18
on page 195. Once again the profit method shows a steady profile over a
range of mantissa bits and frequencies, whereas the smooth method shown a

vast increase in absolute value operations as it attempts to work at very high
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accuracies.

11.11.2 Combinations vs. Profit Criterion

To check that the mazimum profit criterion is indeed the best one, a series
of tests carried out using all the different criteria produced the results sum-
marized in the iterations profiles shown in figure 11.19 on page 196. For
the four convergence criteria of 1uA, 10pA, 100uA, 1000uA these show that
the mazimum profit criterion is consistently better than the minimum profit

criterion. Using any one of the 1 thru 16 combinations (from the 2 x 2 x 2 x 2
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choices) to start the next iteration produces variable results which generally

depend on the connectivity of each circuit.

11.12 Multiple Frequency Effects

Given the strange behaviour of the profit method criterion application fre-
quency - that it fails to converge if applied too frequently, and that a vague
minimum exists - it is natural to wonder how to find the optimum frequency
before simulating a circuit.

It has already been seen that if the profit criterion is applied too often!®
no system convergence results, and a minimum number of iterations is
achievable!®. But this is determined after the event, for this particular circuit
and for these startup conditions. There seems to be no general method for
predicting which frequency is best in advance.

The question then arises: in default of a method for this, is it possible
that a frequency chosen at random would work better than doing nothing?
To answer this, a range of application tactics are now examined.

The previous study starts with the simplest case of pure frequencies. But
more generally a set of multiple frequencies needs to be considered. It will
be seen that this simulates the effect of random application of the profit

criterion.

11.12.1 Individual Random Extremes

Consider the set of profiles in figure 11.20 on page 198. For every 100 it-
erations, the vertical lines show exactly when the profit criterion is to be
applied. The application points appear randomly distributed, but this is re-
ally the result of superimposing a few pure frequencies on top of one another.

These figures summarize the results of applying the profit criterion at various

18every iteration or every second iteration

193¢ around a frequency of every 19 iterations
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12 bits  frequency mix 20+23+26+29 meanrate=6.0 minimum=>58

12 bits  frequency mix 4+5+13+32 meanrate=1.8 no convergence

24 bits frequency mix 104+20+24+27 mean rate=4.3 minimum=46

24 bits  frequency mix 4+6+7+8 meanrate=1.5 maximum=1597

53 bits  frequency mix 14+20 meanrate=8.2 minimum=40

53 bits  frequency mix 16+24 meanrate=9.6 minimum=40

53 bits  frequency mix 14422 mean rate=8.5 minimum=40

Figure 11.20: PROFIT METHOD: PSEUDO-RANDOM APPLICATION FRE-

QUENCIES
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frequencies and using various numbers of mantissa bits.

The results are somewhat surprising but suggest some predictabilility.

The top 2 profiles for 12 bits show that quite extreme behaviour can be
produced. If the profit criterion is applied every 20th, 23rd, 26th and 29th
iteration then the system converges with the least iterations; whereas if the
profit criterion is applied every 4th, 5th, 13th and 32nd iteration then no
convergence of the system occurs, effectively producing an infinite number
of iterations. The mean frequency for the least iterations is once every 6.0
iterations, whereas the mean frequency for the convergence failure is once
every 1.8 iterations. Comparing this with the results already found for the
case of pure frequencies?® shown in figure 11.6 on page 182, in it is seen that
the mean frequency rate is not inconsistent with that result.

To emphasize that this is not entirely predictable, however, the next 2
profiles show, for 24 bits, that the minimum number of iterations is obtained
at a mean frequency mix of every 4.3 iterations; whereas a maximum but
not a failure of convergence is obtained at a mean frequency mix of every
1.5 iterations, which is less than the 2 iterations that produces failure in the
pure frequency case. The bottom 3 profiles are all different but all result in
the absolute minimum number of iterations found by experiment.

So for these mixed frequency applications of the profit criterion the result
cannot be predicted from just the individual frequencies or from the mean
frequency, although there is the strong indication that if the mean frequency
is less than about 2 or so there is danger of convergence failure. Thus it
appears that to get onto firmer ground a more systematic statistical study is

necessary, and this is reported next.

11.12.2 Mean Random Scatter Study

In order to assess the viability of choosing a set of frequencies at random, a

large number of simulations were run, each allowing a mix of 4 randomly-

20where failure to converge occurs at frequencies of 1 and 2 iterations
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chosen frequencies, all starting at the first iteration. The results for the two
practical extremes of 12 bit and 24 bit accuracy at the 1000xA convergence
criterion are shown in the top and bottom of figure 11.21 on page 201. The
top graph?! shows that when the system takes, say, 52 iterations to converge,

22 required varies from 57 million up to

the number of processor operations
78 million per simulationdepending on the precise {requency mix.

The lower plot?® shows a similar spread, but there is also the possibility
of getting a frequency mix that takes a very long time to converge.

For the mid-range case in the bottom plot, it is found that a line of best
fit2* through the data points yields the approximate relationship: millions of

operations per stmulation = (%ﬁ — 3); this might be useful for estimating
the total time taken by the array simulator for a particular architecture.

Now, 1t has already been seen that for a pure frequency of every 5 the
system produces 59 iterations and 7.6 million operations for startup. So
shown in figure 11.21 on page 201, that choosing a set at random, compared
with this, produces?® an average number of 54 iterations. Since this is less
than the 59 iterations above, choosing a random set could be better than
having no frequency, but not by much.

To collect a lot of these results together, the array shown in figure 11.22
on page 202. shows the iterations at 1x5 1000uA for a systematic study of
separate profit criterion application frequencies, from 1 up to 30. The results
are somewhat unclear because there is some aliasing occurring; this means,
for example, that the result for frequency=3 contains some part of the result
for frequencies=6,9,12 and so on. A chaotic area of relative minima occurs

in the middle of the array, which therefore shows that there is a rough degree

of correlation between these results and the expected behaviour based on the

21for a 12-bit mantissa
2?multiplications4-divisions4-additions+subtractions
23for a 24-bit mantissa

24in the least squares sense

25after removal of frequencies near every 1 and 2 iterations
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mean frequency of application.

11.12.3 Assessment of Random Criterion

These few heuristic experiments show that this is a very strange phenomenon
indeed. If someone recognises what the underlying process is then they could
explain it and point the way forward to systematic improvement.

The oddest thing is that if the profit criterion is applied too often, it stops
working. The structure of the results previously obtained in figure 11.6 on
page 182 shows this.

How can the best application frequency be determined as an adaptive
process during simulation? This is a topic for future research. However, it
is now known that too frequently inhibits convergence, so there would be no
way to allow applications more frequent than every 2 iterations.

Note that here the possibility of each element having its own set of fre-
quencies - a tactic which might be superior to one using the same value for
the whole array — has not been addressed. Once again, future research into
adaptive techniques is indicated.

The results are like simulated annealing, already used in simulation of
circuits [Rut89], in that it jolts the process out of a bad rut. This intermittent
reinforcement aspect of the algorithm might have analogues in economics,
neural networks, and signal processing, which might shed some light on why
it acts like this. The system seems to need a bit of time to allow a different
profit criterion value to exert its influence. It is in this way that game theory
with its application of the profit criterion acts like the economic analogue
of simulated annealing. Not until this is understood can a systematic and
adaptive use be made of this potentially powerful array processor simulation

technique.
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11.13 Comparison: NR and GT Conver-
gence

The final study is of the behaviour of the Newton-Raphson?® and the Game
Theory?” over a wide range of convergence criteria. The NR method?® is
compared with the GT method?®, and the results are shown in figure 11.23
on page 204.

This log-log plot shows that the smooth method performs better in the re-
gion of small convergence criteria, whereas the profit method performs better
in the region of large convergence criteria.

They seem to perform equally well around the 3 milliamps criterion. To
examine the behaviour here in more detail, this region is expanded as shown

in figure 11.24 on page 205. It can be seen from this that the advantage of

26smooth method

27profit method
286-point smoothing with lookahead, previously investigated

29applied every b iterations
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the profit method, while slight, is definite.

The conclusion from the startup scatter study, consistent with others
made already, seems to be that the profit method is better suited to loose
convergence studies where that accuracy is sufficient.

The assessment of critical bits results indicates that there is a tradeoff for
circumstances: smaller processors can get, say, 22 bits down to 16 bits giving,
say a 10% area reduction but perhaps a much greater than 10% operation or
time increase - and vice versa if desired. Better still is some type of cyclic real
number representation or one that is adapted to speed/area tradeoffs, like
that of Bergamann and Fan [BF90], that would allow accuracy to be chosen

without affecting the chip architecture. There is scope here for innovation.

11.14 Significant Conclusions

A new approach has been developed for the array processor. The approach
of game theory has been tried because of some suggestive analogies with

modelling by the contact method.



The experiments along these lines are very encouraging. The studies here

indicate thaf:

the economic « electronic correspondence suggested in figure 11.1 on
page 171 and tentatively identified in figure 11.2 on page 174 are justi-
fied.

the game theory profit method devised above appears to be validated.

The method actually produces quite a large speedup in convergence. It
does this in the early stage of the convergence process, when the mismatch
between the current and final solution is greatest but where the plain Newton-
Raphson technique does a poor job. It does not produce as much speedup
in the latter stages of the convergence process where the mismatch is small
but NR does better.

For loose convergence criteria the speedup is remarkable; for tight con-
vergence criteria it is still disappointingly slow although present. Whether
tight or loose convergence specifications are required depends on the accuracy
wanted in the overall estimate of the cumulative probability distribution.

The investigation at different convergence criteria shows that the game
theory profit method is superior to the game theory smooth method in the
loose convergence area, i.e., where a rough and ready picture of the spread
of operating speeds is wanted.

Since a minimum occurs in the results where parameters can be manip-
ulated to obtain some degree of optimisation®, it suggests that an adaptive

strategy is called for, not only overall but for each element.

30¢ g., using exchange rates



Part IV

Evaluation

“Why? Because il dares! To dare: progress is the reward of that.”

VICTOR HUGO



Chapter 12

Overview of Results

12.1 Introduction

We have looked closely at what happens when a VLSI circuit is simulated
and found to be not quite fast enough to meet its designed specifications.
Elements along the critical timing path are re-designed so it works faster.
However, a problem now arises that has a consequence which is unpredictable
if stochastic simulation is avoided. If the design has to run faster, the circuit
dissipates more heat since it works more. Then the individual transistors in
the redesigned parts of the circuit become slightly larger, and the chip itself
gets slightly bigger overall. This means that the fabrication yield drops in a
well-understood way. The result is that the design yield has improved, but
the fabrication yield has fallen. Since the net yield is the product of these two
opposing trends, the result is somewhat uncertain, only being estimable by
an enlarged stochastic simulation that takes into account many more factors
than are dealt with here. Nothing short of the full cumulative distribution
function of finishing times is required.

To obtain this desired cumulative distribution function of finishing times
it is necessary to perform some 500 Monte Carlo simulations. The time this
takes on a typical workstation inhibits its use. To speed it up, a very fast and

very accurate method of stochastic modelling on modern workstations has

o
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been sought. This search has seen a new ‘best-fit’ for the spread of operating
times found, a new method for predicting statistics of concatenated structures
invented, and some very strange array simulation behaviour discovered. It
has ultimately led to a method which is not really fast when it is accurate,
and which is not really accurate when it is fast; this trade-off between speed
and accuracy is often found in circuit simulators.

Surprisingly, however, an incidental interpretation of the meaning of the
Newton-Raphson iteration technique has also been discovered, leading to the
study of the application of game theoretical methods to the simulation, and
ultimately to the possibility of a new paradigm which bears on the future
design of wafer-scale simulation engines.

There is an overall diagram on the next page, to help in orientation,

showing all facets of the thesis.

12.2 What has been Done?

A number of approaches to circuit timing simulation are examined in great

detail, and these are classified as variants of the bargain method, thus:
bargain: take the first Newton-Raphson solution and then iterate;
smooth: bargain smoothed over last 6 values using least-squares best fit;

lookahead: bargain + smoothing + prediction look-ahead by less that one

iteration;
game: formal game theory approach to whole of the bargain method;

profit: bargain method + profit criterion.

12.2.1 Array Model

A layout of transistors in an array, similar to the physical layout of transis-

tors on the leaf cell circuit, is assumed. Each processing element in the array
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contains a mathematical model of the transistor at the node in the physical
array. It receives the state of its nearest neighbours and computers its new
state in response to this information. Global conditions (such as conserva-
tion of current) are catered for by reducing them to local statements of the
same principle. Technically, this design is known as a mesh-connected SIMD

(Single Instruction Multiple Data) array- processing computer.

12.3 What has been Found?

12.3.1 Probability Distribution

The form of the distribution of finishing times has not previously been dis-
covered. The nearest useful analytic expression is due to Downs, Cook and
Rogers [DCR82] who produce a very good approximation by expanding the

probability distribution function as an Edgeworth Series

£(t) = K(t)

o227

expl—5(~—L)

K@t)=1+ —‘/i—(f‘ - 3t) + (£:3—)(t4 —6t24+3) + 10—“(:6 — 15¢% + 45t — 15) + ...
303 414 616

where p=mean, o?=variance, a=skewness and f=kurtosis. This Gaussian
distribution, shaped by the function K(t), is a suggestive form of Taylor
expansion, rather than a serious attempt to find the true distribution. As a
result of the work in this thesis, the spread of finishing times is now known

to be best described by the Erlang! distribution
for(t) = (ak)k t5=1 e=>*/ T(k)

where a = % and k = (£) are parameters of the distribution. It is not,
surprising that the Erlang fits so well. It was tried because it is recognised
that the process from which it is derived is fundamentally similar to the leaf-
cell process: that of passing a signal through a set of inter-related transistors
in a leaf cell, compared to that of being served by a set of queues in teletraflic

systems, as described by Takacs [Tak62].

lor Truncated Gamma.



12.3.2 Monte Carlo Methods

An important question is: Are about 500 simulations necessary or are there
other methods? Monte-Carlo simulations require many runs but they are
good for any initial parameter spread whatsoever. The attempt? to reduce
the necessary number of Monte Carlo simulations from around 500 down
to 1 failed because the resulting cumulative distribution function was not
found to be accurate enough. A very accurate model is needed for stochastic

simulation; less than one percent error is allowed [WYC8T].

12.3.3 Concatenation of Cells

The TIME method, which requires stochastic simulation of only the first two
cells of an n-cell concatenated structure, one at a time, was invented. It
produces the required statistics with great accuracy, and at vastly reduced
cost compared with a full simulation involving the whole n cells. Its accuracy
is superior to the rudimentary parameterized block-concatenation scheme of

Benkoski [BS87].

12.3.4 New Interpretation of NR Technique

The idea of treating the array as device-based rather than node-based, leads
directly to a ‘bargaining’ situation between 2 PFEs and hence to a game
theoretical implementation. In the traditional method, with each node as the
primary focus, it is impossible not to think of solving the equation f(z) =0
and hence automatically use the geometric Newton-Raphson technique. But
focussing on 2 PFs, each of equal status, immediately demands the possibility
that each has its own view of the common node voltage and hence the‘re
are two different values to deal with, two current curves to consider, and
the question of how to come to an agreement over them becomes of prime

concern.

2the CSDS model previously examined
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12.3.5 Game Theory

It has been shown that Game Theory can be applied to circuit simulation,
in its array-processor form. However, although one might not be entirely
convinced that the analogy is complete and rigorous, if it is then a tremendous
field of new research could open up to application of these methods.

The game theory profit criterion algorithm is only fast if relatively low
accuracy is required. For the very high accuracy demanded by stochastic
simulation it seems that, in its current form, it would be somewhat slow
compared with other methods. This suggests that its future applications
lie in other fields: still simulation and array-processing, but where fast ini-
tial convergence with low accuracy is tolerable - for example, in the neural
network area.

As far as the application of further methods is concerned, as early as 1953
D.B. Gillies showed that a sizeable swath of plural games possess cooperative
solutions. Buch and Taumann [BT92] deal with bargaining problems having
n + 1 players. One player has a special role in the game. He is endowed
with a set of actions, each of which dictates a payoff vector for a certain
subset of outcomes. Each player gets a higher net payoff in the bargaining
solution than in the non-cooperative solution. More on co-operative game
theory can be found in the papers of Eichberger [Eic92], in the strategic
collaboration analyses of Colman [Col82], and in the co-operation chapters
in Shubik [Shu83]. There is also the suggestive experiment by Smith and
Williams [SW92] revolving around a system called a double continous auction
causing much faster convergence in i)rice levels in a system which could be
similar to the array studied here.

Initial indications are, however, that technically within the field of eco-
nomics, the methods pursued here seem to be a subset of a partial general
equilibrium system, with a measure of oligopoly; this is reported to be an un-
satisfactory area of microeconomics, where so far only rudimentary analysis

has been carried out.



12.3.6 Convergence

The convergence behaviour is similar to that reported by Marchuk [Mar82].
He finds that the method of minimum residuals® has a peculiarity that is
important in practice: namely, that the initial iterations converge much more
rapidly than the asymptotic rate of convergence. This is precisely what is
found for all the variants of the bargain method. He goes on to suggest that,
to accelerate convergence, it is worthwhile making occasional use of a single
iteration of a two-step minimum-residual method. This is reminiscent of
the acceleration found using the variable frequency technigue. Choosing the
parameters for this extra iteration involves solving a local extremal problem,
also much like the maximum profit criterion.

It is found, roughly speaking, that to halve the maximum residual in the
array, ten times the number of iterations are needed.

The profit method uses less iterations whereas the smoothing method uses
less operations. However, the smoothing method needs to store the past 6
values whereas the profit method needs no extra storage, merely doing the
extra calculations the algorithm requires. If the profit criterion is applied
more often than is really necessary, one finds that this leads to a large increase
in the extra number of operations.

In view of the ranking of the convergence at the 1uA criterion, it is
generally found that the Bargain 4+ Smooth method is equivalent to the
average of the optimal Game Theory profit criterion method, in terms of
the number of iterations. Over a range of convergence criteria from 1A to

10001 A the rank order of the methods investigated is

many iterations pure bargain
game 1 X 5
g bargain + 6-point smoothing

game 1 X 5 + optimal exchange rates
few iterations | bargain + G-point smooth + optimal lookahead

3on which the Russians in particular have done a lot of work



12.3.7 Boolean Transform Representation

It is interesting to note that the French researchers, like Robert [Rob87]
and many others [DGT85] generally seem to have a better understanding of
the convergence issues in finite automata, such as those studied here. They
transform the description of the circuit to a boolean space and study its
behaviour there, to draw conclusions about its convergence. This is a lot like
studying differential equations of fluid mechanics in phase space where their
long-term behaviour is much clearer than in the time domain. This approach

seems to overcome the limitations of the analytical A-stable methods [Mir81].

12.3.8 Curious Behaviour of Profit x2 Case

In the study of the Game Theorysimulation methods it was reported that if
the profit criterion is applied at every iteration or at every second iteration
the system fails to converge at the 1pA criterion. More patient simulation
reveals that while this is certainly true, as soon as the x1 or x2 application
ceases, the array starts to converge again.

It is found that the face voltages and currents remain practically steady
for a very long time* - and if stopped, say, at 1000 iterations, then the system
suddenly ‘breaks’ out of this mode and converges, but takes 2697 iterations.
Strangely, the x1 case ‘sticks’ at 68999 uA whereas the X2 case ‘sticks’ at
the much higher 375085 pA residual.

Closer study of the fine structure of the simulation process, using a 53-bit
mantissa, reveals that in fact both the face voltages and the face currents are
very gradually changing by a small amount all the time - the voltages, with-
out any oscillations, the currents continually oscillating with a zig-zag form.
Depicted in figure 12.2 on page 216 are the voltage, current and maximum

residual around the ‘break’ point, from 970-1070 iterations.

“4as long as the x1 or x2 profit criterion is applied
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12.3.9 Annealing/Relaxation Similarity

Experiments show that some mixed frequencies of application of the profit
criterion give faster convergence than the pure frequency gives. It seems
that the profit criterion acts either: as the economic analogue of simulated
annealing [Rut89], with extra and unexpected applications jolting the sys-
tem out of some local rut; or as an aggregation method [CSV88] whereby
a slowly-converging relaxation algorithm is interrupted every Nth step, and
restarted from another point, because the points toward the end of sequence
are confined to a part of the iteration matrix corresponding to eigen-values

of magnitude close to one.

12.3.10 Chaotic Behaviour

Chaotic behaviour at a very fine level is produced by the game theory method,
as seen in many previous plots in this thesis, and it has one of three expla-
nations.

When the operation of a device is described by differential equations,
then an idealized model replaces the actual device. Since every mathemat-
ical idealisation involves the neglect of small quantities, then the question
arises of how much distortion of the original phenomenon has been subtley
introduced. Mishchenko and Rozov [MR80] have studied this problem in
detail, and report that, over a long time interval, the differential equation so-
lution can show periodic oscillations with constant or only slowly-decreasing
amplitude, which are not in fact present in the original phenomenon.

The situation with spurious oscillations is even worse when, not only are
small quantities ignored when the limit is taken in the process of deriving the
differential equations, but especially in the next step when they are being
solved by finite difference methods. The chaotic behaviour occurs in the
modelling by nonlinear, time-dependent differential equations or a system
of difference equations. It is often the solution of the equations exhibiting

the chaotic behaviour, not the physical system being modelled. There is the

(S
—
~1



danger that a particular numerical method employed to obtain a solution
produces the chaos. Tizwell et al [TMVK92] note that to avoid this kind of
contrived chaos whilst retaining accuracy and stability it may be necessary
to avoid explicit numerical methods and turn to implicit ones. In solving
systems of nonlinear differetial equations this leads to finding the solution by
using, e.g., the Newton-Raphson iterative method.

This problem has been subject to sustained attack by Tizwell et al. The
first order explicit Euler method for solving the equation ‘fi—’f = f(w) 1s in the
form of a sequential recurrence relation w™t! = w™ + A f(w™) with A < %,
where p is the maximum value of the real part of the eigenvalues of the
associated Jacobian matrix df/0w at any time t,. Tizwell employs the al-
ternative form w™t! = w™ 4+ A f(w™, w™*!), the major benefit of which is that
it is often possible to obtain the solution explicitly even though the method is
technically implicit. He provides many examples showing that this implicit-
used-explicitly numerical method has superior convergence properties to the
Euler method, and can be used with a much larger time-step. This has al-
ready been mentioned in the case of timing analysis in the review by Newton
and Sangiovanni-Vincentelli [NSV84].

The third possibility is that these oscillations are the manifestation of
exchanged values being reflected from the array boundaries and producing
an interference pattern, but much more systematic investigation would be

needed to show that.

12.4 How do these Methods compare?

12.4.1 - with direct methods

In the direct methods where differential equations describe the circuit, differ-
entials are approximated by finite difference equations of the node voltages
at each time step. This is expressed as a predominantly diagonal matrix

equation, which can be solved in various ways. In relaxation methods, the



successive liquidation of residuals is performed, since this is natural on a
serial machine.

All other methods concentrate on nodes, and use devices as auxiliary;
in this model it is the opposite: concentration on devices, with 4 nodes per
device as auxiliary quantities. Concentrate on nodes leads to integration
with respect to time and to relaxation techniques, whereas concentration on
devices leads to the present contact simulator. It amounts to the difference
between solving the equations % = f(z;t) globally over the whole time
interval, and matching currents locally using Az = 0 through each processing-
element face by applying Kirchoff’s Law at each time step, using what might
technically be known as stmultaneous liquidation of residuals. Another way of

looking at it 1s that, instead of solving a matrix equation on a serial machine,

it uses a matrix machine to solve a serial problem.

12.4.2 - with serial methods

It was found, on a Sun SPARC-4 computer, that SPICE2G takes 28 CPU
seconds® per Monte Carlo simulation for the adder cell previously described;
this means that to get a good fit to the distribution needs 500 runs taking
a bit over 4 CPU hours®. So these programs are best run overnight in any
case. However, here there is only simulations for the smaller flipflop circuit,

without a full circuit model installed, so no direct comparison can be made.

12.4.3 - with parallel methods

The SIMD mesh-connected computer system is a simple and cheap method.
Any  device model whatever can easily be put into the processing ele-
ments. Herr and Barnes [HB86] found that this ability to modify the model
was essential when modelling real processes. Other methods depend a lot on

the nature of the mathematical model and how it is implemented, whereas

Swith other users, 70 seconds elapsed time

Swith other users, just under 10 hours elapsed time
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here one does not have to worry about the mechanism for solving the equa-
tions - therel are no equations, in the traditional sense. In particular, since
there is also no partitioning in the usual sense, problems arising using other
methods are irrelevant: there is no chance of putting nodes on the wrong
subcircuit and no chance of choosing a wrong order of evaluation of subcir-
cuits. In addition, the array has a better convergence criterion than many
other methods. Like the relaxation approach, this method deals with the
data. Since only Kirchoff’s laws need satisfying then the closeness of the
nodes to the correct solution at any time is known absolutely and no other
error estimation is needed. This means that if the system converges then it
unquestionably converges to the correct voltage node values.

Set against these points are the disadvantages: that it takes a long time
to converge if high accuracy is desired; it does not take advantage of circuit

latency; and the convergence behaviour has not been properly explored.

12.5 What was Overlooked?

Issues overlooked or not yet addressed but still of importance include:

circuits and models Actual MOSFET models need to be installed - suit-
able ones are noted in the next chapter. The modelling of floating
capacitors and the effectiveness of the game theory algorithm on them

has not yet been addressed.

adaptive algorithms All the results were improved, sometimes greatly,
when optimal values were used. These were found only after the event,
by extensive systematic experimentation. No attempt was made to
complicate things at this early stage by adding an implementation of
an adaptive algorithm for these. In particular, these should be ex-
amined: a different lookahead value for each face of each element; an
adaptive smoothing of the profit criterion values; a different exchange

rate for every element; and, most difficult of all, perhaps, a different
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game theory frequency of application for each element.

profit criterion It is not known whether the order of choosing the max-
imum profit value makes any difference. At present, the program
searches each of the 16 possible combinations of node voltages on the 4
faces and uses the last maximum one it finds - even though there might

be more than one combination with the same maximum.

12.6 Conclusions and Recommendations

The general questions is: Which is better? the greater cost of a tightly-
specified fabrication process, or the lesser cost of a loosely-specified process?
and have found that a full stochastic approach is needed to answer it. The-
oretical methods of yield estimation need general purpose computers and so
take time from workstations, so off-loading circuit simulation onto special
computing engines makes sense. Such special architectures are in any case
attracting a lot of attention in recent years, for all phases of the VLSI design
process.

It is recommend that lots of work take place on automatic adjustment
of weights and lookahead, and on convergence conditions for the contact
method, in particular the boolean methods of Roberts and others.

For the lookahead random study, an adaptive algorithm, if it can be
found, would be preferable - research is wide open for this.

Designer workstations seem too slow for any of the Monte-Carlo methods,
so practical implementation in these systems requires an alternative approach
to sequential machine computation. Methods using hardware designs with
SIMD parallel processing systems such as studied in this thesis might make
these workstations the preferred simulators, although much work is needed
to determine if feasible algorithms can be found to migrate existing VLSI

design tools from serial and MIMD implementations to SIMD architectures.

221



Chapter 13

Implementation

Here I suggest implementations of both a methodology for obtaining timing

yield estimates, and of laying out the array modeller in hardware.

13.1 Heuristic Timing Estimation

As part of the normal design cycle stochastic tools need to be run early and
regularly, because of the invaluable feedback they afford. Given the nature
of a circuit and the accuracy of forecast required it is a simple matter to
estimate the time needed to get a good estimate of the CDI! as discussed
below.

Even though the convergence rate of this simulator is somewhat slow
for high accuracy work; it is characteristically very much faster for lower
accuracy simulation. This suggests a simple methodology where accuracy is
traded for simulation time. Since very high accuracy is only required for the
final run, then a good idea of how the system design is proceeding can be
got using relatively low accuracy estimates, which run a lot faster and thus
can be run regularly without penalty. In addition, it is possible to choose to
run the profit method at the lower accuracies, leaving the smooth method for

higher accuracy runs overnight.

lCumulative Distribution Function



Imagine that the workstation is equipped with the computing engine ca-
pabilities incorporating the smooth and profit models already investigated,
and regular checks on the progress of the stochastic aspects of the design
need to be made. If inhibited by the unknown and perhaps long time this
will take, this method will help choose a rough accuracy « time tradeoff.

Suppose that the system has already been calibrated early in the design
phase (perhaps overnight) at one high and one low accuracy point, in terms
of the maximum current residual convergence criterion. Because it is known
that the log/log curve is a straight line, already found in figure 10.25 on
page 160, it can be calibrated for this particular circuit from just these two

points, as illustrated below.
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form near the design operating point, and use this time difference to estimate

the corresponding voltage difference as shown below.

voltage WAVEFORM
accuracy
allowed

time difference
tolerated

This voltage tolerance translates to a current tolerance at the same point
in the circuit where the voltage is measured. Obtain this by simulation of
the circuit, using the same engine. The number of iterations needed is then
read from the calibrated graph already obtained on the previous page, and
combined with the characteristics of the engine (number of bits, etc) to give
an approximate simulation time in hours and minutes for that simulation.
Repeat this procedure, choosing a lower CDF accuracy, if it is decided that
can only afford less time for this stochastic estimate.

All this assumes, of course, that a simulation engine of the kind assessed
herein is available and attached to the workstation, as a normal adjunct.
Whether this will ever be the case depends on the cost of such an item,
amongst many other things, and in particular on whether such an engine
can run all the other design tools normal to the VLSI environment. i.e.,
rule checkers, placement and routing, behavioural and fault simulators, tim-
ing verifiers, logic verifiers, and so on. Further research is needed to assess
whether suitable algorithms exist or could be adapted to run successfully on
this engine. This is an unaddressed area for SIMD, although an immense

amount of work has been done in this area for the MIMD architectures.
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13.2 Implementation Considerations

13.2.1 Accurate Circuit Models

Weng, Yang and Chern [WYC87] find it essential to simulate circuits with a
model that guarantees charge conservation. They obtain an accurate thresh-
old voltage model intrinsic buried-channel MOSFET operation in the sub-
threshold, linear, and saturation regions, which is also valid for the short-
channel device. The charge model equations can be used to model the in-
trinsic capacitances. The current characteristics calculated from the model
equation are found to be in good agreement with experimental results.

A comprehensive examination in depth of new small-geometry MOSFET

models is given by Ferry, Akers and Greeneich [FAGS88].

13.2.2 Algorithms

The choice of the contact algorithm for simplicity in hardware implementa-
tion has already been seen when Lewis [Lew88] chooses the forward Euler
integration algorithm, largely rejected for software simulators, and discovers
that it leads to a fast, but simple and inexpensive, hardware accelerator.

Gallivan et al [GIMW91] warn that a code tuned for large grain, vec-
tor multiprocessors might be poorly suited to a massively parallel, SIMD
machine.

Parkinson and Liddell [PL83] also echo this, concluding that the best
algorithm developed for a serial machine is not usually suitable for parallel

computation.

13.2.3 Partitioning

There is a need to consider partitioning of algorithms to maintain their
numerical stability, and to minimise execution time. Eager, Zahorjan and
Lazowski have some useful observations to make on how speedup affects

regularity of algorithm in VLSI systems. Deutsch [DLS86], when creating
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powerSPICE, found that the best partitioning for design, for example, was
not necessarily best for simulation. This means, for example, that forming
the Thevanin equivalent circuit might not be the best partitioning, either.
McCreary and Gill [MG89] present an interesting theoretical way of par-
titioning tasks onto parallel machine PEs, which determines the grain size®
as it does so. This might prove useful. Their method aggregates grains into
‘clans’ and computes the ‘costs’ of various strategies. The algorithm inputs
a labelled dataflow data-dependency graph of the program, and outputs the

grains to be run on the parallel processors.

13.2.4 Models of Parallel Computation

Skillicorn [Ski91] believes that a major reason for the lack of practical use
of parallel computers has been the absence of a suitable model of parallel
computation, because many existing models are either theoretical or are tied
to a particular architecture. He asks ‘How can an appropriate data type be
constructed whose manipulations are amenable to parallel execution?’. Dataflow
is relatively architecture independent, has great descriptive simplicity, and
can exploit all parallelism present in a computation; the PRAM model is the
most popular theoretical model for parallel computation, and many of the
algorithms developed for the model are synchronous and SIMD in character;
but Skillicorn concludes that the most comprehensive data-parallel model de-
rives from the Bird-Meertens formalism because it can handle a wide variety

of types. Prins [Pri90] has also done work in this area.

13.2.5 Architecture

It seems that the present design is an embryonic massively parallel computer.
Gabriel [Gab86] describes massively parallel computers as implementing a
fine-grained parallelism, in which small processors running small or identical

operations communicate frequently. He looks at the NON-VON computer

3defined as a set of program steps executed sequentially by a single PE
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with its two categories of processors, the small processing element and the
large processing element. The former operate in SIMD mode under the con-
trol of the latter, and it shares the SIMD programming style of the Connec-
tion Machine.

Arden and Ginosar [AG82] consider that a multiprocessor having a large
number of processors would be very general, but large systems of this type
are not feasible, because of storage contention, the complexity of complete
processor-memory block interconnections, and the efliciency loss of cache
memories®. On the technological side, VLSI circuits are not well suited to
the implementation of complete interconnections between many processors
and memories. These are some reasons why there has been significant inter-
est in loosely coupled multicomputer systems. The limitations of the number
of processors and the interconnection complexity are eliminated in such sys-
tems. However, the overhead due to multistep message passing when the
interprocessor communication is frequent, is substantial.

To help overcome some of these problems, Charlesworth [CG86] urges
implementing systems with only the minimum amount of internodal commu-
nication required to solve the dominant problem of interest. He notes that
the size of the mesh can be extended indefinitely, but doing so also indef-
initely extends the distance between arbitrary nodes. Meshes are best for
algorithms where the data can flow locally, step by step across the system.
To improve the resolution of the model, the number of node elements can be
increased, or a finer tirrié step used, but either method drastically increases
the computation time.

Parkinson and Liddell [PL83] raise and discuss some very good questions
concerning distributed computers, namely: What class of problems are highly
suitable for a given multiple processor system? What class of problems are high
unsuitable for a given multiple processor system? What type of performance is it
reasonable to ezpect from a given multiple processor system?, and go on to discuss

the ICL DAP, a 4096-element SIMD processor array embedded within a store

4however, these might all be overcome by better, i.c., new, algorithms
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module of a conventional host computer.

13.2.6 Array Processor

Renterghem [Ren89] explains that in a transputer system, there is no band-
width saturation as the system size increases, no capacitive load penalty
as more transputers area added and no communication bus contention. If a
processor communicated only with its direct neighbours, the ratio of commu-
nication to computation remains constant if we use more processors. Scaled
speed-up is not limited by Amdah!’s law. Duncan [Dun90] and Merrow and

Henson [MHS89] provide a survey of designs and architecture.

13.2.7 Physical Layout

The very mature technology for creating dense memory chips is unsuited
to creating microprocessors, and thus a custom CPU chip, separate from a
standard dense memory chip, but with compatible pin-outs, attached to each

side of the one board, as shown below, might be feasible.

one or
more PEs memory on
on this this side
side

plated-through
mother board

Mazumder [Maz92] investigates layout optimisation for processor-array
networks, using a new layout style based on polyominoes. If any appropri-
ate shape geometry is selected for the processors, a specific interconnection
network can be area-efficiently mapped on a VLSI/WSI® chip to maximise
the chip yield and operational reliability. He finds that the square mesh with

redundant processors provides high yield and operational reliability.

Swafer-scale integration
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Esonu et al [EAKHAK92] also examine the effect of objective function
optimisation.on the architecture of systolic arrays. In each case, when the
objective function is optimised, a different systolic array is produced. They
use purely architectural arguments, which rely on the assumption that the
maximum clock frequently is independent of the processing element count,
recognising that this is not necessarily true in a monolithically integrated
circuit. Algorithms are mapped into a systolic array using a parameter de-
pendency technique. Features that can be optimised are the: fault-tolerance,
propagation delay, throughput, silicon area, routing complexity, speedup of
computation for the systolic array, or some combination of these. They find
that to minimise the delay required for the data to propagate through the
VLSI systolic architecture it is desirable that routing between cells be to

nearest neighbours.

13.2.8 Scalability

This feature means that extra PEs can be added without fundamental algo-
rithm alteration. To be scalable implies, not broadcast, but an instruction-
systolic array of the type introduced by Lang [Lan86] and used by Schroder
[Sch89]. It consists of a mesh-connected array of identical PEs. Each pro-
cessor has a small local memory and a register readable by its N,E;W and
S neighbours, through which instructions are pumped from N and W, like
the illustration in figure 13.1 on page 230. They claim that it combines the

advantages of systolic arrays with the idea of a universal machine.

13.2.9 Technologies

Garcia and Sriram [GS82] consider that, of the MOS technologies, nMOS
combines a good speed/power product, high packing densities and low fab-

rication costs.
Mulitinovic [MF86b], on the other hand consider the use of Gallium Ar-

senide technology in the implementation of high performance processors, and
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Figure 13.1: ILLUSTRATING INSTRUCTION PIPELINE FOR SCALABILITY

finds that GaAs is inferior to silicon in cost and transistor count capability.
It is not sufficient merely to copy existing silicon designs into GaAs. Char-
acterised by a low transistor count, a high ratio of off-chip memory access
delay to on-chip datapath delay, low gate fan-in and fan-out, and low yield,
a premium is placed on simple designs in the GaAs environment, and every

transistor must be justified.

13.2.10 Wafer Scale

McMinn [McM82] gives a practical example where slightly more than dou-
bling the area causes a near 6 fold decrease in yield, while discussing the
importance of the tradeoff between die size and projected yield when parti-
tioning the system for a custom chip, and Peltzer [Pel83] stresses that WSI
can improve system reliability and reduce the yield loss caused by small ran-
dom defects by the use of redundant circuits.

Recently, Singh and Youn [SY90] have presented a scheme that can re-
configure rectangular arrays to avoid defects. They claim that the yield is

much higher than other methods with the same degree of redundancy.
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13.3 Cost

The best solution depends on the amount of use to be made of the model,
and whether larger assemblies of transistors will need to be simulated. A
good discussion of the fundamentals of costs is given by Muroga [Mur82] for
LSI and VLSI, with references for more detailed results, although the actual
examples are dated. It must also be borne in mind that computer software
costs of running Monte-Carlo simulations are quite high. Considering that a
typical design may contain half a dozen cells that lie on critical time paths
this means that, after just one redesign of each, there is a large cost blowout
even before fabrication. This cost is not immediately obvious and is often
overlooked by those who have ‘free’ use of large research computers. However,
the necessary costs need to be seen against the possibility of the failure of a
single fabrication run.

There are many different ways of arranging a system like the array simu-
lator in practice. Speeed may be traded for size to get high yield and hence
low cost. The PEs may be packaged so that a number of them fit onto one
chip; or if small, somewhat more of them might fit onto one wafer, which is
configured for redundancy and fault-tolerance; or if the PE contains its own
memory and is thus rather larger, it could be in one chip by itsell. These

various options are illustrated below.
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Pursuing the idea, mentioned earlier, of having a PE on one side of a
board and a memory on the other: the memory could be shared amongst
many PFEs since each one only needs the 20 or so model parameters and the
neighbour voltage and current — no more than 32 words. For example®, an
8K-bit memory could contain 256 32-bit words (real numbers), and so be
shared by 8 PEs, using the above assumptions; or at the other extreme one
256K-bit memory, while being more expensive than the smaller ones, could

share a 16 x 16 array of 256 PEs, both options illustrated below. Perhaps one
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of the 64K-bit multiport video RAM chips might be adapted to this sharing,
for speed purposes, but to offset this is the bit-stream nature of the chip,
and the need to latch the address in two stages, which slows it up; this is
in addition to rather complex interface circuitry between the PE array and
the memory chip. All these options would need further exploration to find
the optimum layout, with the yield/area formula being crucial to finding the
best arrangement as far as minimum cost is concerned.

Even the transputer array might eventually be practical, if it has enough
local memory, with the possible advantage that it could be used in MIMD
mode as well as SIMD mode, as necessary. One transputer costs under $200
now, so a board with 10 x 10 of them would cost under $20,000, plus support
chips, although in the terms of this thesis this is not considered cheap.

Swithout using current costs, since they date so quickly
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Chapter 14
Future Research Directions

Here I look at the current state of parallel computing and try to assess where

the results of my research might fit in.

14.1 Interest in SIMD and MIMD

There is presently tremendous research interest in both massively-parallel
systems and distributed systems. The former are generally of the SIMD
architecture and the latter MIMD. An illustration of the broad classification
for SIMD and MIMD architectures, following the schemes of Lopez [LV90],
Christ [CT84] and Kung [Kun87], is shown overleaf.

Small parallel computers implement a coarse-grained parallelism, in which
relatively large processors running relatively large, mostly independent com-
putations communicate infrequently. Massively parallel computers imple-
ment a fine-grained parallelism, in which small processors running small or
identical operations communicate frequently. These cover the full range of
pipelined processors, systolic arrays, neural networks, multiprocessors, vector
processors and processor arrays. Skillicorn [Ski88], amongst others, offers a
comprehensive classification of architectures.

Over the past decade, Swartzlander and Gilbert [SG82| conclude that the

distributed processor approach appears most desirable for supersystems, but
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will required improved interconnection networks.

Gabriel [Gab86] finds that parallel and pipeline processors lack the re-
quired flexibility for many supersystems applications, so attention has been
focused on distributed networks. The most efficient algorithms had a com-
mon design theme in that all are multiple instruction stream, multiple data
stream (MIMD) devices. He recognises that the major problem to solve in
building a massively parallel computer is how to interconnect a very large
number of processors and memory modules, and concludes that for more than
10,000 PFEs, the cost of the crossbar switch is prohibitive and its size unman-
ageable. Amongst Massively Parallel Machines, the Connection Machine uses
the hypercube connection scheme, and the NON-VON can support SIMD,
MIMD (multiple-instruction multiple-data), and MSIMD (multiple SIMD)
operations.

Gottlieb [GGK™*83] rejects SIMD machines in favour of the MIMD para-
computer model, which his simulation studies show to be effective for both
fluid-type and particle tracking calculations. Most recently-introduced mul-
tiprocessors have a few dozen processors connected to a shared memory over
a common high-speed bus. He finds that many problems hitherto considered
unparallelizable have, in fact, a substantial content of exploitable parallelism,
and that the speedup is reasonable for up to 16-20 processors, but little is
gained by increasing the number beyond that.

Requa and McGraw [RM83] investigate the architecture of the Piecewise
Data Flow computer (}E;DF), a heterogeneous multiprocessor proposed for
very high performance computing, which they claim blends the strengths
found in SIMD, MIMD, and data flow architectures. The SIMD machines are
very cost effective on vector processing. Almost all currently proposed data
flow architectures have a large pool of homogeneous processors. Instructions
are sent to processors as soon as all data dependencies have been satisfied.
The PDF architecture has heterogeneous processors (memory, scalar, and
SIMD) and instructions are sent based on data dependencies. For long-term

high-performance software, they believe the advantage must favour the data
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flow-like approach.

Charlesworth and Gustafson [CG86] find that many problems have suf-
ficient potential parallelism to utilise 10,000 to 100,000 concurrent comput-
ing nodes, and recommend implementing systems with only the minimum
amount of internodal communication required to solve the dominant prob-
lem of interest.

Dongarra [Don88| looks at experimental architectures while Lopez and
Valimohamed [LV90] deal with hybrid systems having properties of both
shared-memory and message-passing systems.

Both SIMD and MIMD algorithms, for the same problem, are pursued,
particularly for the hypercube architecture [RS90], and for the connection
machine architecture [She91], for matrix and signal processing algorithms. A
vast and comprehensive description and classification of the array processor
types and algorithms exists by Kung [Kun87].

The overview by Vorst [VD90] confirms that the interest in parallel re-
search is driven by the availability of large machines and the need for efficient
parallel algorithms to run on them. He reports much recent interest in systolic
array algorithms, message-passing systems, shared-memory systems and vec-
tor supercomputers. Tamura [Tam91] suggests that the difference between
geheral and specific purpose parallel processing systems is not very clear,
since any specific purpose system may be used for other purposes whereas a
general purpose system has limitation for some specific use; thus the differ-
entiation is rather arbitrary. This is in the context of examining the Cellular
Array Processor (CAP), a SIMD machine. The CAP has 4,096 PEs, each of
which processes 1 or 8 bit data. Smitley and Iobst [SI91] propose that the
SIMD concept be also viewed as a model of computation.

Maresca and Fountain [MF91] edit a recent overview of massively par-
allel architectural research. Originally developed, and still much used, for
image and pattern processing, these have been given a stimulus to extend
application to new fields, by modern VLSI design capabilities. Specifically
covered are the AIS, the DAP, the MasPar and the CM-2. Li and Stout
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[LS91] examine architectures designed to take advantage of reconfiguration
of the PFEs t.o speed up massively parallel processing, whereas the opposite
view is pushed by Distante et al [DSSSG91], who believe that fault-tolerant
wafer-scale methodologies will be more successful. There is also a lot on the
relation between parallel architectures and neural networks [cai90].
Skillicorn [Ski91] believes that, rather than developing more specific ar-
chitectures and algorithms, much more attention should be directed towards
creating suitable models of parallel computation, urging the Bird-Meertens

formalism as a coherent approach to parallel programming.

14.1.1 Summary

Originally, speedup was sought on vector machines, (CRAY, STAR, CDC
6400, etc.) to which few have access. Then speedup was sought in algorithms
on sequential machines, to which many had access. Eventually distributed
processing became available to workstations in MIMD form, and the original
SIMD was lost sight of. But SIMD is much more than just the original
vector architecture. Modern SIMD involves the Massively Parallel Processor
architecture.

It appears that very regular algorithms have been mapped to SIMD ar-
chitectures without much flexibility, while simulation and VLSI design has
been mapped to more general-purpose MIMD architectures. This has led to
the perception that simulation cannot be successfully carried out on SIMD
machines.

The existence of simultaneous research into all of these areas stresses the

tremendous disagreement that exists about a clear way forward.

[
s
=1



14.2 High Performance Computers

Bell [Bel89] in a very widely-circulated paper, predicts that “A vast array of
new highly parallel machines are opening up new opportunities for new applica-
tions and new ways of computing” . He then reviews SISD, SIMD, MIMD
(shared) multiprocessors and MIMD (message-passing) multicomputers of
many kinds, including engineering workstations. Specifically mentioned and
described are the computer systems amongst those listed in the table on this
page, and many others, along with some very high performance computers
specialised for one particular problem.

This is a very impressive range of systems. By any reckoning some of
these are great technical achievements indeed, and many of these companies

seem to done all the right things, in design, production and marketing.

Computer System Company/Producer Type Type
WARP G.E. MIMD
CM-2 Thinking Machines; SIMD
MultiFlow Fisher/MultiFlow Corp. | VLIW | VLIW
DAP ICL /Active Mem. Tech. | SIMD
AIS-5000 Applied Intelligent Sys. SIMD
FPS-array Floating-Point Sys. SIMD
CEDAR Uni. Nlinois MIMD
iPSC80 Intel MIMD
Monarch B.B.N. MIMD
UltraMax Encore
X-MP & YMP CRAY MIMD
RP3 IL.B.M. MIMD
MasPar MasPar Comp. Corp. SIMD
PIXEL Plane Uni. N. Carolina
GF11 I.LB.M. SIMD
MPP/FX Alliant MIMD
Graphic Super Ardent MIMD
Delta Touchstone
Hypercube MIMD
Kendall Square Kendall Computer MIMD
Transputer InMOS MIMD
NCUBE Caltech MIMD
MultiStage CS-2 Meiko Scientific SIMD | MIMD

None-the-less, at the time of writing!, a majority of the companies listed

are either:

e in actual receivership, or
e filing for bankruptcy proceedings, or

e supported by massive injections of government money,

Yfrom financial press reports, September 1992 — January 1993

238



and in some cases the products have simply been discontinued, or the com-
panies have merged, i.e., there are very few profits in digital array processing

just yet.

14.2.1 Discussion

One of the reasons for believing that the above state of affairs is bound to
get even worse is contained in Bell’s own article: “Supercomputing has become
an issue of national pride and a symbol of technology leadership”, which, by all
past experience, dooms it to ignominious and drawn-out failure. The seeds
were sown in 1984 with the establishment of the NSF Advanced Scientific
Computing centre, and culminated with the 1987 publication “A Research &
Development Strategy for High Performance Computing?”, which committed
the US government to a large injection of funds in pursuit of a national
TeraFlop machine. Many of the companies on the list participate in this
scam.

The lack of profitability of the parallel machines above is more reveal-
ing than the direction of all the current research put together. One main
thrust of the thesis of Maly [Mal90] and others is the need for profitable
manufacturability of ICs. Since profit is technically a measure of the incen-
tive to re-invest, vanishing profits means that the product does not figure in
the future at all. When money is diverted from productive to unproductive
pursuits by force and by fraud, and when profit is no longer a dominant
consideration, companies get into financial trouble, and in particular items
not needed are produced in abundance.

The significance of all these losses is that investment in microelectronics
will be withdrawn on a large scale, and this means it will be harder to
produce electronic systems. Crucial questions that should now be asked
include: Who can afford these systems? and, What can they get from them

that they cannot get from their existing systems?

2US Office of Science and Technology Policy



At a time when VLSI CMOS 0.8x circuits can be routinely manufactured
with a million transistors on a chip, and people have accepted that MPP will
work since Gustafson demonstrated practically linear speedup for engineering
problems on the hypercube computer, the final relevant question is: Systems

with a few large processors, or with massively-parallel many?

14.3 Consideration of Problems

It seems that the original hypercube warcry “with hardware cost a secondary
consideration”, which flowed from publically-funded research institutions, has
inevitably lead to a contradiction — because in microelectronic business

hardware cost is never a secondary consideration. Cost reduction is about

to become quite paramount. What developments might facilitate this?

McMinn [McM82] reminds us that the tradeoff between die size and pro-
jected yield is an important consideration when partitioning the system for a
custom chip, since slightly more than doubling the area causes a near 6 fold
decrease in yield, and test time can really mount up. Peltzer [Pel83] reports
that WSI can also improve system reliability.

From the early work of McCanny and Whirter [MM83] up to recent work
by Singh and Youn [SY90] there has been steady progress in techniques that
can be used to increase the yield of wafer-scale circuits, and produce chips
which would otherwise give totally uneconomic yields.

The backplane problem has been attacked very recently in the context of
the scalability of the hypercube architecture by Ziavras [Zia92] using opti-
cal methods, but it is hard to be convinced yet that this is an inexpensive
solution.

There are recent investigations into reconfigurability by Li [LS91] using
a polymorphic torus scheme to bypass faulty PFEs, and aimed at a SIMD
MPP with over a million PFEs. There 1s also the alternative defect-tolerance
scheme for mesh arrays of Distante [DSSSG91]. Lea [L.J91] proposes to use

associative processors to ensure scalability and also fault-tolerance, in a sys-
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tem which could produce 1 MOPS per dollar, in volume. In addition there ig
the work of Wilding et al [WTHP91] which concentrates on the applications
of cellular-automatons to scientific problems: the importance of this is that
it connects with the french boolean-mapping approach?® to investigating the

convergence of SIMD arrays. Thus measures exist aimed at reducing costs.

14.4 A New Question

The main problems concern scalability and cost. Combine that with the need
to simulate large parts of the circuit at once, and suddenly there is the need
for one hundred thousand to one million PFEs.

In simulation, because a lot of the circuit is relatively quiescent, then it
1s reasonable to use only a few processing elements (as in the MIMD case).
But in future, if simulating elements of DataFlow computers, which can be
fairly active all the time, and if can have WSI with very many elements ...

Christ and Terrano [CT84], consider that there are a large number of
significant scientific and engineering problems which can be efficiently solved
by a array of processors interconnected to a form a multi-dimensional grid,
and by taking advantage of powerful commercially available VLSI chips, they
design a parallel array of single board computers, containing 256 nodes run-
ning in lock step in a SIMD mode with a computational power of 4 billion
22-bit floating point operations per second.

Lopez [LV90] urges the philosophy of solving the largest problems possible
in a reasonable amount of time, rather than solving existing problems faster.
This certainly fits in with cost-reduction point of view.

With WSI and fault-tolerance redundancy techniques at hand, the orig-
inal problem that spawned so many MIMD machines: “How might scarce
resources be applied to best effect?” becomes transformed into “What is the
cheapest way to apply practically unlimited resources to best effect?”, because with

this technology it is possible to have the same number of PFEs as devices to

3previously mentioned [Rob87]
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be modelled, and this makes the problem completely different.

Under these assumptions, it is still an open question as to what class
of problem it can successfully apply, but it certainly seems that the divide
between: few powerful processors, in MIMD; and very many simple proces-
sors, in SIMD; is to become more marked in future. Since it is found that
around 20 processors is the point of diminishing returns in a MIMD system
— with speedup that is difficult to improve on — then this line of development
cannot be followed for cost reduction, since the only way it can go is towards
increasing the power of the 20 processors involved by further division into
more sets of 20 processors?.

It seems to me that the logic of this next phase is inescapable: device
physics is reducing to a smaller scale for power; defect density means smaller
chips for yield. Thus there is an impetus towards many simple PEs, so
the interconnection problem becomes intractable’. This means that new
algorithms are needed which are suited to a ‘backplaneless’ world. This
rules out all MIMD systems except transputer-based systems. It seems that
circuit improvement per se is now largely irrelevant, and that advances in
architecture are dominating research, and in particular that new algorithms
are essential to effectively utilize these advanced architectures.

Thus future development might have to concentrate on SIMD MPP ma-
chines, where there is more scope for both new engines, physically, and new
algorithmic development, theoretically.

Fully switchable MIMD and SIMD is out of the question for more than
ten thousand PFEs, which leaves fixed switches in SIMD or switches that learn

to reconfigure, as in neural networks.

4although there is much work on the partitioning problem to be done

Se.g., Alliant spent millions of dollars trying to produce a 43-layer board and failed



14.5 What about Game Theory?

The simple step of re-interpreting the Newton-Raphson iteration algorithm
is crucial to the usefulness of this thesis. It takes the NR technique out of its
purely mathematical setting — in the field of differential calculus — and places
it firmly in the field of economics, in particular in the game theory area.
Since NR is widely used in fundamental microelectronic mathematics,
this places game theory considerations at the heart of electronic modelling for
the first time. Since microelectronics has been applied to neural networks in
recent years then it is possible that the game theory approach can illuminate
neural networks as well. So there appears some very far-reaching possibilities

from such a relatively slight change of perspective.

14.5.1 Dynamical Systems & Cellular Automata

After much research into ULSI® the opinion of Ferry et al ([FAGS88] p. 264)
1s that « . . cellular automata may be viewed as representations of dynamical
systems . . . any computer architecture that aims to mazimize the density of active
devices, while minimizing the delay inherent in interconnections, leads to a layout
endemic to cellular automata. What we seek in future ULSI is not games played
with cellular automata . . . but the nature with which cooperative phenomena are
exhibited in these systems, and the extent to which these cooperative phenomena
offer new techniques for information processing.”

This is a fascinating viewpoint, connecting not only the cooperative and
dynamical aspects of the game theory approach but also, wia cellular au-
tomata, the French boolean perspective on convergence of arrays of process-

ing elements.

6Ultra Large Scale Integration
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14.5.2 A New Paradigm

Thus the incidental reinterpretation, discovered in the course of this the-
sis, of the NR iteration as a bargaining technique rather than just a purely
analytical technique, represents a paradigm shift in IC simulation.

It has been seen above that new algorithms are essential to effectively
utilize advanced architectures. It must be accepted that general inter-PE
communication makes for faster programs — the more information exchange,
the better global algorithms work. However, the contact model is based
on the hypothesis that only static communication is available, and that al-
gorithms will just have to adapt to this situation. The main point of the
experimental work that has been carried out is to explore the question: How
much progress can be made under this restriction? and the answer to this
so far is that it seems that promising progress can be made, and fast con-
vergence achieved, by inventing appropriate new algorithms. The problem
with extensive communication with many PFEs at once is that more memory
is needed to hold values, so more complex and expensive PEs are required.

Work that also bears on the behaviour of contact simulators, in addition
to the game theory and the boolean/automata fields, is done by Murphy
[Mur90] and Shynk and Roy [SR90], all of whom report on the nearest-
neighbour convergence properties of perceptrons.

The Game Theory paradigm might be well-adapted for a new generation

of wafer-scale SIMD simulation engines.

14.6 Recommendations

It has been seen that cost reduction is mandatory for future MPP systems.
The large and powerful MIMD processors can have their own on-chip memory
- this has to be counted an advantage for speed - but they therefore have lower
yields. The small simpler processors do not have their own on-chip memory
but do have very high yields. The sums that could offer some guidance to

decision-making in this area have not yet been done.
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14.6.1 Computing Power at Constant Cost

Production of parallel machines might be summarized in these illustrations,

where it suggests a flattening since MIMD speedup falters above 20 pro-

PN many many
o/o /SIMD MIMD
0 number of
A processors
few few
low —>» high low —>  high
PE power PE power

cessors. The development of SIMD and MIMD are rather separate, often
because applications run on one kind rather than the other. Now, there are
any number of graphs showing computing power as a function of the number
of processors, for classes of problems, for both SIMD and MIMD machines
(e.g., [Bel89]). But what is really needed, in my opinion, in an era where
cost cutting is important, is a depiction of how to move to a computing
establishment from an existing one at very similar cost structure.

Consider the situation depicted below. If points are plotted all over this,

e e e e TR

at this design point there are two values of interest:

many
______ overall power and overall cost
put this many §—j=- @
into an array
few

choose a p.e. with
this power

from actual and proposed systems, it will be found that each graph (power
and cost) has a set of level surfaces — i.e., lines of constant power, and partic-

ularly, given the power, lines of constant cost — which can give an indication
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of the available options at a similar cost to the currently owned computing
resources. This would be a very useful practical aid to companies for invest-
ing resources, as well as for delineating possible future research directions,

and its construction is highly recommended.

14.6.2 Iteration & Convergence

Amongst the advantages of the boolean representation of arrays of cellular

automata are that one does not have to:
e form circuit equations;
e partition the circuit;
e form the linearized approximation matrix equations;

e or find its eigenvalues.

It is sufficient to work from the local connectivity matrix. Thus it is rec-
ommended that the application of the boolean methodology be thoroughly
investigated — a good start is Robert [Rob87] and Demongeot [DGT85].

14.6.3 Game Theory

In view of the initial success of the game theory approach, there is an immense

amount of work that should be carried out on these related questions:

e what is the extent of the rigour of the analogy?

e under what conditions do economic systems converge, and not con-

verge?

e what is the value of broadcasting price signals to everyone in economic

systems, and where does it apply to broadcast SIMD arrays?

e since each Monte Carlo simulation is only a slight perturbation of the

nominal case, can the system learn from past runs?, and how?

"vide Maly [Mal82]



e can neural network methods be applied so that different criterion strate-

gies that show promise can be reinforced?

Thus it is strongly recommended that a proper theoretical justification of the
game theory approach be undertaken, in addition to investigating the appli-

cation of adaptive techniques to all aspects of the current implementation.

14.6.4 Design Tools

If this thesis is correct in suggesting that SIMD MPP is a fruitful direction in
which to proceed for constructing VLSIC simulation tools, then it necessarily
also recommends that research be undertaken with the aim of migrating all
existing design tools from serial and MIMD algorithms to suitable SIMD

algorithms.

14.6.5 Summary of Recommendations

As a result of the work in this thesis, the following recommendations are

made, concerning;:

cost: obtain or construct data from which constant-cost graphs might be

constructed for various MIMD and SIMD array systems;

cellular automata: investigate co-operative properties of these systems,

and apply boolean methods to convergence studies;

game theory: establish rigor, investigate convergence and develop adaptive

strategies;

design tools: encourage algorithmic migration from MIMD to SIMD archi-

tectures;

floating capacitors: investigate representation within array for use as

finite-element method for interference effects in sub-micron geometries.
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14.7 Conclusion

Because of the great detail in the diversity of approaches to stochastic prob-
lems, it has been thought best to summarize the most important conclusions
at the end of the respective chapters. There are, however, some points worth
emphasizing here.

Some useful discoveries relevant to the application of stochastic techniques
to workstation practice have been made. It is good to know the form of the
probability density function: e.g., for the mere 33 data collected on page 254,
an Erlang distribution has been fitted using just the mean and variance as
parameters, giving a sound idea, shown at the bottom of this page, of the
progress of the design with respect to its specifications. The results obtained
for concatenated structures is quite practical, too.

The Newton-Raphson interpretation as a bargaining scheme has led to
the game theory paradigm, which has shown that new algorithms applied
to old architectures can be just as efficacious as old algorithms applied to
new architectures. Theoretically, there is the application of the whole field
of the theory of cellular automata to be explored in this regard, while on the
practical side the memory/PE arrangement mentioned previously allows the
best of each processor and memory technology to be used.

The future for workstation parallel processing engines looks very bright
and appears wide-open to research into new architectures and algorithms,
aimed at affordable parallel processor systems with adequate performance,
rather than expensive ones with high performance. The various subtle trades-
off between cost, speed and size are a fruitful field of examination, and already
form a sequel to the work carried out in this thesis. I suspect that the
SIMD model, in its wafer-scale-with-redundancy form, combined with new
architectures and algorithms, might become the preferred architecture of

parallel-processing engines for the workstations of the future.




Appendix A

Multi-Project Chip

This design tests an adder leaf cell which may be used in future MPC de-
signs to construct a simple, fast n-bit multiplier subsystem component, for
arbitrary n. The chip design includes two test structures: a leaf cell with
four input and ten output points monitored; and a 7 by 4 array of leaf cells,
with ancilliary buffers, which produces an 8-bit product from two 4-bit mul-
tiplicands. It is implemented using nMOS technology, with A=2.5 microns.
This report describes our experience in designing a very large scale in-
tegration circuit subsystem. It is a proposal for the C.S.I.R.O. Division of
Computing Research Australian Multiproject Chip in May 1982 [N-bit Multi-
plier, Author’s Publications]. We compared our calculations of performance
with measurements made on the bonded chip to help to establish better
estimates from which to predict future design performance in different struc-
tures. It is a simultaneous array multiplier using cascaded adders, and has

been described in some detail by Lewin [Lew72].

A.1 Formal Algorithm

This is the algorithmic description for an n-bit multiplier block. An n-bit
multiplier comprises an array of adder cells, 2n wide by n high. One multipli-

cand, with bits Y (i), (i=1..n) is fed to the n leftmost cells along the top edge



of the array, with y(i) going to cell(row=1,column=i). Y(i) is transferred out
of the cell (u.naltered) to the cell diagonally down to the right closest to it.
The bits of the other multiplicand, X(j), (j=1..n) are fed into the right edge
of the array, such that X(j) goes to cell.

The Mead/Conway method of top-down design leading to functional spec-
ifications of leaf cells meant also that they (the leaf cells) could be altered at
any time but were still guaranteed to fit in with the floorplan. In fact, one
large change took place (replacement of red/green function block by mul-
tiplexor) at a late stage in the project, and because of the design method
this was achieved in two days, each of us concentrating in his own area of

expertise.

A.2 Cell Description

Circuit Diagrams

The full adder leaf cell has the following functions to perform, by virtue of
the algorithm

(1) to accept X from the right and pass X restored to the left (the restored
value is also used within the cell)

(2) to accept Y from above and pass Y restored to the cell diagonally
down and to the right, the restored value being used also in the cell

(3) to perform the logical X AND Y producing an intermediate result,
XY

(4) to accept the result (sum) from the cell above (Ain) and restore it,
producing A and -A for use within the cell

(5) to accept the carry (C) from the cell to the right (Cin) and restore i,
producing C and -C for use within the cell

(6) to perform the full adder function on A, B and C and supply the
result (Aout) to the cell below and the carry (Cout) to the cell to the left.

These functions are performed by the circuit whose layout is shown in

o
[
o



figure A.l on page 252.

A.3 Timing Information

Adder Leaf Cell

SPICE simulation and hand calculation lead to similar results, but diverge
because in the hand calculation we assume depletion and enhancement tran-
sistors have about the same resistance per square of gate area - SPICE shows
that this is not a good approximation.

The SPICE simulation gives:
Situation Modelled SPICE | HAND
sum & carry stable after 51nS 4605

all cell inputs high
x. AND .y stable at mux after 40nS 34nS
y high (x stable)
x. AND .y stable at mux after 30nS 28nS
x high (y stable)

time to transit mux after inputs 8nS 12nS
inputs high

time for X to transit cell 8nS 12nS
(xin to xout)

time for Y to transit cell 31nS 20nS

(yin to yout
new carry & sum after Y high 50nS 46nS
(x stable)
new carry & sum after X high 31nS 38nS
(v stable)

Multiplier “Cell”

The multiplier block itself was too large to SPICE-simulate, so we used the
data from the SPICE simulation of the leaf adder cell above to calculate that,
for our 4x4 implementation, the left carry to output result bit 7 should be
available at 3V after 186 nS from the time that all the inputs to the block
reach 3V.

This time is very nearly proportional to the number of bits. We note

that in a real subsystem, the upper right triangular part of the block (filled
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Figure A.1: PLOT OF ARRAY MULTIPLIER LEAF CELL
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with zeros) may be discarded, thus reducing multiply times by 2/3, approx-
imately. Freeney [Fre75| discusses ways of reducing the area by having the
same number of output bits as input bits. This involves the bottom right
carry-in being tied to +5V. We have left all the cells in this design so that the
proportion of time spent multiplying compared to padin/padout time will be
large, affording a more accurate measurement of timing for the multiplier

block itself.

Adder Leaf Cell

The leaf cell has four inputs: Yin, Xin, Ain and Cin; and four outputs: Yout,
Xout, Aout, Cout. It performs the functions:

Yout=Yin restored

Xout=Xin restored

C=Cin restored

A=Ain restored

B=Xout.AND.Yout

Aout=low order part of (SUM of A,B,C)
Cout=high order part of (SUM of A,B,C)

The multiplexor carries out the full addition of A,B,C. The addition is per-
formed by using the values of A, -A, XY and -XY to turn on pass transistors
which allow the signals 0, 1, C or -C to emerge at the ouput to form Aout

and Cout. The equations for this are:
At = Z2x—-C+ —-ZxC;

Coue = A*x XY + Z ()

where

=A% -XY 4+ —-A*xXY.

The input values are restored by inverters. All power rails are metal. All

other connections are polysilicon, except Xin/Xout, which is metal.
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Logic Tests

We ran three tests, using MOSSIM [Bry84]:

e around an adder leaf cell in the centre of the multiplication block, where

we had four labelled and ten outputs

e for the test adder cell by itself we input test vectors from the pads and

monitored the output test pads (ten of them)
e we input a set of X and Y vectors from the pads and monitored the
results of the multiplication on the output pads.

All three tests were completely successful.

A.4 Testing

The bonded chip was submitted to a number of logic and timing tests, under
control of a microcomputer, and in conjunction with a CRO. The timing
test results! made on the ring oscillator, which incidentally first aroused the

author’s interest in stochastic modelling, are shown below:

Measurement of RING OSCILLATOR period (nSec) at various
sites on various wafers [AUSMPC 11/82]

Number of sites with
period within 10 nSec

O = NN W Hh 01 6O N O

—‘-4—0—-—4

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

leffectively the distribution of concatenated finishing times
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Appendix B

Simulation Technique for

Sampling Correlated Variables

This summarizes the usual technique for producing simulations of correlated
random variables. Since direct generation is not possible, the data are trans-
formed to an axis system where their distributions are uncorrelated (i.e.,
independent), sampled from these independent distributions, and then trans-

formed back to the original axis system.

Theory

Consider the data points comprising two correlated variables, = and y.

The data are characterised by their mean values along each axis
<zT>=a

<y>=5b
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and by their variances

ol =<(z—a)(z—a)>

of, =< (y—0b)(y—b) >

Yy

and by their covariance
Oy =< (z —a)(y — b) >
From these definitions follow the quantities needed later:
<zT >= air + a*
<yy >= UZy + b?

<zy >= 05y +ab

The degree of correlation between the variables affects their covariance;

it is measured by the correlation coefficient, r, defined as

Oy
v OII Uyy

which varies between -1 (for completely negatively correlated variables) to

T =

+1 (for completely positively correlated variables), with zero signifying that
the two variables are totally uncorrelated.
These measures, 0, 0y, and o, are properties of the data collection
and are unaffected by a‘change of the origin of the measurement system.
The problem in simulation is to find a set of uncorrelated variables that

may be used for sampling, i.e., essentially, to make o, vanish.

Procedure

This may be done by the following steps:



shift the origin so the variables referred to the new axes have zero mean

y=y—>b

i.e., rotation by an angle o produces new variables

2" =12’ cosa+ y'sina

y" = —z'sina + y' cosa
so that
Oty = 0
1.e.
<z"y" >=0
or

< (2’ cosa+y'sina)(—z'sina +y' cosa) >=0
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or
tana + ctana+1=0
where
<z'z' > —-<yy >
CcC —
<z'y >

which determines «, the angle of axis rotation.

sample from the distributions, which now have zero means and new inde-

pendent variances 02, 0o u, calculated from

< (2" = 0)(z" - 0) >

=< (z'cosa + y'sina)(z'cosa + y'sina) >

=< 2'z’ > costa+ < y'y' > sin*a+ 2 < 2’y > cosa sina
vy Y

and

< (yll o 0)(yl/ _ 0) >
=< z'z’ > sina+ < y'y’ > cos’a — 2 < 'y’ > cosasina

and of course < z''y” >= 0 since the axis was rotated to ensure this.

Now the data set may be constructed by sampling independently the
variables z/ and y” from distributions with zero means and variances

0.2

2
ag Yyl

gty

\

0

reverse the process to obtain a good representation of the original data,
by unrotating and unshifting the axes, and finally checking that the

simulated mean and variance closely match the original statistics.
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Appendix C

Bargain Equivalence to

Newton-Raphson Iteration

Where I prove that my method of using p.e. partner voltages is, in the limit,
equivalent to the Newton-Raphson method for finding the root of a function

of one variable.

C.1 Proof

Consider the situation using the overlapping current/voltage plots:

) iv)
W)

0 u v 5

We denote the currents calculated in the first 7 as 7 and those in the

second as j; the voltage assumed at the face in the first is u, and in the

second v; the points on the first curve are i(u) and i(v); on the second are

j(u) and j(o).

The two straight lines joining the points on each curve are generally:
1t =A+ Bu

7=C+ Dv
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evaluated at the points shown on the graph we have

i(u) = A+ Bu
i(v) = A+ Bv
j(u) =C + Du
jv)y=C+ Dv

whence the constants A, B,C, D, provided that u and v differ.
These lines intersect at w, the next guess for the common face voltage,

where

A+ Bw =C+ Dw.
Inserting the expressions for the constants provides

uj(v) — vy(u) + vi(u) — ui(v)
i(u) = i(v) + 5 (v) — j(u)

Rearranging this in terms of the current difference

w =

k=1—-3

gives
_ vk(u) — uk(v)
k(u) — k(v)
and if the voltages differ slightly to the extent that

v=v+6

then
_ vk(v+6) — (v+ 6)k(v)
k(v + 6) — k(v)
k(v)
(k(v + 6) — k(v))/6

which as § — 0 becomes
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This is nothing but the Newton-Raphson algorithm for producing a new
guess w from an existing guess v of the root of the function k(v) = i(v)—j(v),

i.e., we find v so the face currents are equal.

T

i(v)-j(v) v—»

Note that this works if the function is non-reflexive, which is certainly

valid for adjoined transistors, resistors and capacitors.
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Appendix D

Details of GAME Program

In this I am concerned with discussing the internal details of the proposed

array stochastic modeller.

D.1 Program Description

This appendix is all about the parallel-processing array simulator. It contains

all the details needed to understand the program in Appendix E.

Operating System

The simulator was run on a Sun-4 (SPARC) computer under the BSD 4.2
UNIX operating system which involved command procedures for executing

programs written in the o programming language.

Data Structures

The array to be simulated may contain up to 9 rows and 9 columns of process-
ing elements. Each processing element performs the function of simulating
the operation of a single transistor or, where there is no transistor present,

a simple lattice of resistors and/or capacitors connected to GND or VDD.



The transistor model is of the form:

W——,-q——o E

S

with the substrate connected to ground and an option as to which face
the gate is connected.

The resistor network is of the form:

which allows current paths to anywhere in the array.

Since I am not concerned with any particular transistor model, but only
with whether such an array will work with strictly local rather than global
information, then the transistor model is the simplest one that will produce

realistic currents for given face voltages. It is
Ips = ﬂea(VGs+5)(1 _ 6—°‘VDS)

and is adapted from Warner and Grung [WG83].

Thus each p.e. containing a transistor needs the values of «, # and ¢,
along with the face to which the gate connects. The parameters in this are
a,  and v, where: a - scﬁles the drain current; 8 - sets the gain; § - models
depletion mode nMOSFETS.

The resistor network is specified by saying which resistor has which pa-

rameters — all resistors have a current of the form
i =a+v(b+ v(c+v(d)))

which is a legacy of early heuristic simulations carried out using non-linear
current sources instead of transistors and resistors. The resistor is specified

by its number in the p.e. (1,2,3,4,5,0r 6) and a,b,c,d.
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The last thing to notice about the data within a p.e. is the sign con-
vention: positive currents are in the direction of the arrows (right and up)

OI:

A+

4 +
— = i

At

the convenience of which will become clear in what follows.

Each p.e. is modelled by a C language data type, containing all the
information needed by it.

On the outside of the 9 x 9 array there is a ring of dummy processing
elements, which are useful both for ensuring that any algorithm works even
at the edge of the array, and for entering external driving voltages into the

array.

Program Disposition

The simulations I have run are concerned with answering the two questions:
Does this model converge to a solution in the quasi- static approximation?
How many iterations does it take per timestep, on average, for an entire run?

With these questions in mind, the simulation naturally decomposes into
two parts: solving for one timestep, and repeating this over and over while
extracting useful results at each timestep.

Thus the core program simply starts with the proposed or actual (or
any) set of face voltages, iterates until convergence, and produces the final
set of face voltages and currents. From these, plots and summaries may be
produced for the whole run.

The latter being a relatively trivial operation, only the core operation is

dicussed here in some detail.
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One Time Step

The purpose of the program listed in the appendix is to take a set of node
voltages and produce a new set of node voltages which causes all face currents
to balance.

What follows is an implementation of the ideas discussed in the main text
of this thesis.

First, we have seen that this is to be a parallel array processor of the
SIMD type, and so each processing element executes exactly the same code
as all others, at exactly the same instant. There- fore some care has to be
taken to ensure that data is exchanged between p.e.s in such a way as to be
valid - i.e., not to destroy the old data when the new is copied across. This

is one reason for the preferred orientation:

A+

+
|

since, if in simulation, sequentially, and in reality, simultancously, all data
is transferred by all p.e.s to the right and then up into temporary buffers then
correct simultaneous operation can be ensured, because these are completely

independent operations.

Nomenclature

Now we turn to what is going on inside each p.e., and some definitions are
necessary to avoid confusion when referring to the program.

Broadly speaking, given the initial set of all face voltages, each processing
element has to do a complete cycle of (normally 4) Newton-Raphson itera-
tions with each neighbour. In practice, the confusion that would cause while
trying to keep track of which end-voltages are kept constant would be enough
to make debugging very difficult, distracting from the problem itself, which

is: does this method work?



This is where the systematic application of the orientation

+

helps, because each p.e. really only needs to deal completely with its
North and East neighbours - its West and South iterations are then taken
care of by the West and South neighbours - this is particularly vital at the
edge of the array (left, bottom).

Right and North Iteration

Concentrating, then, as we may, only on these two neighbours which we now
call “the north partner” and “the east partner” of the p.e., and recalling the
current calculations necessary for producing local convergence at one face,

the situation is:

north
partner
fixed —_— fixed
WO\ @ Y v east . E0
" ; partner
i(u) - j(v)

Now recall that to complete one Newton-Raphson iteration the p.e. only

needs the 4 numbers representing the points on the graph:

(W) i(v)
W jw)

u \"

and it obtains 2 of them from within itself - ¢(u) and 7(v) — and the other
2 — j(u) and j(v) - from its relevant partner (N or E). This means that it
has to pass these values to the left and down, in its turn.

Also remember from the study of the Newton-Raphson convergence, that

while the 4 iterations proceed, the voltages at the outermost ends of the rel-
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evant p.e. ‘pair’ (the p.e. and its N— or E— partner) must remain constant.

These are the voltages Wy and Ey below, whilst u is being determined,

% —" > Eo

or the voltages Ny and Sp whilst v is determined, below

No

A

S0

Thus at the start of the 4 Newton-Raphson iterations, the face voltages
need to be preserved, only being updated at the end of the 4 iterations, the
‘preserved’ values being used where appropriate in the calculations.

The notation for the four values required by each p.e. is now to be settled.

i(u)

% i Eo
N
——>
i(v)

Consider the p.e. pair above.

The currents within the p.e. calculated using v and v are: i(u) and ¢(v).

These correspond to the points on the superimposed plot for the pair:

i(v) r‘
0 | ; )
u \"

The currents calculated in its partner by its partner are denoted j(u) and
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j(v) corresponding to the points on the conjugate plot

j(w)
j(v)

0 ! 5
u v

Thus in each set of processing elements,

/|

Y

the West and South values are transferred in one go.

The Iteration Algorithm

The complete Newton-Raphson sequence is thus:

for each timestep

for each face-pair (North, East)

e establish the voltage common to the p.e.s at the common face -

call it u; u

e force them to hold slight different values v + 6 = u,v

e compute internal currents ¢(u) and ¢(v), keeping all other face

voltages constant (i.e at their original values);

i(u)+—=>
i(v) >
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o establish the voltage at the partner’s face - call it v = u + §;

e compute the internal currents to be passed left and down - j(u)

and 7(v);

—r j(u)

=t j(v)

e put (to left and down), or get (from right and up), the currents

from the partner element via the relevant face.

Z
2

e compute the new estimate of the voltage at the common face and
share it with partner (right and up), being careful of the edge

driving voltages.

This takes us towards an economical and systematic notation, which is
the same as that employed in the program listing.
The exact correspondence between this scheme and the ‘C’ program is

shown in these scheme:
7(p).in(a) & .n
w(p).in(at) « ip.n
m(p+1).is(a) & jn
w(p+1).is(at) « jp.n

Since each p.e. only calculates for the East and North faces, then this

minimum notation is sufficient.
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This notation relates to the diagram, with inner and outer sets of param-

eters:

)

(@

One further note on the sign of currents:

For transistors:

For resistors:

16 b% _ /AA) T+

or both can be present:

and this is reflected in the program - for example, the west current:

1w = +1l + 15 — 4.
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Running the Simulator One Time Step

The operating system is:

g.in Q\ Q g.new.nodes

g.wanted %

____Qg.iterations
g.exe

S

g \@g_i.plot

g.v.plot

g.timestep

g.v.nodes

g.xg

where the files used are:

g.in = general inputs, such as the contents of each p.e., how many iterations

to try and the criteria for convergence;
g.timestep = this timestep;
g.wanted = list of voltage nodes for plotting;
g.v.modes = set of face voltages at start of timestep.

g.new.nodes = set of face voltages at end of timestep, with voltages and

currents within specified tolerance;
g.iterations = number of iterations to converge;
g.i.plot = face currents at each iteration for plot;
g.v.plot = face voltages at each iteration for plot.

g.xge = exchange rates for each array element.
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.wanted

These are examples of the main files used for the run involving the flip-flop.

Input/Output Files
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Appendix E

GAME Program Listing
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/* program GAME.C */

#include <stdio.h>
#include <math.h>

/* masks for double floating point numbers */

unsigned char maskset1[8]={255,240,000,000,000,000,000,000};
unsigned char maskset2[8]={255,248,000,000,000,000,000,000};
unsigned char maskset3{8]={255,252,000,000,000,000,000,000};
unsigned char maskset4[8]={255,254,000,000,000,000,000,000};
unsigned char maskset5[8]={255,255,000,000,000,000,000,000};
unsigned char maskset6[8]={255,255,128,000,000,000,000,000};
unsigned char maskset7[8]={255,255,192,000,000,000,000,000};
unsigned char maskset8{8]={255,255,224,000,000,000,000,000%;
unsigned char maskset9[8]={255,255,240,000,000,000,000,000};
unsigned char maskset10[8]={255,255,248,000,000,000,000,000};

unsigned char maskset11[8}={255,255,252,000,000,000,000,000};
unsigned char maskset12[8]={255,255,254,000,000,000,000,000};
unsigned char maskset13[8]={255,255,255,000,000,000,000,000%;
unsigned char maskset14[8]={255,255,255,128,000,000,000,000};
unsigned char maskset15[8]={255,255,255,192,000,000,000,000};
unsigned char maskset16[8]={255,255,255,224,000,000,000,000};
unsigned char maskset17[8]={255,255,255,240,000,000,000,000};
unsigned char maskset18{8]={255,255,255,248,000,000,000,000};
unsigned char maskset19[8]={255,255,255,252,000,000,000,000};
unsigned char maskset20[8]={255,255,255,254,000,000,000,0003;

unsigned char maskset21[8]={255,255,255,255,000,000,000,000};
unsigned char maskset22[8}={255,255,255,255,128,000,000,000};
unsigned char maskset23[8]={255,255,255,255,192,000,000,000%;
unsigned char maskset24[8]={255,255,255,255,224,000,000,000};
unsigned char maskset25[8]={255,255,255,255,240,000,000,0003;
unsigned char maskset26[8]={255,255,255,255,248,000,000,000};
unsigned char maskset27[8]={255,255,255,255,252,000,000,000};
unsigned char maskset28[8]={255,255,255,255,254,000,000,000};
unsigned char maskset29[8]={255,255,255,255,255,000,000,000};
unsigned char maskset30([8]={255,255,255,255,255,128,000,000};

unsigned char maskset31[8]={255,255,255,255,255,192,000,000%;
unsigned char maskset32[8]={255,255,255,255,255,224,000,000};
unsigned char maskset33[8]={255,255,255,255,255,240,000,000};
unsigned char maskset34[8]={255,255,255,255,255,248,000,000};
unsigned char maskset35[8]={255,255,255,255,255,252,000,000};
unsigned char maskset36[8]={255,255,255,255,255,254,000,000};
unsigned char maskset37[8]={255,255,255,255,255,255,000,000};
unsigned char maskset38[8]={255,255,255,255,255,255,128,000};
unsigned char maskset39[8]={255,255,255,255,255,255,192,000};
unsigned char maskset40[8]={255,255,255,255,255,255,224,000};

unsigned char maskset41[8]={255,255,255,255,255,255,240,000};
unsigned char maskset42[8]={255,255,255,255,255,255,248,000};
unsigned char maskset43[8]={255,255,255,255,255,255,252,000};
unsigned char maskset44[8]={255,255,255,255,255,255,254,000};
unsigned char maskset45[8]={255,255,255,255,255,255,255,000};
unsigned char maskset46(8]={255,255,255,255,255,255,255,128};
unsigned char maskset47([8]={255,255,255,255,255,255,255,192};
unsigned char maskset48[8]={255,255,255,255,255,255,255,224};
unsigned char maskset49[8]={255,255,255,255,255,255,255,240};
unsigned char maskset50[8]={255,255,255,255,255,255,255,248};

unsigned char maskset51([8)={255,255,255,255,255,255,255,252};

unsigned char maskset52[8]={255,255,255,255,255,255,255,254};
unsigned char maskset53[8]={255,255,255,255,255,255,255,255};
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#define ROWS 8
#define COLS 8
#define TRUE 1
#define FALSE O

struct currentstruct

{

double n;
double e;
double w;
double s;

b

struct voltagestruct
{
double n;
double e;
double w;
double s;

|

struct capacitorstruct

{

double cn,ce,cw,cs;
double c;
double 1;
double v;
double jn,je,jw,js;
double dv;

|5

struct wantedstruct

{
}

struct pricestruct
{

double n,e,w,s;

|3

struct quantitystruct
{ :
double n,e,w,s;

b

struct outlaystruct

{

double n,e,w,s;

L

int n,e,w,s;

struct pestruct
{

struct voltagestruct v;
double conductance[7];
double alpha;

double beta;

double delta;

double volts[7];

double iamps[7];
double sign[7];

double igate;

double idrain;
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char gateconnection;

struct capacitorstruct cap;

struct currentstruct i;

struct currentstruct j;

struct currentstruct ip;

struct currentstruct jp;

struct voltagestruct v0;

struct currentstruct i0;

int done;

struct voltagestruct new;

struct currentstruct residual;

struct pricestruct price[3];/* use only 1 and 2*/
double exchangerate; '

double profit[3][3]{3]1[3];/*use only 1 and 2*/

I

unsigned char bitmask[8];
int masking; /*TRUE if bits valid (between 1 and 53)*/
double multiply();

double divide();

double add();

double subtract();

double expf();

double fetch();

double store();

double absolute();

int bits;

int numberadd;

int numbersubtract;

int numbermultiply;

int numberdivide;

int numberfetch;

int numberstore;

int numberabsolute;

crif();

int alldone();

double modeln();
double modele();
double modelw();
double models();

double largestresidual();

FILE *arrayfile;

FILE *inputfile;

FILE *outputfile;
FILE *nodefile;

FILE *exchangefile;
FILE *wantedfile;
FILE *circuitfile;
FILE *plotfile;

FILE *operationsfile;

int iterations;

int granditerations;

struct pestruct pe[ROWS+2][COLS+2];

struct wantedstruct wanted[ROWS+2]J{COLS+2];
double currentlimit;

double deltavoltage;

double dt;

double vss;

int plotting;

int progress;
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int reportinterval;

int applygamecriterion[1000];/* boolean at which iteration to apply game

theory*/

int gameintervalstartl;
int gameintervalstart2;
int gameintervalstart3;
int gameintervalstart4;
int gamefrequencyl;
int gamefrequency?2;
int gamefrequency3;
int gamefrequency4;
double capjn,capje,capjw,capijs;
char string[80];

main()

printf("\nprogram GAME started\n");
inputfile=fopen("g.in","r");

if (inputfile==NULL) {printf("WHERE IS G.IN?7?27\n"); exit(8);}

printf("input data read from G.IN\n");
fscanf(inputfile,"%d",&bits); fgets(string,80,inputfile);

masking=TRUE; /*default*/
if ( (bits<1) Il (bits>53))
{bits=53;

masking=FALSE;}
if (masking==TRUE)
{
setupbitmask(bits);
printf("using bit mask for %d bits: %d %d %d %d %d %d %d

%d\n",bits,bitmask[0],bitmask[1],bitmask([2],bitmask[3],bitmask[4],bitmask][5],

bitmask[6],bitmask[7]);
else printf("53 bits, no masking\n");

initdalise();
gameheading();
iterations=0;
progress=0;

plotdata();

do

{ i
iterations=iterations+1;
progress=progress+1;

if (progress>=reportinterval) reportprogress();
iterate();

plotdata();

while ( (iterations<granditerations) && !(alldone()) );
reportprogress();

computecapacitorincrement();

savenodes();

savenodesininputformat(); /*for passing to bargain*/
if (masking==TRUE)

{

saveoperations();

printf("processor operations per iteration:\n");
printops(numbermultiply); printf(" multiplications\n");
printops(numberdivide); printf(" divisions\n");
printops(numberadd); printf(" additions\n");
printops(numbersubtract); printf(" subtractions\n");

}
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printf("total of %4d iterations taken using %2d bits\n",iterations,bits);
if (masking==TRUE)
{
_printf("total +-x/ operations (index of total time) =");
index(numberadd+numbersubtract+numbermultiply+numberdivide);

}
printf("program GAME finished\n");

}

index(total)
int total;

{
if ( (total<1000) )
prind("%4.1f\n",(float)total);
if ( (total>=1000) && (total<1000000) )
printf("%4.1f thousand\n",(float)total/1000.0);
if ((total>=1000000) && (total<1000000000) )
printf("%6.1f million\n",(float)total/1000000.0);
}

printops(operations)

int operations;

{

extern int iterations;

printf("%6.0f thousand",(float)operations/(float)iterations/1000.0);

}

getwanted()

{

extern int plotting;
intr,c;

char face;

char carriagereturn;

/* set all default wanted to false*/
plotting=FALSE;
for (r=1; r<=ROWS; r=r++)

{
for (c=1; c<=COLS; c=c++)
{
wanted[r][c].n=FALSE;
wanted[r][c].e=FALSE;
wanted[r][c].w=FALSE;
wanted({r][c].s=FALSE;
}
i

wantedfile=fopen("g.wanted","r");

if (wantedfile==NULL) {printf("WHERE IS G.WANTED???\n"); exit(7);}
printf("plots from G.WANTED: ");

fscanf(wantedfile,"%c" ,&face);

while ( (face=="n") Il (face=="e") ll (face=="w") |l (face=='s") )

{

plotting=TRUE;

printf("%c",face);
fscanf(wantedfile,"%d %d",&r,&C);
printf("%1d%1d ",r,c);
switch(face)

{
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case 'n": wanted[r][c].n=TRUE; break;

case 'e': wanted[r][c].e=TRUE; break;

case 'w': wanted[r]{c].w=TRUE; break;

case 's": wanted[r][c].s=TRUE; break;

default: printf("ERROR IN G.WANTED\n"); exit(06);
}

fscanf(wantedfile,"%c %c" ,&carriagereturn,&face);

}

if (plotting==FALSE) printd("(none)\n");
else

{

plotfile=fopen("g.plot","w");

printf("\nplotting to G.PLOT in excel format\n");
fprintf(plotfile,"iter.\t maxres\t ");

for (r=1;r<=ROWS;r++)

for (c=1;c<=8; c++)

{

if (wanted[r][c].n==TRUE) fprintf(plotfile,” n%1d%1d\t",r,c);
if (wanted(r][c].e==TRUE) fprintf(plotfile," e%1d%1ld\t",r,c);
if (wanted[r][c].w==TRUE) fprintf(plotfile," w%1d%1d\t",r,c);
if (wanted[r][c].s==TRUE) fprintf(plotfile," s%1d%1d\t " r,c);
}

}
fprint(plotfile,"\n");
}
}

initialise()

{

extern int
granditerations,
reportinterval,
applygamecriterion{1000],
gameintervalstartl,
gameintervalstart2,
gameintervalstart3,
gameintervalstart4,
gamefrequencyl,
gamefrequency?2, °
gamefrequency3,
gamefrequency4;
extern double dft,
currentlimit,
delatvolt,

VSS;

FILE *appliedfile;
int r,c,i;

int dummy;

int p;

char f1,£2,f3,f4;

fscanf(inputfile,"%d" ,&reportinterval);fgets(string,80,inputfile);

fscanf(inputfile,"%d %d %d %d %d %d %d %d",
&gameintervalstartl,
&gamefrequencyl,
&gameintervalstart2,
&gamefrequency?,
&gameintervalstart3,
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&gamefrequency3,

&gameintervalstart4,

&gamefrequency4);fgets(string,80,inputfile);
fscanf(inputfile,"%d",

&granditerations);fgets(string,80,inputfile);
fscanf(inputfile,"%If",

&currentlimit); fgets(string,80,inputfile);
fscanf(inputfile,"%lIf",

&dAv); fgets(string,80,inputfile);
fscanf(inputfile,"%lIf",

&deltavoltage); fgets(string,80,inputfile);
fscanf(inputfile,"%lIf",

&vss); fgets(string,80,inputfile);
currentlimit=currentlimit/1000000.0;
dt=dt/1000000000.0;
printf("%d report interval\ngame from %d x %d; from %d x %d; from

%d x %d; from %d x %d\n%d max. iterations\n",
reportinterval,

gameintervalstart]l,

gamefrequencyl,

gameintervalstart2,

gamefrequency2,

gameintervalstart3,

gamefrequency3,

gameintervalstart4,

gamefrequency4,

granditerations);

printf("%6.1f uA current convergence criterion\n",(1000000.0*currentlimit));
printf("%6.1f nSec time step\n",(1000000000.0*dt));
printf("%4.2f deltavoltage\n %3.1f vss\n",deltavoltage,vss);

/* at each frequency wanted to apply game theory, put a TRUE marker*/
for (p=1;p<1000;p++) applygamecriterion|p]=FALSE;
for (p=gameintervalstartl;(p>0 && p<1000);p=p+gamefrequencyl)
applygamecriterion|{p]=TRUE;
for (p=gameintervalstart2;(p>0 && p<1000);p=p+gamefrequency?2)
applygamecriterion[p]=TRUE;
for (p=gameintervalstart3;(p>0 && p<1000);p=p+gamefrequency3)
applygamecriterion[p]=TRUEL;
for (p=gameintervalstart4;(p>0 && p<1000);p=p+gamefrequency4)
applygamecriterion[p]=TRUE;
/* write out for referece*/
appliedfile=fopen("applied.dat","w");
fprintf(appliedfile,"game criterion applied at iterations:\n");
for (p=1;p<1000;p++)

if (applygamecriterion[p]==TRUE)

fprintf(appliedfile,"%4d\n",p);

fclose(appliedfile);
printf("game criterion applicadons to APPLIED.DAT\n");

/* read array data for whole pe */

arrayfile=fopen("array.dat","r");
if (arrayfile==NULL)
{printf("ERROR GETTING ARRAYFILE ARRAY.DAT\n"); exit(1);}

fread(pe,sizeof(struct pestruct),(ROWS+2)*(COLS+2),arrayfile);
fclose(arrayfile);

if (ferror(arrayfile)!=0) {printf("pe array not read in\n"); exit(13);}
getwanted();

clearnumbers();

}
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plotdata()

{

extern int iterations;
extern int numberadd;
extern int numbersubtract;
extern int numbermultiply;
extern int numberdivide;
intr,c;

if (plotting==TRUE)
{

fprintf(plotfile,
"%4d \t %10.0f \t " ,
iterations,(1000000.0*largestresidual()));
fprintf(plotfile,
"%12d \t",

(numberadd+numbersubtract+numbermultiply+numberdivide));
for (r=1;r<=ROWS;r++)

for (c=1;c<=COLS; c++)

{
if (wanted[r][c].n==TRUE) fprintf(plotfile,"%12.9f \t",pe[r][c].v.n);
if (wanted(r][c].e==TRUE) fprintf(plotfile,"%12.9f \t",pefr][c].v.e);
if (wanted[r][c].w==TRUE) fprintf(plotfile,"%12.9f \t",pe[r][c].v.w);
if (wanted[r][c].s==TRUE) fprintf(plotfile,"%12.9f \t",pe[r][c].v.s);
if (wanted[r][c].n==TRUE) fprintf(plotfile,"%15.12If \t",pe[r][c].i.n);
if (wanted|r][c].e==TRUE) fprintf(plotfile,"%15.121f \t",pe[r][c].i.e);
if (wanted{r][c].w==TRUE) fprintf(plotfile,"%15.121f \t",pe(r][c].i.w);
if (wanted|[r][c].s==TRUE) fprintf(plotfile,"%15.121f \t",pe[r][c].i.s);

}

}
fprintf(plotfile,"\n");

saveoperations()

{

extern int numberadd;
extern int numbersubtract;
extern int numbermultiply;
extern int numberdivide;
extern int numberabsolute;
extern int numberfetch;
extern int numberstore;
intr,c;

operationsfile=fopen("g.operations","w");

printf("operation count to G.OPERATIONS\n");
fprintf(operationsfile,"absolute\t%12d\n ",numberabsolute);
fprintf(operationsfile,"add  \t%12d\n ",numberadd);
fprintf(operationsfile,"divide \t%12d\n ",numberdivide);
fprintf(operationsfile,"fetch \t%12d\n ",numberfetch);
fprintf(operationsfile,"multiply\t%12d\n ",numbermultiply);
fprintf(operationsfile,"store \1%12d\n ",numberstore);
fprintf(operationsfile,"subtract\t%12d\n ",numbersubtract);
fclose(operationsfile);

}
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clearnumbers()

numberadd=0;
numbersubtract=0;
numbermultiply=0;
numberdivide=0;
numberfetch=0;
numberstore=0;
numberabsolute=0;

}

allcurrents(r,c,vn,ve,vw,vs)
intr,c;
double vn,ve,vw,vs;

extern double capjn,capje,capjw,capjs;
int i
double vgs;
double vds;
struct pestruct *p;
p=&pelrlicl;
p-=>volts[1]=store(subtract(fetch(vn),fetch(vw)));

if (fetch(p>volts[1])>0) p->sign[1]=store(1.0); else p-
>sign[1]=store(-1.0);
p->volts[2]=store(subtract(fetch(vn),fetch(ve)));

if (fetch(p>volts[2])>0) p->sign[2]=store(1.0); else p-
>sign[2]=store(-1.0);
p->volts[{3]=store(subtract(fetch(ve),fetch(vs)));

if (fetch(p—>volts[3])>0) p->sign[3]=store(1.0); else p-
>sign[3]=store(-1.0);
p->volts[4]=store(subtract(fetch(vw),fetch(vs)));

if (fetch(p->volts[4])>0) p->sign[4]l=store(1.0); else p-
>sign[4]=store(-1.0);
p->volts[5S]=store(subtract(fetch(ve),fetch(vw)));

if (fetch(p>volts[5])>0) p>sign[5]=store(1.0); else p-
>sign[5]=store(-1.0);
p->volts[6]=store(subtract(fetch(vn),fetch(vs)));

if (fetch(p—>volts[6])>0) p->sign[6]=store(1.0); else p-
>sign[6]=store(-1.0);

if (p->gateconnection=="'n') vgs=store(subtract(fetch(vn),fetch(vs)));
else f

if (p->gateconnection=="'e') vgs=store(subtract(fetch(ve),fetch(vs)));
else

if (p>gateconnection=='w') vgs=store(subtract(fetch(vw),fetch(vs)));
else

if (p—>gateconnection=="'s"') vgs=store(subtract(fetch(vs),fetch(vs)));
else vgs=store(subtract(fetch(vw),fetch(vs)));
vds=store(subtract(fetch(vn),fetch(vs)));

for (i=1; i<=6; i=i++) p>iamps[i]=
store( divide(
multiply(
fetch(p->sign[i]),
multiply(
absolute(fetch(p->volts[i])),
fetch(p->conductance[i])

),
fetch(1000.0)

)
%
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p->igate=store(0.0);
if (vds>0) p->idrain=

store(
(
" (fetch(p>beta)*
(expf(
multiply(
fetch(p->alpha),
add( fetch(vgs),
fetch(p->delta)
)
)
)*
(fetch(1.0)-
expf(
multiply(-fetch(p->alpha),
fetch(vds)
)
)
)
)
)
/fetch(1000.0))

);
else p->idrain=store(0.0);
capjn=store(multiply( (fetch(vn)-fetch(p->cap.v)),
fetch(p->cap.cn)

)
)
capje=store(multiply( (fetch(ve)-fetch(p->cap.v)),
fetch(p—cap.ce)

)
);
capjw=store(multiply( (fetch(p—>cap.v)-fetch(vw)),
fetch(p>cap.cw)

)
capjs=store(multiply( (fetch(p-—cap.v)-fetch(vs)),
fetch(p—>cap.cs)
)
);

p->cap.jn=store(capjn);
p->cap.je=store(capje);
p->cap.jw=store(capjw);
p->cap.js=store(capjs);

double modeln(r,c,vn,ve,vw,vs)
intr,c;
double vn,ve,vw,vs;

extern double capjn;

struct pestruct *p;

p=&pelrlic];
allcurrents(r,c,vn,ve,vw,vs);

return

add(
fetch(p->iamps[1]),
add(
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fetch(p->iamps[6]),

add(
fetch(p->iamps[2]),
add(
fetch(p->idrain),
fetch(capjn)
)

)

double modele(r,c,vn,ve,vw,6vs)
intr,c;
double vn,ve,vw,vs;

extern double capje;
struct pestruct *p;
p=&pelrlic];

allcurrents(r,c,vn,ve,vw,vs);

return add(

-fetch(p>iamps[2]),
add(
fetch(p->iamps[5)]),
add(
fetch(p->iamps[3]),
fetch(capje)
)

)

double modelw(r,c,vn,ve,vw,vs)
intr,c;
double vn,ve,vw,vs;

extern double capjw;
struct pestruct *p;
p=&pe[r][c}; .
allcurrents(r,c,vn,ve,vw,vs);
return add(
fetch(p—>iamps[1]),

add(
fetch(p—>iamps[5]),
add(
-fetch(p->iamps[4]),
add(
fetch(p>igate),
fetch(capjw)
)
)

)
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double models(r,c,vn,ve,vw,vs)
intr,c;
double vn,ve,vw,vs;

extern double capjs;
struct pestruct *p;
p=&pe[r](c];
allcurrents(r,c,vn,ve,vw,vs);
return add(
fetch(p->iamps|[4]),

add(
fetch(p->iamps[6]),
add(
fetch(p->iamps[3]),
add(
fetch(p->idrain),
fetch(capijs)
)
)
)

)

computecurrents(r,c)
intr,c;

extern double deltavoltage;

struct pestruct *p;

p=&pelr]ick;

p->i.n=store(modeln(r,c,fetch(p->v.n),
fetch(p->v0.e),
fetch(p->vO.w),
fetch(p—=>vQ.s))

p->ip.n=store(modeln(r,c,add(fetch(p->v.n),fetch(deltavoltage)),
fetch(p->v0.e),
fetch(p->v0.w),
fetch(p->v0.s))
);
p->i.s=store(models(r,c,fetch(p->v0.n),
fetch(p->vQ0.e),
fetch(p->v0.w),
fetch(p->v.s))

);
p->ip.s=store(models(r,c,fetch(p->vQ0.n),
fetch(p->v0.e),
fetch(p->v0.w),
add(fetch(p->v.s),fetch(deltavoltage)))
)

p->i.e=store(modele(r,c,fetch(p->v0.n),
fetch(p->v.e),
fetch(p->v0.w),
fetch(p—=>v0.s)));

p->ip.e=store(modele(r,c,fetch(p->v0.n),
add(fetch(p->v.e),fetch(deltavoltage)),
fetch(p—>v0.w),
fetch(p=>v0.s)));

p->i.w=store(modelw(r,c,fetch(p->v0.n),
fetch(p->vQ0.e),
fetch(p->v.w),
fetch(p—=v0.s)));
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p—>ip.w=store(modelw(r,c,fetch(p->v0.n),
fetch(p->vO.e),
add(fetch(p->v.w),fetch(deltavoltage)),
fetch(p>v0.s)));

maxprofitcriterion(r,c)
int r,c;

double maxprofit;
int nmax,emax,wmax,smax;
int n,e,w,s;
maxprofit=store(-10000000.0);
nmax=2;
emax=2;
wmax=2;
smax=2;
for (n=1; n<=2; n++)
{for (e=1; e<=2; e++)
{for (w=1; w<=2; w++)
ffor (s=1; s<=2; s++)

if (fetch(pe[r][c].profit[n][e][w][s])>=fetch(maxprofit))
{

maxprofit=store(pe[r][c].profit[n][e][w][s]);
nmax=n;

emax=e;

wmax=w;

smax=s;

pe[r]{c].v.n=store(pe[r][c].price[nmax].n);
pe[r][c].v.e=store(pe[r][c].price[emax].e);
pelr][c].v.w=store(pe[r}{c].price[wmax].w);
pe[r][c].v.s=store(pe[r][c].price[smax].s);

computepossibles(r,c)
intr,c;
{
int n,e,w,s;
struct quantitystruct quantity;
struct outlaystruct outlay;
for (n=1; n<=2; n++)
{for (e=1; e<=2; e++)
{for (w=1;w<=2;w++)
{for (s=1;s<=2;5++)
{quantity.n=store(modeln(r,c,fetch(pe[r][c].price[n].n),
fetch(pe[r][c].price[e].e),
fetch(pe[r}[c].price[w].w),
fetch(pe[r][c].price[s].s)));
quantity.e=store(modele(r,c,fetch(pe[r][c].price[n].n),
fetch(pe[r][c].price[e].e),
fetch(pe[r][c].price[w].w),
fetch(pelr][c].price[s].s)));
quantity.w=store(modelw(r,c,fetch(pe[r][c].price[n].n),
fetch(pe[r][c].price[e].e),
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fetch(pe[r][c].price[w].w),
fetch(pe[r]ic].price[s].s)));
quantity.s=store(models(r,c,fetch(pe[r][c].price[n].n),
fetch(pe[r}[c].price[e].e),
fetch(pe[r][c].price[w].w),
fetch(pe[r][c].price[s].s)));

outlay.n=
store(
multiply(fetch(pe[r-1]{c].exchangerate),
multiply( fetch(pe[r][c].price{n].n),
fetch(quantity.n)
)
)
);
outlay.e=
store(
multiply(fetch(pe[r][c-1].exchangerate),
multiply( fetch(pe[r][c].price[e].e),
fetch(quantity.e)
)
)
);
outlay.w=
store(
multiply(fetch(pe[r]{c+1].exchangerate),
multiply( fetch(pe[r][c].price[w].w),
fetch(quantity.w)
)
)
);
outlay.s=
store(
multiply( fetch(pe[r+1][c].exchangerate),
multiply( fetch(pe[r][c].price][s].s),
fetch(quantity.s)
)
)
);
pelrl[cl.profit[n][e][w][s]=store(
add(fetch(outlay.n),
add (
fetch(outlay.e),
add (fetch(outlay.w),
fetch(outlay.s)
)
)
)
)
}
}
}
1

computeresiduals(r,c)
int r,c;
{
if (r>1)
pe[r][c].residual.n=fabs(pe[r][c].i.n-
pe[r-1][c].i.s
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else
pelrl[c].residual.n=0;

if (c<COLS) pef{r](c].residual.e=fabs(pe[r][c].i.e-
pelr]lc+1].iw
);

else
pe[r][c].residual.e=0;

}

receivefrompartner(r,c)
intr,c;

{

if (r==1)

{
pelr]{c].j.n=store(fetch(pe[r][c].i.n));
pelrlicl.jp.n=store(fetch(pe[r]{c].ip.n));

}
else
{
pe[r}{cl.j.n=store(fetch(pe[r-1][c].i.s));
pe[rlic].jp.-n=store(fetch(pe[r-1][c].ip.s));
}
if (c==COLS)
{
pelrl[c].j.e=store(fetch(pe[r][c].i.e));
pefr][cl.jp.e=store(fetch(pe[r][cl.ip.e));
}
else
{
pelr][c].j.e=store(fetch(pe[r][c+1].i.w));
pelrl{cl.jp.e=store(fetch(pe[r][c+1].ip.w));
}
}

calculatenewnodenorth(r,c)
intr,c;

extern double deltavoltage;
extern double vss;
double aa,bb,cc,dd;
bb= store( divide (
subtract(fetch(pe[r][c].ip.n),
fetch(pelr][c].i.n)),

fetch(deltavoltage)
)
);
aa=  store(
subtract( fetch(pel[r][c]l.i.n),
multiply(
fetch(bb),
fetch(pe[r}ic].v.n)
)
)
);
dd=store(
divide(

subtract(fetch(pe[r][c].jp.n),
fetch(pe[r][c].j.n)
),

fetch(deltavoltage)
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)
)

cc=store(
subtract (fetch(pe[r][c].j.n),
’ multiply(fetch(dd),
fetch(pe[r][c].v.n)
)
)

)

if (absolute(subtract(fetch(bb),fetch(dd)))>fetch(0.00001))
pe[rl[c].new.n=store(divide(subtract(fetch(cc),fetch(aa)),
subtract(fetch(bb),fetch(dd))
)
);
else
pe[r][c]-new.n=store(fetch(pe[r][c].v.n));
if (fetch(pe[r][c].new.n)<fetch(-vss)) pe[r][c].new.n=store(fetch(-vss));
if (fetch(pe[r][c].new.n)>fetch(vss)) pe[r][c].new.n=store(fetch(vss));

calculatenewnodeeast(r,c)
intr,c;

extern double deltavoltage;
extern double vss;
double aa,bb,cc,dd;
bb=store(
divide(subtract(fetch(pel[r][c].ip.e),
fetch(pel[r][c].i.e)

),
fetch(deltavoltage)
)
);
aa=store(
subtract(fetch(pe[r][c].i.e),
multiply(fetch(bb),
fetch(pe[r][c].v.e)
)

) )
dd=stor'e(
divide(subtract(fetch(pe[r}[c].jp.e),
fetch(pelr][c].j.e)

),
fetch(deltavoltage)
)
);
cc=store(
subtract(fetch(pel[r]{c].j.e),
multiply(fetch(dd),
fetch(pe[r][c].v.e)
)

)

);
if (absolute(subtract(bb,dd))>0.00001) pe[r]ic].new.e=divide(subtract(cc,
aa

)s
subtract(bb,

dd
)
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);
else pe[r][c].new.e=pe[r][c].v.e;
if (pe[rlic]l.new.e<-vss) pe[r][c].new.e=-vss;
if (pe_[r][c].new.e>vss) pelr]l{c].new.e=vss;

calculatenewnodes(r,c)
intr,c;
{
calculatenewnodenorth(r,c);
calculatenewnodeeast(r,c);

}

updatenewnodes(r,c)

int r,c;

{
pelrllcl.price[2].e=pe[r][c].new.e;
pe[r][c].price[2].n=pe[r]{c].new.n;
pe[r-1][c].price[2].s=pe[r][c].new.n;
pe[r][c+1].price[2].w=pe[r}[c].new.e;

pelrlic].v.e=pe[r][c].new.e;
pe(r][c].v.n=pe[r]{c]l.new.n;
pe[r-1][c].v.s=pe[r][c].new.n;
pelr][c+1].v.w=pe][r][c].new.e;

saveedgevoltages(r,c)

intr,c;

{
pelrl[c].vO.n=pe[r][c].v.n;
pe[r]lc].v0.e=pe[r][c].v.e;
pelrl[c].vO.w=pe[r][c].v.w;
pelr]icl.vO.s=pe[r][c].v.s;

pelr]{cl.price[1].n=pe[r][c].vO.n;
pelrl[cl.price[1].e=pe[r}[c].vO.e;
pelr][c]l.price{1].w=pe[r}[c].vO.w;
pe[r}{cl.price[1].s=pe[r][c].vO.s;
}

saveedgecurrents(r,c)

intr,c;

{
pelrl{c].i0.n=pe[r][c].i.n;
pelrlic]l.i0.e=pe|[r][c].i.e;
pelrlic].i0.w=pe[r][c].i.w;
pelrllcl.i0.s=pe[r]{c].i.s;

}

updateedgevoltages(r,c)

int r,c;
if (c>1) pe[r]{c].vO.w=pe[r][c].v.w;
if (c<COLS) pelr][c].vO.e=pe[r]fc].v.e;
if (r>1) pe[r][c].vO.n=pe[r][c].v.n;
if (r<ROWS) pe[r][c}.vO.s=pe[r][c].v.s;
}
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solvefornewnodes(r,c)

intr,c;

{
computecurrents(r,c);
receivefrompartner(r,c);
calculatenewnodes(r,c);
updatenewnodes(r,c);

}

iterate()

{

extern int iterations;
intr,c;

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

{saveedgevoltages(r,c);}};

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

{saveedgecurrents(r,c);}};

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

fcomputecurrents(r,c);}};

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

{computeresiduals(r,c);}};

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

{solvefornewnodes(r,c);}};

for (r=1;r<=ROWS;r=r++) {for (c=1;c<=COLS;c=c+1)

fupdateedgevoltages(r,c);i};
if (applygamecriterion[iterations]==TRUE)

for (r=1;r<=ROWS;r=r++)
{

for (c=1;c<=COLS;c=c++)
computepossibles(r,c);

}
for (r=1;r<=ROWS;r=r++)

{
for (c=1;c<=COLS;c=c++)
maxprofitcriterion(r,c);

}

int alldone()
{intr,c;
int flag;
for (r=1;r<=ROWS;r++)

{
for (c=1;c<=COLS;c++)
{

if ( (pe[r][c].residual.n<currentlimit)

&& (pe[r]{c].residual.e<currentlimit) )
pelrlicl.done=TRUE;

else

pelr}{c].done=FALSE;

flag=TRUE;

for (r=1;r<=ROWS; r++)

{for (c=1;c<=COILS; c++)

{if (pe[r]lic].done==FALSE) flag=FALSE; }}
return flag;

}
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computecapacitorincrement()

extern double dt;

intr,c;
double dgn,dqe,dqw,dqs,dq;
for (r=1;r<=ROWS;r++)
{
for (c=1;c<=COLS;c++)
{
if (pe[r][c]).cap.c>0)
{
dgn=pe|r]{c].cap.jn*dt;
dge=pe[r][c].cap.je*dt;
dqw=pe([r][c].cap.jw*dt;
dqs=pe[r][c].cap.js*dt;
dq=dqn+dqge+dqw+dqgs;
pe[r]lc].cap.dv=-dq/pe[r][c].cap.c;
}
else
pelrlicl.cap.dv=0;
}
}
}

double largestresidual()
{

double largest;

intr,c;

largest=0;
for (r=1;r<=ROWS;r++)
{
for (c=1;c<=COLS;c++)
{
if (fabs(pe[r][cl.residual.n)>largest)
largest=fabs(pe(r][c].residual.n);
if (fabs(pe[r][c].residual.e)>largest)
largest=fabs(pe[r][c].residual.e);
}
}
return largest;

}

savenodes()

extern FILE *outputfile;
intr,c;
outputfile=fopen("g.end","w");
if (outputfile==NULL) printf("G.END WILL NOT OPEN\n"):
else printf("final nodes saved in readable text form in G.END\n");
for (r=1;r<=ROWS;r++)
{
for (c=1; c<=COLS; c++)
fprintf(outputfile,"%15.12f",pe[r][c].v.n);
fprintf(outputfile,"\n");

for (c=1; c<=COLS; c++)
fprintf(outputfile,"%15.12f" pe[r][c].v.e);
fprintf(outputfile,"\n");

for (c=1; c<=COLS; c++)
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fprintf(outputfile,"%15.12f",pe[r][c].v.w);
fprintf(outputfile,"\n");

for (c=1; c<=COLS; c++)
fprintf(outputfile,"%15.12f",pe[r}[c].v.s);

fprintf(outputfile,"\n");

}

savenodesininputformat()
{

int r,c;

int dummy;

FILE *nodefile;

printf("voltage nodes saved in input format to G.NODES.INPUT\n");
nodefile=fopen("g.nodes.input”,"w");

for (r=1;r<=ROWS;r++)

{

for (c=1;c<=COLS;c++) fprintf(nodefile,"%12.91f",pe[r][c].v.n);
fprintf(nodefile,"\n");

for (c=1;c<=(COLS+1);c++) fprintf{nodefile,"%12.91f",pe[r][cl.v.w);
fprintf(nodefile,"\n");

}

for (c=1;c<=COLS;c++)
fprintf(nodefile,"%12.91f",pe[ROWS+1][c].v.n);
fprintf(nodefile,"\n");

for (r=1;r<=ROWS;r++)

{

fprintf(nodefile,” ");

for (c=1;c<=COLS;c++)
fprintf(nodefile,"%12.91f",pe[r][c].cap.v);
fprintf(nodefile,"\n");

}

1

reportprogress()

extern int iterations;
extern int progress;

printf("%4d iterations out of %d max. residual=%9.0f\n",
iterations,granditerations,(1000000.0*largestresidual()));
progress=0;

}
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double expf(x)
double x;

double r;
double sum;
double n;
int c,count;
if (masking==FALSE) return exp(x);
count=0; /* if x ok*/
if (x>1.0)
{
for (c=0; x>1.0; c++) /* cut x down, keep count */
{
X=x/2;
}

count=c;
/* when get here, count=number of times halved*/

/* calculate exponent of number <=1 */
r=1.0;

n=1.0;

sum=1.0;

for (n=1.0; n<15.0; n=n+1)

r=multiply(x,
divide(r,
n
» )
)
sum=add{sum,
T

)

/* if it was halved (sqrt) then power back up count times */

if (count>0)
{for (c=1; c<=count; c=Cc++)
sum=multiply(sum,

sum

);

}
return divide(1.0,
sum

)

double multiply(a,b)
double a,b;

{

double c;

if (masking==FALSE) return (a*b);
mask(&a);

mask(&b);

c=a*b;

mask(&c);
numbermultiply++;
return c;

}

294

GAME.C



double divide(a,b)
double a,b;

{

double c;

if (masking==FALSE) return (a/b);
mask(&a);

mask(&b);

c=a/b;

mask(&c);
numberdivide++;
return ¢;

}

double add(a,b)
double a,b;

{

double ¢;

if (masking==FALSE) return (a+b);
mask(&a);
mask(&b);

c=a+b;

mask(&c);
numberadd++;
return c;

}

double subtract(a,b)
double a,b;

double ¢;

if (masking==FALSE) return (a-b);
mask(&a);

mask(&b);

c=a-b;

mask(&c);

numbersubtract++;

return c;

}

double fetch(a).
double a; "

{

if (masking==FALSE) return a;
mask(&a);

numberfetch++;

return a;

}

double store(a)
double a;

{

if (masking==FALSE) return a;
mask(&a);

numberstore++;

return a;

}
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double absolute(a)
double a;

{

if (masking==FALSE) return fabs(a);
mask(&a);

numberabsolute++;

return fabs(a);

}

mask(s)
/* mask a double float number*/
/* s=address of double */

unsigned char *s;
unsigned char *my;

m=&bitmask[0];

*s=*s & *m; S++; m++;
*s=*s & *m; S++; M++;
*s=*s & *m; S++; M++;
*s=*s & *m; S++; M++;
*s=*s & *m; S++; M++;
*s=*s & *m; S++; M++;
*s=*s & *my; S++; Mm++;
*s=*s & *my;

}

crif()
{

}

printf("\n");
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setupbitmask(bits)

int bits;
{

inti;

switch - (bits)

{

case
case
case
case
case
case
case
case
case

O XN A WN =

case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
case 16:
case 17:
case 18:
case 19:
case 20:
case 21:
case 22:
case 23:
case 24:
case 25:
case 26:
case 27:
case 28:
case 29:
case 30:
case 31:
case 32:
case 33:
case 34:
case 35:
case 36:
case 37:
case 38:
case 39:
case 40:
case 41:
case 42:
case 43:
case 44:
case 45:
case 46:
case 47:
case 48:
case 49:
case 50:
case 51:
case 52:
case 53:

}
}

: for (i=0;i<8;i++) bitmask[i}]=maskset][i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset2[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset3[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset4[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset5[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset6[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset7[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset8[i]; return;
: for (i=0;i<8;i++) bitmask[i]=maskset9[i]; return;

for (i=0;i<8;i++) bitmask[il=maskset10[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset11[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset12[i]; return;
for (i=0;i<8;i++) bitmask{i]=maskset13[i]; return;
for (i=0;i<8;i++) bitmask[i]=masksetl4[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset15[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset16[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset17[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset18[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset19]i]; return;
for (i=0;i<8;i++) bitmask([i]=maskset20][i]; return;
for (i=0;i<8;i++) bitmask[i]l=maskset21[i]; return;
for (i=0;i<8;i++) bitmask[i]J=maskset22[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset23[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset24[i]; return;
for (i=0;i<8;i++) bitmask[i]l=maskset25[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset26[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset27[i]; return;
for (i=0;i<8;i++) bitmask[i]l=maskset28[i]; return;
for (i=0;i<8;i++) bitmask[i]J=maskset29[i]; return;
for (i=0;i<8;i++) bitmask[il=maskset30[i]; return;
for (i=0;i<8;i++) bitmask[i}J=maskset31[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset32{i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset33[i]; return;
for (i=0;i<8;i++) bitmask[i]l=maskset34(i]; return;
for (i=0;i<8;i++) bitmask[il=maskset35[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset36[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset37{i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset38[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset39[i]; return;
for (i=0;i<8;i++) bitmask[i}=maskset4Q[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset41{i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset42[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset43[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset44[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset45[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset46]i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset47[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset48[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset49[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset50[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset51[i]; return;
for (i=0;i<8;i++) bitmask[i}=maskset52[i]; return;
for (i=0;i<8;i++) bitmask[i]=maskset53[i]; return;
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MULTIPLIER CELL PROGRAM - MEAN VALUES OF PARAMETERS
.MODEL ENH NMOS VTO= 0.850 GAMMA= 0.620 PHI=0.65 LAMBDA=0.06

+ LEVEL=2

+ CGSO=4E-10 CGDO=4E-10 CGBO=2E-10

+ CBD=20FF CBS=20FF

+ RS=1.0 RD=1.0

+ TOX=1E-7 NSUB=2E15

.MODEL DEPL NMOS VTO=-2.750 GAMMA= 0.650 PHI=0.65 LAMBDA=0.04
+ LEVEL=2

+ CGSO=4E-10 CGDO=4E-10  CGBO=2E-10

+ CBD=20FF CBS=20FF

+ RS=1.0 RD=1.0

+ TOX=1E-7 NSUB=2E15

SUBCKT YINVI 123

M1 3 2 2 0 DEPL 1=22.5U W= 5.0U AD=112.0P AS=100.0P
M2 2100ENH L=5.0U W=10.0U AD=100.0P AS=125.0P
.ENDS YINV1

SUBCKTYINV2 123

M3 32 2 0 DEPL [=20.0U W=5.0U AD=112.0P AS=137.0P
M4 210 0 ENH L=5.00 W=5.0U AD=137.0P AS=187.0P
.ENDS YINV2

SUBCKT XINV1 123

M5 3 2 2 0 DEPL L=22.5U W= 5.0U AD=112.0P AS=100.0P
M6 21 0 0 ENH L=5.00 W=10.0U AD=100.0P AS=125.0P
.ENDS XINV1

SUBCKTXINV2 123

M7 3 2 2 0 DEPL L=20.0U W=5.0U AD=112.0P AS=100.0P
M8 2100 ENH L=5.0U W=5.0U AD=100.0P AS=125.0P
.ENDS XINV2

SUBCKT AINV1 123

M9 3220DEPL [=20.0U W=5.0U0 AD=112.0P AS=100.0P
M102 10 0 ENH L=5.0U W=10.0U AD=100.0P AS=125.0P
.ENDS AINV1

SUBCKT AINV2Z 123

M113220DEPL L=20.0U W=5.0U0 AD=112.0P AS= 87.0P
M12 210 0 ENH L=5.0U0 W=5.0U AD=87.0P AS=112.0P
.ENDS AINV2

SUBCKTCINV1I 123

M133220DEPL L=22.5UW=5.0U AD=112.0P AS=100.0P
M142 10 0 ENH L=5.0U0 W=10.0U AD=100.0P AS=125.0P
.ENDS CINV1

.SUBCKT CINV2 123

M153220DEPL 1=20.00 W=5.0U AD=112.0P AS=137.0P
M162 10 0 ENH [=5.0U W=5.0U AD=137.0P AS=112.0P
.ENDS CINV2 '=

SUBCKTINV 123

M173220DEPL L[=20.0U0 W=5.0U AD=112.0P AS= 87.0P
M18 2 10 0 ENH L=5.0U0 W=5.0U AD=87.0P AS=125.0P
.ENDS INV

SUBCKTNAND 1234

M194330DEPL L=40.0U W=5.0U AD=250.0P AS= 20.0P
M203 15 0ENH L= 5.0U W=10.0U AD=250.0P AS= 75.0P
M215200ENH L=5.0U W=10.0U AD=75.0P AS=123.0P

.ENDS NAND
SUBCKTMUX 123456789

M1 812820 ENH L=5.0U W=5.0U AS=60.0P AD= 60.0P

M2 824840 ENH L=5.0U W=5.0U AS=60.0P AD= 60.0P

M3 8510 86 0 ENH L=5.0U0 W=5.0U AS=60.0P AD= 60.0P
M4 86 31 880 ENH L=5.0U W=5.0U AS= 60.0P AD= 60.0P
M5 8921900 ENH L=5.0U W=5.0U AS=60.0P AD= 60.0P
M6 9031920 ENH L=5.0U W=5.0U AS= 60.0P AD= 60.0P
M7 9311940 ENH L=5.0U W=5.0U AS= 60.0P AD= 60.0P
M8 9442960 ENH L=5.0U W=5.0U AS=60.0P AD= 60.0P
M9 6322620 ENH L=5.0U W=5.0U AS=60.0P AD= 60.0P
M10 6242600 ENH I=5.0U W=5.0U AS= 60.0P AD= 60.0P
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M1l 6612650 ENH L=5.0U W=5.0U AS= 60.0P AD= 60.0P
M12- 6533640 ENH L= 5.0U W= 5.0U AS= 60.0P AD= 60.0P
M13 7023690 ENH L=5.0U W= 5.0U AS= 60.0P AD= 60.0P
M14 69 3367 0 ENH L=5.0U W= 5.0U AS= 60.0P AD= 60.0P
M15 7413730 ENH L= 5.0U W= 5.0U AS= 60.0P AD= 60.0P
Ml6 7344710 ENH L=5.0U W=5.0U AS= 60.0P AD= 60.0P

*METAL MAINLY
C1 1 0 0.005000P
C10 100 0.005000P
C11110 0.005000P
C12 120 0.005000P
C13 130 0.005000P
C2 2 0 0.005000P
C21 210 0.005000P
C22 22 0 0.005000P
C23 23 0 0.005000P
C24 24 0 0.005000P
C3 3 0 0.005000P
C31 310 0.005000P
C32 320 0.005000P
€33 330 0.005000P
C34 340 0.005000P
C4 4 0 0.005000P
C41 410 0.005000P
C42 42 0 0.005000P
C43 430 0.005000P
C44 44 0 0.005000P
C50 5 0 0.010000P
*MAINLY DIFFUSION
R1 110 1.000
R101011  1.000
R111112  1.000
R121213  1.000
R2 2 21 1.000
R212122  1.000
R222223  1.000
R23 2324  1.000
R3 3 31  1.000
R313132  1.000
R323233  1.000
R333334  1.000
R4 4 41  1.000
R414142  1.000
R42 4243  1.000
R43 4344  1.000 °
R84840  1.000
R88885  1.000
R92926  1.000
R96966  1.000
R60606  1.000
R64646  1.000
R67677  1.000
R71717  1.000
R81818  1.000
R85858  1.000
R89 898  1.000
R93938  1.000
R66 669  1.000
R70709  1.000
R74749  1.000
R63639  1.000
.ENDS MUX
*NOMINAL CIRCUIT
*DIFFUSION

R16 2131 600.00
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R17 2330 580.00

*METAL
R3 56 850.00
*POLYSILICON

Rl 12 3430
R2 34 2230
R4 824 247.0
R5 910 285.0
Ro 1112 177.0
R7 137 80.0
R8 827 353.0
RO 2526 187.0
R10 1415 587.0
R11 1617 260.0
R12 1828 180.0
R13 1629 347.0
R14 1920 357.0
R15 2122 170.0
*CAPACITORS

*DIFF

C17 230 0.070000P

*METAL

C3 50 0.200p
Cs 90 0.050p
C7 130 0.004P
c9 250 0.009P
*POLY

C132 1320 0.010P
C133 1330 0.010P

Cc4 80 0.120P
Ci1 10 0.100p
c2 30 0.010P
Co 110 0.008P
c8 80 0.030p
C10 140 0.050pP
Cl1 160 0.010P
C12 180 0.009p
C13 160 0.020p

Cl4 190 0.080p
C15 210 0.009p
Cle 210 0.099pP
*GATES

X1 2 3 99 YINV1
X2 4 5 99 YINV2
X3 1011 99 XINV1
X4 1213 99 XINV2

X5 1516 99 AINV1
X6 1718 99 AINV2
X7 2021 99 CINV1
X8 2223 99 CINV2

X9 678 99 NAND
X10 2425 99 INV

X11 2627 2829993031132133 MUX

*VOLTAGES
VDD 990DCS.0

VCIN 190 O PULSE(O 5 1IN 5N 5N 200N 400N)
VSIN 140 O PULSE(O 5 1N SN SN 200N 400N)
VXIN 90 O PULSE(O 5 1N 5N 5N 200N 400N)
VYIN 10 O PULSE(O 5 1N 5N 5N 200N 400N)

*SIMULATION

PRINT TRAN  V(132) V(133)
.OPTIONS TNOM=27.0 NOPAGE
.TRAN 1NSEC 150NSEC

.END
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