
o

-t- -

..OI\ STOCHASTIC MODELLI}{G OF

VERY LARGE SCALE I}TTEGRATED

CIRCUITS:

An Investigation into the Timing

Behaviour of Microelectronic Systems"

Gregory Raymond H. Bishop, B.Sc.(Hons).

Being a thesis submitted

for the

DEGREE of DOCTOR OF PHILOSOPHY

The lJniversity of Adelaide

(traculty of Engineering)

South Australia

1n

January 1993

Contents

Abstract

Declaration

Acknowledgements

Author's Publications

I Motivation

1 Introduction
1.1 The Thesis . .

7.2 Why I Consider it Important

1.3 Systems Production

1.3.1 Missed Opportunities

1.3.2 Expectations

I.4 Stochastic Modelling

1.5 A New Approach?

I

ll

lll

1.6

L.7

Unaddressed Problems

1.6.1 Parameter Variations

I.6.2 Longest Path-Criterion

1.6.3 Example of Timing Variation

How to Simulate - A New Way

2

2

2

3

4

4

5

4
I

8

8

8

I
9

2 Economic Considerations

2-I Statistical Considerations

2.2 Profitable Design of VLSI Circuits

2.2.\ Market Yield

2.2.2 Design Yield

2.2.3 FabricationYield

11

11

12

12

13

I4

16

18

20

2l

23

23

24

25

26

27

28

29

30

30

30

30

35

36

36

39

4I

2.3

2.4

2.5

2.2.4 Manufacturability.

New Design Tools

Some Observations

Significant Conclusions

II Methods

3 Circuit Timing Characterisation

3.1 Types of Circuits

3.2 Timing Simulations

3.3 Leaf Cells

3.4 Monte-Carlo Simulation Example

3.4.I Fabrication Parameter Variations

3.4.2 The Longest-Time Path

3.4.3'Monte-Carlo' SPICE simulation

3.5

4 Existing Methods

4.I StatisticalSimulators

4.2 Circuit Simulation

4.2.1 Timing Verifiers

The Significant Statistical Distributions

3.5.1 Probability Density Distribution .

3.5.2 Accumulated Distribution Function

3.5.3 Manufactured Operating Speed Distribution

3.6 Conclusions and Evaluation

It

4.3

4.4

4.5

4.2.2 RelaxationMethods

Fabrication Simulators

Simulation Acceleration

4.4.I SimulatedAnnealing

4.4.2 Software Speedup .

4.4.3 Hardware Speedup

4.4.4 Parallel Systems

Conclusions

Continuous Stochastic Dynamical System Model

6.5.1 Stochastic Differential Equations

Solution of Equations

6.6.1 The Probability Density Function

42

45

46

46

46

47

51

55

58

58

59

60

60

62

63

III New Ideas

5 Concatenated Structures

5.1 Introduction

5.2 The Heuristic Stage .

5.3 An Hypothesis

5.4 Testing the Hypothesis

5.5 ExperimentalResults

5.6 Evaluation and Conclusion

6 Direct Statistical Method

6.1 The Quest for a New Model

6.i.1 Deterministic Models

6.2 Equations of the New Mathematical Model

6.3 Representation of Uncertainties

6.3.1 Random Variables

6.3-2 StochasticProcesses

6.4 Treatment of Uncertainties

68

68

68

70

7I

7L

72

73

74

74

(Ð

75

b.l)

6.6

lìl

6.6.2 Equation for Probability Density Function

6.6.3 Equation for the Mean

6.6.4 Equation for Variance

6.7 Implementation of the Solution

6.7.1 Propagation Equations

6.7.2 Treatment of 'Constant' Random Variables

6.7.3 Number of equations to integrate

Direct Statistical Model Results

6.8.1 Linear vs Non-linear?

6.8.2 Agreement between Methods

Comparisons and Conclusions

6.8

6.9

76

tt

tt

78

78

78

78

79

82

82

82

7 Parameter Fitting Method

7.I Fitting to Known Functions

7.1.1 The Central Statistical Moments

7.I.2 Restriction on Distribution Functions

7.2 Possible Distribution Functions

7.2.I the Beta distribution .

7.2.2 the Normal (Gaussian) distribution

7.2.3 the Extreme-Value distribution

7.2.4 the Erlang (Truncated Gamma) distribution

7.3 Experimental Data

7.3.I Single Gell .

7.3.2 Concatenated Structure

Results of Fitting

7.4.I Single Cell .

7.4.2 Concatenated Structure

Chi-Squared Test of Fitness

7.5.1 Single Cell y2 Result

7.5.2 Conc¿tenated Structure ¡2

Conclusions .

7.4

7.5

7.6

Result

88

88

88

89

90

90

90

91

91

91

91

93

93

93

95

96

96

98

98

IV

8 Analogue Sirnulation Method

8.1 Breadboarding a VLSI Circuit

8.2 Circuit-elementModel

8.3 Specification of Analogue Chip

8.4 Fatal Flaws in the Idea .

8.4.1 Timing Correspondence

8.4.2 Flexibility

I Digital System Simulator

9.1 Introduction

9.2 Rationale for Digital System Design .

9.3 Aims of Simulation

9.4 Design Considerations

9.5 Simulator Architecture

9.5.1 Choice of Decomposition Grid

9.6 Form of the Array Processor

9.6.1 PE Layout .

9.7 Independence of Processing Elements

9.8 The Simulation Strategy

9.9 The Partitioning Algorithm

9.10 The Mathematical Model

99

99

100

101

103

103

103

to4
. 104

. 106

. 106

9.11

9.r2

9.10.1 Processing Element

9-10.2 Physical Laws

9.10.3 Local Knowledge

9.10.4 Nearest Neighbours

9.10.5'Phantom' Edge Elements

9.10.6 The'Partner' Algorithm

The Solution Algorithm

9.11.1 Conclusion

Global Strategy with Local Information

106

107

108

113

113

tr4
116

118

i19

t22

t23

t24

t25

126

\27

128

131

131

1O Bargain Method

10.1 The Array-Processing Model

10.2 Results .

10.2.1 Convergence .

10-2.2 Circuits Used

10.2.3 Rate of Convergence

10.2-4 Number of Elements

i0.2.5 Accuracy

Newton- Raphson Iteration

10.3.1 Overview of Behaviour . . .

10.3.2 Relaxation Method

10.3.3 Pure Bargain Method

Speedup Ideas

10.4.1 Speedup between Driving Steps

10.4.2 Speedup by Smoothing Method

10.4.3 Linear Predictor

10.4.4 Weighting of Preïious Values

10.4.5 Least Squares Best Fit

Look-Ahead Ideas

Accuracy aersus Number of Bits

10.7 Operations Count per Iteration

10.8 Conclusions for Bargain and Smooth and Lookahead

11 Garne Theory

11.1 Why try Game Theory?

11.2 Elements of Game Theory

lI.2.I Definition of a Game

11.3 Development of Game Theory Model

1i.3.1 Identification of Game Theory Quantities

11.3.2 Application to VLSI Simulation

11.4 Bxperimental Results

10.3

10.4

10.5

10.6

133

133

134

134

134

138

138

138

t4r
t43

t45

I4T

150

150

r54

154

155

156

i60

165

i65

168

L70

. 170

. r72

. r.72

. 173

. 173

. 175

. 180

VI

11.5 Effect of Frequency of Operation

11.6 Effect of Range of Choices

11.7 Effect of Delaying Profit Criterion

11.8 trffect of Exchange Rates

11.9 Convergence Behaviour

11.9.1 Startup Scatter

1L.9.2 Accuracy aersus Iterations

11.10Effect of Bits on Accuracy

11.10.1 Convergence at Fixed Criterion

11.10.2 Critical Number of Bits

11.11Operation Count

11.11. 1 Operation Profiles

LI.II.2Combinations us. Profit Criterion

1 1. l2Multiple Frequency Effects

II.L2.I Individual Random Extremes

lI.L2.zMean Random Scatter Study

II.L2.3 Assessment of Random Criterion

11.13Comparison: NR and GT Convergence

1 1. l4Significant Conclusions

IV Evaluation

12 Overview of Results

12.1 Int¡oduction

L2.2 What has been Done?

12.3

I2.2.I Array Model

What has been Found?

12.3.I Probability Distribution

L2.3.2 Monte Carlo Methods

12.3.3 Concatenation of Cells

L2.3.4 New Interpretation of NR Technique

. 180

. r82

. 182

. 184

. 186

. 186

. 190

. 190

. 191

. 191

. 193

. t94

. 196

. r97

. t97

. 199

. 203

. 204

. 205

208

208

209

209

2TI

2tr

2r2

vll

. 2r2

. 2r2

12.3.5 Game Theory

12.3.6 Convergence .

12.3-7 Boolean Transform Representation

12.3.8 Curious Behaviour of Profit x2 Case

I2.3.9 Annealing/Relaxation Similarity .

12.3.10 Chaotic Behaviour

213

214

2t5

215

2r7

2r7

218

2L8

2t9

2t9

220

22r

12.4 How does it Compare?

I2.4.I - with direct methods

12.4.2 - with serial methods

12.4.3 - with parallel methods

12.5 What was Overlooked? . .

12.6 Conclusions and Recommendations

13 Implementation

13.1 Heuristic Timing Estimation

13.2 Implement ation Considerations

13.2.L Accurate Circuit Models

13.2.2 Algorithms

13.2.3 Partitioning . . .

13.2.4 Models of Parallel Computation

13.2.5 Architecture

13.2.6 Array Processor

L3.2.7 Physical Layout

13.2.8 Scalability

L3.2.9 Technologies .

13.2.l0Wafer Scale

13.3 Cost

14 Future Research Directions

14.1 Interest in SIMD and MIMD .

I4.l.I Surnmary

14.2 High Performance Computers

222

222

225

225

225

225

226

226

228

228

229

229

230

23r

233

233

237

238

vlll

14.3

t4.4

t4.5

t4.6

14.7

I4.2.I Discussion

Consideration of Problems

A New Question

What about Game Theory?

14.5.1 Dynamical Systems & Cellular Automata.

14.5.2 A New Paradigrn

Recommendations

14.6.1 Computing Power at Constant Cost

14.6.2 Iteration & Convergence

14.6.3 Game Theory

14.6.4 Design Tools

14.6.5 Summary of Recommendations

Conclusion

239

240

241

243

243

244

244

245

246

246

247

247

248

259

259

262

262

273

298

249

. 249

. 250

. 251

. 254

B Sirnulation Technique for Sampling Correlated Variables 255

A Multi-Project Chip

4.1 Formal Algorithm

A.2 Cell Description

4.3 Timing Information

4.4 Testing

C Bargain Equivalence to Newton-Raphson Iteration

C.1 Proof

D Details of GAME Program

D.1 Program Description

GAME Program Listing

SPICE deck Listing

E

F

Bibliography

IX

302

List of Figures

1.1 OvpRvrpw or Nnr YrBlp - How Ir rs OSTAINBD

3.1

3.2

3.3

3.4

Sunr: Norr,rINaL & PnonnBILITy Dowslrv FuNctIoN

CRRRy: Norørxar & PnosnBILITy DnNstrv Fuxcrton

SpRBat op Frursul¡lc TttvtBS

SpRnnn op MnxUFACTURED MINruuu Opennrtnc SpBeos

10

31

32

33

34

92

94

97

5.1

5.2

5.3

8-Srncn Attpn CBLI TrlvtIt{c SpnEno

8-Sracn Aoonn CBll - Ovpnar,r, Sr¡.usrrcs

CovrpaRrsoN oF PRBucraD AND Acrunr, DlslRInurrox

Corvrp¡.RrsoN oF CSDS nNr MonrnCaRLo DtstRtsuttoN

FuNcrro¡{s 81

Surr,r: Mpn¡l (oorrno) nNo Nor\drnar, TRUECToRIES . . 83

C¡.Rny: Mnnx (oorrno) ¡No Novtri'¡aL TRRJBCToRIES. 84

Suvr: MorvrBCaRLo ABovn, CSDS Equtvar,aNT BELow 85

C,rnRv: MoNrnCeRLo ABovn, CSDS EeutvalnNT BELow 86

Srxcr.n (roe) k, ConcnrnNArED

64

65

66

6.1

6.2

6.3

6.4

6.5

7.I MBnN & VnRrnNcB:

(nomou)
7.2

l.r)

8.1

8.2

BBsr Frrs: P.D.F. (roe) ,tr,{o C.D.F. (norrou)

¡2 VnntnrloN wITH Snupr,p SIzs

Typrcnl MOSFET Mopor, usED tN SlnrulauoN PRocnnusl00

PRoposno ANar,ocuB ARnav Tnsr SrRucruRE . . . 102

X

9.1

9.2

9.3

9.4

Gnro or INTncRATED Ctncul'rs on PRocpssING ELuVInNrsl09

Scûorrrnuc SIMD Cotupurnn Lnvour 115

Srncns or PaRrtrIoNING or FlIp-Flop Clncutr

Exnupln oF DncouposlTloN oF Aoonn Lnnn

oNTo CoNcnprunl Annnv PRocessoR Svsrur,t

Cnll
t20

I2L

10.1 AnnANGEMENI or Flrp-Flop CIncuIr oN GnIp . . 135

10.2 MnxrMUM RpsIounl OsctrlnrtoNs IN ARRnv wIrEN

sTARTED up FRoM Arr-Znno Volr¡.cps 136

10.3 NoN-zERo Sr¡.nrup Volraces AND Elnunnrs 136

10.4 SrrvruLATIoN on FlIp Fr,op Snr/Rnsnr Cvcln . . . I37

10.5 IrnnATroNS Neprnr roR CoI'IvERGENCE . . 139

10.6 ITBnATIoNS NnnoBo Rs PRocBSSING Er,plrlpxrs IncRnlsn 140

10.7 R¡.rn or ConvERGENCE on NR wITH Mluussa BIrs . . I42

10.8 CoTT,TPARISoN OF MAXIMUM RESIDUALS FOR ALL IUNTUOOS . 144

10.9 Sr¡,nrup Vor,rncns oN N pacn oF ELEMEnT 77 Colrlpnnpol45

10.10Punn Rpr,¡xauoN Mp'ruoo - Max. Rnsrluar, Ropucuow146

10.11PunB Rnr,ax,tuoN Mprnoo - Fncp Vor,rncns ¡.s IIBR¡.-

TroNS IncRpnsn . 146

10.12Punp Banc¡.rN Mpruot - Mnx. Rpsrtu¡.r, RppuctroN . 147

10.l3Punn BnRc¡.rN Mnruoo - Sranrup Voltacas ou Oppo-

srrp Facos

10.14Bancnrx MntHoD: SELECTED Vor,rRcns FRoM SrnRrup

10.15Punn BnRcnrn Mnruoo - Volrncn CoUvBRGENCE AF-

rnn 500 IrBRnrroNS

i0.16Punn B¡,RcnrN MBruop - M¡.xltvtutvt RBsrouAL AFTER

1700 ITnnATIoNS

10.17How lreRattoxs IlrcRnRSE AS Srnnrup cETS AwAY FRoM

148

148

t49

I49

Tnun Sor,uuox . r52

i0.18DnrnrI, oF I'rnRluo¡t INcRpasB closp ro TRUB SoLuuoNlS3

XI

l0.l9Srnrrsrrcs o¡ IrnRnrroNs AS A FUNCTToN on Drsrancn

FRoM TRun Sor,urro¡r 153

10.20Enrncr oF Wercrrrruc Pnovrous Vnlue op Volrncn . . 155

10.21Enrncr oF Wnrcnrrnc Two PRevrous Vnr,uos - LpA

cRrrERroN (roe) nnl 100p4 cRrrnnroN (norroM) I57

10.22Erpocr oF Appr,yr¡rc 6-Porxr LBnsr Seu.rnns Suooru-

rNG To BaRcRru Mnruoo: No SvroorHrNc (roe) nxo

Svroornrnc (norrou) 158

10.23Er'r'ncr oF ApplvrNc 6-Por¡¡r Lnnsr SeunnBs Suooru-

rNG To Opposrrn Facp Volracps . . 159

10.24Volracp rN B¡.RcarN MnrHoo wrru Sl¡ooruruc 159

10.25Bnncnrx Mrrnoo - LINnaR Loc RBoucrrox on Rpsrouu160

10.26Volracn SIr¡oorHED wITH Loox-Aun.rr Appr,rED 161

lO.27RnsrDUAL SuoorunD wITH Loox-Ano,rr Applrpo 162

l0.28Sutr¡tvtARr¿ oF LooxAun¡,o Sruov Rnsulrs 164

l0.29VauABrlrry op Raroorvr LooxAHEAD IrpRarroxs . . 164

10.308¡.ncArN+SMooru+LooxAu¡no: CoNvpncENCE AS

Fuxcrrox on NuNrsER oF Mnxrrssa Brrs 165

10.31NutVrBER oF Brrs NnnDED rN Pnocnssrxc Er,nvrpxrl . . . 166

11.1

IT.2

11.3

TI.4

11.5

11.6

rI.7

Coup¡.RrsoN oF Moonl,r,rxc MBruoDoLocrES . . . 77I

TBxrnrrvn lonNrrrrcATroN on Analocuos 174

Garrln Tunonv: Corqcnpru¡,r, ARRaNGEMENT . . .176

Oprrous AVATLABLE To EACH ElBunNr - . . I77

Illustnarrnc PRoprr CnrrnRroN AT coMBrNATroN 6 . . . 179

Errocr or FnnquENCy on Appr,rclTroN or Gaun Tunony182

Enpncr or Dnr,.qvrNc THE ApplrcauoN oF ruB Pnoprr

MnrHoo 183

MpnNr¡rc aNr OppRATroN or ExculNcn Rnrns 184

Eprecr op VaRytl¡c ExcHnxcn R¡.rps ABour Noulnal
Vnr,ups 185

11.8

11.9

xll

11.10Pnorrr Mclrroo 1 x 3 Srnnrup Noon Volrncns 186

11.11Pnorrr M¡ruoD MAX. Rnsrounl (oomno) CoupnRno

wrrrr Sruooru Mnruoo (sor,ro) . i87

11.l2Pnorrr Mnrnor 1 x 5 Srnnruv - L¡tA coNVBRGENCE. . . 188

11.13Pnontr Mnrrtoo 1 x 5 Srnnrue - 1000¡rA couvnncnNcE 189

11.141x5 Pnour Mnruoo: IrpRnuons (nlncx) nut Fru¡.r,

Accunacv(wurrn).... 191

ll.l5AccuRAcy or PRoprr MprHoD wrru M.r¡lussn Brrs . . 192

11.16Cnrucll Brrs - PRonrr (wumn) n¡ro Suoor:u (nlacx) . i93

11.17Pnour MnruoD: MEAN ARrrnrun'uc OpeR¡,rlon Pnorrlnlg4
11.18OpnnATroN PRorrlns: CoupaRrsoN BETwEEN VaRrous

SrnnrncrBs 195

11.19Errpcr oF DIrrpnBnr CRrrnRrA oN Nurrdsnn op IrBn¡-
TIONS 196

11.20Pnorrr Msruoo: PsBuro-RANDoM Appr,rcnrron Fnn-

QUENCIES 198

ll.2lRarpotvt Pnorrr CRrrnnrox Applrcarrox - 12 Brrs

(roe) 8¿ 24 ntrs (norrou) 20t

ll.22IrnnATro NS,qr 2 R,rr.l o o rr.r P Ro rrr C RrroRro N Fnne uBr,lcros 202

ll.23CoupARrsoN oF PROFIT (wurro) AND SMOOTH

(nr,acx)sTRATEGTES ..204
11.24Wunnn PROFIT (sor,rl) rnnnonrrrs BBTTBR THAN BAR-

GAIN(oorrno)205

12.1 M.qp oF THE Tupsrs . 2L0

2t6L2.2 'Bnnax PorNr' BnuavrouR rN Gnue Tunony x2 Cnsp

13.1 Ilr,usrRATrNG InsrRucrroN PrpBr,rNE FoR Scar,Rsu,rry . 230

14.1 IllusrRATrNG MIMD nruo SIMD ARcsrrBcruRES

4.1 Pr,or on ARRny MulrrplreR LnRp Cprr

234

xlil

252

"It ís plain, then, that it is of ultirnate causes that we must

obtain knouled,ge, since it is when we think that we haue grasped

its first co,use that we say that we lcnow a thing.

Now causes are tallced of in four different ways: one cause is

the being and, essence of a thing, what it is for a thing to be what

it is (for the reason why a thing is as it i,s, is ultimately reducible

to its def,nition, and the ulti,rnate reason why a thing is as it is,

is a cause and first principle); a second is a thi,ng's matter and

substratum; a third is the source of its moaement; and the fourth,

the counterpart to the third, is the purpose of a thing and, its good

- for this is the goal of all generation and, rnouement."

ARISTOTTE

XIV

Abstract

This thesis is concerned with the statistical design and performance estimation of
very large scale integrated circuits.

Variations in fabrication processing parameters cause circuits to operate over
a range of speeds bracketing the required design speed. Thus some chips will not
meet timing specifications. It is important to economically predict the proportion
of manufactured circuits that will meet the design criteria, as this information is

ultimately vital for determining whether a given design should be produced at all.
Modern regular design methodologies have given designers the chance of greater

freedom of enterprise amongst small and independent applications businesses. To
keep the promise of successful and economically viable production of VLSI systems
offered to us by these design methods I argue that is necessary to reliably and
inexpensively predict the timing statistics of the system under consideration.

Independent designers are inhibited in this regard due to the excessive expense
presently incurred in attempting to do this, since about 500 simulations are needed,
irrespective of the number of parameters undergoing variation. This contrasts with
one simulation to establish the nominal or designed operating speed.

This thesis argues that one heuristic method of solving this problem is by
creating new timing simulators which are fast enough because they take advantage
of the inherent parallelsim in the operation of the actual circuit.

Part One: Motivation demonstrates the necessity for this design tool by
examining the intimate relationship between design yield and the economics asso-

ciated with the design cycle.
Part Two: Methods completes an study of existing methods which are, or

which might be, used to obtain this information, using a fabricated and simulated
design of mine as an example. I make a definite rejection of all of these methods
as impractical, for a variety of reasons.

Part Three: New Ideas introduces a number of new ideas for stochastic
simulation, including: stochastic differential equations, parameterized curve fit-
ting, and an analogue-model structure of mine, with which l had hoped to make a
major breakthrough in simulation speed. I am forced to reject these, but the last
one leaves a useful legacy, as it leads directly to the idea investigated next, where
I concentrate on what I determine to be the only remaining feasible method: a

digital method involving a novel algorithm.
My idea is based on the recognition that real transistors operate without global

information; their own state and the state of their nearest neighbours suffces for
their operation. Thus we might achieve the same sort of fast parallel simulation by
exactly the same method, viz.,by arranging transistor models in a communicating
array, similar to their actual placement in the leaf cell. The implementation of
these ideas leads me to a completely new approach from quite a different field,
based on notions from economic game theory. This is shown to be reasonable by
analysing the abstract nature of the new simulation model. The definition of such
a system and the results of simulations are presented.

Part Four: Evaluation assesses the ideas investigated in the thesis in the
light of current practice, and considers possible directions for future research.

Declaration

This thesis contains no material which has been accepted for the award of

any other degree or diploma in any University, and to the best of the author's

knowledge and belief contains no material previously published or written by

another person, except where due reference is made in the text of the thesis.

The author consents to this thesis being made available for photocopying

and loan, should it be accepted for the award of the degree.

REGORY YMoND H. Brsuop

Acknowledgernents

I would very much like to thank: Dr D A Pucknell, for his continuing en-

couragement of research into this field, and for his superb moral support as a

supervisor; Dr B R Davis, for his useful discussions with me about statistical

analysis; Dr B D Ackland, for his comprehensive review of my thesis; Dr N
W Bergmann, for identifying areas that needed extra substantiation; Dr K
Eshraghian, for his sustained interest in the results of these investigations;

and Messrs M. Liebelt and T. Rohtla for their timely delivery of any amount

of computing power, as and when requested.

G.R.H.B.

lt

Authorts Publications

N-bit Multiplier
(CSIRO report on AUS MPC 5/82, with P J Whitbread,, May lgSZ)

Analogue Test Structure
(vLil Program, csIVo Diuision of computing Research, August lgss)

Progress Report: Matching the Monte-carlo Method with the
Continuous Stochastic Dynamical System Model
(Proc. Tri-partite Technical co-operation Program, canada May lggs)

A VLSI Architecture for fast integration of certain simultaneous
differential equations

(Digest of 'creating Integrated systems' conference, Aderaide May lggs)

stochastic Modelling for Profitable Design of vLSr circuits
(Proc. VLSI Pacific-Asia Region Conference, Melbourne May 1gS4)

An Algorithm for predicting the statistical Timing Behaviour
of Concatenated Structures in V.L.S.I. Circuits
(Proc. y'th Australian Microelectronics Conference, Sydney May 1gg5)

statistical Modelling of Microelectronic system Timing Be-
haviour

(Proc. Microelectrcnics Conference vLSI 1g87, Metbourne, Aprit 1gg7)

llr

Part I
Motivation

"When lhe slonn rages and lhe slale is lhrealened by shi1twreck, u)e can

do nolhing more noble lhan lo lower lhe anchor of our ¡teaceful sludies inlo

the ground of elern.ily."

JOI{ANNBS KEPLÐR

Chapter 1

Introduction

To fulfi,l the promise of successftLl production of VLSI systems offered to us by reg-

ular and hierarchical design methods, it is necessary to obtain the timing støtistics

of the system under consíderation.

One pract'i,cal method of doing so is by creating neu timing simulators which

talce aduantaqe of the inherent parallelism in the operation of the actual circuit.

1-.1- The Thesis

Variations in operating speed of computer systems, arising from fabrication

parameter uncertainties, have an intimate relationship to and profound effect

on the decision to fabricate the system. The research for acceptable speed in

simulation of the timing spread leads to the possible application of ideas and

methods quite remote from the field of electronic engineering. It is argued

herein that statistical simulation of VLSI circuits, being important for the

question of whether a system should be produced, implies the necessity of an

array processor architecture for simulating the behaviour of VLSI circuits.

L.2 \Mhy f Consider it Irnportant

The nature of the microelectronic systern design field has altered fundamen-

tally and irrevocably in recent yea,rs. This is partly due to the rapid spread

2

of design methods, such as those of Mead and Conway [MC80J, which have

profoundly affected attitudes towards the design of VLSI circuits.

This thesis addresses a subset of techniques for optimisation in Integrated

Circuit design, in that it aims at a heuristic, iterative and interactive method

that can be used by single workstations.

Digital circuits are so called because their initial stable state and final sta-

ble state are all that are of interest - how they got there is usually irrelevant.

However, there is a class of digital circuits for which it is of great interest,

how they got there, because it tells us how fast they operate. This class

interfaces to an unforgiving external world that ploduces data and demands

results at a high and uncontrollable speed.

The search for acceptable speed in simulation of the timing spread leads

to the possible application of ideas and methods quite remote flom the field

of electronic engineering, as we shall see in this thesis.

Available techniques centre around large computers, large companies and

large universities [BHSV81]. But how are independent designers to break

in, to prosper? This thesis helps to answer to this question, because it
investigates the means needed to decide whether to produce a VLSI design.

1.3 Systerns Productron

Industrial designers of VLSI systems are vitally interested in the question:

'can the system be produced profitably?' Perhaps this ranks equally with

the question: 'can the system be designed at all?'

Much recent research effort in Australia has gone into 'how' to design

cells, chips and systems; somewhat neglected has been 'whether' to do so.

My research into needs in this area has shown that it involves the production

of new hardware and software tools for VLSIC design, which are suitable for

industrial use on low-cost designer work-stations.

It turns out that statistical considerations dominate the design of tools

necessary for answering tlie profitability question. To create a useful aid to

3

decision-making, we need to combine stochastic models of chip fabrication

and of circuit operation with the realistic uncertainties of the marketplace,

to form an integrated system.

This thesis investigates many proposed methods and discusses some ways

of implementing possible tools in a practìcal way on small systems.

1.3.1 Missed Opportunities

There are systems that are not produced because it seems they are not prof-

itable, but that actually should be produced, because they are profitable;

and there are systems produced that seem profitable, but which are actually

not. Both are bad, and both can be avoided by a "statistical" design.

L.3.2 Expectations

For the practical designer, as distinct from the researcher, who really will

want a large number of chips from a design- fabrication run at $40000-$50000

per run, a very important consideration must be: what is to be the propor-

tion of good chips? When designing to customer specifications this is vital.

However it is clear that variations in process parameters for each layer, and

variations in actual operating conditions, will mean a spread of timing be-

haviour in the chips. How can these myriad effects be assessed, and thus the

need for a re-design determined?

The most important tool for this is SPICtr or SPLICE or one of the much

faster recent tools. However, even with the faster programmes there is an

inherent problem - they either take too long for this purpose, or they are too

inaccurate, as will be seen.

Maly [Mal90] describes techniques that can be employed not only to de-

sign a chip so that it meets a set of functional specifications, but so that it will

have adequate yield when manufactured. He urges the premise that CAD in

the future must be concerned with the entire ploduct life cycle, from speci-

fication through qualification. Along these same lines is the growing feeling

4

that to be competitive it is important to take an integrated view of CAD

and CAM. This view is motivated by the fact that actual success of a chip

design depends on the ability to manufacture the chip with sufficiently high

yield to make it profitable.

Strojwas and Sangiovanni-Vincentelli [SSV86] in their review of statistical

techniques, feel strongly that the relevance of the field of stochastic design is,

if anything increasing, and that the bottleneck is still circuit analysis. Yield

maximisation approaches have to be extended to cover all significant causes

of failure, and have to be suppolted by physically based models. Research

efforts should be focused on economic aspects of VLSI design, manufacturing

and testing. New approaches should integrate all these considerations.

1,.4 Stochastic Modelling

Maly, Strojwas and Director [MSD86] point out that, due to inherent fluctu-

ations in any integrated circuit (IC) manufacturing process, the yield, nomi-

nally viewed as the ratio of the number of chips that perform correctly to the

number of chips manufactured, is always less than 100 percent. As the com-

plexity of VLSI devices decrease, the sensitivity of performance to process

fluctuations increases, thus reducing the manufacturing yield. Since prof-

itability of a manufacturing process is directly related to yield, the search

for computer-aided methods for maximising yield through improved design

methods and control of the manufacturing process has intensified dramati-

cally. Statistical approaches to yield modelling and optimisation have been

under development for a number of years. For the most part, these meth-

ods can be separated into two categories: parametric yield estimation and

optimisation techniques and catastrophic yield estimation and optimisation

techniques. In general, parametric yield optimisation has been formulated

as a toler¿nce assigrulrent or design ceutliug problem. Howeve.r, due to sim-

plified assumptions about cilcuit elenent characteristics, these approaches

have been proven successful only for discrete circuits with a relatively small

5

number of designable parameters. All of the physical phenomena that affect

manufacturing yield are taken into account.

Spanos and Director [SD86] stress that the IC manufacturing process is

subject to inherent statistical fluctuations of material quality and equipment

performance. Characterisation of these fluctuations is important if perfor-

mance of the manufacturing facility to be simulated and optimised. The IC

process consists of at least 3 distinguishable hierarchical entities, namely the

chip, the wafer, and the lot of wafers, and variations should also be modelled

hierarchically.

Mei and Dutton [MD83] also feel certain that technology modelling will

become increasingly important in future VLSI fabrication, considering that

typical VLSI circuits consist of more than 100,000 transistors on a single chip

less than lcm2 \n area with the minimum device feature size on the order of

Ipm or less. Models for simulating both lithographic and etching steps have

been subjects of intensive research, since many physical parameters such as

grain size and active concentration of dopants change during processing, and

consequently modify other processing constants such as diffusion constants

and oxidation rates.

Benkoski and Strojwas [BS87] note that simulation is the best means

to verify the behaviour of VLSI circuits from both the logic viewpoint and

from the timing viewpoint, but that, unfortunately, while strict hierarchical

design methodologies have been developed in order to manage the complexity

of the design process, the simulation task has not benefited from the same

attention. In addition, in today's technology, the assumption that process

parameters are constant between dies, or even within a die, is no longer

valid. As a result, statistical verification of the timing is now sought. Since

statistical analyses require repeated runs, the cost of each simulation is even

more crucial. Moreover, in order to perform a meaningful analysis of the

variations of the process parameters, the simulation accuracy must be further

improved.

Yang et al [YIIC+86] echo this when they identify the major problem

6

in statistical circuit design for MOS VLSI as the prohibitively expensir4e

computational requirements.

Scaling of feature size progressed more rapidly than scaling of process

tolerance. So at micrometer and sub-micrometre geometries used now in

VLSI, statistical variations of device characteristics can be very significant.

These variations in device characteristics result in corresponding variations

in circuit performance and must be considered in VLSI design.

Lightner [Lig87] appreciates that simulators are used for a variety of rea-

sons; because systems implemented in silicon cannot be effectively bread-

boarded, to produce a verified specification of the system performance, to

verify performance of portions of the design against specification, to test the

design for possible failures.

However, Saleh eú a/ [SGC+89] remind us that circuit simulation is a

very time-consuming and numerically intensive application, especially when

the problem size is large as in the case of VLSI circuits. The time-domain

transient analysis is the most computationally expensive in terms of CPU

times. Programs such as SPICE2 were originally designed to simulate cir-

cuits containing up to 100 transistors, but have been routinely used at some

companies to simulate circuits containing over 10,000 transistors, at great

expense.

The problem is that these programs take a long time to run. That might

be viewed as simply an essential thing to put up with, but there is a more

important and more subtle consideration to be noticed: that very fact of

a long time deters designers from investigating the effect of all errors and

tolerances in parameters.

1.5 A New Approach?

It seems that a fruitful new approach might be possible, based on a new

approach to the simulation process. In fact, after ex¿mining a number of

software and hardware methods for speeding circuit simulation, a pseudo-

7

breadboard idea occurs and is examined, but needs to be discarded. However,

it leads to a related digital method that is full of promise, especially in view of

current trends and advances in wafer-scale integration. Examination of this

derivative idea comprises the bulk of this thesis, and is not without surprises.

1.6 lfnaddressed Problerns

1.6.1- Parameter Variations

No small system software tool addresses the effect on a cilcuit design of

parameter variations, even though they are an inescapable aspect of the

design and fabrication cycle. There are no typical parameter variations: the

range of values depends mainly on the fabrication houses, once the process

has been decided on.

L.6.2 Longest Path-Criterron

The so-called 'worst-case' or longest-path time is often extracted from leaf

cells by circuit simulation and used in the hierarchical simulators. But is it

the relevant time to extract? Along the longest path, there are wide process

variations which will make even the longest path even longer (or shorter).

Which time should be taken? To answer this requires statistical simulation.

1.6.3 Exarnple of Timing Variation

Modern nMOS circuits use clocking frequencies of 10 to 15 MHz, which

means that the combination parts between clock signals are working in times

of about 60 nanoseconds up to about 100 nano- seconds. To see what we

have to contend with, consider an actual example of a leaf cell used in a

multiplier structure, described in Chapter 3.

Using nominal values of capacitance, resistance and threshold voltage, the

nominal longest path is 5lnSec. Using the extreme variations of these three

I

parameters yields times of 33nSec and 75nSec as the maximum and minimum

times. In order to run at 15MHz (66nSec period) redesign of the cell appears

mandatoly; in reality, however, there is no indication of whether this is true or

not; perhaps only 5% of all chips would take longer than 60nSec: a stochastic

simulation would be needed to show this - the¡e is simply no other way of

doing it. This is important because re-design is time-consuming (because all

stages of the CAD system have to be revisited) and will probably result in

greater power consumption (because the chip has to work faster). Re-design

in the case of this example may now be a waste of time because gSTo rnay

be to specification; the nominal and the worst case approach to design can

often be simply misleading.

On top of this there ale cases where cells of this type are cascaded into

larger structures - what are the mean and spread now? Does the usual

high-level simulator provide the answer easily? Is it important to know the

answer? Chapter 6 develops a possible way around this.

L.7 l{ow to Sirnulate - A New W.y
What is to be simulated? To build up the timing statistics of the system, it
is necessary and sufficient to obtain the timing statistics of leaf cells on the

critical timing path. Figure 1.1 on page 10 summarizes what is expected in

this regard.

In this thesis we shall see what turns out to be a practical and, under

some circumstances, a fast approach: we attempt to 'breadboard' the VLSI

circuit, and much of Part III is concerned with showing that this is feasible.

Part IV argues that the algorithms developed in Part III have a wider

significance.

I

fabrication
parameter
variations Vto

Y

o/o capacitance

100 nSec

t¡m¡ng
variations

percentage meeting
specification
for operation speed
** multiplied by **
fabrication yield

net yield

cost of each packaged chip

Figure 1.1: OvnrwIEw oF Nnr Yruo - How rr rs OnTATNED

SPECIFICATION

10

Chapter 2

Econornic Considerations

In this chapter I discuss the intportant influence of economic considerations on the

desi,gn cycle.

2.L Statistical Considerations

The most difficult decision faced by the independent designer group is

whether to proceed to fabrication and production of their design. Myriad

compromises are involved and the highly non-linear and discontinuous na-

ture of the problem makes the only practical method one which maximises

the probabitity of success by running hundreds of scenarios and compiling

their statistics. This is true in the area of design, fabrication and marketing.

The greater the range of proposed systems that can be evaluated, the

better for everybody. The cost of evaluation is extremely high, particularly

of redesign, which fact favours entrenched companies. If the cost of deciding

whether a design should go ahead can be made negligible then an impor-

tant barrier to the entry of newcomers is removed, and more rapid progress

through extra production and experimentation can take place.

11

2.2 Profitable Design of VLSI Circuits

Mozumder [MS90] emphasizes that with increasing complexity, VLSI circuits

and process technologies are being pushed to their limits, and fluctuations

in IC manufacturing are becoming the predominant factor of profit loss in

fabrication lines.

Riley and Sangiovanni-Vincentelli [RSV86] also note that what has lim-

ited the rewards of shrinking device dimensions is not any set of deterministic

relationships, but the variations in realised device dimensions from circuit to

circuit which results in variations in performance, which in turn significantly

degrades the economic value of the totality of circuits produced.

The aim of any VLSI manufa,cturer is to maximise the total profit while

meeting all design constraints on the product. The profit is affected by a

number of factors. The inherent process fluctuations cause significant yield

loses, and this results in a drop in the profit.The total profi.t is affected by

the different fabrication and assembly costs and the revenue associated with

fabricated IC's. These costs and profits are in turn dependent on several

aspects of the particular fabrication process that the IC's undergo. Some of

the processing steps are performed on entire lots, and hence the total cost

associated with such steps will not depend significantly on the number of

wafers. Other processing steps are performed on individual wafers and the

costs associated with such steps depend on the number of wafers. After the

wafer processing stage, the wafers are divided into individual chips and these

are probe-tested. The chips that pass these tests are assembled and packaged

into IC's. These IC's then undergo functional tests.

Thus it is evident from the profit maximisation framework that the design,

control, and diagnosis phases of a VLSIC are strongly coupled.

2.2.1 Market Yield

There are many decisions to be made during the , design phase,, as indicated

by Sze [Sze83]. The selling price of the system is a function of the number and

t2

nature of the desirable features contained within the system (on the chips).

The die size is determined by the number and complexity of these features.

The size of the fabricated die is determined by the technology. The cost of

each die is set by the technology, number of wafer starts and wafer yields.

The yield is strongly determined by the size of the die. The ultimate cost

of the system is determined by the cost of each die and how many may be

sold. The ultimate returns in the investment are determined by the excess

of selling price over cost and the number sold. The number sold is partly

determined by the selling price and the number of desirable features .

Thus a full circle is turned: whether the system should be produced at all

only makes sense if the number to be made is estimated. This gives the cost

of each possible course of action. But the number to be made only makes

sense if it is asked: what is to be done with them? How many may be sold?

At what prices? Thus the probability of events remote from the design phase

itself appear to be vital for practical exploitation of VLSIC products. It is

clear that a more comprehensive, integrated view of all phases is needed.

2.2.2 Design Yield

One way to manage the complexity of the VLSI structures is to design hier-

archically.

Circuits may be considered as being composed of leaf cells [MC80], and if
the leaf cells are properly characterised then much may be deduced concern-

ing the statistical behaviour of the circuit and system timing. By knowing

the characteristics of the leaf cells, and the interconnections between the leaf

cells, one can perform timing verification and obtain the characteristics of

the composition cell.

Timing estimates are usually obtained for the nominal operating condi-

tions and for the worst case. Neither of these times sufficiently characterise

the circuit behaviour for fabrication purposes. These two figures gìve the

designer almost no confidence at all when predicting the actual performance

13

of the chip.

The problem with running only the nominal case is that no idea of the

possible spread of results is obtained; if the splead is large this is a very

dangerous omission. Even if it is small,, greater confidence in the design is

assured if the spread is known.

The problem with worst-case methodology is that it is performed with

an extreme set of parameters which renders the predictions unnecessarily

pessimistic. Truly reliable predictions may only be made if all the variations

are taken into account from the start of the simulation. The greatest un-

certainty about actual performance arises if these parameter variations are

ignored, and only 'etact' values are used; this is worse than useless when vast

sums need to be committed for chip fabrication.

If stochastic simulation shows that (say) 50% of all returned chips should

meet specifications then the cost of each chip is known (from the manufac-

turing yield and the design yield). If this cost is unacceptable then the leaf

cells of the chip may be redesigned so that a greater percentage of chips will

meet the specifications; this makes a larger chip and leads to a lower yield

(using the same process). Only a model which takes account of all costs and

profits in a statistical fashion can show rvhether the redesign was useful or

necessary.

2.2.3 Fabrication Yield

The fabrication yield from a run is needed to obtain the final yield for calcu-

lating chip cost. There a many formulae available from various sources which

give an estimate of the mean yield based on the process and the chip area. An

extension of the above example might point this up: consider a design yield

from stochastic simulation of 50% and a fabrication yield of 30%; this gives

a net yield of 15%. Suppose the cells are redesigned to give a design yield

up to 90%, leading to a larger chip with perhaps a fabrication yield down

to I5%o: the net yield now becomes 13.5% which is a little worse overall! A

I4

redesign of the architecture itself might now be indicated.

It is clear that the need to obtain these figules implies a mathematical

model of greater scope than normally associated with chip design alone.

Peltzer [Pel83] raises the possibility that wafer-scale integration (WSI)

can improve system reliability, by the use of redundant circuits, and thus

reduce the yield loss caused by small random defects; however, WSI demands

a sizeable investment in computer-aided design.

McMinn [McM82] remarks that, as feature sizes have reduced, the size

of dies have doubled with no loss in yield; this means that designers can

dramatically increase the amount of circuitry. The tradeoff between die size

and projected yield is an important consideration when partitioning the sys-

tem for a custom chip. eg for a typical (then!) 5 micron silicon gate nMOS

process with 4-inch wafers and 5 critical mask levels , slightly more than

doubling the area causes a near 6-fold decrease in yield.

Tsaur and Chen [TC86b] demonstrate the spread of processing parame-

ters in very small feature-size CMOS devices, with effective channel lengths

of 0.7 to 4p.rn. The threshold voltages are found to have a gg% spread of

240rnY. The propagation delays are about 95psec at 5V, which are accept-

able ranges for 5V devices, but would have to be reduced for lower voltage

and submicrometer devices.

Styblinski and Opalski [S086] have developed a set of tools. Their premise

is that, as ICs become increasingly complex, and geometries smaller and

smaller, it is becoming more and more difficult to achieve acceptable manu-

facturing yields, even if the normal design fulfils all design constraints. The

manufacturing yield is composed of two parts: the technological yield and the

design (or parametric) yield. The former is a result of catastrophic failures.

The latter is a result of the sensitivity of circuit performance to IC device

parameter variations, caused by unavoidable variation of the manufacturing

conditions from device to dcvicc and from chip to chip.

15

2.2.4 Manufacturability

In a very important and wide-ranging paper, Maly [Mal89] explains the con-

cept of design for manufacturability, and lists tasks and CAD tools dealing

with manufacturing aspects of the design of modern VLSI circuits.

Traditionally, computer-aided design (CAD) tools are applied to create

a nominal design of a VLSI circuit - the design which meets desired nom-

inal functional specs. In reality, however, the nominal design, along with

the manufacturing process, must be very often modified to maximise man-

ufacturing yield. Such maximisation must be performed during the design

to achieve an acceptable level of initial manufacturing yield. It also must be

performed during fabrication in order to achieve the maximum rate of yield

improvement in the entire product development cycle.

A typical approach to the design of VLSI circuits, and IC design is pro-

duced by using given "nominal" characteristics of the VLSI circuit elements.

In the general case, howevel, they are random and may be so large that some

of the fabricated ICs may have unacceptable performance.

Manufacturing yieldl is directly related to the manufacturing profit - the

most important figure of merit of any manufacturing activity, because it is a

measure of the incentive to reinvest in the product line.

In general, the VLSI product development cycle must be seen as a pro-

cess of a number of decisions performed iteratively by using uncertain in-

formation: the first is a necessity to predict performance of the IC using

incomplete and uncertain data; the second is the existence of random en-

vironmental factors which disturb prototyping and manufacturing steps. In

the modern/fabrication facilities, the vast majority of defects are small (in

the range below 2 p).

For a new product planning-phase one must decide: which technology

should be chosen and what should be the die size, expressed in terms of

the number of transistors and the area of the die? In the case of a system

lthe ratio of fabricated IC chips with acceptable performance to the total number of

produced chips

16

composed of a number of different IC's , one may also ask whether the system

components should be fabricated on a number of small dies or on one, large-

area, common substrate?

Usually the answer to such questions is not trivial because it involves

a number of not very well-defined tradeoffs, as well as various competing

objectives. In general, however, one can assume that the optimal technology

and the size of an IC are such that they result in a maximal manufacturing

profit. But the profit is a function of the yield which is, in turn, a function

of applied design rules and the die area. Consequently, in order to determine

the economic viability of a new IC one must know relationships between

design rules, die area, and yield, and the relationship between yield and

manufacturing profit, fol all available technologies.

The key to the strategic design decisions is yield prediction, which can

take into account: the actual characteristics of the process disturbances caus-

ing yieid loss; the relationship between yield and topology of an IC layout,

with a special emphasis on geometrical design rules; and yield improvements

that can be achieved through the application of various redundancy strate-

gies. None of these three aspects of yield prediction can be handled without

the aid of the computer.

One of his major conclusions is that a yield model must express yield

losses in terms of the die size and IC layout characteristics rather than in

terms of the IC area alone. Such a need becomes more and more pronounced

with the decrease of the minimum feature size of modern technologies.

In particular he notes that there is more and more evidence that large-area

integrated circuits, including WSI, will soon become economically feasible,

and concludes that design for manufacturability through the application of

redundancy techniques that are becoming established in the WSI field seems

to be very promising and in the future should be used much more often.

But this will require better yield-plediction tools, that can be used early

in design cycle, and which are accurate enough to predict specific modes of

circuit malfunctions well. The problem is that smaller IC elements are more

t7

sensitive to inherent fluctuations of the device dimensions, doping levels and

so on.

Thus Maly considers that key components of a set of yield tools should

therefore be: process simulators, device simulators and yield and performance

predictors. A whole spectrum of methodologies have been developed to solve

the yield maximisation problem, but a majority of them have a circuit-

optimisation bias, and therefore have been developed on a strong theoretical

basis, with less stress on the process realities and manufacturing-related con-

straints. A special group of theoretical approaches form the methods using

Monte Carlo techniques to estimate yield and to perform yield optimisation

as well.

The most important point he makes from the perspective of this thesis

is that, although circuit simulation tools are the oldest amongst CAD tools,

they still form a major bottleneck to design for manufacturability. This is

because parametric yield evaluation requires full accuracy of simulation, and

therefore simulators matching the complexity of SPICE must be used.

He concludes by noting that a long list of theoretical and practical prob-

lems must be solved before manufacturability-oriented CAD tools can be

used in anyone package, mainly because of a traditional split among cir-

cuit/systems design, process development, and manufacturing mentalities;

but also because many theoretically elegant but inherently inefficient algo-

rithms and procedures cannot be directly applied to VLSI circuit/process

design because of the size of the modern VLSI circuit.

2.3 New Design Too1s

Variations in process parameters and actual operating conditions will mean

a spread of timing behaviour in the resulting chips. New tools are required

to assess this spread and hence help to determine of a redesign is necessary.

The most important tool for this a a leaf-cell circuit simulator. All meth-

ods eventually aim at producing the only truly significant statistic: the joint

18

accumulated distribution function. This shows the proportion of leaf cells

which have completed operation at any time, given the process variations.

Thus it also shows the yield of the chip design in terms of the timing opera-

tion specifications. This may be combined with the fabrication yield to give

the net yield of the design itself.

However, the problem is subtle. In IC fabrication processes, yield max-

imisation, as attempted by the quality control system, does not imply profit

maximisation. A lot that is rejected at an intermediate stage results in zero

yield but saves the cost of future processing steps and frees up the fabri-

cation equipment. The freed-up resources could then be used to produce a

lot with a much higher yield. Therefore the objective of the control system

will be profit maximisation as opposed to yield or though-put maximisation,

whereas the objective in design for manufacturability is to develop a design

that minimises the sensitivities of the output performances of the fabricated

IC's to the random disturbances affected the manufacturing process. These

are slightly different.

Thus Mozumder [MS90] hopes to achieve profit maximisation using a

unified framework where both quantity and quality controls are used as part

of statistical process control on a fabrication line.

Riley and Sangiovanni-Vincentelli [RSV86] point out that the reason that

expected economic gain is not usually the explicit criterion for engineering

design selection is that an explicit economic model is generally not readily

available. Nevertheless, inclusion of explicit economic models in engineer-

ing design is the ideal, and a truly advanced design methodology should

incorporate such models. Fortunately, incorporating revenue models, which

are heavily based on statistical methods, into the design methodology does

not introduce the need for radically different knowledge bases or software

capabilities, once the problem is already statistical in nature.

Spoto, Coston and Hernandez [SCH86] have created a Statistical Analysis

Menu which integrates process, device, and circuit characterisation functions.

Their opinion is that the increasing con'rpetitiveness of the IC industry will

19

eventually dictate the use of such an integrated system on all product and

cell developments in order to squeeze out as much performance and area as

possible, and in particular to avoid overdesign of products.

Gallivan et al lGJMWgl] have noted that in recent years, all U.S. super-

computer manufacturers, and dozens of mini-supercomputer vendors have

entered the market with some form of general-purpose parallel-processing

system. This might be a good thing from the point of view of faster simula-

tion, but judgement should be reserved and this issue is addressed at some

length in Part IV.

2.4 Sorne Observations

CAD for VLSI circuit manufacturability must be able to cover a large variety

of design problems on all levels of design abstraction generated by all phases

of the device development cycle.

The first important observation indicated by the discussion above is that

manufacturing CAD, which is IC performance-oriented, is perhaps more than

any other kind of CAD affected by limitations of available computers. Such

design tasks, involving simulation or optimisation steps, performed on the

low levels of design abstraction (transistor and below), are very computation-

intensive and not all of them can be solved with the existing tools and avail-

able hardware.

Computing power capable of producing the necessary statistics is, in large

companies, already devoted to projects they judge important. Such poïver

will cost a lot to divert to speculative ventures.

If the promise in the computer circuit revolution initiated by the new

design methodologies is to be realised, then even slightly-capitalised groups

need to be able to enter the field. The greater freedom to cheaply determine

whether a design should proceed to market means that both a greater range

of possible systems can be tried and that once it is determined that a system

may be economically produced, then existing large capital groups can become

20

involved. I{owever, up to that stage they tend to inhibit new developments,

which the màin reason that the ability to try new methods should be available

to the poorest (in terms of computing power) as well.

This need cannot be ignored in the era when VLSI is approaching ULSI,

and when almost everybody understands that the true engineering and eco-

nomic achievement is not merely the design which can be successfully sim-

ulated and tested on the first silicon, but the design which can be easily

manufactured in large quantities - an IC designed for a high level of manu-

facturability.

2.5 Significant Conclusions

This thesis presents results of importance to independent designers of VLSI

circuits and systems, especially those who are not associated with a large

company or do not have access to large computing facilities.

Profitable production of VLSI chips and systems depends on net yields

from design and fabrication, amongst other factors. Increased yields may

be obtained by using a smaller feature size or a different design algorithm.

However, the effect on profits of either course of action cannot be assessed

without adequate mathematical models, and these have to be included in the

design cycle itself.

It turns out that statistical considerations dominate the design of tools

necessary for answering'the profitability question. To create a useful aid to

decision-making, it is necessary to combine stochastic models of chip fabri-

cation and of circuit operation with the realistic uncertainties of the market-

place, to form an integrated system.

On single-user designer workstations, this set of very complex and inter-

related constraints might conveniently be investigated by simple, heuristic

and interactive methods, using accurate stochastic models. Such models are

investigated in the Part III.

2t

Part II
Methods

"Philosophers are as free as olhers lo use any melhod in searching for
lruth. There is no melhod peculiør to philosophy."

KARL POPPER

Chapter 3

Circuit Tirnittg

Characterisation

Here I erplain what is rneant by an adequate characterisation of the timing

behauiour of a circuit . This is illustrated by completing a statistical simula-

tion of a leaf-cell from an already-fabricated circuit .

3.1 Types of Circuits

There are many aspects to circuit characterisation, such a logical behaviour,

timing and waveform behaviour, density of packing, the manufacturing tech-

nology (nMos, cMOS, hMOS, vMOS, &c.), the feature size (5,4,3,2,1 microns

and below), and power dissipation. However, as far as predicting whether or

not the circuit will work the important characterisations are those of logic

and timing. Logic has been well explored elsewhere, in the literature and in

practice, and attention here will be on timing.

The relative importance of logic or timing simulation depends on the

circuit under investigation.

Clocked Systems In clocked systems, combinational logic occurs be-

tween clock lines and is almost exclusively the subject of investigation,

and both logical behaviour and timing are crucial to the success of the

23

design.

Data Path Systems These systems are unclocked and it is the logic be-

haviour that is paramount in the first instance. However, the status

nodes which wait for a 'true'or 'ready'signal from all inputs (from pro-

cessing elements) are effectively 'clocks'; all transient behaviour waits

for them to 'fire' and so even data-path systems are a subset of clocked

systems, in this sense. Thus once again it is the behaviour of pro-

cessing elements between nodes which becomes important. This covers

"handshake"-operated sequential (asynchronous) Iogic, too.

Cascaded Combinational Logic Systems These, such as array multi-

pliers, are also unclocked, and once again logical behaviour is required

to be verified and timing predicted, so that stochastic studies are im-

portant.

3.2 Tirning Sirnulations

Timing estimates used to be made by hand using the TAU model. However,

with circuits now held in a database it is much more convenient and accurate

to extract the circuit and submit it to computer simulation using programmes

such as SPICE [NPSV89], SPLICE or QRS [Poi83]. In doing so it is typical to

consider the 'worst-case'for process parameters. The result of the simulations

is a time of operation for the nominal operating conditions, and a worst case

time.

However, as has already been seen in the discussions of economic justifi-

cation, because many of the important parameters that determine the timing

behaviour are not tightly defined, this will often not be the best or even a

useful characterisation. The slowest time of operation is obtained using ex-

treme parameter values that, taken together, produce an extremely unlikely

24

combination in practice. In this sketch

fastest nominal time
time time

time

actual
proportion
finished

designed operating time

the fastest operating time, on the left, falls somewhat below the fabricated

fastest time, by an unknown amount that can only be predicted using a

stochastic simulation. So instead of the complete distribution curve, shown

below the time axis, the only values available are the fastest, the nominal

and the slowest times.

Since the actual nature of the distribution function is unknown, and in

particular the circled fabricated times are unknown, these three figures by

themselves give the designel almost no confidence at all in predicting the

actual performance of the chip at the designed speed.

3.3 Leaf Cells

Considering that all the main types of circuits may be composed of leaf cells,

then if the leaf cells are adequately characterised statistically much may

usefully be said about the statistics of the circuit containing them.

A leaf cell typically has a small number of inputs and a small number of

outputs. A change in the voltages at the inputs (consequent on clock or ready

signals) cause a change in the outputs. This change takes time - a different

time for different values of process parameters such as feature size, transistor

size, threshold voltage, capacitance and resistances of layers of metal and

silicon.

25

The prediction of this time is needed for a redesign decision, but it is not

a definite time of operation; rather, there is a spread of possible times due

to the spread of possible parameter values during fabrication. The greatest

uncertainty about actual performance arises if these parameter variations are

ignored, and only 'exact' values are used. This is useless when large sums

need to be committed for chip fabrication. Thus the importance of a full

stochastic simulation - it is only if all these variations are taken into account

from the start that truly reliable predictions may be made.

In addition to the single-cell case, there are cases where suitable cells are

concatenated to form largel structures, such as ripple adders and their like.

What is the mean operation time and what is the spread of times in this

case? Downs [DCR82] does not think that the usual high-level simulators

can easily provide the answer'. This problem is addressed in chapter 5.

3.4 Monte-Carlo Sirnulation Example

Typical nMOS circuits, available when the bulk of the present simulations

were carried out, use clocking frequencies above 10 MHz. This means that

the combinatorial parts of the circuits between clock signals are working in

about 100 nanoseconds.

An actual example of a leaf cell used in a multiplier structure ,designed

by the author, is fully characterised by lUonte Carlo methods to demonstrate

the desirable and attainable results of stochastic simulation. The simulations

are all carried out on a IBM37Ol3O33 CPUrsing the SPICE 38.1 program

[NPSV89]. The leaf-cell is shown in Appendix A. It has been fabricated,

tested, and it works ['N-bit Multiplier', Author's Publications]. Shown below,

the sum, ca,rry, r €i A inputs pulse from 0 to 5 volts and the cell produces

rrew surn and carry outputs. Operation finishes when both the sum and co,rry

26

reach a high of.2.4 Volts.

X

SUM________> New
SUM

CARRY New
Carry

X t

3.4.L Fabrication Parameter Variations

It is usual to calculate with variations around the nominal values out to the

3o or three standard-deviation point. For a gaussian distribution this means

that practically 99% of all possible values lie within two extremes. Variations

in some of these quantities are correlated during fabrication, [Coh83] [8587]

[CYC84] [DCR82], in which case the correlations are incorporated into the

simulation by the sampling technique described in Appendix B. The table

overleaf

Ylt

Y

full
adder

x&ypass
through
unchanged

27

Pnocpss
PRnnuoron

Notr¡ltal
Vnluc

Mr¡1.
3o

Mnx
3o

Con n pl¡,tIot¡
CoorprcrnHr

enhancement Vo
depletion V¿o

0.85 V
-2.75 V

0.6 v
-3.4 V

1.1 V
-2.t v

0.3

enhancement 7
depletion 7:

0.62
0.65

0.57
0.60

0.67
0.70

0.1

sheet resistivity:
(ohrns per square)

diffusion
polysilicon

10

20
0.9
0.9

1.1
1.1

0.2

metal 0.030
line width: meta.l
line depth: metal

1

1

0.9
0.9

1.1
1.1

0.2

line width: polysilìcon
line depth: polysilicon

I
1

0.9
0.9

1 1

1 1

0.2

capacitance:
(pf p", sq micron)

diffusion to substrate
metal to substrate

0.000010
0.000003

0.9
0.9

1.1
1.1

0.2
0.2

polysilicon to substrate 0.000040 0.9 1.1

summarises the nominal values and the spread of the process parame-

ter values used in the simulations. These values are for simulation purposes

only. Although they are based on some parameters that were assumed for a

Multi-Project Chip fabrication, they do not correspond to any actual process.

Correlations are assumed between bracketed neighbouring pairs of parame-

ters in the table. The simulations are carried out at a fixed temperature of

27.0 degrees Centigrade and a fixed operating voltage of 5 Volts.

3.4.2 The Longest-Time Path

First the input 'decks' for 256 SPICE runs by editting the voltage input

'card' on the nominal deck. This allows the four inputs to change from

all combinations of 0000-1111 to all combinations of 0000-1111. These 256

simulations were run over- night. This took 64 minutes of CPU time plus 15

minutes of editting CPU time: a total of 79 minutes at $2000 per CPU hour,

giving a nominal cost of $2650 just for accurately determining the longest

path.

Note that thele two plocesses aÌe intimately related: if a fast method of

28

doing individual SPICE runs is found then a convenient method of obtaining

both the longest path and the stochastic simulation is found.

3.4.3 (Monte-Carlo' SPICE sirnulation

500 separate SPICE simulations were then run. Each one: generated random

numbers for sampling the parameters from given Gaussians (tr-uncated at 3-

sigma); editted the nominal SPICE 'deck' to create a new deck for the run;

and submitted that job for background execution. Each simulation was for

150nSec. The nominal deck is shown is Appendix F. trach run took about

30 seconds of CPU time but about 70 seconds of elapsed; time the total

stochastic simulation for the leaf cell took just under 4 hours of CPU time

and just under 10 hours elapsed time. The nominal cost was $2000 per CPU

hour; this leaf cell thus cost $1333 to simulate. (This cost is for internal

users, and thus somewhat under-estimates the total cost).

The next day (these large jobs run overnight) all the results were analysed

by another set of programmes. They scanned each output file to find the time

at which both the sum and the carry were ready (defined as both reaching

2.4 volts from 0 volts). At the same time, the value of the sum and carry

separateiy at every SnSec over the period 0-150nSec was stored in a histogram

at every 0.1 volts within the range 0-5 volts.

Using nominal values of capacitance, resistance and threshold voltage, the

nominal longest path is lOOnSec. Using the extreme variations of these pa-

rameters yields times of 64 nSec and 155 nSec as the minimum and maximum

times. However, when process parameters are correlated, extreme parame-

ter values cannot be chosen independently, so the worst cases will actually

produce rather misleading times - the extremes might not be attainable in

reality.

to

3.5 The Significant Statistical Distributions

3.5.1 Probability Density Distribution

The nominal voltage waveform and the probability density functions for both

the sum and the carry were compiled. The sum is shown in figure 3.1 on

page 31. and the carry is shown in figure 3.2 on page 32. They are interesting

because they show a multi-modal nature as time goes on, i.e., they do not

remain strictly gaussian.

3.5.2 Accumulated Distribution Function

The first important result is the scatter histogram in figure 3.3 on page 33

showing the spread of finishing times. This shows that there is a spread of

'ready' times about the mean of 100 nSec, from 70 nSec up to 745 nSec. The

distribution is skewed and sharply cut off at the fastest finish time.

From this is derived the second important result, the accumulated joint

distribution function, shown above it. This is found by integrating the scatter

histogram. Here joint rneans those cells for which both the sum and the carry

have together reached 2.4 V. Thus it shows the proportion of leaf-cells that

have completed operation at any time, and so it ultimately shows the yield

of chips in terms of the design requirements.

3.5.3 Manufactured Operating Speed Distribution

The third important result is the spread of operating speeds of the chips.

This is shown in figure 3.4 at the bottom of page 34.

Shown above it is the finai important distribution derived from it by

integration. It shows the proportion of circuits operating at least as fast as a

given speed. Combined with the fabrication yield this can give the net yield

of the design itself and hence is the nost useful glaph for deciding whether

a re-design is necessaly.

30

4

q)
c¡)
o
õ

2

o

-2
0 50

5oo

. 4oo
tr

À;

E roo

Ëo

2oo

100 150
no n oseconds

Volage
(renú¡) .r's'g

Figure 3.1: Suvr: Notr¡ItlRL & PnosABILITY DeNsrlrv FuxcrtoN

31

4

OJ
crr
o
=

2

-2
o 50 100 150

no noseconds

100

Volfage (ren6s; ('s'g

Figule 3.2: Cnnnv: NotvtINAL & PRol¡.nIlITY DDNSITY FUNCTIoN

EO

q
IJ
A; 60

o
Cg
(.)
Ø

40

20

32

0.6

4o-

-o
qJ

.9

c
.9

o
o_
o
o

1.0

0.8

o.2

0.0

distribution function - finish times

50 100
no n oseconds

150

robo bilit densit function - finishin times

100
no noseconds

150

Figure 3.3: SpnnAD oF FI¡rrsHINc TIIvtBs

0 200

200

6

I

0

4

E
(¡)

.u)c
E
c

.s
o
o_
o
o_

--oc
0)Þ

2

o 50

33

monufoctured m¡n¡mum s ed distribution

Ø
o

-an
-c

Ø
o
0,)

o
crl

.gc
c
tr

(¡)
crl
o
c
q)
o
L
q)
o_

100

80

60

40

20

0
U 10 15 20 'R

MHz

monufoctured s eed distribution
25

20

Ê.

0
0 10 15 20

MHz

Figure 3.4: SpnnAD oF ManupncTURED Mltrtttvtul,t Optnn'r'tNc SPEEDS

R

5

0

lC
o
c)
o_
vl

o
ctl
.gc
c
l

q)
cr¡
o
c
q)
(J

(¡)
ô_

25q

34

3.6 Conclusions and Evaluation

Timing predictions for digital systems in VLSI circuits are made using var-

ious simulation programs. Statistical simulation is necessary when process

parameters are not tightly defined; this is particularly important when pre-

dicting design yields, to help in deciding whether the circuit may be produced

profitably at the designed speed.

These simulations make it clear that nominal design can be quite mislead-

ing for clocked systems. Only some form of stochastic design gives complete

confidence in the results.

The only distribution of real interest is the accurnulated joint distribution,

which shows the time at which a given proportion of cells completed their

task. From this, all decisions regarding re-design and fabrication can be

made, since the speed and ultimately cost of each wolking chip may be

obtained from it.

It is further suggested by the plots obtained that 500 runs is sufficient

to get a very good timing characterisation. This is confirmed by other re-

searchers - for example, Brayton finds that "Typically, at least 100 trials

would be required to obtain a reasonable estimate for [the accumulated distri-

bution]" [8580] [BHSV81], others with more recent computing power [BSS7]

[5086] [MSD86] [I{ob82] [DCR82] quote between 300 and 3000 runs to get

a good estimate. In addition, rather fortunately, "...the size of the sample

does not depend on the number of parameters" [BHSV8l].
The results of these simulations suggest that, for those intending fabrica-

tion at remote foundries, nominal design gives a dangerously false picture of

the yield. Some form of stochastic design is necessary to give a measure of

confidence in the results. It is already known that close to 500 simulations are

necessary. Thus on the face of it stochastic simulation is a time-consuming

business. The rest of this thesis sets out to deny that this is necessary.

35

Chapter 4

Existing Methods

In this chapter I reuieu past and present methods of both stochastic and circuit

sirnulation methods and identify areas needing further research.

4.L Statistical Sirnulators

Design centering is the art of designing an IC to minimize the sensitivity of

its fabricated performancel to the random disturbances affecting the man-

ufacturing process. This is slightly different to the aims of this thesis, but

there is substantial overlap.

Maly [Mal82] discusses a yield estimate algorithm which applies a learning

procedure to a Monte Carlo approach. As sampling proceeds, information

about the sample location is used to improve the efficiency of the yield esti-

mation procedure.

Koblitz [KobS2] presents a graphical method for a design centering step,

beginning with 100 Monte Carlo samples, which he regards as a small num-

ber. Past random samples of the Monte Carlo analysis are used in an up-

dating process, as an assessment criterion for the next iteration. This wa¡

the number of random samples can be reduced in each subsequent step; a

reduction overall in the sample size of about 50 percent. He attaches great

1e.g., timing, powet dissipation, or whatever is important for Lì.re application

36

importance to choosing an appropriate number of random samples in Monte

Carlo analyses.

Downs, Cook and Rogers [DCR82] describe an approach to statistical

design for large circuits, based on partitioning a system into subsystems.

They expand the distribution function in an Edgeworth Series, and consider

3000 Monte Carlo simulations are required to give a 95% confidence interval

on the yield, requiring 215 minutes on a PDP 11/40.

Canepa, Weber and Talley [CWT83] develop a standard worst-case design

procedure on a short-channel NMOS III process. Most of the fabricated chips

exceeded their performance specifications. Interestingly, they find that their

program caught many fatal errors in the layout that could not be have been

found by anything short of a chip-level circuit simulation.

Styblinski and Ruszczynski [SR83] apply an SA2 algorithm to the yield

optimisation problem. The yield estimator needs 300-1000 Monte Carlo tri-

als. However, for circuit analysis that is excessive. They discuss parametric

sampling, yield prediction and quasi-importance sampling, but the SA ap-

proach requires only a few extra samples each iteration.

Herr and Barnes [H886] discuss a statistical design tool developed for

production lines, using new MOS models of real processes. They stress the

importance of considering parameter correlations from the outset.

Nassif, Strojwas and Director [NSD86] point out that yield prediction at

each step of a process is prohibitively expensive and instead the IC design is

usually verified under worst-case conditions. Parameter sets (threshold volt-

ages, transconductances etc) are obtained from test structures but the corre-

lation coefficients between device parameters are traditionally not taken into

account. Device parameter distributions are estimated, extreme values for

each parameter are chosen and combined to obtain extreme (worst) values of

circuit performance. However, such combinations are unrealistic; the prob-

ability of simultaneous occurrence of these conbinations is extremely low.

Hence the results of such an analysis will always be much too pessimistic.

2Stochastic Approxirnation Technique

.tt

Correlations arise because different devices share processing steps, suggest-

ing that worst-case analysis should be performed in terms of some lower

level set of parameters, which will result in proper correlations between de-

vice model parameters. With the FABRICS tool they find that greater than

90 percent of the computational cost in the application of worst-case analysis

methodology is the cost of circuit simulation. They conclude that full Monte

Carlo simulation of complete ICs is not feasible, and worst-case analysis is

an attractive alternative to verify an IC design.

Yang et al IYHC+86] start with the definition of parametric yield3 and

develop a statistical model using only interdie variations, since these are

found to be much larger than those on one die. They show that current

and capacitance of MOSFETS are primarily affected by: length reduction,

width reduction, gate oxide thickness and flat band control, and create a

quasi-physical circuit model with 9 parameters. Their statistical parametric

yield estim¿úe method, to within 5 percent accuracy, requires several hundred

simulations to get a reasonable yield estimate, so they conclude that Monte

Carlo has limited use for routine circuit designs.

Spoto, Coston and Hernandez [SCH86] explain that soon after varia-

tions in the fabrication process were found to cause parametric yield losses,

the worst-worst case method was applied to the verification process and re-

sulted in many overly designed products. 'Worst-worsta
case was justified

at the time because models were inaccurate and parametric data was ei-

ther sparse or nonexistent. Their system integrates process, device, and

circuit-characterisation functions. Using it, designers will no longer have to

overdesign products to ensure their success.

Stein's method [Ste86] finds possible distributions for parameters which

minimize the expected cost of producing design. Given simulation results for

one parameter distribution, Stein gives a fast method which takes only a few

extr¿ sarnples, based on their demonstrated importance to the result, rather

3fraction of defect-free circuits meeting operating range performance specifications
4Wotst-worst means extreme values without regard to parameter correlations

38

than redoing all the Monte Carlo simulations for a different distribution.

Styblinski and Opalski [5086] develop a set of design centering tools

within the FABRICS system. They note that the size of circuit that can be

optimized is limited by the amount of time that can be devoted to optimi-

sation and a major factor is the time taken by the SPICE circuit simulator.

The overhead introduced by the optimization methods themselves is found

to be negligible.

Alvarez et al lÃ+88] discusses a new theoretical method for design cen-

tering, which uses information from parametric disturbance studies.

Mozumder, Strojwas and Beli [MSB88] concentrate on the statistical

modelling of the process stage, while Director, Maly, Strojwas, Mozumder,

and Bell, in a series of important papers [DMS88] [MSB88] [DMS88] [Str89]

[Mal90] provide a consistent set of methods for increasing the fabrication

yield.

4.2 Circuit Sirnulation

All the statistical techniques discussed above rely heavily on circuit simula-

tion. Hon [Hon87] and Harrison et ø/ [HNSB9O] provide a good overview of

circuit simulation tools within the CAD environment.

Newton [New79] recognised that while circuit simulation techniques can

provide accurate waveform analysis of circuits of building-block complexit¡

the requirements of a circuit simulation become prohibitive as circuit size

increases. Timing simulators can improve speed by two orders of magnitude

while maintaining acceptable waveform accuracy by using node decoupling

techniques and simplified lookup models for nonlinear devices, but the speed

of timing simulation is insufficient for the analysis of large circuit blocks.

Yang and Chatterjee [YC82] recognise that statistical variation of param-

eters urust be accourtled for, alld [hat parasitic capacitance and resistance

are more dominant in the deternination of transient response of integrated

circuits as the feature sizes shrink and circuit density is increased. They

39

present a comprehensive circuit simulation model for MOS short channel be-

haviour, including a model for the fringing capacitance due to finite gate

thickness.

Vladimirescu and Pederson [VP82] describe Classie, a simulation program

developed to narrow the speed performance gap between circuit simulators

and timing verifiers.

Coughran et al |CGP"83] report a damped-Newton method, proved effec-

tive in simulation, using splines for functional models of transistors.

Werner [Wer84], noting that the simulator is effectively the breadboard

for system engineers doing custom IC design, reviews available switch-level,

gate-level, functional-level, behavioural-level and mixed-mode simulators.

Newton and Sangiovanni-Vincentelli [NSV84] give an overview of circuit

simulation programs, and methods used to improve the performance of con-

ventional circuit simulators for the analysis of large circuits. They cover

table look-up methods, direct methods and relaxation methods. For the di-

rect sparse-matrix methods on which standard circuit simulators are based, a

major drawback with the use of timing analysis is that tightly coupled feed-

back loops, or bidirectional circuit elements, can cause severe inaccuracies

and even instability during the analysis.

Tsao and Chen [TC86a] describe MOTIS3, a fast-timing, multilevel

mixed-mode simulator, with an automatic voltage step control scheme for

optimising speed and accuracy. Circuits are first partitioned into subcircuits,

and the simulator processes the subcircuit as one element, allowing event-

driven techniques to be used for controlling the simulation mechanism and

the circuit simulation techniques for circuit block evaluations. The waueform

relaxation technique allows the compute time to be reduced at the expense

of accuracy and vice versa. Up to 30,000 transistors have been simulated.

They conclude that fast-timing simulation is about three orders of magnitude

faster than conventional circuit simulation, and accurate to 5To.

Ruehli and Ditlow [RD93] discuss the SCALD timing verifier, using a cal-

culus of 7 logic values to verify designs, and employing: the sparse tableau

40

analysis method; modified nodal analysis method ; implicit integration meth-

ods; and sparse matrix techniques.

Benkoski and Strojwas [BS87] draw attention to the concept of solving

for the time needed to cross a predefined voltage interval, as opposed to the

formerly universal approach of computing the voltage reached at the end of a

given time interval. This approach fits within event-driven frameworks, but

is not general because it is only applied over a short time interval, rather

than over a full waveform.

Bryant [Bry88] introduces switch-level simulation; Lee and Rennick

[LR88] create ASIM, a compact IGFET model; Brocco [Bro88] review tech-

niques of block construction for CMOS circuit models; and Cox, Burch and

Epler [CBE86] discuss the circuit partitioning problem with an eye towards

useful parallel processing methods.

4.2.L Tirning Verifiers

Hitchcock [Hit82] explains that timing verification consists of validating the

length of path delays and checking the width of clock pulses. His program

TAs generates standard deviations for the times so that a statistical timing

design can be produced rather than a rvorst case approach. The accuracy

of the answers is only as good as the accuracy of the delays calculated for

each block, and assumes that the delays can be combined as for Gaussian

distributions.

Jouppi [Jou87] shows that these block statistics of Hitchcock are assumed

to be independent of the state of the circuit, so need to be compiled only

once every design iteration. He describes TV, a MOS VLSI switch-level

timing verifier, which analyses circuits ivith 40,000 transistors in under 30

minutes of VAX Il1780 CPU time. An interactive timing advisor provides

incremental timing analysis. There are accuracy/speed tradeoffs involved in

this approach. Jouppi, like Canepa previously, considers that analysis must

sTiming Adviser - for clocked, sequential machines

4I

be perforrned on the entire design at once.

Banerjee [Ban88] presents a tutorial on timing verifiers within the context

of design verification in the CAD environment.

4.2.2 Relaxation Methods

Hageman [Hag81] shows how systems of linear algebraic equations can be

solved either by: direct methods, for systems of moderate size; or iterative

methods, used primarily for solving large and complex problems for which,

because of storage and arithmetic requirements, it lvould not be feasible or

it would be less efficient to solve by a direct method.

Nevanlinna [Nev89] analytically attacks the question: how long to iter-

ate?, because one of the main problems in iterative processes is to predict

from the computed data when the true solution is already well approximated.

The relaration procedure is an iterative method. Southwell [Sou43], the

prime originator of this method, and also Shaw [SF53], both give a good

explanation of this method, which was devised for the computation of stresses

in frame-works and was shown to have application to other problems in

engineering science. They assert that "discarding orthodox for relaxation

methods, any problem that can be formulated can be solved".

Relaxation is a means whereby simultaneous equations may be solved,

not exactly, but with steadily increasing approximation. Relaxation, or liq-

uidation, of residuals is achieved in a number of steps, by applying the basic

rule of relaxation at each step; the aim of every step is to change the value

of the currently largest residual to zero. It can be applied to differential

equations in their finite-difference formulation. Inaccuracies can be reduced

by successively halving the time interval, errors do not accumulate at each

step and high accuracy is not required.

The essential feature of the relaxation method: it fixes attention, not

on the quantities whose values are required, but on the quantities whose

values are given. Thus it has wider application than can be established b5'

42

rigorous argument. It will still be possible that the solution is not unique;

but this question is for physical intuition to decide.

Newton and Sangiovanni-Vincentelli [NSV84] concentrate on relaxation

methods for the solution of the set of ordinary differential equations describ-

ing the circuit under analysis. The two most common methods used a¡e the

Gauss-Jacobi and the Gauss-Seidel. Relaxation methods are ideally suited

to exploit any latency of the circuits, but are not guaranteed to converge.

The first successful application of relaxation methods to electrical-circuit

analysis was in timing simulation. Timing simulators have proved success-

ful when applied to constrained IC design methods, but have not been as

successful in the custom-design environment. Since there is no way to guar-

antee accuracy for an arbitrary connection of MOSFtrT's unless at least two

relaxation iterations are performed per time step, timing simulators have

produced incorrect results in some situations.

An important assumption required by relaxation based electrical simu-

lators is that a two-terminal capacitor be connected from each node of the

circuit to the reference node (ground or supply).

Iterated timing analysis applies relaxation techniques at the nonlinear

equation and its convergence properties are proven. The waueform relaxation

method applies relaxation techniques at the differential equation level.

Newton and Sangiovanni-Vincentelli [NSV84] and Lelarasmee and

Sangiovanni-Vincentelli [LSV82] both describe RELAX, a Waveform Relax-

ation MOS simulator. The algorithm used in RBLAX assumes that the

circuit consists of unidirectional subcircuits with no feedback paths. The

method analyses a decomposed subcircuit for the entire simulation time in-

terval, as opposed to only one time step, before proceeding to analyse another

subcircuit. It is possible to show that this technique will always converge to

the exact solution of the cilcuit differential equations provided that there is a

grounded capacitor at every node in the circuit. Therefore the accuracy and

reliability of this technique is guaranteed for most practical MOS circuits. If
the subcircuits are processed accolding to the flow of signals in the circuit,

43

the solution converges in just two iterations.

Experience simulating MOS digital circuits using RELAX2 shows that

most MOS digital circuits without logic feedback loops converge in less than

ten iterations. However, circuits with logic feedback loops may take many

more iterations to converge, and the number of iterations required is propor-

tional to the length of the simulation interval.

Iterated Timing Analysis, which can be derived from timing analysis, is

accurate and fast, for large digital circuits.

The stability, consistency, and order of accuracy of the Implicit-Implicit-

Explicit (IIE) method has been determined and the method is very promising

for circuits with floating capacitors.

Newton and Sangiovanni-Vincentelli conclude that timing simulation al-

gorithms are fast and rather accurate for the electrical simulation of MOS

circuits with no tight feedback loops. Simulators using these methods provide

accurate waveform information with up to two orders of magnitude speed im-

provement for large circuits. It is clear that relaxation-based algorithms for

electrical simulation are well suited to the use of special-purpose hardware.

They conclude that the WR algorithm can handle floating capacitors

and pass transistors satisfactorily, and RtrLAX can be at least one order of

magnitude faster than SPICE2,lor the same accuracy.

Dumlugol et al !DOCM8T] discusses a mixed-mode switch electrical im-

plementation of the Segmented Waueforrn Relaration Method, an efficient

waveform relaxation method for circuit-level simulation of large-scale digital

MOS networks. The underlying idea is to decompose the large system of dif-

ferential equations into subsystems, each of which is integrated independently

on the given time interval, taking into account inputs from other subsystems

from their state at the previous iteration. They note that the problem with

timing simulation is that sometimes a wrong result can be produced without

notice, so it has not found wide acceptance in the user community, except

for certain classes of circuits.

Casinovi and Sangiovanni-Vincentelli [CSV88] discuss modern simulators,

44

such as SPLICE or RELAX, which are based on relaxation methods because

these methods are better suited to exploiting circuit latency and multirate

behaviour. In all cases, their speed of convergence can be extremely slow,

depending upon the numerical values of the elements of the circuit. They

conclude that in the near future the application of relaxation methods to

circuit simulation will remain confined to digital circuits in which no tight

feedback loops are present.

Finally, Overhauser, Hajj and Hsu [OHH89] propose a scheme for auto-

matic mixed-mode timing simulation. and Schneider [Sch91] gives a sufficient

condition for the convergence of the Waveform Relaxation Method6.

4.3 Fabrication Simulators

Garcia and Sriram [GS82] note that the main CAD tools for the design

phase are the various types of simulators, but as design complexities shift

from a circuit to a system level, other hierarchical simulators will become

more important to the design process. In particular, the need for a set of

models of the fabrication stage is recognised.

Mei and Dutton [MD83] write that with typical VLSI circuits consists

of more than 100,000 transistors on a single chip less than 1 centimetre

square with the minimum device feature size on the order of lpicometer or

less, models for simulating both lithographic and etching steps are necessary

and have been subject to intensive research, for example, the 2-D process

simulation model, SUPRA, developed at Stanford University.

Lightner [Lig87] notes that wide use of workstations and personal com-

puter based CAD systems is incr-easing the demand for efficient and accurate

multi-level simulators, not only spanning the logic and behaviour levels but

including the circuit and switch levels as well.

6also referred to as the Picard-Lindelof iteration

45

4.4 Sirnulation Acceleration

4.4.L Simulated Annealing

Kuh and Ohtsuki [KO90] criticise the 'sea-of-gates' design style which calls for

efficient algorithms which deal with hundreds of thousands of gates. Previ-

ously useful algorithms based on simulated annealing or other random meth-

ods have become unusable: even for them the computation time is unbearable

in spite of the growing accessibility of faster computers.

4.4.2 Software Speedup

Saleh eú ø/ [SGC+89] know that time-domain transient-analysis circuit sim-

ulation is a very time-consuming and numerically intensive application, es-

pecially in the case of VLSI circuits. To improve performance without sacri-

ficing accuracy, a variety of parallel processing algorithms have been investi-

gated. Both standard direct methods and relaxation-based approaches such

as waveform relaxation, iterated timing analysis and waveform-relaxation-

Newton are explained and their problems explored. They consider paral-

lel direct methods, model evaluation, sparse system solver, iterated timing

analysis and parallel relaxation methods. In particular, the forms of paral-

lelism available within the direct method approach, used in programs such

as SPICE2 and SLATE, and within the relaxation-based approaches, such

as wave-form relaxation; iterated timing analysis, and wave-form-relaxation-

Newton, are described.

For example, parallel circuit simulation programs based on nonlinear re-

laxation have been developed for the BBN Butterfly, and the Sequent mul-

tiprocess. A number of parallel simulators using direct methods have also

been developed primarily related to general-purpose multiprocessors with a

shared-memory architecture having a limited number of processors.

They conclude that the convergence speed of relaxation methods depends

on the degree of coupling between the equations in the systern and the order

46

in which the equations are processed. If some equations are tightly coupled

convergence can be very slow.

4.4.3 ffardware Speednp

The evolution of technology provides the opportunity of forming large proces-

sor ensembles working closely together. Instead of building a small number of

extremely powerful supercomputers it is most promising to develop methods

for distributing large jobs over many computers of the usual size. These are

manufactured in large numbels and therefore are cheaper. Multiprocessors

come in various sizes, ranging form two processors connected by a simple

serial link to computers with tens of thousands of processors connected by a

complex communications network.

Arden and Ginosar [4G82] explain that, historically, the large processing

rates characteristic of supercomputers have been produced by two diffelent

approaches to concurrency. In the first, or pipeline approach, operations

are divided into small roughly equal duration units which can be executed in

parallel using very high performance circuits. In the second approach concur-

rency is more macroscopic. A relatively large number of simpler processors

can execute simultaneousiy on larger parts of the algorithm being executed.

They argue that the former has been more successful, but that the latter

holds more promise for future general computation since the simpler proces-

sors provided a modularization that is compatible with anticipated VLSI cir-

cuit capabilities, and the need to accommodate relatively large computations

"on chip". They discuss a number of examples:the distributed, extensible,

MP/C is a MIMD machine with a dedicated-path network; the Colombia

Homogeneous Parallel Processor is another proposed MIMD; the Minerva, a

single bus MIMD, and the Dynamic Computer both have a similar organisa-

tion to the MP/C; the Cm* and the X-Tree both have processor-to-memory

communication systems; the Divided and Conquer computer (DAC) is a mul-

ticomputer with a binary tree interconnection network; and the binary tree

47

machine proposed by Bentley and Kung is similar to the DAC.

Levendel, Menon and Patel [LMP82] present the architecture of a special-

purpose computer for logic simulation using a distributed processing network

based on an interconnection of low cost microcomputers. The circuit to be

simulated is partitioned into subcircuits and each subcircuit is simulated in

a separate microcomputer. Thus, several microcomputers can be simultane-

ously simulating several elements activated by parallel signals. A combina-

tion of the cross-point matrix and parallel bus can be used to simulate circuits

containing both simple and functional elements. The speed/performance ra-

tio of the simulator is expected to be greater than two orders of magnitude

compared to traditional simulation methods implemented on general-purpose

computers.

Bondurant [BKB82] discusses the parallel-pipeline array processor archi-

tecture of the Honeywell Array Processor, designed for military applications.

The Yorktown Simulation Engine [DKP83] is a programmable machine

which can simulate up to 1 million gates at a speed of over 2 billion gate

simulations per second. It is mentioned here because custom transistor-

level FtrT designs, including pass transistor logic and charge sharing, can be

simulated by converting the source network description into a functionally

equivalent gate network.

Fromm et al!FHJ+83] considers the EGPA Pyramid, a hierarchical multi-

processor operating system, and discusses interconnection structures such as

time shared or common bus systems, crossbar switch matrix, and multiport

memory.

Gottlieb et al [GGK+S3] present the NYU Ultracomputer, a shared-

memory MIMD parallel machine composed of thousands of autonomous pro-

cessing elements. The design is a general purpose MIMD machine with

a message switching Omega-network. Their simulations lead them to reject

SIMD machines in favoul of the MIMD model for certain types of simulation.

Ambler [Amb85] intends to exploit the inherent parallelism in circuits

by modelling transient operation node-for-node on a,n array of cooperating

48

microprocessors - transputers - with 10-100 processors under control of a

mainframe computer. This method exploits the circuit's latency - only 10%

of its logic is active at any moment. For example, a circuit with 1 million

nodes could be partitioned into 400 node modules and the modules simulated

in series on a 4O0-processor array.

Dettmer [Det86] discusses a transputer design used for graphics. Each

IMS 8003 has four T4L4 32-bit transputers with 256 kbytes of DRAM per

transputer. The transputers are organised in a particularly simple way.

There is one master transputer and 39 slave transputers which receive work

from the master.

May and Fuge [MF86a] discuss the T800, developed as part of the Euro-

pean Esprit parallel-computer'-architecture project.

Gabriel [Gab86] introduces and discusses a wide range of massively par-

allel computers, their communication networks and memory arrangements,

such as the Goodyear Massively Parallel Processor, built in 1979. This ma-

chine is a 128 x 128 grid of 64-bit, 100-nsec processors, each with 1024 bits

of RAM, and packaged eight per chip.

The major problem to solve in building a massively parallel computer is

how to interconnect a very large number of processors and memory modules.

There is a class of connection strategies whose hardware requirements grow as

Iog(n); this family uses a network known as the omega or butterfly network,

a member of a class of networks called shufle-exchange networks. This is

the communication architecture used by the Bolt, Beranek and Newman

Butterfly computer.

Another application of the omega network is the hypercube or Boolean

n-cube. It takes at most log(n) time to transmit a message through an

n-dimensional hypercube. The Connection Machine, a SIMD computer com-

prising 65,536 (216) processors connected as a Boolean n-cube, uses the hy-

percube connection scheme.

The NON-VON computer is discussed. There are two categories of pro-

cessors in the NON-VON, the small plocessing element (SPE) and the large

49

processing element (LPtr). SPE's operate in SIMD mode under the control

of the LPÐ's. NON-VON can support SIMD, MIMD (multiple-instruction

multiple-data), and MSIMD (multiple SIMD) operations. Algorithms such

as relaxation are naturally performed on such processors because the struc-

ture of the processor matches the structure of the problem and the problem

solution Gabriel concludes that for n) 10,000 the cost of the crossbar switch

is prohibitive and its size unmanageable.

Charlesworth [CG86] discusses supercomputing with replicated VLSI,

and explores the operations of: the CMU Systolic Array Computer; Intel's

Personal SuperComputer (iPSC); the 16-processor C.mmp; and the FPS-

164/MAX matrix supercomputer.

Dumlugol et al IDOCMST] consider hardware acceleration of switch elec-

trical waueforrn relaration methods on parallel computers where a number

of processors communicate over a parallel bus. Such algorithms are well

suited for parallel computation since several subnetworks can be simulated

concurrently on different processors over time intervals containing multiple

time points. The Gauss-Seidel WR algorithm, together with the timepoint

pipelining method, allow substantial acceleration on parallel computers, but

acceleration drops for more than about 16 processors. They discuss an ad-

vanced timing-simulation method which does not suffer from the accuracy

and stability problems of previous timing simulators and which substantially

increases the algorithmic parallelism. Speed gains over the direct method of

more than an order of magnitude are obtained with SWRM.

Odent, Claesen and De Man [OCD89] discuss the problem of feedback

loops in parallel relaxation-based simulators.

Soule and Blank [5El88] look at the subset of logic simulation on general

purpose machines, while Peipho and lVu [PW89] offer a good comparison of

RISC architectures.

August et al [ABHS89] devote a paper entirely to the Cray X-MP.

Lopez and Valimohamed [LV90] introduce the concept of a software en-

vironment for developing engineering application systems fol multiprocessor

50

hardware (MIMD). Distributed-memory, or loosely coupled systems, are net.

works of computing elements each having its own memory. No memory is

globally accessible. Communication and data transfer in such systems are

accomplished by "message passing", €.g., the Hypercube and the Intel ipSC.

They conclude that a large percentage of software research in parallel com-

puting has been directed at defining new forms of old algorithms that are

more suited to a specific type of MIMD computer.

Ortiz [OPP91] describes the Connection Machine, a hypercube-connected

network of clusters of 32 processors, each of which is connected to 64I(of

random access memory, a 32-bit floating point processor (Fpp) and a Fpp
chip. Machine configurations range from 8K to 64K processors. Message-

passing between arbitrary plocessors in handled by a hardware router. Stiller

lstig1] looks at the next model: the Connection Machine-2. The CM-2 has

a fine-grained SIMD architecture with 64K processing elements controlled

by a standard front end interface. Each processing element is bit-serial, has

between 8K and 128K bytes of bit-addressable RAM, and is connected in a
binary 16-cube.

Lin and Wu [LW92] also explore the n-dimensional hypercube (binary
n-cube): a highly concurrent ioosely coupled multiprocessor consisting of 2
identical processors. Each processor of node has its own locai memory. They

conclude that the meshes of processors are very suitable for impÌementing

many iterative or recursive algorithms in parallel.

4.4.4 Parallel Systems

Swartzlander and Gilbert [SG82] examine three of the classical design op-

tions: high speed monoprocessors, ar-ray processors and distributed proces-

sor. A common design theme is that the most efficient algorithms are all
multiple instruction stream, multiple data stream (MIMD) devices. They

conclude that the crossbar arrangement has been used only in those instances

in which maximum interconnection flexibility is required and where there are

51

a relatively small number of nodes. Parallel and pipeline processors lack the

required fìexibility for many supersystems applications, so attention has been

focused on distributed networks. The later approach appears most desirable

for supersystems, but requires improved interconnection networks.

Teja [Tej85] also considers architectures that distribute the processing to

multiple fairly-independent CPUs. Somewhere between a simple reassign-

ment of routine tasks to slave processors and true parallel processing is a

class of high-powered computers whose architectures are best describecl as

distributed. Sequent Computer Systems' Balance Computer, for example,

allows system configurations rvith as few as 2 or as many as 12 processors.

Agrawal and Jagadish [AJSs] examine the important issue of how to par-

tition the circuit for simulation on a class of palallel architectures.

Lewis [Lew88] presents the design of a hardware engine for timing simula-

tion using a nodal formulation and the forward Euler integration algorithm to
solve the differential equations that model the circuit, and a multiprocessor

structure with a high-band width interconnection network to support parallel

simulation. This iterated tirning analysis method exploits circuit latency and

uses multirate integration. The speed of this accelerator is extremely high,

allowing the simulation of circuits with over 100 000 transistors in under one

second per simulated clock cycle. Each node has a capacitor with one ter-

minal connected to ground, and no other capacitances are allowed. He only

simulates accurately enough to avoid the problems of switch-level simulation

and obtain correct logical results and reasonable timing accuracy.

The circuit is partitioned into a number of subcircuits, where each sub-

circuit can be an arbitrary collection of nodes and the devices connected to
them. Each processor is responsible for simulating the nocles in one or more

subcircuits. The simulation of a subcircuit may require knowledge of voltages

of nodes in other sub circuits, possibly on other processors.

AWSIM uses an 11 bit representation because the intended application

does not require high accuracy. It has been used to simulate designs con-

taining up to 13,000 transistors. The net speedup due to multiprocessing is

52

about 9 times, for 32 processor.s.

Lewis admits that the principal disadvantage of Awsim is its poor mod-

elling of parasitics and inability to handle floating capacitances. Further-

more' many timing simulators are more accurate than Awsim because of
better algorithms and device modelling. Finally, they run on general-purpose

hardware that can be used for many different tasks.

However, one of the surprising aspects of this machine is the use of a
forward Euler integration algorithm, long discarded for most software imple-
mentations because the poor stability of this algorithm results in a small time
step. As a result, an algolithm which appears to be obsolete for software im-
plementations results in an inexpensive hardware implementation with good

performance. Once again, notably, the ability to perform a timing simulation

on the entire chip was found to be essential for design verification.

Other multiprocessor simulators use an event-driven message passing

scheme include MSPLICE, a multiprocessor implementation of ITA using

shared memory, and Event-EMU of Ackland and clark [ACgg].
Renterghem [Ren89] describes in detail the transputer of INMOS, de-

signed to facilitate loosely coupled multiprocessor system. It has a multi-
tasking kernel and schedular embedded in the microprocessor's microcode.

A transputer can pass messages faster to surrounding transputers than to
transputers that are not directly connected to it (messages have to be routed
through one or more other transputers). In a transputer system, there is
no bandwidth saturation as the system size increases, no capacitive load
penalty as more transputers area added and no communication bus con-

tention. Transputer systems normally act as coarse grain size computers.

He discusses various forms of applicable parallelism, including: geometric

parallelism; algorithmic parallelism; data parallelism; and hybrid forms of
parallelism.

Hayes and Mudge [HM89] review a range of multiprocessors, all having
a few dozen processors connected to a shared memory over a common high-

speed bus. Examples ale the Sequent Balance and the Encore Multimax. For

53

the BBN Butterfly and the RP3, a key feature is the omega-type multistage

interconnection network that connects the processors to the shared memory.

The earliest study of hypercube computers was published by Squire and

Palais of the University of Michigan in 1963. Their stated goal was to design

a computer "where the emphasis is on the programrnability of highly parallel

numerical computations, with hardware cost a second,ary consideration7".

With the advent of the single-chip microprocessor in the early 1970's sev-

eral other proposals for microprocessor-based hypercubes wele made. IMS

Associates announced a 256-node commercial hypercube based on the In-

tel8080 micro-processor, but it was never produced.

The Colombia Homogeneous Parallel Processor, which would have con-

tained up to a million processors, was proposed in 1983 and not built, but

the 64-Node Cosmic Cube was built in 1983. In 1985: Intel delivered the

first production hypercube, the iPSC; NCUBE Corporation produced the

NCUBE/ten; and System I4f n carne out from Ametek. Other parallel com-

puters were the Caltech/JPl Mark 3, the Floating Point Systems T Se-

ries, and the Intel |PSC12. The Connection Machine series manufactured by

Thinking Machines Corporation employs up to 216 simple processing nodes.

They find with their CL algorithm, the speedup is reasonable for up to 16

processors, and that little is gained by increasing the number of processors

beyond that. Hayes and Mudge conclude that high hardware cost was clearly

a major reasons why these early hypercube designs were never implemented.

Duncan [Dun90], Hennessy and Patterson [HP90] and Skillicorn [Ski9i] all

provide useful surveys and models of parallel architectures and quantitative

and computational methodologies.

Vaughan [Vau92] introduces the basic idea underlying the multiple-

virtual-ring (MVR) message-passing system, with its protocol of taking

a divide-and-conquer approach to information-distribution policies in dis-

tributed systems, and investigate networks of up to 20 homogenous proces-

sors. He concludes that the implementation of a divide-and- conquer philos-

7my emphasis

54

ophy does not imply an increase in the overhead of information distributioq,

and that much work remains to be done on the effect of system size, interpro-

cessor distance and distance between subsystems in networks of more than

100 processors.

Steven eú a/ [SAFT92] studies the iHARP processor, which fetches aI28-

bit long instruction word frorl an instruction cache every processor cycle.

These are often called VLIW (very long instruction word) architectures.

Bogineni and Dowd [8D92] invent an optical interconnect system, with

which they hope to ease the backplane interconnection problem; while Clark,

McColm and Stark ICMS92] address some of the related ploblems facing

certain architectures.

4.5 Conclustons

Important issues, including some unaddressed problems, include:

Forrn of the Distribution This has not yet been discovered, but this fact

is addressed in Part III of this thesis.

Nurnber of Monte Carlo Simulations Estimates of the number needed

average around 500 Monte Carlo runs. Thus the circuit simulation ta,sk

is the overwhelming bottleneck. This is also addressed in Part III.

High Accuracy High accuracy is genelally conside¡ed necessary, with less

that 1 percent often quoted.

Modelling Strategies There are man)' methods, dominated by relaxation,

in software, and by distributed MII4D architectures, in hardware.

Conclusions normally reached are: that the convergence speed of re-

laxation methods depends on the degree of coupling between the equa-

tions in the system and the order in rvhich the equations ar-e processed.

If some equations are tightly coupled conve.gence can be very slow.

Against this, it has to be borne in mind that the relaxation method

55

was invented at a time when there was only very rudimentary comput-.

ing machiner¡ and that, in any case, the MIMD architecture has some

real problems as the scale increases.

'W'hole-Chip Simulation There seems to be a recurring desire to simulate

large parts or all the chip circuit at once. Although this may in cases be

due to irregular design methods, it seems to be a genuine requirement.

However, it is none-the-less alarming to find Jouppi [Jou87] noting that:

'Recently, integrated circuits thern.selues haue become so large tha,t their tirn-

ing is not easily understood by their designers'

in the context of making ihe point that

'simulations must be pieced, together by making assumptions about the inter-

action of design bloclcs. These assumptions are compler and prone to error.

To eliminate these assumpt'ions, analEsis must be performed on the entire

design at once.'

Migration to 'W'orkstations All the tools reviewed here have been devel-

oped and are available on mainframe computers in large production

companies or universities. Large companies have quite different aims

from small designer groups, who desire remote fabrication of limited
runs.

Werner [Wer8a] notes that workstation-makers are investigating the use

of commercially available array processors to speed up logic simulation.

None-the-less, none of the stochastic methods have migrated but since

the overheads are small that should present no problems.

In this thesis, heuristic methods will be preferred, rather than a full
design centering implementation, to get a feel for how well designs will
manufacture at remote sites. Suitable methods for this are addressed

in Part IV.

56

Part III
New fdeas

oI speak withoul exaggeralion when I sag lhøl I haae conslructed 3,000

d,ifferenl lheories in conneclion wilh lhe electric lighl, each one of lhem rea-

sonable and apparenllg likely lo be lrue. l'el in lwo cases only d,id my exper-

imenls proue lhe lrulh of my lheory."

THOMAS EDISON

Chapter 5

Concatenated Structures

Processing-parameter uariations occurring during fabrication of VLil circuits

cause a statistical spread in circuit-element operating times.

This spread is easily found for single leaf cells, but not for concatenated

structures (add,ers, etc.) due to long time and large size constraints on the

simulator. Here I inuent an accurate method of obtaining the spread of con-

catenated times directly from the spread of the operating times of just the fi,rst
two cells of such a concatenated structure.

5.1 Introduction

The effects of fabrication-parameter variations on the operating time of a

single leaf cell have been investigated in a previous chapter. From these

results it might be argued that the effect is small and that the spread of

times is not large enough to be of practical concern. It will soon be seen that
this is definitely not so. The reason that the spread becomes very significant

in real circuits is that the time of operation of most circuits depends on

subsystems which are made by simple concatenation of a leaf-cell; ripple

adders and parity generators are examples of this. Thus an initial small

spread of finishing times for a single cell can become greatly magnified in

the final concatenated structure, which might consist of from 8 to 24 cells or

58

more.

In these cases the statistical behaviour - that is, the spread in the finish-

ing times of the circuit element - under conditions of uncertainty in process

parameters becomes a much larger and less general problem. It is larger

because many more cells are involved in the circuit simulation. It is less gen-

eral because this very size prohibits the application of the single-cell methods

without some adaptation.

Consider a simple shift register, or actually a sequence of cascaded or

concatenated inverters (like a ling oscillator, perhaps). A signal allowed to

'pulse' into the first cell (via a clocked line) has a given distribution of times.

However the input to the next cell is quite different in general from this initial
signal and so the next cell has a different delay and a different distribution

function. If the output of each cell is input to the next then a formidable

problem (for SPICE) is faced with a single 16-bit register. However if only

the first and second cells need stochastic modelling then the distribution

function of the overall register is obtained with huge savings in both money

and time. Thus this algorithmic approach to statistical modelling of large

registers reduces it to practicality.

Thus there appeared a need to obtain structural timing statistics from

simple cell statistics, as an inexpensive way of determining design yield,

rather than having to stimulate an entire structure consisting of many iden-

tical cells.

5.2 The Fleuristic Stage

While developing another application using cascaded inverters, the results

produced by 150 stochastic SPICE simulations of the cascaded inverter tim-

ing showed that, after the first cell (which is a special case) the mean finishing

time of each stage increased linearly with the stage.

59

5.3 An Hypothesis

These results suggested that the distribution for n stages might be obtained

with some accuracy by suitably combining the results from the lìrst stage

alone with the results from the first two stages considered jointly.

In what will be referred to here as the TIMtr method, it is proposed

that for each finishing time resulting from a Monte-Carlo simulation, the

finishing time of the nth stage is predicted by linear extrapolation of the

time differences between the second and first cells - i.e..

õt \

2

\

t
n

\
t rne

(n-1) 6 t

tn: tt + (n - I)6t

The cumulative distribution is then formed directly from the histogram

of these predicted times.

This hypothesis was strengthened by a systematic experiment involving

a cell cascaded into an 8-bit adder. The experiment is described in detail

below.

5.4 Testing the Hypothesis

This TIME method was tested in a systematic study using an adder cell

adapted from a multi-project chip design, described in Appendix A.

The actual spread for an 8-stage adder was produced by running 200

SPICtr simulations, sampling the process parameters from gaussian distri-

butions. The spread at each stage is shorvn in figure 5.1 on page 64. The

output voltages from each stage were fitted by a piece-wise linear fit and this

60

\À¡as used as the input to the next stage in the adder, thus:

output

original inpul

p¡ece-w¡se
linear
f it to curve

when a further SPICE sirnulation was done on the next stage. This then

becomes the equivalent of:

orþinal input

o(Jtput

This procedure avoids making the simulator twice as large as for a single

cell, since two cells are not being simulated at once, but only one cell (the

first) during the first stage, and then only one cell again (the second) during

the second stage, when the output from the first stage is fed in as input to

the second cell. This elementary process was repeated for- the whole 8 stages,

ultimately producing

The spread of process parameter values used in the simulations cover three

standard deviations (99% of all samples) and these sprea,ds have already been

summarised in the table on page 28. The values roughly approximate those

used for making timing predictions for AUSMPC-5182; however the spreads

were for simulation purposes only and do not correspond to any particular

first
cell

eecond
cell

firsl
cell

gecond
cel

3 5I 2 4 6 7 I

61

process

5.5 Experirnental Results

The extreme finishing times found below demonstrate quite clearly that the

spread becomes very significant as an initial small spread of finishing times

in the single-cell is greatly magnified in the 8-cell final structure.

SrncB MrNruuvr
Tn¡a nSec

Maxlvturr,r
Ttun nSec

1

2

3

4
5

6
17
I

8

45
88

130
173
215
256
298
340

98
222
296
42I
477
620
659
819

Interestingly, it is found that it is not the variance, skewness and kurtosis

themselves that increase linearly with each stage. Rather, the quantities that

increase linearly with each stage, and are plotted.later, are the related mean

linear measures: (compare definitions on page 89)

1

'¡y' Dt,
N

i=L

N

D(¿r - t')'
i=7

N

Ð(¿' - p)3
i=l

N

Ð(¿u - t')n
i:r

Shown next is a table of these related mean linear measures for the 8-

stage cell experiment, along with the predictions of each of these parameters

made by the TIME method descr-ibed above.

1

F

1

¡i

I
F

62

STAGE MEAN VnRrnNce Sxnwxnss Kunrosrs
ActuaI

1

2

3

4
5

6

I

8
Predicted

8

64.939
122.I08
178.993
236.1 18

293.250
350.403
407.57r
464.766

465.1 19

0.840
1.548
2.288
3.009
3.731
4.453
5.175
5.898

5.816

-0.373
-0.707
-1.052
- 1.389
-r.726
-2.064
-2.40r
-2.738

-2.705

0.302
0.567
0.838
1.105
r.372
1.639
1.907
2.t74

2.t56

The results in figure 5.1 on page 64 show the timing histogram for each

of the 8 stages (cells of the ripple-carry adder) frorn zero to 800 nanoseconds.

The spread increases at each stage and the mean time also increases linearly

with each stage. Figure 5.2 on page 65 shows the overall statistics of this

computer experiment: the top plot showing how the statistical moments

develop with each of the 8 stages of the adder; the middle plot showing the

cumulative distribution for- each stage, from 0% cells finished operation up

to 100% done over 0-800nSec; and the bottom plot showing the proportion

of chips operating at least at a given speed.

Figure 5.3 on page 66 shows the comparison of the actual and predicted

distributions. Plotted on top of one another on the same graph, and almost

indistinguishable because they match so well, are the predicted and actual

cumulative distributions.

5.6 Evaluation and Conclusion

The TIME method is found to be astonishingly accurate. This is confirmed

using a y2 test by fitting the predicted probability density function to the

actual one, using this method. It is found thai with 23 degrees of freedom,

X2 : I.5, which means that the probabilit¡, of a worse fit than this one (by

chance alone) is effectively 700%. Thus the fit obtained hele can scarcely be

improved upon.

63

Stage 1

20

Stage 5
15

.9

'6
510

I

5

15

_9

.G

510

=

.9

=

l5
.9

5to

ã

5

E

20

20

20

0

5

o
600

600

600

800

800

600

600

600

800

801

400
nonoSêconds

200

200

200

200

400200

o

noñoSeconds

ôonoSeconds

l5
.9

'õ

=ã
o

4000EOO600400o 200

200 400
nonoSeconds

nonoSeconds

^onoSeconds

20

15

.9

'ã

'5

o800400
nonoScconds

20

15

510

600400100
nonoSeconds

Figure 5.1: 8-Sucn AooER CaLl Trrr,rruc Spnono

Stage 2 Stage 6

Stage 3 Stage 7

Stage 4 Stage I

200

64

80()

Mean

6

Variance

500

400

JOO

200

loo

:{
-!
.ç

'82

E

.9

Í

.E

.2

c

E

o

stoge

stoge

6

6

8-sto

8o

20

sloge

odder

21o

o

5

o.0

-o.5

- t.0

-1.5

E

.2

.ç

80
c

.F
o
c
l

660't
lo'.

-9
!
c40
't
o
l
E
l
o

20

0.5

0-o

-25

-J.O
a10

Io

-cor odder
100

U
800600400

nonoSeconds
200o

Figure 5.2: 8-Srnco ADDER Carr - OvpRnLL STATISTICS

.l

Skewness Kurtosis

8-stages of
Cumulative
Distribution

Function

65

TIME METHOD rediction &. octuol
100

80

c
.9
oc
:lç60

=Øc
q)

=- 40
-oo
-oo
Lo

20

0
0 200 400

nonoSeconds
600

Figure 5.3: CotVtpARISoN oF PREDICTED AND AcTUar, DrsrRrBUTroN

800

66

Further experiments were carried out which examined the efect of sam-

ple size (i.e., the number of Monte-Carlo SPICE simulations) on how well

the predicted distribution fitted the actual distribution. The TIME method

quickly reached a high level of agreement and maintained it as the sample

size increased. For a sample size chosen at random between 25 and 150 the

TIME method has a very high probability of producing a predicted cumula-

tive distribution in good agleement with the actual cumulative distribution

for the 8-stage cascaded system.

The TIME method, which requires stochastic simulation of only the first

two cells of an n-cell concatenated structure, one at a time, produces the

required statistics with great accuracy, and this is done at vastly reduced cost

when compared with a full simulation involving the whole n cells. However,

the validity of the algorithm depends on the structure not extending too far

across the chip, in order that parameters remain essentially constant across

the structure. This is usually the case. If it is not, then the methodology

used in the TIME method simulations can also be used to carry out this

simulation, i.e., parameters varying steadily across the chip, as well.

ol

Chapter 6

Direct Statistical Method

Recognising that eract fabrication lcnowledge is unobtainable, I decide to look

for a new rnathematical model which incorporates parameter uariations from
the outset. I hope to produce th.e statistics with just one simulation of an

enlarged system of equations, but the method turns out to be too inaccurate.

6.L The Quest for a New Model

In the case of remote fabrication, exact parameter values are unobtainable

- only statistical knowledge is really available. This suggests that a new

model based frankly on a statistical approach may be more fruitful and could

produce a much more realistic simulation than current deterministic ones.

6.1.1 Deterrninistic Models

The equations of development of voltage and current in circuits are effec-

tively given as a set of first order, ordinary differential equations in the state

variables, voltage and culrent.

They are:

#: -r(',t)

where

68

u is a column vector containing the state variables, and

f @rt) represents a column vector containing functions of the above vari-

ables and the time.

There are two major aspects which have not been addressed in these

equations.

First, each of the state variables is not known exactly at the beginning

of the simulation. This uncertainty in the initial conditions leads to an

uncertainty in the final values of the state variables.

Second, many of the fabrication parameters (not state variables) occur-

ring in the equations are not only imperfectly known, but if the same specified

simulation was to be run many times, then each time their complete time-

history would be different as different actual values are used in the simula-

tion. Each parameter is really only kno'rvn statistically, r.e., the mean value

is specified and the variance about the mean is known or at least estimable.

The effect of this is also to introduce a statistical uncertainty into the

state variables.

If each state variable is initially a random variable, then the whole simu-

lation becomes a stochastic process, whose value at any time is also a random

variable - that is, each component of the state is defined no longer by a def-

inite number, but by probability distribution. This gives the probability of

that variable having a value which lies in a small interval around a definite

number.

By treating circuit analogue behaviour as a stochastic process rather than

a deterministic one, it should be possible to take account of the influence

of variations in fabrication properties and initial conditions on the timing

behaviour of the circuit. It appears that in order to gain reliable simulation

of the effects of these uncertainties, stochastic differential equations have to

replace deterministic ones.

69

6.2 Equations of the New Mathernatical

Model

The new equations are thus to be sought in the literature of stochastic pro-

cesses and a suitable formulation for the present purpose has been presented

by Sage and Melsa [SM71].

The first stage in the derivation is to obtain the equation for the time-

development of the probability density function for the state vector defined

by the set of equations which determine the voltage and current at each node

in the circuit.

Then, assuming that each state variable starts out as a gaussian distri-

bution, characterised by a rnean value and a variability about that mean

value, and in addition assuming that it continues to develop approximately

as a gaussian distribution, a useful approximation can be derived which de-

fines the mean value and the variance for each variable at all times. The

distribution of finishing times can then be obtained from this by integration.

The interesting points turn out to be:

o that the equations for the mean state are the same as already occur

in the existing models for the deterrninistic state, and so all previous

predictions may in fact be re-interpreted as predictions of the average

value instead;

o and that the equations for the covariances are decoupled from the mean

state equations, and so may be appended to the existing models without

disruption.

In addition, the uncertainties in all fabrication parameters may be con-

veniently modelled by taking them into the definition of the state (although

this creates some extra variables) with equations of the form dcldt: 0, since,

although they are initially sampled from gaussian distributions, they do not

thereafter alter during the simulation. Even though they do not themselves

alter, the effect of the variability of theses palameters is tlansfelled to the

70

variance of the other variables uia a matrix occurring in the set of equations,

and through the off-diagonal elements of the variance matrix.

The main variations oculling in fact and also considered in the simula-

tions have already been summa,rised in the table on page 28.

6.3 Representation of lJncertainties

It may be seen from the previous discussion that there are two sets of trn-

certain values: the initial values of the state variables, and the value of

parameters in the equations fol the state variables. A study of the theory

of probability (such as is covered by Papoulis [Pap91]) makes clear that: the

initial values may be repr-esented as random variables; the parameters and

the state variables may be replesented as stochastic processes.

6.3.1 Randorn Variables

A random variable is a real function whose value is determined by the out-

come of a random experiment.

..chosen with this probabiliÇ

r¿lue of random variable'.

In our case, the initial values of state variables may equally probably be

more or less than a mean value. 'l'he values of the variables are continuous,

and so the most useful representation is the probability density function,

which specifies the probability that the random variable lies between two

very close values.

More formally, if the random variable may assume a value rl and p(r) is

7I

its probability density function then p(ø)dr is the probability that the value

lies between c and x * dx. For gaussian distributions, important later,

Ip(r):
ffie-(r-î)2fzo2

whele:

â : Ir.eâD. value of variable r;
o2 : variance of distribution about the mean value.

6.3.2 Stochastic Processes

A stochastic process is a,n infinite collection of random variables

{"(¿), úe [0,7]]

describing the evolution of a natural phenomenon. That is, a stochastic

process is a time-function, depending on the outcome of an experiment.

prodjc6 lh¡s luncilon

If the experiment is carried out many times, then many different time-

functions result, as illustrated.

prodræ ttes€ lunctims

At any given time, the value of the plocess is a random variable; it is the

sampl€
lrom
hêr€

h6rs

72

probability- density-function composed of all possible time-functions passing

through that particular value of time, seen below.

^
.<+

Ultimately the stochastic process is described by the change of the mean

value and the standard deviation of a random variable with time, as below.

spread

m€an path

time

6.4 TYeatrnent of IJncertainties

The original deterministic equations of motion have been analysed, and two

groups of variables identified:

o the state variables, which are stochastic processes, starting out from

their initial conditions, which are random variables;

o fabrication parameters in the equations, which are random variables

but which are constant throughout the simulation.

73

6.5 Continuous Stochastic Dynamical Sys-

tern Model

Current deterministic models take no account of the effect of uncertainties in

initial states or parameters. This new model does so directly. It achieves this

by treating leaf-cell transistor simulation as a stochastic process. Equations

for propagation of variance produce the necessary performance statistics dur-

ing each simulated run.

The model aims to produce, in one trajectory, what the Monte-Carlo

approach produces in many. It takes its equations for the state of the

circuit from the statistical literature [SM71]. The equations for the time-

development of the state are of the same form as in the deterministic model.

It is assumed that each state variable commences as a gaussian distribu-

tion, characterised by a mean value and a variability about that mean value,

and continues to develop approximately as a gaussian distribution. These

equations, along with variance equations appended to the state equations,

produced the mean state and the variance directly as functions of time for

each variable.

6.5.1 Stochastic Differential Equations

The equations governing this set of stochastic processes may immediately be

written down in a generál form.

If there ate n state variables, and m parameters which have been singled

out for random treatment, then for t)Q,

tu(t)
dt f @(t)'t)

whe¡e:

z is an n by I column vector containing the state variables;

/ is an n by 1 column vector of function of the c variables;

ú is the time.

74

Following the methods and terminology used by Sage & Melsa [SM71] and

Jazwinski [Jaz70], this is called a continuous stochastic dynamical system of

equations, or simple a CSDS Model. The initial conditions for the equations

are the values of the state valiables each expressed as a random variable with

a given probability density distribution.

6.6 Solution of Equations

In this section the general solution of the stochastic dynamic system of equa-

tions is derived. It turns out that in order to obtain practical solutions

various approximations have to be made. Instead of obtaining the full prob-

ability density function as a function if time, only the mean and valiance as

functions of time can reasonably be calculated, and for gaussian distributions

this is ali that is needed to give a reliable picture of the simulation process.

6.6.1 The Probability Density Function

If the deterministic simulation is run over and over, using random samples

of the stochastic processes representing the parameters, then the statistics of

the state vector may be compiled in terms of its probability density function

of time.

The same function may be obtained theoretically under certain general

assumptions, the chief of'which is that the process is a Markov process, which

the present one clearly is, as described bJ' Arnold [Arn7a].

Gilman and Skorohod [GS79] discuss the mathematical conditions for

uniqueness and existence of this solution, and all the functions used in the

present case satisfy them.

Jazwinski lJaz70] gives a readable derivation and McGarty [McG80] gives

some useful examples as well. However, Sage & Melsa [SM71] follow their

derivation wiih equations for the mean and variance which are more useful

for a computer implementation, and their notation is adopted.

75

6.6.2 Equation for Probabitity Density Function

The stochastic differential equations have already been derived from the de-

terministic equations and ale dr(t): f þ(t),t)dt.
Using the results for integrating stochastic processes of this type, Ash

[4G75], Wong [Won71], Arnold [Arn74], and Sage & Melsa all obtain an

equation for the conditional probability density function (given the initial
distributions of the state variables) as the function p in the equation

dp a(.f p)

fiItraceË:O
where p: p(r,ú) : joint conditional probability density function such

that p(r,t)dxfir2...drn is the probability that variable 11 lies betweêr1 z1

and 11 I drt, etc., given the initial distributions of ø1 ¡...,trnj

f : f @,1) has already been defined;

'trace' means the sum of the diagonal elements of a matrix.

In the system to which this equation will be applied, i.e., the multiplier

leaf cell used as an example, the vector ¿ contains about 100 nodes and thus

about 200 state variables, uiz., the voltage and current at each node. Even

if this partial differential equation is solved, the result is a function of 200

variables at any one time. Just to specify this function is quite impractical.

Fortunately, it is only necessary to know the development of the mean values

of the state variables, along with an estimate of the variability to be expected

about this mean value, 1in order to gain a clear picture of the trajectory.

Sage and Melsa[SM7l] go on to give a useful approximation for these two

quantities.

However, it should be noted that on some non-linear stochastic systems

of the type studied here, initially-normal distributions may, under some cir-

cumstances, develop into markedly non-normal, multi-modal distributions

as time progresses. The mean and valiances then do not of course give, by

themselves, a good representation of the process, and care must be exercised

in the interpretation of the results.

76

6.6.3 Equation for the Mean

Once the equation above is derived, the mean value of z as a function of time
may be approximately obtained by: transforming the stochastic differential

equation, multiplying by r(t), and averaging by integration. To complete the
integration the vector function f(",t) is expanded about the mean value of
r (called á) as a Taylor series, on condition that no particular r(l) ever gets

very far from the mean. The resulting integration introduces the variance

matrix from cross product terms such as r;r¡. The result is approxinately

af G:þ),t)

where:

î(t) : a column vector containing the mean values of each corresponding

state variable;

f : f @,ú) are the original (deterministic) functions;

f (î,t)isf (c,ú) evaluated at x : ã;

V : V(t) is the covariance matrix (ik element:E(r¿ - îr)("* - ¿*)))

F : ô f lôr (ilc elenent:ô f of fl* r¡.
V : ð: Ð;¿ V*ô210u0ø¡ is an abbreviation for this operator.

6.6.4 Equation for Variance

A useful approximation for the variance matrix V(t) is obtained by Sage and

Melsa ([SM71], who expand the expression for the variance

[r(t) - â:(t)][r(t) - ã(t)],

then multiply by the probability density function defined by the equation,

integrate over all the r variables, and expand f (r,ú) in a Taylor series about

the mean r: î, producing the propagation equation for the variance

dv(t) ôf (î,t)

#:f@(t),Ð+ruvç¡

v(t) +v(t):ry#Ðdt Or

where the ':' notation has alreadJ' been defined

t(

6.7 Irnplernentation of the Solution

The notation for mean value will be dropped, since all state variables are

now mean values

6.7.L Propagation Equations

The equations are:

drldt: (1 + T, ,urt (6.i)

dvldt : FV + (FV)r 6.2)

Each diagonal element of the matrix I/ contains the variance of the cor-

responding state variable, interpreted as a near-gaussian distribution about

the mean value, ø.

6.7.2 TYeatment of (Constantt Randorn Variables

All of the fabrication parameters in the equations (such as the capacitance) do

not change during the trajectory but are sampled from an initial distribution

at t : 0 (i.e., at fabrication). The correct method of treatment for these is

to declare them as state variables with no rate of change. In this way the

influence of their variabiiity can be transferred to the variance of the other

state variables ui¿ the ,F matrix and the off-diagonal elements of the variance

matrix. This is a general feature of the equations.

The quantities in question have already been listed on page 28 and this

yields an extra 15 state variables with equations of the form drf dt: g.

6.7.3 Number of equations to integrate

For a system with n state variables there are n equations for the state vari-

a.bles, plus the equations for the terms of the variance matrix, z(ú), to be

integrated. This is a symmetric matrix, so the whole lower diagonal part

may be ignored, giving just (n * n - n)12 + n equations for the variance.

78

Thus the total number of equations to be integrated is

n(n + r) 12.

In the case considered here, n is about 200, so there are 20,000 equations.

This is a massive system to implement. Before doing so, there are some tests

that can easily be carried out to determine whether it would be worth-while.

6.8 Direct Statistical Model Results

The voltages at nodes inside a leaf cell and the variances of those voltages

may be obtained directly in one integration of this system of simultaneous

equations describing the analogue behaviour of the digital circuit (the leaf
cell), viz., equation 6.1 and equation 6.2 on page 78.

From these equations, it can be appreciated that for this method to work,

three tests must be satisfied:

1 the first equation is a good approximation, i. e., no ø(ú) gets too far from

the mean of all the simulations. This means that the deterministic

simulation starting with the mean values must be identical to the mean

of all the simulations.

2 the assumptions used to derive the approximate, practical solution are

valid, i.e., the distributions start and continue as near-gaussians.

3 using the real mean and variance (from the experiments) in the equations

must produce the actual cumulative distribution function.

To assess whether this would work in practice, without actually imple-
menting the extra equations, imagine that they have in fact been imple-

mented and integrated to obtain the best possible valuesl.

The direct method of obtaining the statistics is as follows. If the outputs
of the cell mentioned above are called C,S,X,y and the voltages are c,s,x,y

at time t, then the joint probability density function is

ri.e. lhe aclual ones for x and V , obta,inecl fro¡n the 3b0 runs

79

fcsxv(crs',r,Y;t)

and the required probability

P{carry ready & sum ready & X ready & Y ready at time t}

is given formally [Pap91] by

fr-no. fr*no" fr*no* Ir-nfu rcsxv(c,s,r,y;t) : F(t)

This integration finds the part of the function, illustrated below, which

is above the plane and beyond the'ready'state (2.4 volts).

Now it is not known whether the process really is jointly normal, or if the

outputs in fact develop as normal distributions, but absolutely no use of the

results may be made unless this is so. If it is so, then it follows that

fc sxv (c, s, Í, al t) : erp{-I l2xr V-r (t)X} I (2") detV(t)

where X is the vector of the carry and sum and V(t) is the covariance ma-

trix just integrated from the equations dvldt: FV +(FV)r. The function

fcsxv(l) may be obtained numerically from this expression.

The best estimates of the mean and variance are the actual mean and vari-

ance obtained from the Monte-Carlo simulations already carried out. So a

direct comparison may be made of the actual .F(ú) (straight from the Monte-

Carlo results) and the predicted l?(ú) from the formula (using the best pos-

sible value of V(t) constructed from the data). This has been done and the

comparison is shown in figure 6.1 on page 81.

80

0.6

o.4

!()
_c
.9c

c
o't
L
o
o_
o
G

com orison of Monte Corlo o nd CSDS distribution function
1.O

0.8

o.2

0.0
0 50 100

no noseconds
150

Figure 6.1: CorupnntsoN oF CSDS nNo MottrpCnnlo DIstRtsuuoN

FuNcuoNs

200

t9
(y

&o

E

a)
a
(t)

Q

81

6.8.1 Linear vs Non-linear?

The next question of interest is: do the linear equations aPPlY, or do the

non-linear corrections need to be added? This is easily answered, because

the equations for the mean trajectory in the CSDS case are the same as

those in the deterministic case, provided they start with the mean values

and there are no non-linear corlections. If they are not the same, then non-

linear corrections are needed.

It appears that this term can be ignored, except in the cases wh.ere the

variances are getting large, (especially where they are initially large); it may

then make an important difference to the dr ldt equation, producing a lrlean

trajectory that is not the same as a deterministic one starting with the mean

initial values.

The results of this comparison are shown: for the sum, in figure 6.2 on

page 83; for the carry, in figure 6.3 on page 84.

6.8.2 Agreement between Methods

The second question of interest is: does the CSDS model give practicaily

the same results for the mean trajectory and its dispersion as a simulation

by Monte-carlo methods? This is answered by solving the system by both

methods once again. The sum and carry are plotted as their equivaient

gaussian probability- densities, with the Monte-Carlo (350 runs) above and

the CSDS (1 run) below: for the sum, in figure 6.4 on page 85; for the calry'

in figure 6.5 on page 86.

6.9 Cornparisons and Conclusions

The results of the two approaches are presented in graphs of the probability-

density-functions for the sum and carÌy voltage. The Monte-Carlo results

are compiled from 350 trajectories with initially-sampled gaussian states; the

continuous stochastic dynamical system (CSDS) model results come from a

82

4
sum com onson line:nominol dotted:meon

100
nonoseconds

Figure 6.2: Suvt: Mpnx (oorrno) nxt NorvrrNar, TRIJDCToRTES

(¡)
crl
o

P
o

2

0

-2
o 50 150

83

Ë .:

CO com onson line: nominol dotted: meon4

o
crl
o

P

o

2

o

-2
0 50 100

nonoseconds

Figure 6.3: Cnnny: MoRw (lorrer) AND NoMTNAL TRAJBcToRTES

150

84

U

50

C)

do

f+'
â
,fi

100

50

41ç'g

4o
Volhge (renrhs)

(J

l¿i
,ÄL]
A20

4.,ç"Volhge (renths)

Figure 6.4: Sutvt: MoNTnCARLo ABovE, CSDS EqutvnlnNT BELow

85

50

E(J

Ø

lJr
I-l
A;

00

50

Volhge (tenrhs)
,$ss

Volhge
6enths)

.$Ê'g

Figure 6.5: C¡.nnv: MoNrnCnnlo ABovE, CSDS EQutvnlnNT BELow

t
(.)

4
L]
A;

0 2

86

single trajectory using the same initial Gaussian distributions. Reference

to these graphs makes it clear that the mean values are well represented by

the CSDS model, but that the scatter about the mean value (the dispersion),

whilst remaining gaussian and of approximately the correct form, is too large

at each time step.

87

Chapter 7

Pararneter Fitting Method

Another likely approach is to assume that the spread of fi,nishing times is, for
one reoson or another, well represented by a lcnown Junction. Here I discouer

that this function is closest to the Erlang distribution, and that the nurnber

of necessarg simulations might be reduced somewhat by knowing this.

7.L Fitting to Kno\ /n Functions

The form of the distribution of finishing times has already been obtained

for the single-cell case and the concatenated-structure case. To match the

form of a known function to these cases it is necessary to match measures

of the forms. The best measures of the form of a distribution function are

the central statistical moments: mean, variance, skewness and kurtosis. The

parameters of the distribution can be calculated from the estimated measures.

It might be possible to get a good estimate of these measures by running just

a handful of simulations. This would provide a significant time saving over'

the methods already described.

7.L.L The Central Statistical Moments

Where finishing times from /y' simulations are gathered, the most important

measures of the form of the distribution function are:

88

the average value of the time

the concentlation of times near the average

how unsymmetrical the distribution is

rN
ls?T¿ean:1tr:--),t;, N?.

¡=l

uariance: 62 :1$
N 7='

(*, - p)"

1
slc eUJneSS:

ñ I('' - p)"
i=1

and the character of any tails of the distribution

1N
lcurtosis: rI("i_p)4.

The cumulative distribuiion function .F(f) is the probability that the time

is at least equal to I and it is formed by integrating these probability density

functions

l"'F(t): f(r) dr

where

f (t) : the probability that the values lie in an interval óú about ú.

Taking Iy' samples, with replacement, from an effectively infinite popula-

tion gives the average value of the mean is p and the variance of the mean

is o2 f N. It has been seen that recommendations average 1/ : 500.

7.L.2 Restriction on Distribution Functions

From the above definitions it can be seen that an unusually large sample value

would distort the skewness and kurtosis much more than it would distort the

mean and variance. This happens because of the higher powers involved.

This means that attempting to fit a proposed function based on these higher

moments would lead to a very misleading result.

89

Thus, if a small number of samples is desired, it is much safer to only

consider distributions which are completely determined by the two low order

independent parameters, the mean and variance.

Suitable distribution functions of this type may be found in the com-

prehensive Table of Probability Functions [Lrk71l and include: erlang, beta

farnily, F(k,m) family, lognormal, gaussian, pe&rson type 3, weibull and ex-

treme ualue.

Of these, the only ones found to come close to being good fits were: the

Beta, Normal, Ertreme-Value and Erlang distributions. These are studied in

detail below.

7.2 Possible Distribution Functrons

7.2.L the Beta distribution

parameters o ,p
a

rnean
a_l{J

uariance: , , ?P(a+þ)2(a+P+t)

f,BU):W

B(o,0) - r(0)r(B)
f(o + Ð'

The time axis is scaled to the interval [0,1] and the mean and the variance

are scaled accordingly.

7.2.2 the Norrnal (Gaussian) distribution

with the Beta function

rnea,n: p

uariance: o2

parameters þrc

90

fu"(t) :
o J2" "*p?+(;p),1

7.2.3 the Extreme-Value distribution

parameters a, þ

rnean: a *.'l 0
(" þ)"

1

uaT'za,nce
6

1 : Euler' s constant : 0.5772156649..

t-a
p

f'BU) - r
"(-'-'-")'0"

7.2.4 the Erlang (Tfuncated Gamma) distribution

parameters arlc

f"x(t) :

1
d:-

11

k: (þ)"
o

(ok)r rt'-r .-axt f l(lc)
0

if ¿ > tcritical
otherwise

7.3 Experirnental Data

7.3.L Single Cell

The mean finishing time for the single leaf cell was p : 100nSec and the

variance o2:202n5ec2. This was based on 500 simulations. The graph at

the top of figure 7.1 on page 92 shows the mean (lower line) and the variance

(upper) of the finishing times as more and more simulations are done. The

estimate of the mean time settles very early, but the estimate of the variance

is quite erratic until at least 100 simulations have been done, and really only

gets near the population value after' 150 simulations.

91

Som led Es timotes of Meon & Vorionce

q.)

o_a
l

q)
()
c
o'tr
o

(¡)

=o
=c
o
c)

300

200

400

100

0
150

200

200
0 50

fo0

100
Somple Size

: 5000

45(n

o0 200 ao0400 500 to0 JOO 5000
Soñplê S¡¡. Soñpl. sit.

Figure 7.1: Mnnn & Vant¡.ucE: SINcLn (tor) & ConcnrENATED (nor-

roM)

92

7.3.2 Concatenated Structure

The mean for the concatenated 8-cell ripple-carry adder structure \¡/as p -
497nSec and the variance was o2 : 5947n5ec2. This was based on 465

simulations.

The graph at the bottom of figure 7.1 on page 92 show the mean (left)

and the variance (right) of the finishing times as more and more simulations

are done. The estimate of the mean time settles early, but the estimate

of the variance is erratic and only gets near the population value after 300

simulations.

7.4 Results of Fitting

The experimental results from these simulations ryvere used to estimate the

population statistics (mean, variance, skewness and kurtosis). Then the dis-

tribution functions were plotted against the data to give an initial indication

of goodness-of-fit. These are summarized in the tables below.

7.4.L Single Cell

top ln on page o

probability density function plotted with the data for the Beta, Gaussian,

Ertreme-Value and Erlang distributions. The Beta and Gaussian are ruled

out at this stage, but the Extreme-Value and the Erlang look promising.

The bottom four graphs in figure 7.2 on page 94 show the proposed fit to
the cumulative plobability function plotted with the data for the Beta, Gaus-

experimental 100.341 202.233 1706 124U39

¡.UNO'T'ION parameters Mean Variance Skewness Kurtosis
Beta Family

Normal

ExtremeValue

Erlang

a :7.2
þ:7'82

& : 100.3
o : 14.22
a:93.4

þ : LL-08

I :0.010
k : 49.786

100.3

100.3

100.3

100.3

202.2

202.2

202

202

3187

815

0

-5 rr7925

722695

209992

L27622

93

Sete

o,olo

o ooo

.!

.E

.9

t0

OE

l0

OE

o.6

'ê

.9
¡

I

.a
-9

.9t

.a

.ç

.et
e

200

2æ

200

200

o olo

o ooo

o o50

0-040

fl s od

Ga6sian

rs

150

æ5050 200

0 050

0 040

o ojo

o o20

0 0r0

o 000

lunction

o olo

tæ50 lm 200o

ol

o2

oo

f o.o

=
.9
É

3 0.4

:E

t

l$ræ50r50lm50
00

o-o
tm ts 50 ls

Figure 7.2: Bnsr Frrs: P.D.F. (ror) AND C.D.F. (norrou)

Extreme
Value Edang

Seta Gauss¡an

Extreme
Value

Edang

94

sian, Extreme-Value and Erlanq distributions. The Extreme-Value and the

Erlang both show small discrepancies near the extremes of the distributions.

7.4.2 Concatenated Structure
erpcrimental 496.7 5947 356344 131036672

FUNCTION parametet's Mean Variance Skewness I{urtosis
Beta Fbmily

Normal

ExtremeValue

Erlang

a : lti.äti7
p -- rr.821
þ :496'7
o : 77.I

a: 462.59I
É: 60.133

þ :0'002
k : 41.578

497.:l

496.7

496.6

497.3

5948

5947

5681

5939

-56423

-r02

415316

139416

100175564

106096589

139099393

r 10001690

&reme
velue

o 0r5 o 01

0 0lo

o 005

0.oæ

Erlang

2@

4æ 6m 800læo

ræo

200

am

lw

læ0

200 .0o 600

The two graphs above show the proposed fit to the probability density

function plotted with the data for the Extreme-Value and Erlanq distribu-

tions. The Beta and G¿zssian are very poor and have been rejected.
l.o

.!

.s

-9t

-2
.E

.9

0a

06

o4

o2o2

oo
4æffi

The two graphs above show the proposed fit to the cumulative probability

function plotted with the data for tlte Extreme-Value and Erlanq distribu-

tions. Both show small discrepancies near the extremes of the distributions.

200 am 600

Extreme
Value

ErIang

95

7.5 Chi-Squared Test of Fitness

These tests by eye have eliminated the obviously-worst fits; however, a ¡2 test

is the most appropriate mathematical test of how well the proposed function

matches the given distribution [Bra75].

In order to test which, if any, of these functions fits these data the best,

the distribution of times is divided into I(groups containing the observed

frequencies o;, and the proposed function is used to calculate the expected

frequencies e¿. The statistic

5 ('t - "')'?-- ",
is formed and at a predetermined nominal value of probability a with

K - | degrees of freedom, the fit is rejected as not a significantly good fit if
K (n.-o.\2

Probability(X'x-, t: I ll1-_-Ì1l_l 1: a.
i=l e;

The table following summarizes the results. The Ertreme Value distri-

bution and the Erlang distribution prove to be very good fits to the actual

dis

7.5.L Single Cell X2 Result

The top four graphs in figure 7.3 on page 97 show how the value of the

critical y2 valte alters as more simulations are run. It is shown for the Beta,

Gaussian, Extreme-Value and Erlang distributions. The upper line is the y2

value itself, whereas the lower line is the critical value below which it must fall

if the fit is to be accepted as a good one. The Beta and Gaussi¿n distributions

are definitely unacceptable, but the Ertren¿e-Value looks promising in the

long run, and the Erlang is a significantly good fit after just 30 simulations

have been run.

function cell degrees
of freedom

ualue
of x2

concatenated
degrees of freedorn

aalue
or x2

Beta
Normal

ExtremeValue
Erlang

30
35
27
32

7L

b,)
to
35

79

84
59
74

311
63
89

87900

96

Eete

200

50

:!

=

õ!

I

=

GAUSSIAN FIT:

t@

tæ
Soñplê Sir.

150r00
Soñpl. Sir.

r50

r50

¡oo

20050

Flf: octuol ond

ro0
Somplê S¡!.

2ñ JO0
Sompl. S¡r.

Flf: octuol ond chi-

J@

volues
200

5020050 loo
Sohpl. 5i2ê

ond

4æ

200

500

chi- volues
to00

4æ

100 2mo
Soñpl. S¡r.

Figure 7.3: y2 VRRtnrtoN IvITI{ Snupln Srzn

Gaßsizn

Extreme
Value Erlang

Extreme
Value

Edang

97

7.5.2 Concatenated Structure X2 Result

The bottom two graphs in figure 7.3 on page g7 show how the value of the

critical ¡2 value alters as more simulations are run, only for the Extreme-

Value and Erlang distributions. Both the Extreme-Value and the Erlang are

accepted as significantly good fits after 250 simulations. and as usefully good

fits with only 30 to 100 simulations.

7.6 Conclusions

The results are consistently better for the Erlang distribution than for the

Extreme-Value distribution. The Erlanq distribution is a good fit for both the

single-cell case and for the concatenated-structure case, whereas the Ertreme-

Value distribution does not perform as well overall in the single-cell case.

It is not surprising that the Erlang does so well. It was tried because

of the recognition of the similarity of the underlying process from which it
derives: that of passing a signal through a set of inter-related transistors in

a leaf cell, compared to that of being served by a set of queues in teletraffic

systems, as described by Takacs [Tak62]. It has the immediate advantage,

by virtue of being effectively truncated at the lower end, of reflecting the

fact that there is a fastest operating time for the leaf cell. This makes it a

physically more natural candidate for the distribution function than any of

the others.

However, any real hope of signif.cantly reducing the number of simulations

by this method has been removed by these results. It is true that good fits

have been obtained after some 30 simulations. But if only 30 simulations

are tried then the likelihood of an accidentally-large Ìogue value occurring

is high, and this would surely distort that measures, then the parameters,

then the distribution, and finally the accuracy of the percentage of finishing

times.

98

Chapter 8

Analogue Sirnulation Method

O.I(. So this is a mad idea. But it has some interesting consequences!

8.1- Breadboarding a VLSI Circuit

The simulation of MOSFET circuits has gone a long way over recent years

into a great deal of mathematical modelling, until, with the advent of practi-

cal VLSI systems, there seems to be a retreat from the ultimate sophistication

of the very accurate models to simpler, faster, yet hopefully still-adequate

models which will handle more nodes and longer real times.

It occurred to me that a fruitful new approach may be possible, based on

a fundamental reassessment of the situation.

Consider for a moment the ultimate 'simulation' of a MOS circuit - the

circuit itself - that is, in effect, a bread-boarding of the circuit. Of course this

is not really feasible (except on multiproject chips for special sub-systems).

But what of the next step from this? We can go to equivalent non-calculative

methods - after all, a MOSFET itself is the best judge of what its state

should be - but failing an actual breadboard circuit, can't perhaps the SPICE

MOSFET models be used exactly as they are (that ìs, an arrangement of

resistors, diodes, current sources and capacitors) to give the same result?

That is, can't they be laid down in silicon? No faster 'simulation' would be

99

dral n

C C
buì k gb bd te

C
gs

s0urc e

Figure 8.1: TvprcAL MOSFET Moonl usBD IN SIMULATIoN PRocRAMS

possible - thousands of simulations could then be run in a few seconds!

This idea determined the next step in this thesis, and, although it ulti-

mately failed, it proved a vital step towards the digital idea described in the

next chapter.

8.2 Circuit-element Model

In this non-calculative method I proposed to use a configurable SPICE equiv-

alent circuit MOSFET (an arrangement of resistors, diodes, current sources

and capacitors) like that shown in figure 8.1 above, after [ON86].

This was intended as an heuristic step towards creating a system of re-

configurable transistor models on silicon, so that simulations may be done

extremely fast in hardware rather than by mathematical models on special-

purpose or on general-purpose computers.

The unique fea,ture of this one is the fact that it perforrns no logical deci-

C
bs cgo

100

sions during the simulation, the operations being performed in an inflexible

stream; they also perform no mathematics, in the usual sense of the word, to

produce the state of the transistors in the circuit. This is equivalent, in the

breadboard case, to simply placing actual transistors where they are meant

to be - they then behave as only they know how to behave.

8.3 Specification of Analogue Chip

I was so mesmerized by this idea that I designed and fabricated a test

structure uia the Commonwealth Scientific and Industrial Research Organ-

isation AUS-MultiProjectChip I 8 I 83 scheme ['Analogue Test Structure, Au-

thor's Publications] before I had fully realised its potentially fatal flaw.

Reference to the plot in figure 8.2 on page 102 shows two inverter struc-

tures, identical except for an extra 'always-on' transistor in the right-hand

one. Each inverter is composed from the usual simplified equivalent circuit

model for an inverter. The capacitive loadings on the input and output lines

are switchable to any combination of 0,lr2r4loads. The extra transistor is

to simulate the effect of a different threshold voltage. The Input/Output

pad functions are labelled; small probe pads are present so measurements of

voltages at input and output can be made.

The inverters have a pullup ratio of 6:1 and pulldown of 1:1 and 1.5:1 re-

spectively. I intended that the switches would be composed of 'native-mode'

transistors (doubly ion-ilanted to achieve almost zero threshold voltage) but

this could not be done on this MPC.

The probe pads rvere for monitoring for various combinations of capacity

switched in by the four select lines. An important feature was how much

the structure can be slowed down accurately relative to the real operation of

such inverters (at their proper scale). Thus comparison could be made with

SPICE models.

101

f
1

VDDselect
c1 1

select
c14

select
c12

input
tnvefter

?

select
c?1

select
C?2

select
c23

select
c13

select
C?4

Figure 8.2: PnoposrD ArvA.r,octrn ARRAv Tnsr SrnuctuRp

GND

102

8.4 Fatal Flaws in the fdea

8.4.1 Timing Correspondence

The objections to this are: that the threshold voltage adds to the switched-

in voltage; that the transistors run so fast that their operating time and the

time taken to pass signals along their interconnecting wires are not to the

same scale; and the power rating is wrong. Thus the first requirement is to

slow down the models so that the overall system behaves correctly, and to

cancel out or minimise the threshold voltage problem.

To ensure that this method is foolproof in providing accurate operation

times, configuration C, taking time S in a mainframe simulation, and taking

time T on silicon, must map consistently and smoothly. Only in this way

can we be sure that doing 150 runs in "silicon space" can map properly onto

"mainframe space" - i."., that the P.D.F. is obtained by "calibrating" the

silicon model by doing two mainframe runs, and then doing all the othel 150

runs on silicon. I cannot find a foolproof method of doing this.

In addition, Mei and Dutton [MD83] show that there could be problems

obtaining enough area for the right ratios of the necessary analogue compo-

nents.

8.4.2 Flexibility

Another objection to this approach is that the model may not be flexible

enough to allow assessment of certain parameters (e.g., body effect) and

to allow improvements in the sub-micron area to be incorporated without

altering the silicon model; this means that a new chip would need to be

designed and made. This would be expensive, and is a fatal drawback.

103

Chapter I

Digital Systern Sirnulator

Following the failure of the analogue model proposed in the preuious chapter,

I naturally turn my attention to a digital rendition of the same idea.

9.1 Introduction

It appears worthwhile at this point to examine in detail a method which is

close to the natural way transistor arrays operate, which is in accord with the

good points urged by Hillis [Hil82]; implements the model of computation,

of Smitley and Iobst [SI91]; and which might fit nicely into future system

architectures.

From here, there are two broadly discernable directions that might be

taken in modelling transistor systems:

o use a few, iarge, expensive, sophisticated processors, or

. use many, small, cheap, simple processors.

These alternatives have quite different implications for memory arrange-

ment and microcode choice; however, they might after all amount to about

the same thing as far as cost is concerned.

However, the class of problem for which one is devised can change when

new techniques (sequential or parallel processing), new algorithms (as witl

104

be seen), and new architectures (such as neural networks) are devised.

A lor of efforr [ACS85] [BDe2] [BJSe0] [CMSe2] [Sch8e] [LMp82] [pR82]

[SI91] [Vau92] has already gone into distributed processor architectu¡es of

this first type. They have produced many very good machines. But their de-

velopment has meant neglect of natural architectures which it seems, notably

by Hillis [Hil82], might now be re-examined with some profit. Recent work

by \Milding et al [WTHPgl] Distante eú a/ [DSSSG9l] and Schaefer [Sca91]

confirm that it is time to re-evaluate this architecture.

How do these alternate specifications:. many, small, simple, cheap,help

determine the architecture?

many these are device-oriented rather than node-oliented.

small if they are small they have little on-chip memory for their orvn mi-

crocode. Thus they have to get their instructions externally. This

means that they cannot run as independent processors - they run ei-

ther as datapath computers or in lockstep.

simple means that they are based on the RISCI approach to design;

cheap implying high yields and mass production

It is known that any given single transistor can only use neighbouring

state information in order to act. They do not have physical access to global

information. Thus a new model might be sought in the form of a natural

array processor, with only nearest-neighbour connections allowed.

The requirement for global information - for one transistor to 'know' the

state of another - is the source of intervention by the host workstation in

the simulation process. Since all the current accurate timing and analogue

simulators use global information, then it is necessary to create a new kind

of simulator - what might be termed a contact simulator.

lReduced Instruction Set Computer

105

9.2 Rationale for Digital Systern Desigtt

SIMD systems have often been examined previously, but only for very regular

algorithms, such as matrix solutions, rather than for circuit simulation in the

\¡¡ay proposed here. The succes's of the MIMD distributed architectures in the

circuit simulation field has seen SIMD relatively neglected and left to much

of its original applications. However, now that certain MIMD limitations,

related to the maturity of the architecture and discussed in Part IV, are

becoming more widely appreciated, there might be a new future for an SIMD

architecture with many simple processors in circuit simulation after all.

9.3 Aims of Sirnulation

The aim of these chapters is to determine sufficient detail needed in the PEs

to be able to write a simulator for the array and answer the questions:

¡ What is the best convergence algorithm?

o How many bits are needed to produce a given accuracy?

o How long will a simulation take?

o What is the best transistor model?

When this is done the performance of this system can be compared with
other methods of achieving the same result. The system simulation in this

thesis concentrates on evaluation of convergence algorithm, bits accuracy and.

time taken.

9.4 Design Considerations

Kung [Kun87] reports that to get maximum speed-up from array processors

requires relatively little inter-processor communication. An arlay of transis-

tor models, running in parallel (concurrently) and testing their nearest circuit

106

neighbours by communicating their state to them, satisfies this requirement

in the first instance.

Each p.e., in reality, will calculate its state from neighbouring information

and produce new state values to be exchanged.

If each p.e. contains its own transistor mathematics, and parameters,

then the prime question is: under what conditions is convergence of the

solution guaranteed? This is discussed by Nevanlinna [Nev89].

How can the one model be used for two transistors that might be funda-

mentally different? - e.g. an enhancement nMOS and a depletion nMOS?

How are the transistor models in the processing elements to be laid out

on a circuit board? And how will thev interconnect?

If a leaf cell is to be "partitioned" into neighbouring transistoLs, assume

that in general each processing element, or p.e., contains a transistor model.

Decisions need to be made about:

o the architecture of the simulator;

o the form of the array processor;

o the independence of processing elements;

o the simulation strategy;

¡ the partitioning algorithm;

o the mathematical model.

o the solution algorithm

All these points are now examined.

9.5 Simulator Architecture

There are two aspects to the system architecture:

o the choice of decomposition grid;

107

. the PCB layout or equivalent

9.5.1 Choice of Decomposition Grid

On a grid of processing elernents, each of which models a transistor, conlìec-

tions to neighbouring transistors can be made in many different ways (see

Cantoni et allCtrL9l]) but not so that the wires go over an intervening cir'-

cuit - wires could short out by touching. So one fundamental restliction is

that only nearest neighbours connect.

On a normal VLSI wafer, each processing element might be mapped onto

the array so that it connects to any number of nearest neighbours; sotne, after

rotational symmetry and milr-or--imaging, are shown in figure 9.1 on page 109.

Some of these connection schemes are impractical or contain contladictions,

because all elements are to act identically and simultaneously,

1 nearest neighbour means that no voltage and current can propagate

beyond each two.

basic element

2 nearest neighbours means that influences can only propagate in one

dimension or in closed loops, as shown below:

basic element

3 nearest neighbours means that when they are placed in sequence on the

108

1
'I

z 2 2 2 z
z

2

2

2

2 2 2

3 3 3 3 3

3

3 3

J

3 3

3

3 3

3

3 3

5

3

3

3

3 5

5

3 3

J

3 5

3

J

5

3

3

3

J

4 4 4

4

4 4 4

4

4 4 4

4

4

4 4

4

4 4

4 4

4 4

4 4

4 4

4

4

4 4

4

4

4 4

4

4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4

4

5 5 5

5

5

5 5 5

5

5

5 5 5

5

5

5 5 5

5 5

5 5 5

5 5

5 5 5

5 5

5 5

5

5 5

5 5

5

5 5

5 5

5

5 5

5 5

5 5

5

Figure 9.1: Gnto oF INTEcRATED CtRcuI'rs oR PRocessING ElounNrs

109

grid as shown below

although each set of six can be made to exchange data consistently,

separate sets encounter a contradiction (circled)when expanded across

the grid. So this is an impossible case.

4 nearest neighbours presents no such problems, as illustrated below

--->

Note that four is the minimum number of neighbours if want the set

to be device-based; each p.e. containing a transistor model needs four

connections: clrain, base, source and substrate.

However, with foul nearest neighbours, while easiest for initial simula-

tion and requiring little storeage, it takes longer for changes to get to

I

110

the boundary and back, as shown below

5 nearest neighbours is possible to arrange as shown, but not on a rect-

angular grid.

6 nearest neighbours presents no consistency problems, but note that six

influences propagate
from one side to the
other in no less than
1 0 steps.

111

neighbours allow fa.ster propagation of influences than four, as shown

7 nearest neighbours cannot be laid out on a rectangulal grid so that

they connect consistently, and when laid out as shown

the fatal flaw is exposed at the points circled where wires have to cross

over to connect 7 nearest neighbours; this is explicitly forbidden in this

system.

8 nearest neighbours is problem free, like 4 nearest neighbours. In addi-

tion, although requiring twice the storeage of four nearest neighbours,

eight nealest neighbours allows fa,ster movement of influences to the

borders - only five steps per 6 b¡, 6 ."r, compared with 8. Thus in the

long lun it cannot be practically rvritten off without an investigation

influences
propagate from
one side to the
other in no more
than B steps

rt2

of which influence predominates

9.6 Forrn of the Array Processor

In order to make a star-t on a definite model, this still-numerous set will be

restricted so that only manhattan-geometry links are allowed - this elimi-

nates the sets with 5,6,7 and 8 neighbours, since all of these necessarily have

diagonal links. HoweveL, this does not rule out the possibility that the 5,6

or 8 cases might work quite well; this is discussed in Part 4. The efficacy

of these architectures is left to future research and they are not used as the

basis for the present heuristic simulation.

This restriction leaves five sets as shorvn here.

For the reasons explained above, the smallest symmetric set without di-

agonal links that will connect and communicate ploperly is 4 nearest neigh-

bours, so it is chosen for the simulation architecture.

9.6.1 PE Layout

According to the arguments of l-Iillis [I{i182], it makes sense to layout the

alray so it runs in lockstep as arl,SIAIID mesh-connected computer. It is mesh-

influences
propagate
from one
side to the
other in no
more than
5 steps

'ì

2

2 2 2

3

3

3

4

4 4

4

113

connected because that is the way real leaf-cells arrange their transistors.

rt is Single Instruction Multiple Databecause each p.e. depends only on

its 4 nearest neighbours' state and the transistors are all the same and take

the same time to solve the equations.

Thus it makes sense to choose a SIMD tesselated computer architecture

rather than a datapath or distributed bus. This is shown schematically in

figure 9.2 on page 115. The microcodethat drives the transistor modelis in
the top part and is easily altered.

In view of current trends in parallel architectures, the important issues

of pipelining arrd scaleability are addressed in Part IV.

9.7 fndependence of Processing Elernents

How can elements, containing different models, run in lockstep? n Ml is the

equation for the first model and M2 for the second, then a linear combination

can be taken

aMt i þMz

with conjugate coefficients (0,1 or 1,0) and this is used in every element; this

is quite general.

However, if the PEs are required to compute their state in step, and the

same, single model is used by all p.e.s, then the time taken for the array

to agree on the values for the timestep depends only on the slowest p.e.

thus any advantage in having faster p.e)s finish early is negated. This is a

potential disadvantage of the SIMD method.

The fact that each p. e. works in parallel2 is to be simulated on a sequential

machine3 rather than a parallel one. Thus much care needs to be taken to

ensure that values are not overwritten too soon.

It is achieved thus: at each timestep the transistor model is applied in

turn to each p.e.; then they each exchange any necessary neighbour values

2computes its internal state sirnultaneously with all the others
3a SUN/SPARC workstation

114

Microcode

ASM Controller

buffer

Figure 9.2: ScttaMATrc SItvID Corr,lpurot Lnyour

host
interface

edge
cells pr(;ing

ele rnen ts

115

(as p.e.s); and this step is lepeated until convergence.

Consider 2 such exchanging information 'a' and 'b'-; E-ll

In reality, they will swap these simultaneously. In the current simulation,

this is done by the following sequence, conceptually:

il[s[il448
This has to be done carefully like this so that the values are not overwrit-

ten at an early stage.

In general, then, for evely p.e., using cornpass notation:

N

EW

S

n

w e

ç

o AII the elements take in edge values of 4 neighbours into temporary

storage;

o Then all elements overwrite the old value with the new value just ob-

tained.

This is a general feature of the simulation programme.

9.8 The Sirnulation Strategy

It has seen that the leaf cell is the smallest structure from which it is possible

to calculate the systems statistics. Thus this system is designed to carry out

circuit simulation of leaf cells. It accepts voltage inputs and produces voltage

and current outputs under interrupt control from a host workstation.

In this section the minimum set of definitions and postulates necessaly

to define the array processor and sufficient to allow a sirnulator program to

be written for assessing its behaviotrr a,re set up.

116

A leaf ceII is that stage of a modular design of a VLSI circuit at which

the function can be conveniently replaced by circuit elements (transistors,

wires) that implement the function. [t is composed of an array of. processing

elements. If it is designed by regular and hierarchical methods then it already

has the right structure fol a statistical investigation - otherwise it might not.

A processing element is that palt of a circuit bordering at most a single

transistor. Its function is to simulate the behaviour of a transistor at that

place in the circuit.

Real transistors in a leaf cells sense the voltages of its nearest neighbours

and produces currents consistent with those voltages. In this digital simu-

lators, a processing elernent rnust contain or have a,ccess to a mathematical

model of tr-ansistor action, represented by

{v,i} tr

It must contain its own voltages and currents and the parameters p of

the model' ,et of sufficient transistor
model parameters

model equations

After calculation of its own currents from its own voltages it needs to

adjust to the nearest neighbours by reading and comparing their {V,I} set.

Thus conceptually it now looks like

N inner (own) state variables

w E

outer (neighbour)
state waríables

p

l¡

v
¡

v
¡

own v,l

v'

i'

neighbour's v',i'

S

IT7

9.9 The Partitioning Algorithrn

The following nomenclature defines the relevant parts of the simulator.

Processing Element A processing element is the model of that part of a

circuit contained within a border drawn around at most a single tran-

sistor, topologically connected to its nearest neighbours in the actual

circuit. It is represented by the symbol

Array Processor The array processor is conceived to be laid out in the

form shown in in figure 9.2 on page 115. In general it is of any dimension

necessary to span the circuit transistors.

Canonical Form The canonical form of a processing element is that which

has an equal number of ports on each side. If the number of ports is

'n' then it is denoted by zr(n) or by the symbol

Any transistor model can be represented by the processing element

2r(1), having only one connection per face to its nearest neighbours.

This is because transistors have 4 connections: a gate, drain, source and

substrate. The substrate is often connected to the source., however, or

can be modelled inside the element. Each processing element contains

the mathematical rnodel of at most a single transistor.

n

118

Decomposition Every processing element may be decomposed into a larger

number of elements containing at most only one transistor.

Structure Theorem A leaf cell of a VLSI circuit may be simulated by

mapping its transistors and their connections onto an array processor

such that the "nearest neighbour" property is conserved.

This means that the structure of the modeller is quite different from

others found in electronics that map sub-sections of the circuit onto a

linear set of processors essentially at random.

The mapping leaves open what might be put within a processing ele-

ment. The view adopted here is that the most appropriate entity to

occupy one processing element is one transistor.

These specifications simplify the mathematics inside processing elements,

at the expense of their proliferation.

To illustrate this, consider the example of a flip-flop circuit, used through-

out these simulations in its nMOS realisation, and specified through its var-

ious development stages in figure 9.3 on page 120.

To get an idea of the way that processing elements proliferate a rough

decomposition of the adder cell, already used as an example of cell charac-

terisation, is shown in figure 9.4 on page 121. This shows that a grid of l2I
elements are needed for just 35 transistors.

9.10 The Mathematical Model

The system requires access to:

processing element specification i.e., the contents of the p.e. as speci-

fied by the parameters of the model;

the mathematical rnodel i.e., the equations used in evety p.e

119

ser_fl
symbolic

IL reset

a

(a)

5

a
implementation

reset

ñ

partitioning
ÞrL

set

o

or

(b)

+5

grid layout

OV OV OV OV

Figure 9.3: SrncES oF PnRutIoxING oF Fltp-Flop Clncutr

+5

ri

)

@ seta @ ereset

120

z

3

4

5

6

7

B

9

10

11

1 2 3 4 5 6 7 8 9 10 '11

Figure 9.4: ExaivrplE oF DncovtposlTloN or AoouR Lpar Cnw oNTo

CoNcBprual ARRRy PRocosson Svstpn¿

@
{

@

@
@

@

@

t2t

9.10.1 Processing Element

Consider the situation of each processing element containing either one tran-

sistor model or one resistor network, with voltages and currents in each at

the east, north, west and south edges, arranged and defined thus:

For the transistor model, a very simple one-equation representation of source-

drain current as a function of source and gate voltages is given in Appendix

D thus:

Vcs

Vos

Inorth

f
"outh

I.o"t

I-""t

I4ubstrate

: V-."t - Vouh

: Worth - Vouth

: B¿d(vcs+6)(I - e-'vo"¡
Í

- t north

n
TJ

rìt

n
t-,

where the parameter a shapes the characteristics, the parameter B scales

the drain-source current (in mA), and ó models depletion-mode transistors.

The leaf cell is conceptually divided into many small sections; each section

contains a processing element. Each has parameters of the model contained

in the element, a, B; each has information from the neighbouring elements;

there is a common algorithr¿ which works on each element in turn, without,

of course, destroying the internal data, because really the algorithm is acting

on all elements at the s¿me time.

vr@

122

The orientation of the p.e. is simply specified by saying which face

(N,E,W,S) the gate is on; the rest follows the orderly rotation of the ba-

sic transistor.

I shall show later that, using my idea of using the opposite voltage and

current as if it u)as correct for the time being, that we get very fast con-

vergence, and that this method can easily be shown to have a very sound

graphical justification; so it occurs to me, that perhaps, in the case of four

nearest neighbours, where there is absolutely no possibility of a graphical

visualisation and hence approach to the solution, then I could use the same

method - which might also lead to a fast iteration in the more complex case.

9.LO.2 Physical Laws

The physical laws of current continuity and voltage continuity imply that at

each boundary between elements the voltages are the same and the currents

are the same. This follows from Kirchoff's Laws [Chi69], viz:

Kirchoff's First Law that there can be no accumulation of electricity at

any nod,al point of a network means that the currents on adjoining

faces are equal;

Kirchoff's Second Law that the electric potential of euery point in a net-

worlc must be single-ualued means that the voltages on adjoining faces

are equal.

Each element, on each iteration, is required to so adjust its own volt-

ages and currents that they more closely match its neighbour's values. Ac-

cording to Lightner, [Lig87] this does not make Kirchhoff's laws part of the

model equation in order to simplify them a\¡ray; however, it does reverse the

approach taken by most simulators, which involves explicit or implicit con-

struction of the Thevenin equivalent circuit. The present method has its

compensations, however: it makes it very easy to decide if the true solution

is already well approximated and the iteration can be stopped, thus solving

123

one of the main problems in iterative processes [Nev89]; and during the tim-

ing simulation a lvrong result cannot be produced without notice, one of the

major concerns expressed by Durnlugol [DOCM87].

To do this, use is made of the

IJniqueness Theorern There is only one solution for the uoltage and cur-

rent betueen two processing elements in a linear array; the proof de-

pends on the fact that tl¿e transistor characteristics are positiue and

strictly-increasing.

v

physically--. current plots---

9.10.3 Local Knowledge

The solution algorithm is also constrained by the hypothesis adopted at the

outset as the basis for the array simulator,

local knowledge postulate Each processing element is preuented from
knowing what is happening in euery other processing element, ercept

the nearest neighbours.

This is not only by hypothesis, but is the situation in which real transistors

find themselves. Each knows only this: that each other element is going to

follow the same strategy, and that each element knows what the four nearest

neighbour voltages and currents are.

Each element knows that it can autonomously alter each of its four volt-

ages (on the four edges), and that it can calculate the effect on each of its

four currents (out of the four edges); and that it can tell what it ought to

do to move closer to the (i,v) values of its nearest neighbours. But it does

not know what its neighbours are going to do at the same time. Of course,

it could ask them; but then they, to knorç what they will be doing, will have

J

5o50
t>

12,+

to, in turn, ask their nearest neighbours, and so on, leading to just the sort

of complex information-exchanging situation that we are trying to avoid.

9.1-0.4 Nearest Neighbours

The idea that the circuit may be modelled by mapping it exactly leads to a

fundamental restriction not present in the mapped models already described.

If each transistol is to sense only its nearest neighbours, then each one

can have no global knowled,ge of any kind - indeed, no knowledge of even what

is happening on just the other side of its neighbour, since this is ultimately

global.

Thus these two conditions apply:

TYansistor Model Each processing element contains a model of transistor

operation sufficient to produce the currents through its four faces giuen

the uoltages on its four faces,'that is:

i¡¡ : i¡¿(u¡¡, uE, uw) uS);

i ø : i n(u ¡'t, u B,, uryy r u g);

iw : iw(uN¡uE¡uWrus);

i s : i s(u ¡¡, u B, u1,y, u g))

Information Access Each processing element has access to only that state

information that its nearest neighbours can proaid,e; i.e. - in practice,

only the uoltage and current at the conzrnon interface between elements.

Absolutely euerything else, erplicitly or implicitly, is unauailable.

This postulate encapsulates the vital difference between this method and all

previous ones. If the system could not be made to work under this restric-

tion, then we would have had to fall back to one of the random distributed-

processing models lvith all the expense and complication that they entail.

The postulate means that we only have to focus on one processing element

- which we shall norv do.

725

9.10.5 (Phantorn' Edge Elernents

Each processing element h.as four irearest neighbours, except along the edge

of the array. To treat edge cells identically with interior cells in all algorithms,

it is sufficient to create a set of 'phantom' elements. These are situated all

around the array. Their function is to provide any driving inputs to the cell,

and to allow the same algolithm to be applied to all processing elements

without exception - since they are part of an SIMD machine - particularly

where they an element has to receive data from a really non- existent edge

cell.

Thus in general we are always dealing with:

Dealing with even four neighbours at once is even not necessary algorith-

mically; it can be cut to two by these definitions:

Face Each processing element has four faces labelled N,E,W,S for north,

east, west and south.
N

w

S

Partner Each processing element has two partners - those to its North and

East.

east partner

Now, if each processing element only has to consider its voltage and current

E

t26

relationships with its partners,

this allows each processing element's South and West faces to be dealt

with by other processing elements - for which they are really North and East

faces - according to the diagram:

&c-

9.10.6 The 'Partner' Algorithm

By the fundamental postulate, each processing element can only 'see' the

state variables at the 'face' between itself and the next one.

For definiteness, consider two transistors (as perhaps in a nMOS invertor

structure) connected source to drain as in the diagram.

Regarding, for the present, the voltages across this composite structure

as fixed at 0 and 5 volts, there is a common voltage u at the face between

them which in the quasi-static approximation pursued here, allows a unique

current i to flow across the face. No other voltage results in this current. Now

consider that each processing element has its own idea, however obtained, of

what the voltage on that face should be at this timestep, i.e., consider the

situation as if it were:

v
5o

v
5o

j
u

The left p.e. considers z to be the correct voltage at the face, producing

a current i through its west face; whereas at the same time the right p.e.

IIl-T

I E
L--T

r27

consideÌs u to be the correct voltage, producing a current j thr-ough its east

face (which is the west face of the other p.e). If the currents i and j differ,

then, since this is physically impossible here, one or both of them are wrong

in this assessment . . .

9.11 The Solution Algorithrn

Since neither processing element has any ground for supposing that iú pos-

sesses a rrrore accurate estimate of the common face voltage, then an ingenious

method of coming to an agleement emerges, which, as it turns out, is a more

general sta,tement of the venerable and powerful Newton-Raphson iteration

technique fol finding the roots of a function - no wonder it works so well!

The idea is this: since neither processing elemenú is in a privileged po-

sition concerning the estimate of the voltage, then imagine that each one,

for the time being, (as it were, for argument's sake) agreed to consider, just

temporarily, that the other processing element had in fact got hold of the

correct value of inter-p.e. face voltage, and proceeds to calculate what its

own face current would be if this were so.

Consider the diagrams below:

j
-..physical

5

...voltage and
current plots

0 uÐ 5 t-+
On the left is a plot of the typical current in the left transistor; on the

right is a plot of the typical current in the right transistor.

If the bft p.e. is correct in its assessment of the face voltage, then we are

0 IILT

128

A

at the point A in

wherea,s if the right p.e. is correct we are at ,B in

v

If, by my suggestion, we allow the left p.e. to try the voltage supposed

by the light p.e., we get the point C in

o

(A)

v u

whereas if we allow the right p.e. to try the voltage supposed by the left

p.e.) we get the point D in

5

u

5

o

Now consider these graphs superimposed on the same scale

which allows it to easily be seen that rather than averaging the mis-

matched voltages and currents, a better guess for the solution would simply

involve the point of intersection of the lines B D and, AC in

This idea, tried out on transistor models joined in this fashion proved that

D

v u

A
or perhaps

c
D

A
c

B
A

c

t29

in all cases, and no matter wher-e the starting values of u and v, the system

converges to very high accuracy within four iterations of this procedure.

This rapid and stlong convetgence is surprising at first. It was onl5, l¿fis¡

realised that the procedure was practically equivalent to the Newton-Raphson

method for finding the root of a function of one variable - in this case, the

difference in currents calculated by each p.e., which is if the for-rn

¡(v)-j(v)

and thus the excellent behaviour- of the algorithm was explained. The

mathematical reason fol this is shown in Appendix C.

An Aside...

Now, this must look like a silly thing to do - to fail to immediately recog-

nise and use Newton's rnethod to solve the currents between the processing

elements. And, indeed, if the primary concentration is on the nodes of the

array then it would be.

But the point of view motivating this simulator concentrates rather

on deaices. This is a subtle difference rvhich turns out to have profound

consequences4, so in addition to being a silly oversight it also turns out to be

instrumental in opening up a new paradigm for the array processors of the

future. This is taken up in Part IV in the Evaluation.

aexplored in the Game Theory chapter 11, later

V*

130

9.11.1 Conclusion

Thus is solved the simple case of 2 linear p.e.'s. with fixed end voltages

The next simplest case is somewhat intimidating

5

The first two p.e.'s. can very quickly (as above) come to a solution for

the voltage u - but the value of u, reached by this method, depends on

the value of u, which is being determined at the same time, by the same

method . depending on u. So there is a potentially intricate and implicit

parallel determination which threatens to demand global information, thus

destroying the postulate on which this approach is based.

The simplest way out of this impasse is to solve for the currents as if there

are two sets of independent pairs of elements. This tactic works, as will be

seen.

After all, we already have a technique that works for the case that \ ¡e can

visualise; we know it is equivalent to a powerful and well-studied iteration

algorithm; so why not leave it to its own devices, i.e., let it have its head at

the level at which it is known to produce the correct result?

9.L2 Global Strat.gy with Local Informa-

tion

In short, my hypothesis, to be judged by its results, is to let each p.e. solve

its voltage/current relation with each neighbour, pairwise, in turn, without

considering what the other p.e.'s. are doing at the same tine. When that is

done they can each t¿ke a look at the results of these individual calculations

5Uo

vuo

131

and redo them if the result is too different from previous ones. For example,

each p.e

comes to an agreement, by this algorithm described above, on the value

of u with its Northern partner and, separately, on the value of u with its

Eastern partner, ali the while using fixed values of end voltages at a,b,c,d.

(The west and south faces are taken care of by other p.e.'s. to the west and

south, at the same time).

Four iterations are done (from previous 'pair' experiments this is suffi-

cient); each p.e. signals that it is 'done' or 'not done' to its North and East

partners, these signals being ultimately collected by an AND process out at

the top right hand corner of the array (like the global-or line in the CM-2

[SI91]); and the process is repeated until convergence, if and when it occurs.

The next two chapters report what happens.

u

v

r32

Chapter 10

Bargatn Method

In which I try out my neu proposal for uery fast analogue tirning simulation

of rnicroelectronic systems by rnapping transistors onto o,n o,rro,A of digital

mathematical models of transistor operation, on the hypothesis that the bar-

gaining analogy is sound.

10.1- The Array-Processing Model

The model of a circuit discussed in the previous chapter has been studied by

implementing it as a C programme run under the UNIX operating system

on a Sun SPARC workstation.

The results of that study, broadly speaking, are:

o such a model would work, fast enough to be interactive in the sense

already described for programmes of this nature and scope;

o for bistable circuits with feedback, some very general indication of the

initial conditions produces a solution- otherwise it takes a very long

time to converge;

o for straight-forward circuits of the combinational type, the solution can

be started from any initial condition;

a

133

o it does not appear to converge in this simple unimproved form for

circuits containing pass transistors.

A detailed examination of the process by which this processor-array idea

has been assessed is presented in the following sections.

LO.2 Results

The embodiment of this approach to array-processor simulation has been

realised in the computer programme described in Appendix D. All of the

technical and mathematical considerations and definitions necessary to get

it working are described there. A summary is given here concerning its

behaviour as a simulator of integrated circuits. The results of investigations

into the array-modeller are very encouraging, and are presented in graphical

form in the following pages.

LO.2.L Convergence

Circuit behaviour has been found and characterised as:

weak and oscillating convergence for feedback systems unless the ini-

tial state is unambiguously specified - then it is strong; rapid and strong

convergence for non-feedback systerns.

LO.2.2 Circuits Used

Initial encouraging results were obtained on simple gates such as inverter

rings and NOR gates.

All the detailed simulations reported here are carried out on a feedback

134

+5 +5

OV OV OV OV

Figure 10.1: AnnANGBMENT oF Fr,rp-Fr,op Crncuru oN Gnro

circuit comprising a set-reset flip-flop, shown here.

a

reset

0

It was chosen because it has a feedback path and is bistable, so is a non-

trivial circuit, in the sense that if the algorithms do not work on this they

probably will not work on any circuit.

The circuit is decomposed on an 8 x 8 grid of processing elements as

shown in figure 10.1 on page 135.

The simulator produced the correct behaviour through the full set and

reset cycle. However it took over 2000 iterations rvhen started from zeror,

as presaged by its early behaviour in figure 10.2 on page 136, whereas it
was much faster when the bistable nature of the circuit was unambiguously

removed. It was sufficient to indicate a '0' or '3' volt level at the start. The

set of startup voltages used for all these simulations is shown in figure 10.3

on page 136. The set and reset signals are pulsed in sequence, and this full

simulated sequence of voltages is shown in figure 10.4 on page 137.

1i.e. there was no iudication of the final state - 'flip'or 'flop'

0-

set

)

o set@ eereset

135

maxtmum
residual (uA)

0.04

0.035

0.03

0.02s

o.o2

0.015

0.01

0.00s

0
1 7 131925313743 495561 677379 8591 97

iterations

Figure I0.2: Mnxnvtutr¡ Rnsrou¡.r, Oscrllnrtoivs rN Annay wHEN

STARTBD up FRoM Atr-Znno Volr¡,cps

12 17

22 27

5 5

4

4

4

3

3

3

3

2

2

2

32

42

s2

62 63 3 65 663

37

47

57

67

77 3 78

64 3

371 72 2 73
3

8l 83 84 85 86 88

Figure 10.3: Not¡-zERo S'r¡.nrup Volrncns aNo EInUBNTS

74 7S 76

1

3

3

5

3

136

O AND OBAR FOR FLTP FLOP SET AND RESET CYCLE

5.ØØ

ØØ

ØØ

ØØ

ØØ

i
I

\;
\i
lt
lr

il
i:

I

:J'

4

3

2

Úl+
o

0
OJ
o

+J

o

-{J
l
o_
lJ
f
o

{Jl
o_

.-C

I
I

I

I
I /^o- t'.

i--------

Ø

Ø 16,.Ø 32.Ø 48.Ø u.Ø 8Ø.Ø't

t i mestep

Figure 10.4: SItvtuLATIoN on Fr,Ip Flop Snr/Rnsnr Cyclp

aI

t te1<5

I
tl

t

fvls<

t37

LO.2.3 Rate of Convergence

It is shown in this chapter that the convergence rate - how many iterations

are needed until the voltages are close to the final result - varied widely

and was greater when the input drivers were changing fastest. This is to be

expected, since the nodes are most out of balance at those times.

However, it is found that the system has to be quite close to the final

state if not too many iter-ations are needed. If it is just a small way from it
then the iterations rise dramatically. Once the system is a long way from the

solution it gets 'saturated' in the sense that the number of iterations does

not increase much at all. These results are shown in figure 10.5 on page 139.

This result suggests that any improvement in convergence speed should

be sought at those parts of the overall waveform where most iterations occur.

This is seen to be where the voltages at all nodes are most out of balance,

either because of rapid driving-voltage change, or at startup where the initial

voltages are not yet settled and an approximate guess must be made. Thus

this investigation now concentrates on the startup point in the waveform,

shown in figure 10.5 on page 139 to need just under 1800 iterations.

LO.2.4 Number of Elernents

The results of simulation of rings of oscillators also show that there is a

slightly more than linear increase in the time taken to converge as the size

of the grid of the array, that is the number of possible processing elements

along each side, increases. This reflects the fact that influences propagate in

both directions; it is surprising that the rate of increase is so slight, really.

These results are shown in figure 10.6 on page 140.

LO.2.5 Accuracy

The simulator was run finally with varying numbers of bits in the mantissa

by masking all real number operations. Double-plecision real numbers in the

138

TTERATIONS PER TIMESTEP PLOT

Ø.2ØØe+Ø4

Ø.16Øe+Ø4

Ø.12Øe+Ø4

tn
c
o

Ð
o
c
(¡

:
l{-
o

L
0¡

-o
€)
c

aØØ

4ØØ.

Ø

Ø 16.Ø 32.Ø 48.Ø ú.Ø

t i mestep

Figure 10.5: ITpnATIoNS Npnopo FoR CoNVERGENCE

BØ.Ø

139

1 000

T
lË-

T

I

¡

relative number
of iterations for

gtven

convergence
criterion (log

scale)

100

10

'10

number of p.e. s in array along each side (log scale)

'r00

Figure 10.6: ITpnATIoNS NBpono AS PRocESSING ELBuBIvrs INCREASE

SPARC processor conform to the Itrtrtr format2. They are stored in eight

successive bytes in the form:

63 51

sign of fraction

so that, for example, if the case of 8 mantissa bits accuracy is being

investigated, then the set of byte masks is:

63510

255 255 240 00

The full set of masks3 is shown in the C program in Appendix E.

The exponential function is implemented to high accuracy by using the

2IEDB Standard for Binary Floating-Point Arilhmebic
3for 1 up to 53 bils

0

0

\

1 1-b¡t
exponent 52-b¡t fraction

1 1111111 1111 1111 000000(1 1 1 1o0oqo00 0

t40

simple arithmetic operations + - * l: e' is expressed as I f e-" , and where

r) | it is successively halved until r (1; then the series solution

¿-" : | - r * 12 lZr....ç-r) lnl

is used since its maximum error is known to be less than the last term.

Finally the result is multiplied by itself the same number of times that it was

originally divided, i.e., effectively computing e' from

(""/*)*.

10.3 Newton-Raphson fteration

The criterion used in this implementation, by default, is that when then

four face voltages match exactly,the mismatch between the four face currents

vanishes. Mathematically, the measure of the mismatch is

(i. - i^o)2 + (i* - i*o)2 I (i^ - i^o)2 + (i, - i*o)2

and for this to vanish it is trivially done by choosing the currents to be equal.

This is what would be done here by the Newton-Raphson iteration if it was

taken to convergence, which it is not.

The Newton-Raphson iteration technique described in general in Ap-

pendix C was used in these solutions. It was found that in all cases, and

no matter where the starting values of the initial voltages, that the system

converged to very high accuracy within four iterations of this procedure. Be-

cause the number of mantissa bits is an important parameter in this study,

the effect of the number of mantissa bits on this convergence behaviour was

investigated and is shown in figure 10.7 on page I42.

Even down to 8 bits the convergence in no more than 4 iterations is

observed. This rapid and strong convergence is not even usually used in

simulations. It is normal [NSV84] to just obtain the first iteration and use

that as the starting point. In these simulations it is found that this is a sound

procedure, making less than one percent difference overall to the number of

iterations needed.

141

r)
O

ta
E
rD

L
U

E

0J
U
C-
0J
t-
u

<+

1)
C
i)
!
L)
O

3.8

t.3

Rate of Converqence of Algorithm

I7

00

?

rl

?tt, 6

ñ_

s¿

%* .15gÏ

13

9

10
ô

¿t

""Ñ

Figure 10.7: RarE oF CoNVERGENCE oF NR wrrH MaNrrssn Brrs

t42

10.3.1 Overview of Behavrour

To show what can be achieved, the proposed system is started up from a

given initial set of node voltages. Starting up from all zero nodes leads

to an arbitrary situation and very long iterations (in excess of 2000), so

startup is from a rough approximation to the initially expected state shown

in figure 10.3 on page 136.

It is perhaps astonishing that it converges at all. However, it is the pur-

pose of this study to verify that there is any validity the economic analogies

that this approach is based on, and because real-life bargaining analogues

converge somewhat roughly, this provides an initial measure of confidence

that this array must, too.

The criterion for convergence can be either one of:

o the present current and voltage on the face differs negligibly from the

previous current and voltage on the face;

o all over the model array the voltages match and produce currents such

that the maximum mismatch is smaller than a specified amount.

The second criterion is chosen because it is similar to the familiar re-

laxation method criterion [Soua3]. The case started is with the maximum

number of mantissa bits (53) initially, and 1¡rA convergence criterion, which

is quite tight. Starting from the voltages on the nodes already given in fig-

ure 10.3 on page 136, the voltages on the faces N72 and N77 are traced and

the maximum mismatch of currents is recorded.

Next examined are three important extensions to this bargain method

which are: the smoothing method, where this zig-zag is largely suppressed;

the look-ahead, algoritårn, which gives some speedup; and the profi,t criterion,,

which enters the new realm of garne theory, explored in the next chapter.

The convergence propelties of the four methods are show in figure 10.8

on page 144, where the unimproued bargain method is the upper curve and

the various improvements make up the lower three plots. Typical startup

143

300000

250000

200000

max. res¡dual (uA) I5OOOO

1 00000

50000

_\--

0

o ? 4 6 I lO 1214 16 1I ?O???426?830 32 3436 384042444648

¡leEtion

Figure 10.8: CoIVIPARISoN OF MAXIMUM RESIDUALS FoR ALL METHoDS

voltage waveforms are shown in figure 10.9 on page 145, where this time the

unimproved voltage is the zig-zag one.

Briefly, indicative numerical results for 53-bit mantissa, 1¡;A convergence

criterion, are summaÅzed in the following table:

MsrHor IrnnRrrot¡s RMS Drst. Zero Start
pure bargain 1784 iterations 0.014mV 2183 iterations

bargain plus
smoothing

965 iterations 0.133mV 2144 iterations

bargain plus
smoothing plus

lookahead

602 iterations 0.0134mV 1918 iterations

bargain plus
profit criterion

966 iterations 0.0114mV 2206 iterations

where: the RMS Dist. is the root mean square distance of all the startup

voltage nodes from all the voltage nodes of the true final solution; and Zero

Start means that if the system is started up from alI-zero nodes, it comes up

into the 'flip'stage rathel than the 'flop' state, and takes somewhat longer.

In addition, indicative numerical results for 53-bit, 1000p4 convergence

criterion, including the relaxation method results for completeness, are sum-

marized in the following table:

14,1

3.3

3.25

3.2

voltage 3.15

3.1

3.O5

/
\7\7 t,

\"/
\-¡ i,/

\i
"

.¡,}
.t,i\

,,1,

I

3

o 2 4 6 8 101214161A20?22426?A303234 3638404?4446485c
itect¡on

Figure 10.9: Srnnrup VoLTAGES oN N r¡cp oF ELEMENT 77 Coupanno

Morsoo Iren"nrro¡¡s R.MS Drsr.
pure bargain 662 iterations 1.14 mV

pure relax 265 iterations 130.5 mV
profit 1 x 5 59 iterations 51.0 mV

where the profi,t 1 x 5 method is described in the next chapter.

LO.3.2 Relaxation Method

Normally the relaxation method is applied to the linearlized differential equa-

tiations. Here in the quasi-static approrimation there are no differential equa-

tions so it is applied directly to the array for pulposes of comparison with

the other methods.

Using the relaration rnethod the voltages show a characteristic step-like

convergence; the voltages on each face of an element inexorably but slowly

moving towards the final value. The maximum residual does not decrease as

inexorably, however, since liquidating the residual at only one face can allow

it to increase at another. This behaviour is shown in figure 10.10 on page 146

and figure 10.11 on page 146.

145

300000

250000

200000

max. rGidual (uA) 15OOOO

1 00000

50000

o 2 4 6 8 lO l2 l4l6 t820?224262A303234363A404244464850
iteGtions

Figure 10.10: Punn RnlaxnrtoN METHoD M¡,x. Rnsrluar, Rnruc-

TION

3. r 3500000

3.1 3000000

3.1 2500000

3.1 2000000

3.1 1500000

3.1 1000000

3.10500000

3.1 0000000

3.O9500000

3.O9000000

ro ro to to il lt ll t2 t2 t2 13 t3 13 13 14 t4 t4 t5 l5 ls 16 16 16 16 17 17 t7 la tE tE 19 19 19 !9
o3 692581 470369?5 At 470369258t 4703 69

from 10O to 2OO ¡terâtions

Figure 10.11: PunB Rpr,axauou MorHoo - Facp Volrncns ns IrBRn-

TroNS INcRnRsn

146

300000

250000

200000

max- res¡dual (uA) 1 5OOOO

1 00000

50000

o

5 lo l5 zo 2s 30 35 40 45 50

¡tection

Figure I0.I2: Punp BnRCRIN MBTHOo - Max. Reslounl Rnoucrtoi.I

10.3.3 Pure Bargain Method

In the system using this plain bargain method the voltages show a charac-

teristic zig-zag convergence; voltages on opposite faces of an element doing

opposite adjustments, because the current equations for the current mis-

matches on all four faces are being solved independently of one another; but

the maximum residual steadily decreases, eventually taking 1784 iterations to

reach the 1pA convergence criterion. This behaviour is shown in figure 10.12

on page \47 and figure 10.13 on page 148.

To put the voltage behaviour in perspective over the whole waveform,

figure 10.14 on page 148 shows the development of selected nodes over many

iterations. However, this does not reveal the fine detail, which is presented

in figure 10.15 on page 149. This voltage behaviour continues for a very long

number of iterations in this fashion, no matter which nodes are examined.

In the mechanical case there are oscillations produced, too, so it is ex-

pected that here the voltages will show the same oscillations. The maximum

residual also shows the oscillations, superimposed on the step-like reduc-

tion characteristic of the rel.aration method and is shorvn in figure 10.16 on

page 149.

t47

0.6

0.5

o.4

0.3

o.2

0.1

0

0 10 15 20

Figure 10.13: Punp B,tncnrn Mnruoo - Sr¡.Rrup Vor,racss on Oppo-

srrn Flcps

5 25

3.5

3

2.5

2

\rclta9e

1.5

o 5 to 15 20 25 30 35 4045 50 55 60 65 70 75 80 8s 90 95 10 10 r 1 l l 12 12 13 13 14 14 l 5
o5050505050

¡tcmtions

Figure 10.14: BnncnrN Mnrnot: Spr,pcroo Volrncns FRoM Sr.qRrup

o5

o

148

3.26355

3.2635

3.26345

voltage 3-2634

3.26335

3.2633

3.263?5

50 50 50 50 50 50 50 50 50 50 51 5',1 51 s] 5',1 5',1 51 51 51 51 52 52 5? 5?

o 1 23 4 5 67 I 9 0 I ?345 67 I 90 1 23
itemtion

Figure 10.15: Punp BaRcaIn Mnruop - Vor,rncn CoNvBRGENCE AFTER

500 Irpn¡.TIoNS

maxtmum
residual (uA)

0.000022

0.0o002

o.o000t I

0.ooo01 6

0.00c01 4

0.00001 z

0.00001

0.o00008

0.000006

0.000004

0.000002

o

Figure 10.16: Pune BnRcnIN Merrton

1700 lrpRRrltot¡s

17 t7 17 12 17 t7 17 17 17 17 17 17 17 t7 r7 17 ì7 t7 17 17 ì7 l7 t7 l7 l7 ìt
æg olì2 16 zo24 2l!2 !6409 aö52 560 4 6Ct276 æU ôt 92 96æ

iterations

149

Mnxrrrnun RpsIoual AFTER

The solution voltage comes down fast initially and then reduces more

slowly. This is because tlie algorithm depends on the distance from the

solution, it is driven by the current mismatch that it experiences - the smaller

that getsrthe slower the convergence.

LO.4 Speedup Ideas

It must be admitted that none of this is particularly fast. So, for this array

processor model study, ho'n' can speedup be achieved?

Over the whole driving voltage waveform, thele a,re three main methods

possible:

o speed up convergence between time steps;

o speed up convergence during one time step;

o develop new algorithms that work differently

Each one of these is investigated in this thesis, and the results found are:

speed up convergence between steps requires getting close to startup

point, which it will be shown cannot be done in general.

speed up convergence at one step leads to smoothing and lookahead.

develop new algorithms eventually produces the game theory approach

that acts as a type of simulated annealing in that it jolts the system

out of a rut to help it converge.

LO.4.L Speedup between Driving Steps

The aim is to closely predict the next set of voltages on each face for each

element by using the last few values. This is found to fail because these pre-

dictions have to be actually very close incleed to the correct value, otherwise

large increases in iterations occur.

150

The study that proves this is reported here. As illustrated in the diagram

below, parabolic prediction of the next face voltage using the last 3 values

is attempted. A large number of random starting poinbs is chosen for the

face voltages thloughout the array. As illustrated next, the sets of starting

starting value sN volts
true solution tN volts

processrng
element

starting value sS volts
true solution tS volts

voltages on the faces of each element - s¡¡, s.&r s,sr sw - are chosen at random.

Then the system is run until lpA convergence is reached. The distance of

the initial set of startup voltages from the true final solution is measured by

the Root Mean Square voltage difference per face per element

t (("r -¿¡¡)2t (tø-tø)'* ("s - ús)2 r(tw -tw)2)14164
elements

Each point on these graphs represents a sampled starting set of node

voltages and the cor-responding number of iterations needed to get to within

1pA convergence. In this way, the effect of stalting some distance from the

true solution on the final number-of iteratiorìs can be guaged.

d tJl

cÀ!of,
a='oõ
ãq

(D

âth
€ã
áá
an6

99õõ
lrJ uJU'P
o
=ŝÈ
o)ã
.=Øtc¡ct :t
PL
U'P

processtng
element

151

iterations

1 400

1 200

1 000

BOO

600

400

200

0

T

Ë

200 400 600 800 1 000 1 200

RMS distance from true solution (milliVolts)

I lrI
lII

T
IT

rIrt
T

I

o 1 400

Figure 10.17: How IrBR¡tIous INCREASE AS STARTUP GETS AwAY FRoM

Tnun Sor,urIo¡l

The results show a very tight spread over a considerable range of startup

position, shown in figure 10.17 on page 152. This shows that it is necessaly

to start extremely close to the actual solution to get a signifrcantly reduced

number of itelations - if just a small RMS distance away, which is quite

likely, the number of iterations increases very sharply, and so the startup

point might just as well be a long way from the actual solution, without

taking any trouble to get it close. This is seen more clearly in the expanded

section near the start of the plot, in figure 10.18 on page 153, where the

iterations jn-p from zero to almost 140 within a quarter of a millivolt of the

true solution.

Also shown, in figure 10.19 on page 153, is the result over a wide range

of RMS distances from the true solution, showing that there is a point after

which the iterations, and the standard deviation of the iterations, start to

increase at a further rate.

It is concluded that this inter-step prediction is very unrewarding since

it is found to be very likely to get too fa,r from the true value by parabolic

interpolation. The lesults from 1000¡lA convergence criterion, done to check

r52

ITIilT I

iterations to luA
convergence

o.oo o.o5 o.1o 0.15 o.2o 0.25 o.3o o'35 0'40 0'45 0'50

RMS distance from true solution mV

Figure 10.18: DnrnIl oF ITERATIoN INCREASE CLoSE To TRUE Sor,urrou

140

1ZO

100

80

60

40

20

o

mean value of
iteration, SD

500

450

400

350

300

250

200

r50

100

50

o

iterations

standard deviation

1 2000 200 4oo 600 800 1000

mean distance from true solution (mV)

Figure 10.19: SrnusuCs oF ITERATIoNS AS A FUNCTIoN oF DISTANCE

FROM TNUB SOIUTIOI¡

153

consistency, are slacker but show a similar shape - the startup has to be very

close to benefit from reduced iterations and this is found to be impractical.

LO.4.2 Speedup by Smoothing Method

Given the Bargain Method, there are two ways of possible improvement: one

is to consider smoothing the inevitable oscillations over past values; the other

is to consider smoothing somehow over present values.

Past ualues leads to the smoothing*lookahead method in this chapter.

Present aalues leads to the game theory algorithm in the next chapter.

The oscillations continue on a small scale for a very long time, just re-

ducing slowly, as already seen in figure 10.16 on page 149.

Since it is impractical to start off very close (for all faces) then other

methods must be tried. In an attempt to dampen the inevitable oscillations

arising from independent and uncoordinated solutions on each face, it is

possible to examine:

o using a linear predictor;

o weighting of previous values;

o least squares best fit.

10.4.3 Linear Predictor

This uses a criterion like adaptive linear predicting in signal processing

[Pap91]. The new voltage on each face is predicted from the voltages ob-

tained at the last 3 iterations by using coefficients a,,b,c in the form

Vpred.icted. - aV-t * bV-z * cV-3

so that when the next values are smoothed and the actual value computed,

arb,c are chosen so that the mismatch is minimised by the differential process

6 Ð (Vo,.d.icted - I/o.tuot)2 : 0

J aces

r54

ITERATIONS FOR TWO FIXED 1uA criterion

-2 ro
second weight

Figure 10.20: Errpcr oF WEIGHTING PRBvIous VuuB oF VoLTAGE

with respect to a,å,c. This is solved for a,ó,c and the new voltage pre-

dicted. It is found that this scheme produces a very erratic set of predictions,

and ultimately takes more, not less, iterations. So the linear predictor idea

fails, presumably due to the erratic ar'd zigzag nature of the voltages as they

converge.

LO.4.4 'Weighting of Previous Values

The next attempt to dampen the oscillations is by weighting the next guess

by various previous values, for example the previous I or 2 values.

The results in figure 10.20 on page 155 show that weighting the current

face voltage by the previous one uia the weight t¿ thus:

W.rt : V.urr"nt I u)Vpr"riou"

produces a very strange graph indeed - in fact, only if the weight u.r :
0.042 is a sharp minimum achieved.

This sharp minimum, occurring at very low weighting, is confirmed by

the following results, where this time 2 pr-evious values are used i.e-

W."r: V.urr.nt t AI/; t BV-z

c
.9
o

100

90

80

70

60

50
0 4 6 8

155

where various combinations of weighting of 2 previous values are tried.

The results are seen to be similar at two different convergence criteria

and show minima for small values of the previous valued point only. The

various graphs shown in figure 10.21 on page 157 represent different values

of the coefficients A,B where: A goes from 0 to 10 along the horizontal axis;

B goes from-0 to 10 for each curve, with B : 0 at the bottom and B : 10

at the top. The iterations are given as a percentage of the no-weight case for

ease of comparison.

1O.4.5 Least Squares Best Fit

It is seen that it is not possible practically to find the optimum weight by

the methods of linear prediction since the curve is not differentiable at the

optimum. What can be tried next? Since the voltage oscillates between two

series of values, then the simplest averaging method is to fit a straight line

of best fit through the last few points. This has been tried, and it is found

with the last 6 points a fairly stable result is obtained. Thus on all 4 faces of

each element the next voltage to start with is got from fitting a least-squares

best fit through the voltages at the last 6 iterations.

The top figure 10.22 on page 158 shows how fast the array converges when

there is no LSQ smoothing. Contrasted with this is the marked improvement

using the LSQ smoothing technique, shown in the bottom graph for the same

case.

The next graph in figure 10.23 on page 159 shows the effect of this 6-point

LSQ smoothing on a typical startup face voltage - the LSQ takes place from

iteration 6 onwards, and the zig-zagbehaviour observed before in figure 10.13

on page 148 has been substantially eliminated.

As the iterations proceed the voltage on the N face of element 72 is shown

in figure 10.24 on page 159 regularly and smoothly converging.

Interestingly the overall pattern of convergence expressed in terms of re-

duction of maximum residual has a strong linear-log character' (also observed

156

c
o

200

150

100

50

Iterotions os

Iterotìons os

ent of no-wei t cose 1 uA crìterion

I
weighting

rcen e of no- ht cose IOOuA criterion

q

o
o

c
o
o
o

o
2 4 10

200

150

100

50

0
't0

weighting

Figure 70.21: EnrBcr oF wBrcHTrNG Two pRpvrous vnr,ups - LpA
CRITERTON (roe) nND 100¡rA cnrrERroN (BoTToM)

o 2 4 6

r57

300000

2SOOOO

200000

max. r6ìdual (uA) 15O0OO

'100000

s0000

o

300000

250000

200000

m¡x. res¡dual (uA) 15OO0O

too000

50000

0

o51015202530354O4550

0 5101520253035404550

¡terat¡on

iterat¡on

Figure L0.22: Enrocr oF AppLyING 6-PoINT LEAST SQuanns SIr¡oorH-

rNc ro Bnncnrx Mprlrtoo: No Str,toorHING (roe) nut SvtoorIrING

(norrorrr)
158

0.5

0.45

0.4

0.35

0.3

0.25

o.z

0.1 5

0.1

0.05

0
10 15 20 25

Figure 10.23: Ernncr oF APPLYING 6-PoINT LBAST SQunnBs Stuooru-

rNG TO oppOSrrn FacB voLr¡.cBs

voltage

3.2634'l

3.2632105

3.?634

3.263395

3.26339

3.263385

3.26338

3.263375

3.?6337

3.263365

50 50 50 50 50 50 50 50 50 so 5l 5'l 51 51 51 51 51 51 51 51 52 52 52 52

o 1 ?345 67 I 90 1 ?345 67 890 1 23
¡teEtion

Figure 10.24: Vol'rncn IN BARGAIU MnrHoD wITH Suoorulrqc

0 5

159

max res¡dual
(log scale)

1 00000

I OO00

1 000

100

10

1oo 200 3oo 400 500 600 700 800 900 1000

number of iterations

Figure 10.25 BRRcRIN Marnoo - LtNnRn Loc RnoUCTIoN oF RESID-

UAL

in other similar systems) as shown in figure 10.25 on page 160

1-0.5 Look-Ahead Ideas

Since it has been seen that a trend is established along the two tangents to

the upper and lower set of oscillating points, then it is natural to expect

that extrapolation of the predicted value could get to the correct value

more quickly. Ideally, a different amount of extrapolation would be needed

for each element and each face, i.e. an adaptive scheme is required; however,

to try out the extrapolation idea, just the same value for all elements is used,

on the basis that if it will not work for this case and reduce the iterations,

then investigation of further adaptive cases will not be fruitful; whereas if it

does work then there is scope for futule research into adaptive methods.

160

voltage

3.2631 53

3.263 1 525

3.263 I 52

3.2631515

3.2631 51

3.2631 505

3.2631 5

3.263',r 495

3.?63149

3.263',I 485

3.263',l 48

50 50 50 50 50 50 50 50 50 50 51 51 5] 5',1 51 51 s',t 51 51 5',1 52 52 52 52

o I ? 3 4 5 6 7I9 0 12 3 4 5 6.7 8I012 3

iteEtion

Figure I0.26 Volr¡.cr SlrloorunD \ 'ITI{ Loox-AHnno ApplIBo

The lookahead scheme works as shown in this diagram

look-ahead

óest
ôt

I predicted
value

(used to start
next iteration)

123456

The results are unexpected. It is found that in fact it is not possible to

anticipate too far ahead. If extrapolation ahead by more than 1 iteration is

attempted then an increase in the number of iterations occurs again instead of

a decrease. Improvement in the number of iterations can be quite dramatic,

however, depending on how much lookahead is done and when.

The effect on the voltages is shown in figure 10.26 on page 161.

The effect on the convergence, meastlred by the maximum residual, is

shown in figure 10.27 on page 162.

161

300000

250000

200000

max. res¡dual (uA) 1 50O0O

looooo

50000

o

o 5 'lo 15 20 25 30 35 40 45 50

¡terat¡on

Figure IlJ.27: ResIounr, SuoornpD wITH Loox-Aunao Appllno

A certain amount of experimental investigation found that improvement

in iterations depended on how much lookahead is used and where in the

iteration process it is used. It is found, for example, that this figure below is

1.00

o.80

amount of 0.60

lookahead o.40

o.20

0.00
o 99

iteration at which lookahead amount changes

the profile producing minimum iterations (106 iterations with 7 changes) and

r62

this figure next is the profile producing maximum iterations (581 iterations

amount of
lookahead

o.60

o.50

o.40

o.30

o.20

o.10

o.oo
o 99

iteration at which lookahead amount changes

with 7 changes). Note that the minimum curve zigs where the maximum

curve zags, as would be expected if they are producing opposite effects.

Thus a systematic study of lookahead tactics was carried out. In default of

the ideal situationa an exhaustive random experiment chose both: a random

set of LAs values between 0 and 1 (since it is already known that) 1 is no

good); and a random set of iteration points at which to change the LA value.

500 samples were run to convergence at the 70p,A criterion, the results

being summarized in figure 10.28 on page 164.

The standard deviation of the spread also is shown in figure 10.29 on

page 164.

Both these results show that:

o if a LA tactic is to be done, then it is best not to do it timidly, i.e. do

lots of LA changes;

o it is possible do badly by random methods;

o it is possible to do much better than the average random choice;

o thus research into an optimum adaptive algorithm is highly desirable

aan adaptive method for each element and for each face

sLook-Ahead

163

700

600

500

400

300

200

'r 00

no lookeheed

a

iteretions

standard
deviation of the
mean number of

iterations

mean 3 H

T a-l
mtnlmum

1 2 3 4 5 6 7 8 9 1O111213141516t71819202499
number of random times to change lookahead wlue at random

Figure 10.28: Surr¿Irr¡.nv oF LooKAHEAD Stuov Rnsulrs

150

o

mexmum a_.|

a'100

50

o
1 2 3 4 5 6 7 8 910'111213141516171819202499

number of random lookahead change points

Figure L0.29: VnRrnsrLITy oF Rnwootvt LooxAHaAD ITERATIoNS

164

300

250

luA

1 OuA
¡terat¡ons to
convergence

150

100 1 00uA

1 0OOuA

0

10 20 30 40

number of bits in mantissa

Figure 10.30: B,tncnIi.t*Stuooru+LooxAHnlp
Fuwcrrox oF NUMBER oF M¡,Nrrssa Blrs

CoNvBRcENCE AS

200

50

0 50 60

1-0.6 Accuracy aersus Nurnber of Bits

Figure 10.30 on page 165 shows how the bargain * smoothing + lookahead

system convergence behaves as the number of mantissa bits is reduced; this

information is needed to decide the architecture of processing elements.

A straight line can be drawn through the regions where convergence sud-

denly fails to occur at each criterion; this the prescribes the minimum num-

ber of mantissa bits necessary for that criterion to be workable. The critical

number of bits thus found is shown in figure 10.31 on page 166.

LO.T Operations Count per lteration

Since all the operations with real numbers are masked in the C program to

obtain the effect of using various mantiss¿ bits, it is a simple matter to count

all the operations at the same time. This gives a basis for estimating how long

the real arlay simula,tor, if built, would ta,ke under various conditions. This

data is used in Part 4 to compare the various strategies that are investigated

165

cr¡t¡cal
(minimum)
number of

mantissa bìts

r00

10

10 100

convergence criterion uA

1 000

Figure 10.31: NunlsnR oF BITS NBnopo IN PRocESSING Elnuc¡¡r

in Part 3.

The bargain+smooth*loolcahead method, across a wide range of mantissa

bits6 is found to use a steady number of operations per iteration, summarized

in this table.

OpnRruoN NuNrsoR PER ITERATToN
multiplication

division
addition

subtraction

500
3r2
280
2I8

The next bar graph summarises the relative percentage of operations, for

53 bits over the whole simulated waveform, on average 100 iterations per

6from 12 bits up to the maximum of 53 bits

166

timestep

store
fetch

transfer
exchange
absolute

exponent
subtraction

addition
division

multiplication

0510152025
percentage of total operations

To give a Ìough idea of time taken, the total number of counted operations

is around 400 million operatiorìs per waveform for the 200¡tA criterion, and

around 270 million for the less stringent 400p4 criterion; once an architecture

for the processing elements is known, the real simulator time can be estimated

from the cycle time and the cycles per operation.

For interest, rough estimates for the bargain*smooth+lookahead rnethod

are given in the next table, assuming a 100 nanoSecond clock cycle and

approximately 200 multiply operation cycles per bit.

Brrs Cn"Irnnlot¡ Trun MSEc Irpn"ntIol.¡s

In this table, Brrs is the numbel of bits in the mantissa; CRIleRtoN

is the convergence criter-ion in ¡;A; Tllrle is the estimated mins. to carry

out 100 simulation; trlSec is the real time per itelation in milliSeconds; and

IrnRnrto¡rs is the mean numbel of iter¿tions per timestep over 150 time

I
10

t2
15

16

16

16

16

500
400
300
200

0.7
0.8
0.9
1.1

18

18

18

18

24
24
24
24

500
400
300
200

1.0
1.1
r.2
1.5

I
10

33
33
33
33
33

I
10
11

13

18

28
28
28
28
28

500
400
300
200
100

t.2
1.3
1.5
1.8
2.5

167

steps.

In addition, rough estimates for: the pure bargain method, 53 bits, 5¡lA

convergence is 49 mins., with an average of 170 iterations over 150 timesteps;

the bargain*smootlt*optimal loolcahead method, 53 bits, 5¿rA convergence is

16 mins.,, with an average of 170 iterations over 150 timesteps; and the å¿r-

g ain * smo oth* optim al lo olcahead method, 1 6 mantissa bits, 5¡rA convergence

is 40 seconds, with an average of 9 iterations over 150 timesteps, taking

18mSec per iteration.

The convergence accuracy, as measured by the RMST distance over the

whole waveform from the true values of Q and Q at various convergence

criteria for 16 bits is indicated in the table:

CoNvpncpNcE CRrrERroN Q Accunacv Q Accunncv
500 ¡zA
400 p.Ã
300 ¡rA
200 ¡tA

0.269 mV
0.205 mV
0.162 mV
0.119 mV

0.1"24 mY
0.103 mV
0.083 mV
0.064 mV

1-0.8 Conclusions for Bargain and Smooth

and Lookahead

The methods investigated converge in a characteristic zig-zag fashion. Most

iterations are needed when the driving voltages are most out of balance.

Various tactics were tried to improve convergence rates in these areas, but it
was found that simple least-squares smoothing was remarkably effective in

the first instance.

Success with other methods was produced on an ad hoc experimental ba-

sis. However, general success with those methods depends on the application

of adaptive prediction techniques to get the best use of each technique at each

iteration. The lookahead tactic particularly can produce large improveurents

under these conditions.

The behaviour of the best algorithms was limited by the number of man-

tissa bits used: any number from 12 to 24 bits were necessary depending on

Troot mean square

16E

the accuracy of convergence required.

It was found that the bargain method and its variants have a characteristic

operation-count profile, which can be used to estimate the total real time for

100 simulations. Thus it can be used to compare the tactics, and to compare

them with other algorithms. It can be very useful in assessing algorithmic

improvements, since fewer iterations achieved can be more than offset by the

extra time taken by calculations in a more complex algorithm.

There are storeage implications, speed and cost trade-offs involved in the

various tactics examined. For example, varying weights meant that using

the same weight for all faces of all elements lequires ! storage of 3 previous

voltages - 3 real numbers per element; whereas a more flexible tactic of using

a different weight for each face of each element, while no doubt producing

a faster convergence, would require storage of 3 weights per face - 12 real

numbers per element - thus making the element more complex and expensive.

Concentrating on interstep speedup is not found to be worthwhile because

of the need, and the inability, to get very close to actual values of all nodes

to ¡educe iterations much. Therefore effort needs to be concentrated on

speeding up the internal iterations within one timestep instead.

The improvement is greatest only in the early stages of the iteration.

Later, as it gets closer it gets slower, as usual. So it appears that the conver-

gence might be considered in two fairly distinct phases, the early one being

quite substantially sped up, the latter requiring a different approach.

169

Chapter 11

Garne Theory

In this chapter I study the application oJ economic game theory to the problem

of array conuergence and fi.nd that it worlcs surprisingly well.

1-1.1- Why try Garne Theory?

The germ of the idea that Game Theory might be applicable to speeding up

convergence, or even to the problem of just achieving convergence, came from

the fundamental reinterpretation of the Newton-Raphson iteration technique,

described in Appendix C. It seems that there are still things to be discovered

about this technique, as François Robert confirms in his exploratory work on

discrete iterations [Rob87], writing:

"One may for erarnple refer to the algorithmic aspects of

Newton's method . seerns to n¿e to be the most fascinat-

ing algorithm in numerical analysis shows a remarlcable

practical efficiency euen though there erists relatiuely few global

conuergence results."

170

economtc digital systems

trading communities

t

t

t

t

t

t

t

t

t

t

Figule 11.1: CotvtpARISoN oF MoDELLING MBruoloLocIES

Consider the possible method of modelling the economic behaviour of

communities and the analogous possible method of modelling arrays of

processing elements in digital microelectronics suggested in figure 11.1 on

page 171.

It has been discovered in this thesis that there is a str-ong similarity be-

tween iterative economic-bargaining and the Newton-Raphson iteration tech-

nique (shown by the bold arrow at the bottom of the figure). The similar

structure of each modelling chain above the bottom boxes suggests that there

might exist a similar strong correspondence at every level of the chain.

Thus it is possible that a more formal application of game theory methods

might prove useful, by adapting known bargaining strategies to the purpose

of reducing the oscillations that occur duling some of the iterations.

game theory
technique

Newton-Raphson
technique

contact system contact simulator

price/quantity
matching

voltage/current
matching

iterative solution iterative solution

171

The model used for this study is the flipflop circuit at the start-up situa.

tion because it takes by far the most iterations to converge and in which the

most speed improvement is possible.

LL.z Elernents of Garne Theory

According to Moeschlin and Pallascke [MP80] and Ichiishi [Ich83] a Game

has the features defined and explained below.

LL.2.L Definition of a Garne

players: there is a set of more than one decision-makers, called players ;

rnoves: at specified instances, one or more players must make decisions by

choosing amongst a set of specified alternatives;

choices: each situation determines which of the players is to move, (the

moves may be simultaneous) and the range of choices;

endplay: certain specified situations define the end of that particular play

of the game;

payoffs: the outcome of each play has payoffs;

strategy: rational players strive to maximise their expected payoff

Furthermore, game theory recognises that if a choice must be made be-

tween two actions, then the realm of decision-making is that of:

certainty if each action is known to lead invariably to a specific outcome;

risk if each action leads to one of a set of possible specific outcomes, each

outcome occurring with a known probability;

uncertainty if either action or both has as its consequence a set of possible

specific outcomes, but whele the probabilities of these outcomes are

completely unknown or are not erren meaningful.

t72

L1.3 Developrnent of Garne Theory Model'

The above definitions suggest that each processing element is an individ-

ual making decisions under uncertainty, confirming that useful convergence

strategies might be sought in the literature of game theory.

It has l¡een shown how the NRl iteration can be re-interpreted in GT2

terms as a bargaining strategy. If economic game theory methods ale to be

tried then it is necessary to identify quantities from the electronic sphere

that are analogous to quantities in the economic sphere. This identification

can only be tentative, like the application of this whole technique, and its

justification depends on the final results of the simulations.

11.3.1 Identification of Game Theory Quantities

It seems reasonable to try the correspondences below, which are summarized

in figure 11.2 on page 174:

price (* voltage The voltage between adjacent faces, being initially in dis-

pute between the processing elements and having to be determined by

an iterative process until equal, suggests that the voltage in electronics

is the analog of price in economics.

quantity <+ current Since at the negotiated price the currents flow that

are equal from one element to the other, it is reasonable to suppose

that the current in electronics is the analog of quantity in economics.

outlay +) power Since total payment out of one face of an element is in

economics jrst price * quantity then it is reasonable to take it that the

outlay is the analog of uoltage* current or poweï- in electronics.

exchange rate ê mathematical weight In order to allow an emphasis

to be placed on the inputs of some elements ra,ther than others it is

l Newton-Raphson
2Game Theory

173

price ¡s the
analog of
electric voltage

ililt

exchange rate
is the analog
ofa
mathematical
weight

exchange
rate

quantity is
the analog of
electric
current

ilil1il

Figure 11.2: TBrtrATrvE ltnnrrucATroN oF ANALocUES

174

useful to establish what is the analog of an exchange rate between

countries, or a risk loading between individuals.

profit ê) power Tl-re nett outflow, or the algebraic sum of the outlays

through each of the four faces, in economic terms leaves the element

with a surplus or deficit, and since in electronics that same quantity is

the nett power, or heat dissipated, in the element, then it seems natural

initially to identify the maximisation of net profit as the criterion for

elements. This suggests the adoption of the analogy nett profit ë nett

outlay. This will be important when players attempt to maximise their

payoffs.

LL.3.2 Application to VLSI Simulation

So far the elements of the model have been tentatively identified with their

economic counterparts. The next step is to identify each feature required of

a ganxe in terms of the SIMD contact model already investigated.

With reference to the features of a game described above, the following

identifications with the processing array seem plausible:

players: The decision-makers (players) are the processing elements. There

is a set of five decision-makers consisting of the main processing ele-

ment and its four nearest neighbours, shown in figure 11.3 on page 176.

Technically, this rneans that each element is participating in a í-person

non-zero-surn co-operatiue go,me- Game theory literature shows there

are no general theoretical results for such an advanced game, so every-

thing that follows will be quite heuristic.

moves: Since the array is SIMD then all elements move simultaneously and

independently within these alternative alterations.

choices: At each iteration, all elements make decisions by choosing amongst

a set of specified alternatives. So far the only choice has been the result

of the first NR iteration, but this is not realistic; there are at least 3

175

the set of five
decision-makers,
or players,
consists of the
processlng
element in the
centre and its
four nearest
neighbours

Figure 11.3: GnIvrE THEoRy: CoNcBpruAL ARUwcBMENT

t76

partner
pnce

bargained
pnce

pnce
own

each of the four faces
has available a choice
of one these three
prices at each time a
game theory criterion
is to be applied

Figure 11.4: OpuoNS AVAILABLE To EAcH Er.elrnNr

distinct choices each face may make at each iteration. Each element

on each face can either choose N-R t, IP a or F-F t, as illustrated in

figure 11.4 on page I77.

For the 4 independent faces of each element this yields 3 x 3 x 3 x 3 : 81

possible alternative combinations, given in this table:

combrnaf ron norttr eæt west souttr
1

2

3
4
5

6

81

N-ft
N-R
N-R
N-R
N-R
N-R

F-F

N-lt
N_R
N-R
N-R
N-R
N-R

F-F

N-tt
N-R
N_R
IP
IP
IP

F-F

N-tl
IP

F-F
N_R
IP

F-F

F-F

Notice that this point of view treats NR as a special case of GT6

3the just-calculated Newton-Raphson bargained price

4its initial price, i.e., at the start ofthis iteration
sthe face-to-face partner's price, i.e., the neighbouring element lace
6where the first cornbination in the table is invariably chosen

177

endplay: Obtaining the first NR iteration defines the end of that particular

play of the game - this corresponds to the usual single iteration loop.

The end of the whole game occurs when adjacent voltages and currents

are equal within the specified tolerance.

payoffs: So far the payoff of each outcome is proportional to how well the

voltage and current pairs match on all four edges, being largest when

the maximum mismatch between currents on each face is smallest. But

if the set of choices is greatly expanded as above then a more general

notion of payolT needs to be adopted.

Following the economic analogy the most obvious, and perhaps reason-

able, payoff is the net profit. This has already been identified with the

net power entering the element.

The net profit for the element is thus calculated from

profit: t (xùq
N,E,W,S

where the sum is take over all four faces; X : the exchange rate (weight)

in the adjacent face:, p: the price (uoltage) on the element's face; and

Ç : the quantity (current)entering the element's face.

strategy: In the existing model each element maximises its payoff by reduc-

ing all four current mismatches at once. It does this by choosing the

NR first-iteration value for all 4 faces simultaneously.

However, with this greatly-expanded range of possible face voltages, it

is necessary to choose one of the 81 combinations by a rational method.

Once again invoking the economic analogy, it would be reasonable for

a bargaining element to choose on the basis of maximising its profit.

So what will be called the Ttrof"t method means that at each play of the

game, each element computes the profit it would gain if it used each one

of the 81 combinations above. The element then uses that combination

178

lnitial (own) price

F-F partner price

N-R bargained price

COMBINATION
6

these circled
voltages,

taken
together,

produce the
maxtmum net
prof¡t in the

element

l.f.
!l
o{
f

E
f.
o
o

T6
Þo0-rO
foJ
qd
oo-
f,.!
c)f.oo

(D

ru
o.E
o_

c
3
o

-g!s

oo
o_

t,,
c
(t
o_

I
Iu-

c,o
o-

!oc'õ
ot
L
(ú¡
É.

Iz

lnitial (own) price

N-R bargained price

F-F partner price

Figure 11.5: ILIUsTRATING Pnour CRtrBRroN AT coMBINATIoN 6

of voltages which produces the maximum profit as the basis for starting

the next iteration.

For example, as illustrated in figure 11.5 on page 179, if after calculating

the 4 bargained prices fol the four faces, it turns out that combination

6, namely

North Fäce
Easü Face
Wesü Face
South Face

N-tt bargarned pDce
N-R bargained price

Ini tially-Proposed price
Face-Face partner's price

produced the maximum net profit out of all the 81 combinations, then

those values of face voltages would be used as the starting-point for the

next iteration. That is, the NR values are not always used.

Thus it is seen that the Newton-Raphson iteration technique applied to

the convergence of the alray simulator is a special case of a game theory

179

method, and the first NR value can be used as a good starting point in the

more sophisticated game theory algorithm discussed above.

LL.4 Experirnental Results

Since NR is a basic game theory method, this investigation distinguishes two

cases by different nomenclature, thus:

the smooth method where the NR price, reached by a process of bargain-

ing without convergence, is accepted straight away as the final price

for each face - this is how the model is already run, i.e. in the previous

chapter where the voltages are smoothed over the last 6 iterations.

the profit rnethod where the NR price is reached by bargaining without

convergence, and then the criterion of maximum profit is applied to

determine whether this NR price rvill be used or whether the element

will stay with its own initially-proposed price or use its face-to-face

partner's price on each face for this play. Only voltages at the current

iteration are considered.

It needs emphasizing that if combination 17 is invariably chosen (the

bargain method) then this is the method already investigated. The profit

method thus generalizes the bargain method .

The model described above was set up and run, with interesting results.

1-1.5 Effect of Frequency of Operation

When the prof,t rnethod is applied at each iteration, the system improves

for a few iterations and then it locks up, and no further convergence occurs.

This seems an unpromising start for ganÌe theory, and forces the observation

that two extreme behaviour. ,."'obt..r'ed at the outset:

zin the combination table, earlier (page 177)

180

o if the profit rnethod always operatess then the system locks up after

a few iterations and does not converge; this produces what might be

regarded as an infinite number of iterations.

o if the profit rnethod never operates then the situation remains that

of the Newton-Raphson bargaining technique which has already been

investigated - the bargain rnethod - which is known to convelge.

The question arises: what happens in between these two extremes?

To find out, the system was then run so that the profit method was only

applied every second iteration instead of every iteration, with the default ó¿r-

gain method applying otherwise. Once again, however, the system improved

for a few iterations and then it oscillated widely without further convergence.

This seems very unpromising indeed.

At last, however, the system was run so that the profi,t method was only

applied every third iteration instead of every iteration, with the defauit ó¿r-

gain method applying otherwise, as before. This time, by contrast and quite

surprisingly, the system showed very fast convergence. In fact it is found

that applying the profit rnethod every 3rd, 4th, etc. . . iteration caused

convergence to occur in the usual way.

The results are shown in figure 11.6 on page 182. From this it can be

seen that after a frequency of application of every 3rd iteration the rate of

convergencee varies within a narrow range with a minimum of 78 iterations

occurring at a frequency of every 20th iteration. From then on the number

of iterations to convergence gradually increases until reaching the bargain

method value of 419 iterations, where it stays.

8i.e., at every iteration
emeasured by the number of iterations

r81

iterations to
convergence

(1 ooo uA)

1 000

100

'to

lt

rl
¡

I Í

lo 100

frequency of application of profit method

1 000

Figure 11.6: Ep'r'BCT oF Fnnqunncy oF AeILICATIoN oF GAME Tuponv

11.6 Effect of Range of Choices

It is found that these results are practically unchanged if, instead of the

81 combinations resulting from 3 price choices on each face, only the 16

combinations resulting from 2 price choices are allowed: the bargained price

and the initial price. This is correspondingly faster to simulate, and all

subsequent investigations use this reduced range of choices.

LI.T Effect of Delaying Profit Criterion

To see what happens when the profit methodis delayed, this next study allows

the bargain method to operate for a while, only later commencing the profi,t

rnethod. The results are shown in figure 11.7 on page 183.

The upper plot shows that, at the tight convergence criterion, there is

some small advantage in delaying the operation of the prof,t rnethod , but

since it is not known how many iterations it will take to converge befole

the simulation is carried out, and thus hou' long to delay, then this Ttost hoc

advantage is totally rvorthless in practice.

182

'I loo

1 050

'I O00

950

900

850

800

750

700

650

rt
t

t
t¡terat¡ons to

convergence
(1 uA)

a
å

.t
5

¡

800o 200

ûûû ûû ¡ t
400 600 I OOO t 200

delay applying profit method at frequency =4,5,19

¡terat¡ons to
convergence

(1 000uA)

450

400

350

300

250

200

150

100

50 100 150 200 zso 300 350 400 4so 500 s50

delay applying profit method at frequency=4,1p

Figure 11.7: Eprncr oF DELAvTNG THE Appr,lcnuoN oF THE PRoFrr

Moruoo

o

183

the
exchange

rate in
each

neighbour
element...

weights
the price

input...

..to this
element

t,
e1*Pl

e4*p4 --eZ
e2*p2

r e3*p3

Figure 11.8: MoaNING AND OnERATIoN oF ExcHANcE RATES

In any case, the lower plot shows that, at the looserlO convergence crite-

rion there is no advantage at all in delaying, and that it is best to start the

prof,t method from the very beginning of the simulation.

11.8 Effect of Exchange Rates

Since the exchange rate parameters are available for variation it is natural

to study whether they make any difference to the convergence speed.

The meaning of the exchange rates and their mode of operation are both

illustrated in figure 11.8 on page 184. The default exchange rate value for all

8 x 8 elements is 1.

The study starts with a given case: 1000 ¡lA convergence criterion and

applying the profit method every 5th iteration. Then for each processing

element in turn, the exchange rabe is varied from its nominal value of 1 and

10and probably more cornmonly-used

184

105

't00

95

90

85

80

105

100

95

90

B5

80
0.9 0.95 ',l 1.05 1.1

exchange rate ¡n element 75

0.95 1 1.05

exchange rate ¡n element 84

0.9 1.1

Figure 11.9: Ernocr oF VARvING ExcHANGE RATES ABour NoruI¡lal

V¡.luns

the number of iterations to convergence recorded.

The results for two elements of the array, one in row 7 column 5, the other

in row 8 column 4, being representative of the behaviour of all elements, are

shown in figure 11.9 on page 185.

The graphs show that as the exchange rate passes somewhere near the

nominal valuell the convergence rate of the array changes fairly abruptly in

a step, from one stable value to another, for better or for worse. In fact,

simulation at just the three exchange rate values of 0, 1 and 2 produces all

the information that can be got about the effect of exchange rate variation.

When the values of exchange rate that produce, individually, the fastest

convergence are tried all at once, sometimes a slightly faster iteration is

achieved but mostly it is not - this is a very complex non-linear system.

For example, if the rates are changed as shown below then the number of

iterations is 78 rather than the individual minimum of 80; but at the tighter

I pA convergence criterion the analogous case produces an increase rather

lldefault=1

185

o.7

0.6

0.5

0.4

0.3

0.2

0.1

o
10 15 ?o

Figur-e 11.10: Pnorlr MBrItoo 1 x 3 STnRTUP Nopr Volracps

than a new minimum, as shown below

0 5 25

I

I
I
I

I
I
I
I
I
t
I
I

standard,
141
¡teBt¡ons

tlll
011t-+ fastest,

¡teEtions
7Alllt

lotl
2ltol
ll2tr

11.9 Convergence Behaviour

In contrast with the original bargain method the voltages on certain nodes

now have no zig-zag component. This is because the values on each face are

being determined by taking into account what is happening on the other faces

of the same element to some extent, rather than solving them independently.

This is seen in figure 11.10 on page 186. In addition, it is noticeable that the

maximum residual, shown in figure 11.11 on page 187 reduces more quickly in

the early stage than the bargain rneth.od but thereafter reduces more slowly.

This is a general fea,ture of the method, as will be seen l¿ter in this chapter.

11.9.1 Startup Scatter

As in the bargain*smoothing case, fascinating lesults are obtained from a

statistical study of the staltup phase of the simulator.

Some 800 ranclom starting voltage sets were run to con\/ergence at both

186

I
I
t

1 2000

t ocoo

8000

60co

4 o.tc

2005

/¡
I

I

I
,rl

- -^- 1^z at- _ ^- _r -

0 3 6 9 ì2 15 ì€ ?t 24 27 303-: 3C=9 12 194€ 5ì 5< 57 50€-J 5€ €97? 75 7t et 6(¿7 909-i 96

Figure 11.11: PRortr MBrHoo Max. Rnsloual (oorreo) CotrlpaRoo

wrrH Slrrooru MBruoo (solro)

the 1¡rA and the 1000p4 criteria, using a 1 x 5 game theory frequency algo-

rithm. The results of these experiments are shown in figure ll.l2 on page 188

and in figure 11.13 on page 189.

It does not seem to matter how far the system starts from the true soiu-

tion, it still converges and saturates. But if it starts too far awayl2 then it

can converge into the 'flip' state instead of the 'flop' state.

Thus there seems no point in trying to get 'close' to the final solution

before iterating. Look at the region in the figure say 2-2.5 mV from the

true solution. In that small spread of distances, get an immense spread of

iterations - from 106 up to 740. Most of the rapid increase takes place very

close to the origin, especially in spread of iterations, as measured by the

standard deviation. Changing driving voltages will always be making the

distance greater than 1mV, unless an impractically-large number of timesteps

is used to counteract this.

These results are r-eally saying that the prof,t method algorithm is a vely

"..g., if all voltage nodes are initially zero

187

4500

4000

3500

3000

2500

2000

1 500

1 000

500

o

-f

iterations

1 200

1 000

800

iterations 600

400

200

o

average
iterations

II
IatI

I

I

I
I

II

I

'- .råt

rl
TT II

T
I

I II
I

o 200 400 600 800 1000

RMS distance from true solution (mV)

1 200

Iteratrons

standard deviation

#
rl

18 20

1 400

1 200

1 000

800

600

400

"oo
0

0 20 40 60 80 100 120

RMS d¡stance from true solution (mV)

Figure LL.L2: Pnontr Metttoo 1 x 5 SrnRTUp - LpA coNVERGENCE

o2 4 6 I 10 12 14 16

RMS distance from true solution (mV)

188

600

400

iterations 300

100

0

II

t
I500

r¡
Il

t ?.
"rrlrr I ¡rll

tl
t I

II
rlr

200

o 200 4OO 600 800 1000

RMS d¡stance from true solution (mV)

40 60 80 1 00 1zo

RMS distance from true solution (mV)

1 200

't40 160

average

iterations

BO

70

60

50

40

30

20

l0

0

o20

300

250

average

iterations
't50

100

50

o 100 ?oo 300 400 soo 600 700 800 900

mean RMS distance from true solution (mV)

Figure 11.13: Pnorrr Mnruoo 1 x 5 SrnRTUp - 1000¡;A coNVERGENCE

200

o

189

sensitive beast indeedr3. For consider: if the voltage at each face differs from

its neighbour by as little as 1 milliVolt, like the illustration below of part of

the array, then the RMS voltage difference over the whole array is only lmV,

3.203V

3.204V
1.916V 1.915V

but depending on just how this 1mV difference is distributed at each face

over the array the system can take anything from as little as 1 iteration to

as much as 500 iterations - an incredible difference!

LL,9.2 Accuracy uersus Iterations

A study was done over a wide range of convergence criteria to see the effect of

two important characteristics: the number of iterations to convergence, and

the final accuracy of the solutionla, both of which rise as the convergence

criterion becomes more stringent.

The results in the log/log plot in figure II.I4 on page 191 show the nature

of this variation for a 1 x5 profit method. In this range of criteria, an increase

in accuracy is paid for by a proportionate increase in iterations.

11.10 Effect of Bits on Accuracy

Up to now the studies have been carried out at the maximum accuracy of

53 bits. Since all aritmetic operations a,re masked in the C program, studies

can be done for any number of bits from 1-53.

l3certainly as regards initial conditions
14as measured by the RMS voltage error

190

iterations (num.)
RMS dist.(mV)

1 000

100

10

't0 100

convergence criterion (uA)

1 000

Figure 77.14: 1x5 PnoFIT METHoD: IrnnnuoNs (BLACK) nxo Frunl
Accunacv (wHrro)

11.10.1 Convergence at Fixed Criterion

The 1 x 5 profit algorithm starts to fail at about 13 mantissa bits. The

results in figure 11.15 on page 192 show that at various convergence criteria

the distance of the whole array from the true solutionls is satisfactory from

53 bits down to 14 bìts, below which it begins to diverge seriously from the

true solution.

LL.LO.2 Critical Number of Bits

Consider now the number of bits required for a given accuracyr by setting the

number of bits and then seeing how close the system can come to matching

the face cu¡rents at each node.

For a given startup voltage setr6 the smooth and the profit method were

run with mantissa bits varied in the interesting range of 8 to 24 bits. After

the system has settled down to whatever long-term behaviour it can get out

15as measured by the RMS voltage error
16the same one used in all these simulations

I
I tI

191

distance from
true solution

(mv)

90

80

70

60

50

40

30

20

10

o

10 12 14

1 00uA

16 18 ZO

number of mantissa bits

22 24 26

Figure 11.15: Accunncy oF PRoFrr METHoD wrrH Mtwrrssn Brrs

of that number of bits, (5000 maximum iterations allowed) we see how close

each method comes to a complete match of face currents. Of course, they did

not converge when very few bits are used. But at some stage of the iteration

process there is a smallest marimum residual which measures how well the

system matches currents (given that the voltages match perfectly) over all

the processing elements. This smallest maximum residual was recorded.

The two cases examined are:

smooth which is the bargain * 6-point LSQ smoothing;

profit which is the bargain * 1 x 5 profit criterion.

The ¡esults are summarized in figure 11.16 on page 193.

Now, these results are amazing. They show that the profit method \s

consistently better than the smooth method. That is, given a level of maxi-

mum current mismatchlT to be achieved, the profit method achieves it with

one whole mantissa bit less than the smooth method.

lTmeasured by the maximum residual

r92

smallest
maxrmum

residual achieved
(uA) log scale

I OOOO

I OOO

100

'l o

I l0 12 14 16 18 20 22

m¡n¡mum number of mantissa bits needed

Figure 11.16: CRtucnl BIrs - PRorrr (wurrn) AND SMoorH (BLACK)

To offset this it takes more operations. This is shown next in a study of

the convergence at various criteria producing the total arithmetic operations

per timestep.

It is worth noting that when the original optimal lookahead is tried, the

results are actually worse than for no lookahead at all - i.e., each bit-set run

has its own optimum LA set.

24

11.11 Operation Count

In contrast to the smoothmethod, the profitmethod produces, over the range

of 12 to 53 mantissa bits, and over a wide range of random profit criterion

frequencies, the characteristics for the numbel of arithmetic operations sum-

marized in the follorving table.

OpnR¡.uoN MEAN NuN,Tspn PER ITERATIoN Rawcn
rnultiplication

division
addition

subtraction

860
530
500
250

593-1281
375-765
312-67r
187-375

193

subtr¿ct

div¡de

mult¡ply

subtract

div¡de

mult¡Ply

subt€ct
add

divide
mult¡ply

subtract
add

div¡de

multiply

add

add

24 bit 4gMoPs 662 iterations Profit none

24 bit 7.6MOPS 59 iterations Profit 1x5

53 b¡t 7.6MOPS 59 iterations Prof¡t 1xs

4MOPS 40 iterations 1x14x'l 6x?0x22

0 5 10 15 20 25 30 35 40 45

percentage total operations

Figure 11.17: PRortr MBtHo¡: MBnl¡ ARITUUBIIC OeERATIoN PRo-

FILE

The reason for the large spread is that the more frequently the profit criterion

is applied the more calculations are needed overall, and so the greater mean

number of operations are required per iteration. The incidence of that varies

with the accuracy required.

11.11.1 Operation Profiles

The mix of operations for the 1000¡rA convergence criterion is summarized in

the operation profile shown in figure ll.l7 on page 194. The profiles hardly

change with number of bits and frequency of application, even though the

cases represented range from 40 - 662 iterations, and from 4 - 49 million

operations overall from the startup situation.

By way of comparison, the full set of operations carried out by the proces-

sor array is counted and presented in the set of profiles shown in figure 11.18

on page 195. Once again the prof,t method shows a steady profile over a

range of mantissa bits and frequencies, whereas the sm.ooth rnethod shown a

vast increase in absolute value operations as it atternpts to lvork at very high

r94

stæ

tetch

edd

stda

fetch

ild

subtrect

multiply

dlvldc

absolutc

subtftt

multiply

divldc

absolutê

subtræt

støc
multiply

16tch

dlvldc

add

absolutc

subtæt
stqc

multiply

tctch

dlvido

úd
abelute

1x5 Profit 53 bit 1000u4

'l x5 Profit 53 b¡t luA

1 x20 Profit 53 bit 1 000u4

Smooth 53 bit 1000u4

subt@t
støc

multiply

lctch

dlvidc
¡dd

¡belutc
Smooth 53 bit l uA

o to l5 20 25 30 35 40

percentage of total operations

Figure 11.18: Open¡.rroN PRoFILES: CotnlpnRtsoN BBTwEEN VARIous

SrR¡.'rBcres

45

195

1

l3
12
I
4
9
5
1

16
m¡n

7
6
2
3

max

14
l5
10
11

pA

1OO ptA

13
12

8
4
9
5
I

16

mln
7
3
2
6

14
15

max
10

t't

10 pA

1000 ptA

0 200 400 600 800 looo 1200 1400

o 100 200 300 400 500 600 700 800 900

13
12
I
4
o
q

1

'l 6
mtn

3

6
2

14
15

max
10
'n

12

4
9
5
,l

l6

3
mtn

14
10

max
?

15
1',I

6

0 50 ro0 150 200 250 300 350 400 450 0 20 40 60 80 100 1?o

Figure 11.19: Enpncr or Dr¡npRENT CRrrnnrn ou NuunnR orlroRa-
TIONS

accuracres

LI.LL.2 Combinations as. Profit Criterion

To check that the marimum profit criterion is indeed the best one, a series

of tests carried out using all the different criteria produced the results sum-

marized in the iterations profiles shown in figure 11.19 on page 196. For

the four convergence criteria of lp,A,10¡rA, 100p4, 1000¡rA these show that

the rnaximumprofrt criterion is consistently better than the rninimurn profit

criterion. Using any one of the 1 thru 16 combinations (from the 2 x 2 x2 x2

196

choices) to start the next iteration produces variable results which generally

depend on the connectivity of each circuit.

LL.L2 Multiple Fbequency Effects

Given the strange behaviour of the proJit method criterion application fre-

quency - that it fails to converge if applied too frequently, and that a vague

minimum exists - it is natural to wonder how to find the optimum frequency

before simulating a circuit.

It has already been seen that if the profit criterion is applied too oftenls

no system convergence results, and a minimum number of iterations is

achievablels. But this is deterrnined after the event, for this particulal circuit

and for these startup conditions. There seems to be no general method for

predicting which frequency is best in advance.

The question then arises: in default of a method for this, is it possible

that a frequency chosen at random would work bette¡ than doing nothing?

To answer this, a range of application tactics are now examined.

The previous study starts with the simplest case of pure frequencies. But

more generally a set of multiple frequencies needs to be considered. It will

be seen that this simulates the effect of random application of the profit

criterion.

LL.LZ.L Individual Random Extremes

Consider the set of profiles in figure 11.20 on page 198. For every 100 it-

erations, the vertical lines show exactly when the profit criterion is to be

applied. The application points appear randomly distributed, but this is re-

ally the result of supelimposing a few pure frequencies on top of one another.

These figures summarize the results of applying the prof,t criterion at various

lsevery iteration or every second iteration
19at around a frequency of every l9 iterations

197

'I 2 bits frequency mix 2O+23+26+29 mean rate=6.0 minimum=S8

'I 2 bits frequency mix 4+5+1 3+32 mean rate=l.8 no convergence

24 bits frequency mix 1O+2O+?4+27 mean rate=4.3 minimum=46

24 bits frequency mix 4+6+7+8 mean rate=l.5 max¡mum=1 597

53 bits frequency mix l4+20 mean rate=8.Z minimum=4o

ilil l l l ll l ll l l l

I il ililil I il ilt il I il ilt il I il iltil I il ilt il I

tlllllllllllllllll
I ilil ililil I ilril ilr il ilt Iililil lll l I llll I

r |rll
ttt lil

il
53 bits frequency mix 16+24 mean rate=g.6 minimum=40

53 bits frequency mix14+2? mean rate=8.S minimum=4O

tlll il l ll ill
Figure 11.20: Pnonlr Mnruop: Psnuoo-ReNoorvr ApplrcnuoN FRE-

QUENCIES

I 98

frequencies and using various numbers of mantissa bits.

The results are somewhat surprising but suggest some predictabilility.

The top 2 profiles for 12 bits show that quite extreme behaviour can be

produced. If the profit criterion is applied every 20th, 23rd, 26th and 29th

iteration then the system converges with the least iterations; whereas if the

profit criterion is applied every 4th, 5th, 13th and 32nd iteration then no

convergence of the system occurs, el[ectively producing an infinite number

of iterations. The mean fi'equency for the least itelations is once every 6.0

iterations, whereas the mean fr-equency for the convergence failure is once

every 1.8 iterations. Comparing this with the results already found for the

case of pure frequencies20 shown in figure 11.6 on page 182, in it is seen that

the mean frequency rate is not inconsistent with that result.

To emphasize that this is not entirely predictable, however, the next 2

profiles show, lor 24 bits, that the minimum number of iterations is obtained

at a mean frequency mix of every 4.3 iterations; whereas a maximum ózú

not a failure of conaergence is obtained at a mean frequency mix of every

1.5 iterations, which is less than the 2 iterations that produces failure in the

pure frequency case. The bottom 3 profiles are all different but all result in

the absolute minimum number of iterations found by experiment.

So for these mixed frequency applications of the profrt criterion the result

cannot be predicted from just the individual frequencies or from the mean

frequency, although there is the strong indication that if the mean frequency

is less than about 2 or so there is danger of convergence failure. Thus it

appears that to get onto firmer ground a more systematic statistical study is

necessary, and this is reported next.

lL.L2.2 Mean Random Scatter Study

In order to assess the viability of choosing a set of frequencies at random, a

large number of simulations were lun, ea,ch allowing a mix of 4 randomly-

20where failure to converge occurs at frequencies of 1 and 2 iterations

199

chosen frequencies, all starting at the first iteration. The results for the two

practical extremes of 12 bit and 24 bit accuracy at the 1000¡rA con\¡ergence

criterion are shown in the top and bottom of figure 11.21 on page 201. The

top graph2l shows that when the system takes, say,52 iterations to converge,

the number of processor opelations22 required varies from 57 million up to

78 lrillion per sirrrulationrlependirrg orr the precise frequelcy nrix.

The lower plot23 shows a similar spread, but there is also the possibility

of getting a frequency mix that takes a very long tirne to converge.

For the mid-range case in the bottom plot, it is found that a line of best

fit24 through the data points yields the approximate relationship millions oJ

operations per simulation: (t!t P- - 3); this might be useful for estimating

the total time taken by the array simulator for a particular architecture.

Now, it has already been seen that for a pule frequency of every 5 the

system produces 59 iterations and 7.6 million operations for startup. So

shown in figure 11.21 on page 201, that choosing a set at random, compared

with this, produces2s an average number of 54 iterations. Since this is less

than the 59 iterations above, choosing a random set could be better than

having no frequency, but not by much.

To collect a lot of these results together, the array shown in figure \1.22

on page 202. shows the iterations at 1x5 1000¡;A for a systematic study of

separate profit criterion application frequencies, from 1 up to 30. The results

are somewhat unclear because there is some aliasing occurring; this means,

for example, that the result for frequency:3 contains some part of the result

for frequencies:6,9,12 and so on. A chaotic area of relative minima occurs

in the middle of the array, which therefore shows that there is a rough degree

of correlation between these results and the expected behaviour based on the

zrfor a 12-bit mantissa
22multiplications*divisions*additions*sub bractions

23for a 24-bit mantissa
24in the least squares sense

2safter removal offrequencies near every 1 and 2 iterations

200

1 0500000

1 0000000

9500000

9000000

8500000

8000000

7500000

7000000

6500000

6000000

5500000

5000000

I
t
T

I

¡
TI

processor
operat¡ons T

I
T

t

I
TI
lr I I T

T

50 s2 s4 56 58 60 62 64 66 68

iterations to converge (1 000uA criterion)

1l

to

millions of
processor

operat¡ons per
timestep

48 50 52 54 56 58

iterations to converge (1 000uA criterion)

60 62

Figure lI.2I: R¡.Noolr,t PRonrr CnrrpRroN APPLICATIoN - 12 ntrs (roe)

&, 24 Brrs (BorroM)

9

I

7

6

5

4

T

I
I
T

lrr
ITI

ll
ll

I
I

46

201

I

2

3

4

5

6

7

8
o

t0
ll
12
'13

14

15

16
17

l8
l9
?o
21

22

23
24
2S

26
27
?8

29
30
31

32
33

67
1t3 52

70 72 s9
67 60 59 46
70 60 56 53 60
68 52 54 52 53 46
67 60 59 58 53 s8 64

67 52 52 46 48 48 58 48 48 44
67 52 54 52 50 52 49 56 52 49 62

67 56 59 58 53 46 46 62 45 62 49 51 61

68 52 52 46 53 46 46 46 52 48 56 48 53 52
67 52 59 48 53 46 46 46 48 48 49 48 46 52 63
67 52 54 46 48 46 64 46 48 44 56 48 62 48 55 50

67 52 51 48 48 48 49 48 63 44 52 40 44 4? 44 44 48 50 59 53
67 52 54 52 50 52 54 44 43 42 56 46 56 52 50 50 50 50 52 57 67
67 52 52 46 53 46 52 46 52 44 52 46 44 40 44 42 46 46 48 52 61 55
67 56 59 48 60 46 51 44 43 54 54 46 46 54 55 54 54 54 54 54 54 59 69
67 52 54 46 53 46 53 44 52 44 62 46 44 42 44 42 44 44 48 50 50 56 63 57

68 52 59 46 53 46 46 44 43 46 49 46 53 52 55 46 46 46 46 48 50 52 54 56 58 60 62 66
67 52 59 48 50 52 46 50 63 52 45 54 49 60 55 46 46 52 50 54 54 54 s4 56 60 60 64 62

70 56 59 54 50 48 58 46
67 52 56 52 50 52 49 50 63

61 52 54 48 60 48 s8 44 48 48 56 46

67 52 56 48 50 48 51 48 48 48 45 50 44 46 48 55 61

67 52 59 48 48 46 46 46 48 48 52 40 59 48 48 48 57 s1

67 52 54 48 60 48 46 46 46 52 52 46 46 46 46 48 48 57 65

67 52 59 48 53 46 64 46 43 52 43 46 42 52 50 58 54 54 58 5? 54 54 58 61 71

61 52 62 46 50 44 44 44 52 44 51 46 53 46 44 42 46 44 46 48 50 52 54 60 65 6l
64 52 59 48 50 46 51 44 45 52 45 60 53 44 44 55 52 54 56 54 56 54 58 58 62 65 73
67 52 59 46 53 44 46 46 45 46 51 46 61 49 46 44 46 44 46 48 50 52 54 56 s8 62 67 65
64 52 59 48 53 46 51 54 45 52 45 54 49 52 44 48 48 5? 5? 54 56 54 56 56 62 6? 64 64

1 2 3 4 s 6 7 8 9 10 11 12 13 14 ',l 5 16 17 l8 19 20 21 22 23 24 2s 26 ?7 28 29 30

1 2 3 4 5 6 7 I 9 10 II 12 13 14 15 16 17 18 ',t 9 20 21 22 23 24 25 26 27 28 29 30I'J Ocanç
Èl

þ!:
É)

J

LJ
z
U)

J

t9

-
z
\Jô
?

L)

È
o
tlã

z
r!

o
z

I

N)
O

s
e
c
o
n
d

r
r
e
q
u

e
n

c

v

o
f

e
p
p

I

i

c
a
t
i

o
n

2

3

4

5

6

7

8

9

10

11

12

l3
14

15

17
't 8
'I 9

20
21

22
23

24
25
26
27
28
29
30
3l
32
33

first frequency of application of profit cr¡terion

mean frequency of application.

l-L.L2.3 Assessrnent of Random Criterion

These few heuristic experirnents show that this is a very strange phenomenon

indeed. If someone recognises what the underlying process is then they could

explain it and point the way forward to systematic improvement.

The oddest thing is that if the profit cliterion is applied too often, it stops

working. The structure of the results previously obtained in figure 11.6 on

page 182 shows this.

How can the best application frequency be determined as an adaptive

process during simulation? This is a topic for futule research. However, it
is now known that too frequently inhibits convergence, so there would be no

way to allow applications more frequent than every 2 iterations.

Note that here the possibility of each element having its own set of fre-

quencies - a tactic which might be superior to one using the same value for

the whole array - has not been addressed. Once again, future research into

adaptive techniques is indicated.

The results are like simulated annealing, already used in simulation of

circuits [Rut89], in that it jolts the process out of a bad rut. This intermittent

reinforcement aspect of the algorithm might have analogues in economics,

neural networks, and signal processing, which might shed some light on why

it acts like this. The system seems to need a bit of time to allow a different

profit criterion value to exert its influence. It is in this way that garne theory

with its application of the profit criterion acts like the economic analogue

of simulated annealing. Not until this is understood can a systematic and

adaptive use be made of this potentially powerful array processor simulation

technique.

203

number of
iterations

I

L

I

rl

0.001 0.01 0.1

convergence criterion (mA)

10

Figure 11.23: CotupnRtsou oF PROFIT (wutrn) AND SMOOTH

(alncx) sTRATEGIES

11.13 Cornparison: NR and GT Conver-

gence

The final study is of the behaviour of the Newton-Raphson26 and the Game

Theory2T over a wide range of convergence criteria. The NR method2s is

compared with the GT method2e, and the results are shown in figure 11.23

on page 204.

This log-log plot shows that the smooth method performs better in the re-

gion of small convergence criteria, whereas the profit method performs better

in the region of large convergence criteria.

They seem to perform equally well around the 3 milliamps criterion. To

examine the behaviour here in more detail, this region is expanded as shown

in figure 17.24 on page 205. It can be seen from this that the advantage of

26smooth method
27 profit melhod

286-point smoothing with lookahead, previously investigated
2eapplied every 5 iterations

204

number of
iterations

80

70

60

50

40

30

20

10

0

cross-over point

4 5 6 7 B 9 10

convergence criterion (mA)

123

Figure 1I.24: \MupRn PROFIT (sor,rn) PERFoRMS BETTER THAN BAR-

GAIN (oorrel)

Ihe profi,t method, while slight, is definite.

The conclusion from the staltup scatter study, consistent with others

made already, seems to be that the profi,t method is better suited to loose

convergence studies where that accuracy is sufficient.

The assessment of critical bits results indicates that there is a tradeoff for

circumstances: smaller processors can get, say, 22L¡its down to 16 bits giving,

say a l0% area reduction but perhaps a much greater than 10% operation or

time increase - and aice uersa if desired. Better still is some type of cyclic real

number representation or one that is adapted to speed/area tradeoffs, like

that of Bergamann and Fan [BF90], that would allow accuracy to be chosen

without affecting the chip architecture. There is scope here for innovation.

tL.L4 Significant Conclusions

A new approach has been developed fol the array pr-ocessor. The approach

of game theory has been tried because of some suggestive analogies with

modelling by the contact method.

205

The experiments along these lines are very encouraging. The studies here

indicate that:

the economic {* electronic correspondence suggested in figure 11.1 on

page 171 and tentatively identified in figure 11.2 on page r74 are justi-

fied.

the game theory profit method devised above appears to be validated.

The method actually produces quite a large speedup in convergence. It
does this in the early stage of the convergence plocess, when the mismatch

between the current and final solution is greatest but where the plain Newton-

Raphson technique does a poor job. It does not produce as much speedup

in the latter stages of the convergence process whele the mismatch is small

but NR does better.

For loose convergence criteria the speedup is remarkable; for tight con-

vergence criteria it is still disappointingly slow although present. Whether

tight or loose convergence specifications are required depends on the accuracy

wanted in the overall estimate of the cumulative probability distribution.

The investigation at different convergence criteria shows that the game

theory profit method is superior to the game theory smooth rnethod in the

loose convergence area, i.e., where a rough and ready picture of the spread

of operating speeds is wanted.

Since a minimum occurs in the results where parameters can be manip-

ulated to obtain some degree of optimisation30, it suggests that an adaptive

strategy is called for, not only overall but for each element.

to".g., using exchange rates

206

Part IV
Evaluation

"Why? Recause il dares! To dare: pT'ogress is lhe reuard of lhal."

VICTOR HUGO

Chapter L2

Overview of Results

L2.L Introduction
'We have looked closely at what happens when a VLSI circuit is simulated

and found to be not quite fast enough to meet its designed specifications.

Elements along the critical timing path are re-designed so it works faster.

However, a problem now arises that has a consequence which is unpredictable

if stochastic simulation is avoided. If the design has to run faster, the circuit

dissipates more heat since it works more. Then the individual transistors in

the redesigned parts of the circuit become slightly larger, and the chip itself

gets slightly bigger overall. This means that the fabrication yield drops in a

well-understood way. The result is that the design yield has improved, but

the fabrication yield haslfallen. Since the net yield is the product of these two

opposing trends, the result is somewhat uncertain, only being estimable by

an enlarged stochastic simulation that takes into account many more factors

than are dealt with here. Nothing short of the full cumulative distribution

function of finishing times is required.

To obtain this desired cumulative distribution function of finishing times

it is necessary to perform some 500 Monte Carlo simulations. The time this

takes on a typical workstation inhibits its use. To speed it up, a very fast and

very accurate method of stochastic n'rodelling on modern workstations has

208

been sought. This search has seen a new 'best-fit' for the spread of operating

times found, a new method for predicting statistics of concatenated structures

invented, and some very strange array simulation behaviour discovered. It
has ultimately led to a method which is not really fast when it is accurate,

and which is not really accurate when it is fast; this trade-off between speed

and accuracy is often found in circuit simulators.

Surprisingly, however, an incidental interpretation of the meaning of the

Newton-Raphson iteration technique has also been discovered,leading to the

study of the application of game theoretical methods to the simulation, and

ultimately to the possibility of a new paradigm which bears on the future

design of wafer-scale simulation engines.

There is an overall diagram on the next page, to help in orientation,

showing all facets of the thesis.

L2.2 'What has been Done?

A number of approaches to circuit timing simulation are examined in great

detail, and these are classified as variants of the bargain method, thus:

bargain: take the first Newton-Raphson solution and then iterate;

smooth: bargain smoothed over last 6 values using least-squares best fit;

lookahead: bargain *,smoothing * prediction look-ahead by less that one

iteration;

game: formal game theory approach to whole of the bargain method;

profit: bargain method * profit criterion.

L2.2.L Array Model

A layout of transistors in an array, similar to the physical layout of transis-

tors on the leaf cell circuit, is assumecl. Each processing element in the array

209

NET
YIELD

DESIGN

YIELDFABRICATION
YIELD

STOCHASTIC
SIMULATION WORST-

CASE

ANALYSIS

CSDS

MODEL ANALYTIC
FITTING

MONTE-
CARLO

SPEED-UP

HARDWARE
APPROACHAPPROX.

SOFTWARE
MODELS

DIGITALANALOGUE

GAMEBARGAIN

SMOOTH
LOOK

AHEAD

Figule 12.1: l\4,,tp oF TIIE Tltests

210

contains a mathematical model of the transistor at the node in the physical

array. It receives the state of its nearest neighbours and computers its new

state in response to this information. Global conditions (such as conserva-

tion of current) are catered fol by reducing them to local statements of the

same principle. Technically, this design is known ¿s a mesh-connected SIMD

(Single Instruction Multiple Data) array- processing computer.

L2.3 What has been Found?

12.3.t Probability Distribution

The form of the distribution of finishing times has not previously been dis-

covered. The nearest useful analytic expression is due to Downs, Cook and

Rogers [DCR82] who produce a very good approximation by expanding the

probability distribution function as an Edgeworth Series

Í(t):!*"*ot-|rlfl
o \/ ¿7t

¡((¿)= t* fiQ" - 3r) + $r!A'-6t2 +rl+ #(r'- r5¿a +ast3 - rs)+...

where p¿:mean, o2:variance, o:skewness and B:ftqrtosis. This Gaussian

distribution, shaped by the function I{(t), is a suggestive form of Taylor

expansion, rather than a serious attempt to find the true distribution. As a

result of the work in this thesis, the spread of finishing times is now known

to be best described by rthe Erlangl distribution

f "n(t¡
: (ak)k ,t-t

"-"rt f
l(k)

where o : T and k : (t)" are parameters of the distribution. It is not

surprising that the Erlang fits so well. It was tried because it is recognised

that the process from which it is derived is fundamentally similar to the leaf-

cell process: that of passing a signal through a set of inter-related transistors

in a leaf cell, compared to that of being served by a set of queues in teletraffic

systems, as described by Takacs [Tak62].

lor Truncated Gamma

2rt

L2.3.2 Monte Carlo Methods

An important question is: Are about 500 simulations necessary or ale there

other methods? Monte-Callo simulations require many runs but they are

good for any initial parameter spread whatsoever. The attempt2 to reduce

the necessary number of Monte Carlo simulations from around 500 down

to 1 failed because the resulting cumulative distribution function was not

found to be accurate enough. A very accurate model is needed for stochastic

simulation; less than one percent error is allowed [WYC87].

t2.3.3 Concatenation of Cells

The TIMtr method, rvhich requires stochastic simulation of only the first two

cells of an n-cell concatenated structure, one at a time, was invented. It

produces the required statistics with great accuracy, and at vastly reduced

cost compared with a full simulation involving the whole n cells. Its accuracy

is superior to the rudimentary parameterized block-concatenation scheme of

Benkoski [BS87].

L2.3.4 New fnterpretation of NR Technique

The idea of treating the array as device-based rather than node-based, leads

directly to a 'bargaining' situation between 2 PEs and hence to a game

theoretical implementation. In the traditional method, with each node as the

primary focus, it is impossible not to think of solving the equation /(r) : 0

and hence automatically use the geometric Newton-Raphson technique. But

focussing on2 PEs, each of equal status, immediately demands the possibility

that each has its own view of the common node voltage and hence there

are two different values to deal with, two current curves to consider, and

the question of how to come to an agreement over them becomes of prime

conceln

2the CSDS model previously exarnined

212

L2.3.5 Garne Theory

It has been shown that Game Theory can be applied to circuit simulation,

in its array-processor forrn. Ilowever, although one might not be entirely

convinced that the analogy is complete and rigorous, if it is then a tremendous

field of new research could open up to application of these methods.

The game theory proJit criterion algorithm is only fast if relatively low

accuracy is required. For the very high accuracy demanded by stochastic

simulation it seems that, in its current form, it would be somewhat slow

compared with other methods. This suggests that its future applications

lie in other fields: still simulation and array-processing, but where fast ini-

tial convergence with low accuracy is tolerable - for example, in the neural

network area.

As far as the application of further methods is concerned, as early as 1953

D.B. Gillies showed that a sizeable swath of plural games possess cooperative

solutions. Buch and Taumann [8T92] deal with bargaining problems having

n + 1 players. One player has a special role in the game. He is endowed

with a set of actions, each of which dictates a payoff vector for a certain

subset of outcomes. Each player gets a higher net payoff in the bargaining

solution than in the non-cooperative solution. More on co-operative game

theory can be found in the papers of trichberger [Eic92], in the strategic

collaboration analyses of Colman [Col82], and in the co-operation chapters

in Shubik [Shu83]. There is also the suggestive experiment by Smith and

Williams [SW92] revolving around a system called a double continous auction

causing much faster convergence in price levels in a system which could be

similar to the array studied here.

Initial indications are, however, that technically within the field of eco-

nomics, the methods pursued here seem to be a subset of a partial general

equilibrium system,, with a measure of oligopoly; this is reported to be an un-

satisfactory area of microeconomics, where so far only rudimentary analysis

has been carried out.

213

t2.3.6 Convergence

The convergence behaviour is similar to that repolted by Marchuk [Mar82].

He finds that the meth,od, of minirnum residual.f has a peculiarity that is

important in practice: namely, that the initial iterations converge much more

rapidly than the asymptotic rate of convergence. This is precisely what is

found for all the variants of the bargain method. He goes on to suggest that.,

to accelerate convergence, it is worthwhile making occasional use of a single

iteration of a two-step minimum-residual method. This is reminiscent of

the acceleration found using the uariable frequency technique. Choosing the

parameters for this extra iteration involves solving a local extremal problem,

also much like the maximum profit criterion.

It is found, roughly speaking, that to halue lhe maximum residual in the

array, ten times the number of iterations are needed.

The profit method uses less iterations whereas the smoothing method uses

less operations. However, the smoothing method needs to store the past 6

values whereas the profit method needs no extra storage. merely doing the

extra calculations the algorithm requires. If the profit criterion is applied

more often than is reaily necessary, one finds that this leads to a large increase

in the extra number of operations.

In view of the ranking of the convergence at the Ip,A criterion, it is

generally found that the Bargain * Smooth method is equivalent to the

average of the optimal Game Theory profit criterion method, in terms of

the number of iterations. Over a range of convergence criteria from L¡,tA to

I000¡^tA the rank order of the methods investigated is

many iterations

0

few iterations

pure bargain
gamelxS

bargain * 6-point smoothing
game 1 x 5 * optimal exchange rates

bargain * 6-point smooth * optimal lookahead

3on which lhe Russians in particular have done a lot of work

214

L2.3,7 Boolean Tlansforrn Representation

It is interesting to note that the French researchers, like Robert [Rob87]

and many others [DGT85] generally seem to have a better understanding of

the convergence issues in finite automata, such as those studied here. They

transform the description of the circuit to a boolean space and study its

behaviour there, to draw conclusions about its convergence. This is a lot like

studying differential equations of fluid mechanics in phase space where their

Iong-term behaviour is much clearer than in the time domain. This approach

seems to overcome the limitations of the analytical A-stable methods [Mir81].

L2.3.8 Curious Behaviour of Profit x2 Case

In the study of the Game Theory simulation methods it was reported that if

lhe profi,t criterion is applied at every iteration or at every second iteration

the system fails to converge at the 1¡rA criterion. More patient simulation

reveals that while this is certainly true, as soon as the x1 or x2 application

ceases, the array starts to converge again.

It is found that the face voltages and currents remain practically steady

for a very long timea - and if stopped, say, at 1000 iterations, then the system

suddenly 'breaks' out of this mode and converges, but takes 2697 iterations.

Strangely, the xl case'sticks'at 68999 ¡rA whereas the x2 case'sticks'at

the much higher 375085 ¡rA residual.

Closer study of the fine structure of the simulation process, using a 53-bit

mantissa, reveals that in fact both the face voltages and the face currents are

very gradually changing by a small amount all the time - the voltages, with-

out any oscillations, the currents continually oscillating with a zig-zag form'

Depicted in figure 12.2 on page 216 are the voltage, current and maximum

residual around the 'break' point, from 970-1070 iterations.

aas long as the xl or x2 profit criterion is applied

215

voltage

current

residual

Figure 12.2: ' BRonx Potnt' Bortal'toun tN GnuE TrrEoR\. x2 C¡.sn

216

t2.3.9 Annealing/Relaxation Similarity

Experiments show that some mixed frequencies of application of the profit

criterion give faster convergence than the pure frequency gives. It seems

that the profit criterion acts either: as the economic analogue of simulated

annealing [Rut89], with extra and unexpected applications jolting the sys-

tem out of some local rut; or as an aggregation method [CSV88] whereby

a slowly-converging relaxation algorithm is interrupted every Nth step, and

restarted from another point, because the points toward the end of sequence

are confined to a part of the iteration matrix collesponding to eigen-values

of magnitude close to one.

l2.3.LO Chaotic Behaviour

Chaotic behaviour at a very fine level is produced by the game theory method,

as seen in many previous plots in this thesis, and it has one of three expla-

nations.

When the operation of a device is descrìbed by differential equations,

then an idealized model replaces the actual device. Since every mathemat-

ical idealisation involves the neglect of small quantities, then the question

arises of how much distortion of the original phenomenon has been subtley

introduced. Mishchenko and Rozov [MR80] have studied this problem in

detail, and report that, over a long time interval, the differential equation so-

lution can show periodic oscillations with constant or only slowly-decreasing

amplitude, which are not in fact present in the original phenomenon.

The situation with spurious oscillations is even worse when, not only are

small quantities ignored when the lin-rit is taken in the process of deriving the

differential equations, but especially in the next step when they are being

solved by finite difference methods. The chaotic behaviour occurs in the

modelling by nonlinear, time-dependent diffelential equations or a system

of difference equations. It is ofben the solution of the equations exhibiting

the chaotic behaviour, not the physical system being modelled. There is the

2t7

danger that a particular numerical method employed to obtain a solution

produces the chaos. Tizwell et al [TMYK92] note that to avoid this kind of

contriued chaos whilst retaining accuracy and stability it may be necessary

to avoid explicit numerical methods and turn to implicit ones. In solving

systems of nonlinear diferetial equations this leads to finding the solution by

using, e.g., the Newton-Raphson iterative method.

This problem has been subject to sustained attack by Tizwell et al. The

first order explicit Euler method for solving the equation # : /(to) is in the

form of a sequential recullence relation u)n+r - u)n + À f@") with À < 2,

where p is the maximum value of the real part of the eigenvalues of the

associated Jacobian matrix 0f l0u at any time 1,. Tizwell employs the al-

ternative form u'*1 : vsn * \ f (-",-"*'), the major benefit of which is that

it is often possible to obtain the solution explicitly even though the method is

technicaily implicit. He provides many examples showing that this implicit-

used-explicitly numerical method has superior convergence properties to the

Euler method, and can be used with a much larger time-step. This has al-

ready been mentioned in the case of timing analysis in the review by Newton

and Sangiovanni-Vincentelli [NSV84].

The third possibility is that these oscillations are the manifestation of

exchanged values being reflected from the array boundaries and producing

an interference pattern, but much more systematic investigation would be

needed to show that.

L2.4 lfow do these Methods cornpare?

L2.4.L - with direct rnethods

In the direct methods where differential equations describe the circuit, differ-

entials are approximated by finite diffelence equations of the node voltages

at each time step. This is explessed as a predominantly diagonal matrix

equation, which can be solved in various ways. In rela,xation methods, the

21E

successiae liquidation of residuals is performed, since this is natural on a

serial machine.

All othel methods concentrate on nodes, and use devices as auxiliary;

in this model it is the opposite: concentration on devices, with 4 nodes per

device as auxiliary quantities. Concentrate on nodes leads to integration

with respect to time and to relaxation techniques, whereas concentration on

devices leads to the present contact simulator. It amounts to the difference

between solving the equatio.rr f; : f(r;ú) globally over the whole time

interval, and matching currents locally using Ai : 0 through each processing-

element face by appiying Kirchoff's Law at each time step, using what might

technically be known as simultatreous liquidation of residuals. Another way of

looking at it is that, instead of solving a matrix equation on a serial machine,

it uses a matrix machine to solve a serial ploblem.

L2.4.2 - with serial methods

It was found, on a Sun SPARC-4 computer, that SPICE2G takes 28 CPU

secondss per Monte Carlo simulation for the adder cell previously described;

this means that to get a good fit to the distribution needs 500 runs taking

a bit over 4 CPU hours6. So these programs are best run overnight in any

case. However, here there is only simulations for the smaller flipflop circuit,

without a full circuit model installed, so no direct comparison can be made.

L2.4.3 - with parallel methods

The SIMD mesh-connected computer system is a simple and cheap method.

Any device model whatever can easily be put into the processing ele-

ments. Herr and Barnes [H886] found that this ability to modify the model

was essential when modelling real processes. Other methods depend a lot on

the nature of the mathematical model and how it is implemented, whereas

swith other users, 70 seconds elapsed tiure
6with other users, just under 10 hours elapsed time

219

here one does not have to worry about the mechanism for solving the equa-

tions - there are no equations, in the traditional sense. In particular, since

there is also no partitioning in the usual sense, problems arising using other

methods are irreleva,nt: there is no chance of putting nodes on the wrong

subcircuit and no chance of choosing a wrong order of evaluation of subcir-

cuits. In addition, the array has a better convergence criterion than many

other methods. Like the relaxation approach, this method deals with the

data. Since only Kirchoff's laws need satisfying then the closeness of the

nodes to the correct solution at any time is knorvn absolutely and no other

error estimation is needed. This means that if the system converges then it
unquestionably converges to the correct voltage node values.

Set against these points are the disadvantages: that it takes a long time

to converge if high accuÌacy is desired; it does not take advantage of circuit

latency; and the convergence behaviour has not been properly explored.

L2.5 What was Overlooked?

Issues overlooked or not yet addressed but still of importance include:

circuits and rnodels Actual MOSFET models need to be installed - suit-

able ones are noted in the next chapter. The modelling of floating

capacitors and the effectiveness of the game theory algorithm on them

has not yet been addressed.

adaptive algorithrns AIi the results were improved, sometimes greatly,

when optimal values were used. These were found only after the event,

by extensive systematic experimentation. No attempt was made to

complicate things at this early stage by adding an implementation of

an adaptive algorithm for these. In particular, these should be ex-

amined: a different lookahead value for each face of each element; an

adaptive smoothing of the profit criterion values; a different exchange

rate for every element; and, most difficuli of all, perhaps, a different

220

game theory frequency of application for each element.

profit criterion It is not known whether the order of choosing the max-

imum profit value makes any difference. At present, the program

searches each of the 16 possible combinations of node voltages on the 4

faces and uses the last maximum one it finds - even though there might

be more than one combination with the same maximum.

L2.6 Conclusions and Recornrnendations

The general questions is: Which is better? the greater cost of a tightly-

specified fabrication process, or the lesser cost of a loosely-specified process?

and have found that a fuli stochastic approach is needed to answer it. The-

oretical methods of yield estimation need general purpose computers and so

take time from workstations, so off-loading circuit simulation onto special

computing engines makes sense. Such special architectures are in any case

attracting a lot of attention in recent years, for all phases of the VLSI design

process.

It is recommend that lots of work take place on automatic adjustment

of weights and lookahead, and on convergence conditions for the contact

method, in particular the boolean methods of Roberts and others.

For the lookahead random study, an adaptive algorithm, if it can be

found, would be preferable - research is wide open for this.

Designer workstations seem too slow for any of the Monte-Carlo methods,

so practical implementation in these systems r-equires an alternative approach

to sequential machine computation. Methods using hardware designs with

SIMD parallel processing systems such as studied in this thesis might make

these workstations the preferred simulators, although much work is needed

to determine if feasible algorithms can be found to migrate existing VLSI

design tools from serial and MIMD implementations to SIMD architectures.

22I

Chapter 13

Irnplementation

Here I suggest imqtlementations of both a methodology for obtaining timing

yield estimates, and of laying out the array modeller in hardware.

13.1 l{euristic Tirnittg Estirnation

As part of the normal design cycle stochastic tools need to be run early and

regularly, because of the invaluable feedback they afford. Given the nature

of a circuit and the accuracy of forecast required it is a simple matter to

estimate the time needed to get a good estimate of the CDF l as discussed

below.

Even though the convergence rate of this simulator is somewhat slow

for high accuracy worki, it is charactelistically very much faster for lower

accuracy simulation. This suggests a simple methodology where accuracy is

traded for simulation time. Since very high accuracy is only required for the

final run, then a good idea of how the system design is proceeding can be

got using relatively low accuracy estimates, which run a lot faster and thus

can be run regulally without penalty. In addition, it is possible to choose to

run the profi,t method at the lower accuracies, leaving the srnootå method for'

higher accuracy runs overnight.

lCumulative Distribution Function

222

Imagine that the workstation is equipped with the computing engine ca-

pabilities incorporating the s¡nooth and profit rnodels already investigated,

and regular checks on the progress of the stochastic aspects of the design

need to be made. If inhibited by the unknown and perhaps long time this

will take, this method will help choose a rough accuracy <-+ time tradeoff.

Suppose that the systen has already been calibrated early in the design

phase (perhaps overnight) at one high and one low accuracy point, in terms

of the maximum current residual convergence critelion. Because it is known

that the log/log curve is a straight line, already found in figure 10.25 on

page 160, it can be calibrated for this particulal circuit from just these two

points, as illustrated below.

number of
¡terations

for
convergence

logarithm of convergence criterion
(microamps)

From the initial approximate CDF2, choose the proposed percentage ac-

curacy from the diagram below.

accuracy wanted
for percentage

finished

time discrepancy
tolerated

Simulate the circuit with nominal pa,rameters to obtain the circuit wave-

t
o/o

done

-*

/

2cumulative distribution function

223

form near the design operating point, and use this time difference to estimate

the corresponding voltage difference as shown below.

voltage
accuracy
allowed

time difference
tolerated

This voltage tolerance translates to a current tolerance at the same point

in the circuit where the voltage is measured. Obtain this by simulation of

the circuit, using the same engine. The number of iterations needed is then

read from the calibrated graph already obtained on the previous page, and

combined with the charactelistics of the engine (number of bits, etc) to give

an approximate simulation time in hours and minutes for that simulation.

Repeat this procedure, choosing a lower CDF accuracy, if it is decided that

can only afford less time for this stochastic estimate.

AII this assumes, of course, that a simulation engine of the kind assessed

herein is available and attached to the workstation, as a normal adjunct.

Whether this will ever be the case depends on the cost of such an item,

amongst many other things, and in particular on whether such an engine

can run all the other design tools normal to the VLSI environment. i...,

rule checkers, placement and routing, behavioural and fault simulators, tim-

ing verifiers, logic verifiers, and so on. Further research is needed to assess

whether suitable algorithms exist or could be adapted to run successfully on

this engine. This is an unaddressed area for SIMD, although an immense

amount of work has been done in this area for the MIMD architectures.

WAVEFORM

224

L3.2 Implernentation Considerations

L3.2.t Accurate Circuit Models

Weng, Yang and Chern [WYC87] find it essential to simulate circuits with a

model that guarantees charge conservation. They obtain an accurate thresh-

old voltage model intrinsic buried-channel MOSFET operation in the sub-

threshold, linear, and saturation regions, which is also valid for the short-

channel device. The charge model equations can be used to model the in-

trinsic capacitances. The current characteristics calculated from the model

equation are found to be in good agreement with experimental results.

A comprehensive examination in depth of new small-geometry MOSFET

models is given by Ferry, Akers and Greeneich [FAG88].

L3.2.2 Algorithms

The choice of the contact algorithm for simplicity in hardware implementa-

tion has already been seen when Lewis [Lew88] chooses the forward Euler

integration algorithm, largely rejected for software simulators, and discovers

that it leads to a fast, but simple and inexpensive, hardware accelerator.

Gallivan et al lGJMWgl] warn that a code tuned for large grain, vec-

tor multiprocessors might be poorly suited to a massively parallel, SIMD

machine.

Parkinson and Lidden [PL83] also echo this, concluding that the best

algorithm developed for a serial machine is not usually suitable for parallel

computation.

13.2.3 Partitioning

There is a need to consider partitioning of algorithms to maintain their

numerical stability, and to minimise execution time. Eager, Zahorjan and

Lazowski have some useful observations to make on how speedup affects

regularity of algorithm in VLSI systerns. Deutsch [DLS86], when creating

225

powerSPICE, found that the best partitioning for design, for example, was

not necessarily best for simulation. This means, for example, that forming

the Thevanin equivalent circuit might not be the best partitioning, either.

McCrealy and Gill [MG89] present an interesting theoretical way of par-

titioning ta,sks onto parallel machine PBs, which determines the grain size3

as it does so. This might prove useful. Their method aggregates grains into

'clans' and computes the 'costs' of various strategies. The algorithm inputs

a labelled dataflow data-dependency graph of the program, and outputs the

grains to be run on the parallel processors.

L3.2.4 Models of Parallel Cornputation

Skillicorn [Ski91] believes that a major reason for the lack of practical use

of parallel computers has been the absence of a suitable model of parallel

computation, because many existing models are either theoretical or are tied

to a particular architecture. He asks 'How can o,n appropriate data type be

constructed whose manipulations are amenable to parallel erecution?'. Dataflow

is relatively architecture independent, has great descriptive simplicity, and

can exploit all parallelism present in a computation; the PRAM model is the

most popular theoretical model for parallel computation, and many of the

algorithms developed for the model are synchronous and SIMD in character;

but Skillicorn concludes that the most comprehensive data-parallel model de-

rives from the Bird-Meertens formalism because it can handle a wide variety

of types. Prins [Pri90] has also done rvork in this area.

L3.2.5 Architecture

It seems that the present design is an embryonic massively parallel computer.

Gabriel [Gab86] describes massively palallel computers as implementing a

fine-grained parallelism, in which small processors running small or identical

operations communicate frequently. He looks at the NON-VON computer

3defined as a set of program steps execu[ed seqrrentially by a single PE

226

with its two categories of processors, the small processing element and the

large processing element. The former operate in SIIvID mode under the con-

trol of the latter, and it shares the SIMD programming style of the Connec-

tion Machine.

Arden and Ginosar [4G82] consider that a multiprocessor having a large

number of processors would be very general, but lalge systems of this type

are not feasible, because of stor-age contention, the complexity of complete

processor-memory block interconnections, and the efficiency loss of cache

memoriesa. On the technological side, VLSI circuits are not well suited to

the implementation of complete interconnections between many processors

and memories. These are some reasons why there has been significant inter-

est in loosely coupled multicomputer systems. The limitations of the number

of processors and the interconnection complexity are eliminated in such sys-

tems. However, the overhead due to multistep message passing when the

interprocessor communication is frequent, is substantial.

To help overcome some of these problems, Charlesworth [CG86] urges

implementing systems with only the minimum amount of internodal commu-

nication required to solve the dominant problem of interest. He notes that

the size of the mesh can be extended indefinitely, but doing so also indef-

initely extends the distance between arbitrary nodes. Meshes are best for

algorithms where the data can flow locally, step by step across the system.

To improve the resolution of the model, the number of node elements can be

increased, or a finer time step used, but either method drastically increases

the computation time.

Parkinson and Liddell [PL83] raise and discuss some very good questions

concerning distributed computers, namely: What class of problems are highly

suitable for a giuen multiple processor system? What class of problems are high

unsuitable for a giuen multiple processor system? What type of performance is it

reasonable to erpect Jrom a giuen multiple processor system?, and go on to discuss

the ICL DAP, a 4096-element SIMD processor array embedded within a store

4however, these n-right all be overcome by better, i-c., new, algorithms

227

module of a conventional host computer.

L3.2.6 Array Processor

Renterghem [Ren89] explains that in a transputer sysl;cm, there is no band-

width saturation as the system size increases, no capacitive load penalty

as more transputers area added and no communication bus contention. If a

processor communicated only with its direct neighbours, the ratio of commu-

nication to computation remains constant if we use rìore processols. Scaled

speed-up is not limited by Amdahl's law. Duncan [Dun90] and Merrow and

Henson [MH89] provide a survey of designs and alchitectule.

L3.2.7 Physical Layout

The very mature technology for cleating dense memory chips is unsuited

to creating microprocessors, and thus a custom CPU chip, separate from a

standard dense memory chip, but with compatible pin-outs, attached to each

side of the one board, as shown below, might be feasible.

ofìe or
more PEs

on tiis
side

menþry on

this side

plated-through
mother board

Mazumder lMaz92] investigates layor.rt optimisation for processor-array

networks, using a new layout style based on polyominoes. If any appropri-

ate shape geometry is selected for the processors, a specific interconnection

network can be area-efficiently mapped on a VLSI/WSI5 chip to maximise

the chip yield and operational reliability. He finds that the square mesh with

redundant processors provides high yield and operational reliability.

5 wafer-scale integration

228

Esonu eú ø/ [EAI{HAK92] also examine the effect of objective function

optimisation on the architecture of systolic arrays. In each case, when the

objective function is optimised, a dilTerent systolic array is produced. They

use purely architectural arguments, which rely on the assumption that the

maximum clock frequently is independent of the processing element count,

recognising that this is not necessarily true in a monolithically integrated

circuit. Algorithms are mapped into a systolic array using a parameter de-

pendency technique. Features that can be optimised are the: fault-tolerance,

propagation delay, throughput, silicon area, routing complexity, speedup of

computation for the systolic array, or some combination of these. They find

that to minimise the delay required for the data to propagate through the

VLSI systolic architecture it is desirable that routing between cells be to

nearest neighbours.

13.2.8 Scalability

This feature means that extra PEs can be added without fundamental aigo-

rithm alteration- To be scalable implies, not broadcast, but an instruction-

systolic array of the type introduced by Lang [Lan86] and used by Schroder

[Sch89]. It consists of a mesh-connected array of identical Ptrs. Each pro-

cessor has a small local memory and a register readable by its N,E,W and

S neighbours, through which instructions are pumped from N and W, like

the illustration in figure 13.1 on page 230. They claim that it combines the

advantages of systolic arrays with the idea of a universal machine.

L3.2.9 Technologies

Garcia and Sriram [GS82] consider that, of the MOS technologies, nMOS

combines a good speed/power product, high packing densities and low fab-

rication costs.

Mulitinovic [MF86b], on the other ha,nd consider the use of Gallium Ar-

senide technology in the implementation of high performance processors, and

229

Figure 13.1: IIT USTRATING I¡¡srRuCrton PIpnIINE FoR ScaLRsIrIrv

finds that GaAs is inferior to silicon in cost and transistor count capability.

It is not sufficient merely to copy existing silicon designs into GaAs. Char-

acterised by a low transistor count, a high ratio of off-chip memoÌy access

delay to on-chip datapath delay, low gate fan-in and fan-out, and low yield,

a premium is placed on simple designs in the GaAs environment, and every

transistor must be justified.

13.2.10 'Wafer Scale

McMinn [McM82] gives a practical example where slightly mole than dou-

bling the area causes a near 6 fold decrease in yield, while discussing the

importance of the tradeoff between die size and projected yield when parti-

tioning the system for a custom chip, and Peltzer [Pel83] stresses that WSI

can improve system reliability and reduce the yield loss caused by small ran-

dom defects by the use of ledundant circuits.

Recently, singh and Youn [sY90] have presented a scheme that can re-

configure rectangular arrays to avoid defects. They claim that the yield is

much higher than other methods with the same degree of redundancy.

230

1-3.3 Cost

The best solution depends on the amount of use to be made of the model,

and whether larger assemblies of transistors will need to be simulated. A

good discussion of the fundamentals of costs is given by Muroga [Mur82] for

LSI and VLSI, with references for more detailed results, although the actual

examples are dated. It must also be borne in mind that computer software

costs of running Monte-Carlo simulations are quite high. Considering that a

typical design may contain half a dozen cells that lie on critical time paths

this means that, aftel just one redesign of each, thele is a large cost blowout

even before fabrication. This cost is not immediately obvious and is often

overlooked by those who have'free' use of large research computers. However,

the necessary costs need to be seen against the possibility of the failure of a

single fabrication run.

There are many different ways of arranging a system like the allay simu-

lator in practice. Speeed may be traded for size to get high yield and hence

low cost. The PEs may be packaged so that a number of them fit onto one

chip; or if small, somewhat mole of them might flt onto one wafer, which is

configured for redundancy and fault-tolerance; or if the PE contains its own

memory and is thus rather larger, it could be in one chip by itself. These

various options are illustrated below.

CPU

Memory

1 wafer - 128 PEs nett

tr

onechip-16PEs

23r

single-chip PE

Pursuing the idea, mentioned earlier, of having a PE on one side of a

board and a memory on the other: the memory could be shared amongst

many PEs since each one only needs the 20 or so model parameters and the

neighbour voltage and current - no more than 32 words. For example6, an

8K-bit memory could contain 256 32-bit words (real numbers), and so be

shared by 8 PEs, using the above assumptions; or at the other extreme one

256l{-bit memory, while being more expensive than the smaller ones, could

share a 16 x 16 array of 256 P-Es, both options illustrated below. Perhaps one

262,144 x 1 b¡t
RAM chiP

trtrtro
Etr

of 8 PEs

8l 92-bit rnerþry
sharing 8 PEs

16x 16PE-arraY

of the 64l(-bit multiport video RAM chips might be adapted to this sharing,

for speed purposes, but to offset this is the bit-stream nature of the chip,

and the need to latch the address in two stages, which slows it up; this is

in addition to rather complex interface circuitry between the PE array and

the memory chip. All these options would need further exploration to find

the optimum layout, with the yield/area formula being crucial to finding the

best arrangement as far as minimum cost is concerned.

Even the transputer array might eventually be practical, if it has enough

local memory, with the possible advantage that it could be used in MIMD

mode as well as SIMD mode, as necessary. One transputer costs under $200

now, so a board with 10 x 10 of them would cost under $20,000, plus support

chips, although in the terms of this thesis this is not considered cheap.

6without using curreut costs, since they date so quickly

replicatable block

232

Chapter L4

Future Research Directions

Here I loolc at the current state of parallel computing and try to assess where

the results of *y research rnight fi't in.

L4.L Interest in SIMD and MIMD

There is presently tremendous research interest in both massively-parallel

systems and distributed systems. The former ate generally of the SIMD

architecture and the latter MIMD. An illustration of the broad classification

for SIMD and MIMD architectures, following the schemes of Lopez [LV90],

Christ [CTS4] and Kung [Kun87], is shown overleaf.

Small parallel computers implement a coarse-grained parallelism, in which

reiatively large processofs running relatively large, mostly independent com-

putations communicate infrequently. Massively parallel computers imple-

ment a fine-grained parallelism, in which small processors running small or

identical operations communicate frequently. These cover the full range of

pipelined processors, systolic arrays, neural networks, multiprocessors, vector

processors and processor arrays. Skillicorn [Ski88], amongst others, offers a

comprehensive classification of architectures.

Over the past decade, Swartzlander and Gilbert [SG82] conclude that the

distributed processor approach appea-r-.s most desirable for supersystems, but

233

d¡str¡buted MIMD'

shared MIMD

hybrid MIMD

another hYbrid MIMD

o

general SIMD

control bus

processors

data bus

typical SIMD

another SIMD

there are many different arrangements

for the control lines in SIMD'

particularly for clocking schemes

processors

memorles

processors

memorles

memories

processors

memones

memories

ooo ooooooo
processors

ooo
processors

Figure 14.1: It lusrRATING MIN,ID nNl SI\4D AticlrltncruREs

-'r
nt e rc on n e c t i o n n e two r k

234

will required improved interconnection networks.

Gabriel [Gab86] finds that parallel and pipeline processors lack the re-

quired flexibility for many supersystems applications, so attention has been

focused on distributed networks. The most efficient algorithms had a com-

mon design theme in that all are multiple instruction stream, multiple data

stream (MIMD) devices. He recognises that the major problem to solve in

building a massively parallel computer is how to interconnect a very large

number of processors and memory modules, and concludes that for more than

10,000 PEs, the cost of the crossbar switch is p.-ohibitive and its size unman-

ageable. Amongst Massively Palallel Machines, the Connection Machine uses

the hypercube connection scheme, and the NON-VON can support SIMD,

MIMD (multiple-instruction multiple-data), and MSIMD (multiple SIMD)

operations.

Gottlieb [GGK+83] rejects SIMD machines in favour of the MIMD para-

computer model, which his simulation studies show to be effective for both

fluid-type and particle tracking calculations. Most recently-introduced mul-

tiprocessors have a few dozen processors connected to a shared memory over

a common high-speed bus. He finds that many problems hitherto considered

unparallelizable have, in fact, a substantial content of exploitable parallelism,

and that the speedup is reasonable for up to 16-20 processors, but little is

gained by increasing the number beyond that.

Requa and McGraw [RM83] investigate the architecture of the Piecewise

Data Flow computer 1Éln;, a heterogeneous multiprocessor proposed for

very high performance computing, which they claim blends the strengths

found in SIMD, MIMD, and data flow architectures. The SIMD machines are

very cost effective on vector processing. Almost all currently proposed data

flow architectures have a large pool of homogeneous pÌocessors. Instructions

are sent to processors as soon as all data dependencies have been satisfied.

The PDF architecture has heterogeneous processors (memory, scalar, and

SIMD) and instructions are sent based on data dependencies. For long-term

high-performance software, they believe the advantage must favour the data

ô.1 rL¿..)

flow-like approach.

Charlesworth and Gustafson [CG86] find that many problems have suf-

ficient potential parallelism to utilise 10,000 to 100,000 concurrent comput-

ing nodes, and recommend implementing systems with only the minimum

amount of internodal communication required to solve the dominant prob-

lem of interest.

Dongarra [Don88] looks at experimental architectures while Lopez and

Valimohamed [LV90] deal with hybrid systems having properties of both

shared-memory and message-passing systems.

Both SIMD and MIMD algorithms, for the same problem, are pursued,

particularly for the hypercube architecture [RS90], and for the connection

machine architecture [She91], for matrix and signal processing algorithms. A

vast and comprehensive description and classification of the array processor

types and algorithms exists by l(ung [Kun87].

The overview by Vorst [VD90] confirms that the interest in parallel re-

search is driven by the availability of large machines and the need for efficient

parallel algorithms to run on them. He reports much recent interest in systolic

array algorithms, message-passing systems, shared-memory systems and vec-

tor supercomputers. Tamura [Tam91] suggests that the difference between

general and specific purpose parallel processing systems is not very clear,

since any specific purpose system may be used for other purposes whereas a

general purpose system has limitation for some specific use; thus the differ-

entiation is rather arbitrary. This is in the context of examining the Cellular

Array Processor (CAP), a SIMD machine. The CAP has 4,096 PEs, each of

which processes 1 or 8 bit data. Smitley and Iobst [SI91] propose that the

SIMD concept be also viewed as a model of computation.

Maresca and Fountain [MF91] edit a recent overview of massively par-

allel architectural research. Originally developed, and still much used, for

image and pattern processing, these have been given a stimulus to extend

application to new fields, by modern VLSI design capabilities. Specifically

covered are the AIS, the DAP, the MasPar and the CM-2. Li and Stout

236

[LSg1] examine architectures designed to take advantage of reconfiguration

of the PEs to speed up massively parallel processing, whereas the opposite

view is pushed by Distante et al [DSSSG9l], who believe that fault-tolerant

wafer-scale methodologies will be more successful. There ìs also a lot on the

relation between parallel architectures and neural networks [cai90].

Skillicorn [Ski91] believes that, rather than developing more specific ar-

chitectures and algorithms, much more attention should be directed towards

creating suitable models of parallel computation, urging the Bird-Meertens

formalism as a coherent approach to parallel programming.

L4.L.l Surnrnary

Originally, speedup was sought on vector machines, (CRAY, STAR, CDC

6400, etc.) to which few have access. Then speedup was sought in algorithms

on sequential machines, to which many had access. Eventually distributed

processing became available to workstations in MIMD form, and the original

SIMD was lost sight of. But SIMD is much more than just the original

vector architecture. Modern SIMD involves the Massively Parallel Processor

architecture.

It appears that very regular algorithms have been mapped to SIMD ar-

chitectures without much flexibility, while simulation and VLSI design has

been mapped to more general-purpose MIMD architectures. This has led to

the perception that simulation cannot be successfully carried out on SIMD

machines.

The existence of simultaneous research into all of these areas stresses the

tremendous disagreement that exists about a clear way forward.

237

L4.2 High Perforrrrance Cornputers

Bell [Bel89] in a very widely-circulated paper, predicts that "A uast array of

new highly parallel machines øre opening up new opportunities for new applica-

tions and, ncu uays of computing" He then reviews SISD, SIMD, MIMD

(shared) multiprocessors and MIMD (message-passing) multicomputers of

many kinds, including engineering wolkstations. Specifically mentioned and

described are the conputer systems amongst those listed in the table on this

pagel and many others, along with some very high performance computers

specialised for one particular ploblem.

This is a very impressive Ì'ange of systems. By any reckoning some of

these are great technical achievements indeed, and many of these companies

seem to done all the right things, in design, production and marketing.

Computer Svstem Company/Producer 'r'vpe rype
WARP
CM-2

MultiFIow
D.A,P

AIS-5000
FPS-may
CEDAR
iPSC80

Monarch
UltraMax

X-MP & YMP
RP3

MasPar
PIXEL Plane

GFl1
MPP/FX

Graphic Super
Delta

Hypercube
Kendall Square

Transputer
NCUBE

MultiStaee CS-2

G.!t.
Thinking Machines;

Fisher/MuIbiFlow Corp.
ICL /Active Mem. Tech.
Applied Intelligent Sys.

Floating-Point Sys.
Uni. Tlìinois

InteI
B.B.N.
Encore
CRAY
I.B.M.

MasPar Comp. Corp.
Uni. N. Carolina

I.B.M.
Alliant
Ardent

Touchstone

Kendall Computer
InMOS
Caltech

Meiko Scientific

SIMD
VLIW
SIMD
SIMD
SIMD

SIMD

SIMD

SIMD

MIMI)

VLIW

MIMD
MIMD
MIMD

MIMD
MIMD

MIMD
MIMD

MIMD
MIMD
MIMD
MIMD
MIMD

None-the-less, at the time of writingl, a majority of the companies listed

are either:

o in actual receivership, or

o filing for bankruptcy proceedings, or

o supported by massive injections of government money,

lfrom financial press reports, September 1992 - January 1993

238

and in some cases the products have simply been discontinued, or the com-

panies have merged, i.e., there are very few profits in digital array processing

just yet.

L4.2.L Discussion

One of the reasons for believing that the above state of affairs is bound to

get even worse is contained in Bell's own article: "supercomputing has become

an issue oJ national pride and a symbol of technology leadership", which, by all

past experience, dooms it to ignominious and drawn-out failure. The seeds

were sown in 1984 with the establishment of the NSF Advanced Scientific

Computing centre, and culminated with the 1987 publication "A Research &

Development Strategy for High Performance Computitrg'", which committed

the US government to a large injection of funds in pursuit of a national

TeraFlop machine. Many of the companies on the list participate in this

scam.

The lack of profitability of the parallel machines above is more reveal-

ing than the direction of all the current research put together. One main

thrust of the thesis of Maly [Mal90] and others is the need for profitable

manufacturability of ICs. Since profit is technically a measure of the incen-

tive to re-invest, vanishing profits means that the product does not figure in

the future at all. When money is diverted from productive to unproductive

pursuits by force and by fraud, and when profit is no longer a dominant

consideration, companies get into financial trouble, and in particular items

not needed are produced in abundance.

The significance of all these losses is that investment in microelectronics

will be withdrawn on a large scale, and this means it will be harder to

produce electronic systems. Crucial questions that should now be asked

include: Who can afford these systems? and, What can they get from them

that they cannot get from their existing systems?

2US Office of Science and Technology Policy

239

At a time when VLSI CMOS 0.8p circuits can be routinely manufactured

with a million transistors on a chip, and people have accepted that MPP will

work since Gustafson demonstrated practically linear speedup for engineering

problems on the hypercube computer, the final relevant question is: Systems

with a few large processors, or with massively-parallel many?

I4.3 Consideration of Problerns

It seems that the original hypelcube warcry "with hardware cost a secondary

consideration",which flowed flom publically-funded research institutions, has

inevitably lead to a contladiction - because in microelectronic business

hardware cost is never a secondar.y consideration. Cost reduction is about

to become quite paramount. What developments might facilitate this?

McMinn [McM82] reminds us that the tradeoff between die size and pro-

jected yield is an important consideration when partitioning the system for a

custom chip, since slightly more than doubling the area causes a near 6 fold

decrease in yield, and test time can really mount up. Peltzer [Pel83] reports

that WSI can also improve system reliability.

From the early work of McCanny and Whirter [MM83] up to recent work

by Singh and Youn [SY90] there has been steady progress in techniques that

can be used to increase the yield of wafer-scale circuits, and produce chips

which would otherwise give totally uneconomic yields.

The backplane problem has been attacked very recently in the context of

the scalability of the hypercube architecture by Ziavras [Z\a92) using opti-

cal methods, but it is hard to be convinced yet that this is an inexpensive

solution.

There are recent investigations into reconfigurability by Li [LS91] using

a polymorphic torus scheme to bypass faulty PEs, and aimed at a SIMD

MPP with over a million PEs. There is also the alternative defect-tolerance

scheme fol mesh arrays of Distante [DSSSG91]. Lea [LJ91] proposes to use

associative processots to ensure scalability and also fault-tolelance, in a sys-

240

tem which could produce I MOPS per dollar, in volume. In addition there is

the work of trVilding eú a/ [WTHP9l] which concentrates on the applications

of cellular-automatons to scientific problems: the importance of this is that
it connects with the french boolean-mapping approach3 to investigating the

convergence of SIMD arrays. Thus mea.sures exist aimed at reducing costs.

L4.4 A New Question

The main problems concern scalability and cost. Combine that with the need

to simulate large parts of the circuit at once, and suddenly there is the need

for one hundred thousand to one million PEs.

In simulation, because a lot of the circuit is relatively quiescent, then it
is reasonable to use only a few processing elements (as in the MIMD case).

But in future, if simulating elements of DataFlow computers, which can be

fairly active all the time, and if can have WSI with very many elements ...

Christ and Terrano [CT8a], consider that there are a large number of

significant scientific and engineering problems which can be efficiently solved

by a array of processors interconnected to a form a multi-dimensional grid,

and by taking advantage of powerful commercially available VLSI chips, they

design a parallel array of single board computers, containing2S6 nodes run-

ning in lock step in a SIMD mode with a computational power of 4 billion
22-bit floating point operations per second.

Lopez [LV90] urges tÉe philosophy of solving the largest problems possible

in a reasonable amount of time, rather than solving existing problems faster.

This certainly fits in with cost-reduction point of view.

with WSI and fault-tolerance redundancy techniques at hand, the orig-

inal problem that spawned so many MIMD machines: "How might scarce

resources be applied to best effect?" becomes transformed into "What is the

cheapest way to apply practically unlimited resources to best effect?", because with

this technology it is possible to have the same number of PEs as devices to

3previously mentioned [Rob87]

241

be modelled, and this makes the problem completely different.

Under these assumptions, it is still an open question as to what class

of problem it can successfully apply, but it certainly seems that the divide

between: few powerful processors, in MIMD; and very many simple proces-

sors, in SIMD; is to become more marked in future. Since it is found that

around 20 processors is the point of diminishing returns in a MIMD system

- with speedup that is difficult to improve on - then this line of development

cannot be followed for cosú red,uction, since the only way it can go is towards

increasing the power of the 20 processors involved by further division into

more sets of 20 processorsa.

It seems to me that the logic of this next phase is inescapable: device

physics is reducing to a smaller scale for power; defect density means smaller

chips for yield. Thus there is an impetus towards many simple PEs, so

the interconnection problem becomes intractables. This means that new

algorithms are needed which are suited to a 'backplaneless' world. This

rules out all MIMD systems except transputer-based systems. It seems that

circuit improvement per se is now largely irrelevant, and that advances in

architecture are dominating research, and in particular that new algorithms

are essential to effectively utilize these advanced architectures.

Thus future development might have to concentrate on SIMD MPP ma-

chines, where there is more scope for both new engines, physically, and new

algorithmic development, theoretically.

Fully switchable MIMD and SIMD is out of the question for more than

ten thousand PEs, which leaves fixed switches in SIMD or switches that learn

to reconfigure, as in neural networks.

aalthough there is much work on the partitioning problem to be done

5e.g., Alliant spent millions of dollars trying to produce a 43-layer board and failed

242

L4.5 What about Garne Theory?

The simple step of re-interpreting the Newton-Raphson iteration algorithm

is clucial to the usefulness of this thesis. It takes the NR technique out of its

purely mathematical setting - in the field of differential calculus - and places

it firmly in the field of economics, in particular in the game theory area.

Since NR is widely used in fundamental microelectronic mathematics,

this places game theory considerations at the heart of electronic modelling for

the first time. Since microelectronics has been applied to neural networks in

recent years then it is possible that the game theory approach can illuminate

neural networks as well. So there appears some very far-reaching possibilities

from such a relatively slight change of perspective.

1,4.5.L Dynamical Systerns & Cellular Automata

After much research into ULSI6 the opinion of Ferry eú ø/ ([FAG88] p. 26a)

is that u. cellular automata may be uiewed as representations of dynamical

systems . anu computer architecture that aims to møxirnize the density of øctiue

deuices, while minimizing the d,elay inherent in interconnections, Ieads to a layout

endemic to cellular automata. What we seelc in future ULil is not ganxes played

with cellular automata . . but the nature with which cooperatiue phenomena are

erhibited in these systems, and the extent to which these cooperatiue phenomena

offer new techniques for information processing."

This is a fascinating viewpoint, connectìng not only the cooperative and

dynamical aspects of the game theory approach but also, ui¿ cellular au-

tomata, the French boolean perspective on convergence of arrays of process-

ing elements.

6Ultra Large Scale Integration

243

L4.5.2 A New Paradigrn

Thus the incidental reinterpretation, discovered in the course of this the-

sis, of the NR iteration as a bargaining technique rather than just a purely

analytical technique, represents a paradigm shift in IC simulation.

It has been seen above that new algorithms are essential to effectively

utilize advanced architectures. It must be accepted that general inter-PE

communication makes for faster programs - the more information exchange,

the better global algorithms work. However, the contact model is based

on the hypothesis that only static communication is available, and that al-

gorithms will just have to adapt to this situation. The main point of the

experimental work that has been carried out is to explore the question: How

much progress can be made under this restriction? and the answer to this

so far is that it seems that promising progress can be made, and fast con-

vergence achieved, by inventing appropriate new algorithms. The problem

with extensive communication with many PEs at once is that more memory

is needed to hold values, so more complex and expensive P,Es are required.

Work that also bears on the behaviour of contact simulators, in addition

to the game theory and the boolean/automata fields, is done by Murphy

[Mur90] and Shynk and Roy [SR90], all of whom report on the nearest-

neighbour convergence properties of perceptrons.

The Game Theory paradigm might be well-adapted for a new generation

of wafer-scale SIMD simrrlation engines.

L4.6 Recornrnendations

It has been seen that cost reduction is mandatory for future MPP systems.

The large and powerful MIMD processors can have their own on-chip memory

- this has to be counted an advantage for speed - but they therefore have lower

yields. The small simpler processols do not have their own on-chip memory

but do have very high yields. The sums that could offer some guidance to

decision-making in this area have not 5's¡ been done.

244

14.6.L Cornputing Power at Constant Cost

Production of parallel machines might be summarized in these illustrations,

where it suggests a flattening since MIMD speedup falters above 20 pro-

many many

I
few

high

number of
processors I

few
hish

cessors. The development of SIMD and MIMD are rather sepalate, often

because applications run on one kind rather than the other. Now, there are

any number of graphs showing computing power as a function of the number

of processors, for classes of problems, for both SIMD and MIMD machines

(e.g., [Bel89]). But what is really needed, in my opinion, in an el.a where

cost cutting is important, is a depiction of how to move to a computing

establishment from an existing one at very similar cost structure.

Consider the situation depicted below. If points are plotted all ovel this,

many

few

low Ð
PE power

low -_>
PE power

@

highow

from actual and proposed systems, it will be found that each graph (power

and cost) has a set of level surfaces - i.e.,lines of consta,nt power) and partic-

ularly, given the power, lines of consta,nt cost - which ca.n give an indication

e

0 0 SIMD MIMD

choose a p.e. with
th¡s power

at this design point there are two values of interest:
overall power and overall cost

put thb many
into an array

245

of the available options at a similar cost to the currently owned computing

resources. This would be a very useful practical aid to companies for invest-

ing resources, as well as for delineating possible future research directions,

and its construction is highly recommended.

L4.6.2 fteration & Convergence

Amongst the advantages of the boolean representation of arrays of cellular

automata are that one does not have to:

o forrn circuit equations;

o partition the circuit;

o form the linearized apploximation matrix equations;

o or find its eigenvalues.

It is sufficient to work from the local connectivity matrix. Thus it is rec-

ommended that the application of the boolean methodology be thoroughly

investigated - a good start is Robert [RobS7] and Demongeot [DGT85].

14.6.3 Game Theory

In view of the initial success of the game theory approach, there is an immense

amount of work that should be carried out on these related questions:

o what is the extent of the rigour of the analogy?

o under what conditions do economic systems converge, and not con-

verge?

o what is the value of broadcasting price signals to everyone in economic

systems, and where does it apply to broadcast SIMD arrays?

o since each Monte Carlo simulation is only a slight perturbation of the

nominal ca,se, can the system lea,r'n from past runs7, and how?

7 uide Maly [Mal82]

246

o can neural network methods be applied so that different criterion strate-

gies that show promise can be reinforced?

Thus it is str-ongly recommended that a proper theoretical justification of the

game theory approach be undertaken, in addition to investigating the appli-

cation of adaptive techniques to all aspects of the current implementation.

L4.6.4 Design Tools

If this thesis is correct in suggesting that SIMD MPP is a fruitful direction rn

which to proceed for constructing VLSIC simulation tools, then it necessarily

also recommends that research be undertaken with the aim of migrating all

existing design tools from serial and MIMD algorithms to suitable SIMD

algorithms.

L4.6.5 Summary of Recomrnendations

As a result of the work in this thesis, the following recommendations are

made, concerning:

cost: obtain or construct data from which constant-cost graphs might be

constructed for various MIMD and SIMD array systems;

cellular automata: investigate co-operative properties of these systems,

and apply boolean methods to convergence studies;

game theory: establish rigor, investigate convergence and develop adaptive

strategies;

design tools: encourage algorithmic migration from MIMD to SIMD archi-

tectures;

floating capacitors: investigate representation within array for use as

finite-element method for interference effects in sub-miclon geometries.

247

L4.7 Conclusion

Because of the great detail in the diversity of approaches to stochastic plob-

lems, it has been thought best to summarize the most important conclusions

at the end of the respective chapters. There are, however, some points worth

emphasizing here.

Some useful discoveries relevant to the application of stochastic techniques

to workstation practice have been made. It is good to know the form of the

probability density function: e.g., for the mere 33 data collected on page 254,

an Erlang distribution has been fitted using just the mean and variance as

parameters, giving a sound idea, shown at the bottom of this page, of the

progress of the design with respect to its specifications. The results obtained

for concatenated structures is quite practical, too.

The Newton-Raphson interpretation as a bargaining scheme has led to

the game theory paradigm, which has shown that new algorithms applied

to old architectures can be just as efficacious as old algorithms applied to

new architectures. Theoretically, there is the application of the whole field

of the theory of cellular automata to be explored in this regard, while on the

practical side the memory/PE arrangement mentioned previously allows the

best of each processor and memory technology to be used.

The future for workstation parallel processing engines looks very bright

and appears wide-open to lesearch into new architectures and algorithms,

aimed at affordable parallel processor systems with adequate performance,

rather than expensive ones with high performance. The various subtle trades-

off between cost, speed and size are a fruitful field of examination, and already

form a sequel to the work carried out in this thesis. I suspect that the

SIMD model, in its wafer-scale-with-redundancy form, combined with new

architectures and algorithms, might become the preferred architecture of

parallel-processing engines for the workstations of the future.

Appendix A

Multi-Project Chip

This design tests an addel leaf cell which may be used in future MPC de-

signs to construct a simple, fast n-bit multiplier subsystem component, for

arbitrary n. The chip design includes two test structures: a leaf cell with

four input and ten output points monitored; and a 7 by 4 array of leaf cells,

with ancilliary buffers, which produces an 8-bit product from two 4-bit mul-

tiplicands. It is implemented using nMOS technology, with À:2.5 microns.

This report describes our experience in designing a very large scale in-

tegration circuit subsystem. It is a proposal for the C.S.I.R.O. Division of

Computing Research Australian Multiproject Chip in May 1982 lN-bit Multi-

plier, Author's Publications]. We compared our calculations of performance

with measurements made on the bonded chip to help to establish better

estimates from which to predict future design performance in different struc-

tures. It is a simultaneous array multiplier using cascaded adders, and has

been described in some detail by Lewin lLew72).

-.4'.1 Formal Algorithrn

This is the algorithmic description fol an n-bit multiplier block. An n-bit

multiplier complises an ¿rray of addel cells, 2n wide by n high. One multipli-

cand, with bits Y(i), (i:1..n) is fed to the n leftmost cells along the top edge

249

of the array, with y(i) going to cell(row:l,column:i). Y(i) is transferred out

of the cell (unaltered) to the cell diagonally down to the right closest to it.

The bits of the other multiplicand, X(j), (j:1..n) are fed into the right edge

of the array, such that X(j) goes to cell.

The Mead/Conway method of top-down design leading to functional spec-

ifications of leaf cells meant also that they (the leaf cells) could be altered at

any time but were still guaranteed to fit in with the floorplan. In fact, one

large change took place (replacement of red/green function block by mul-

tiplexor) at a late stage in the project, and because of the design nethod

this was achieved in two days, each of us concentlating in his own alea of

expertise.

A.2 Cell Description

Circuit Diagrams

The full adder leaf cell has the following functions to perform, by virtue of

the algorithm

(1) to accept X from the right and pass X restored to the left (the restored

value is also used within the cell)

(2) to accept Y from above and pass Y restored to the cell diagonally

down and to the right, the restored value being used also in the cell

(3) to perform the logical X AND Y producing an intermediate result,

XY

(a) to accept the result (sum) from the cell above (Ain) and restore it,

producing A and -A for use within the cell

(5) to accept the carry (C) from the cell to the right (Cin) and restore it,

producing C and -C for use within the cell

(6) to perform the full adder function on A, B and C and supply the

result (Aout) to the cell below and the carry (Cout) to the cell to the left.

These functions are performed by the circuit whose layout is shown in

250

figure 4.1 on page 252.

A..3 Tirning Inforrnation

Adder Leaf Cell

SPICE simulation and hand calculation lead to similar results, but diverge

because in the hand calculation we assume depletion and enhancement tran-

sistors have about the same resistance per squate of gate area - SPICE shows

that this is not a good approximation.

The SPICE simulation ves

Multiplier "Cell"

The multiplier block itself was too large to SPlCE-simulate, so we used the

data from the SPICtr simulation of the leaf adder cell above to calculate that,

for our 4x4 implementation, the left carry to output result bit 7 should be

available at 3V after 186 nS from the time that all the inputs to the block

reach 3V.

This time is very nearly proportional to the number of bits. We note

that in a real subsystem, the upper right triangular part of the block (filled

SPICE HANI)Situation Modelled
51nS 46nSsum & carry stable after

all cell inputs high
40nS 34nSx. AND .y stable at mux after

v high (x stable)
30nS 28nSx. AND .y stable at mux after

x high (y stable)
8nS 12nStime to transit mux after inputs

inputs high
8nS 12nStime for X to transit cell

(xin to xout)
3 lnS 20nStime for Y to transit cell

(yin to yout
50nS 46nSnew carry & sum after Y high

(x stable)
31nS 38nSnew carry & sum after X high

(y stable)

25r

=

Figure 4.1: Ptot oF ARRAv Murttplrnn Leer Cnll

252

with zeros) -.y be discarded, thus reducing multiply times by 213, approx-

imately. Freeney [Fre75] discusses ways of reducing the area by having the

same number of output bits as input bits. This involves the bottom right

carry-in being tied to +5V. We have left all the cells in this design so that the

proportion of time spent multiplying compared to padin/padout time will be

large, alfording a more accurate measurement of timing for the multiplier

block itself.

Adder Leaf Cell

The leaf cell has four inputs: Yin, Xin, Ain and Cin; and four outputs: Yout,

Xout, Aout, Cout. It performs the functions:

Yout=Yin restored

Xout=Xin restored

C=Cin restored

A=Ain restored

B=Xout.AND.Yout

Aout=low order part of (SUt"t of A,B,C)

Cout=high order part of (SUU of A,B,C)

The multiplexor carries out the full addition of A,B,C. The addition is per-

formed by using the values of A, -4, XY and -XY to turn on pass transistors

which allow the signals 0, 1, C or -C to emerge at the ouput to form Aout

and Cout. The equations for this are:

Aout:Z*-C¡-Z+C;

Cout:A*XY+Z*C;

where

Z : A+ -XY + -A* XY.

The input values are lestored by inverters. All power lails are metal. All

other connections are polysilicon, except Xin/Xout, which is metal.

253

Logic Tests

We ran three tests, using MOSSIM [Bry8a]:

o around an adder leaf cell in the centre of the multiplication block, where

we had four labelled and ten outputs

o for the test adder cell by itself we input test vectors from the pads and

monitored the output test pads (ten of them)

o we input a set of X and Y vectors from the pads and monitored the

results of the multiplication on the output pads.

All three tests were completely successful.

^.4
Testing

The bonded chip was submitted to a number of logic and timing tests, under

control of a microcomputer', and in conjunction with a CRO. The timing

test resultsl made on the ring oscillator, which incidentally first aroused the

author's interest in stochastic modelling, are shown below:

Measurement of RING OSCILLATOR period (nSec) at various
sites on various wafers [AUSMPC 11/82]

Number of s¡tes w¡th
pêriod w¡th¡n lO nSæ

8

7

6

5

4

3

2
'|

0
o to 20 30 40 50 60 70 ôo 90 100 llo t20 r30 140 150 160 170 t60 190 200

leffectively the distribution of concatenated finishing times

254

Appendix B

Sirnulation Technique for

Sarnpling Correlated Variables

This summarizes the usual technique for producing simulations of correlated

random variables. Since direct generation is not possible, the data are trans-

formed to an axis system where their distributions are uncorrelated (i.e.,

independent), sampled from these independent distributions, and then trans-

formed back to the original axis system.

Theory

Consider the data points comprising two correlated variables, r and y

a
a
a

o
o

O

o
OO

The data are characterised by their mean ualues along each axis

<Í,>:cL

1A): l¡

255

and by Lheir aariances

o2,, :1 (r - a)(r - a) >

o'uu :1 (a - b)(a - ö) >

and by theft couariance

o,y:1 ("-")@-å) >

From these definitions follow the quantities needed later:

1yy):olo+b2

1rY):oro!ab

The degree of correlation between the variables affects their covariance;

it is measured by the correlation cofficient, r, defined as

Cr!

1rr): o], + o"

r
vg

which varies between -1 (for completely negatively correlated variables) to

*1 (for completely positively correlated variables), rvith zero signifying that

the two variables are totally uncorrelated.

These mea,sures, ozr¡ ouu and oru, are properties of the data collection

and are unaffected by a'change of the origin of the measurement system.

The problem in simulation is to find a set of uncorrelated variables that

may be used for sampling, i.e., essentially, to make o* vanish.

Procedure

This may be done by the following steps:

256

shift the origin so the variables referred to the new axes have zero mean

o oo

lt:l-a,

y':a-b

rotate the axes so as to make r or otyl zero

o

a
a a

a
a
o

a
OO

i.e., rotation by an angle a produces new variables

r't:rt cosa ty'sina

U" : -r¿'sin a * y' cos a

so that

O¡lUr, : Q

l.e.

< *t'y"): o

< (r' cos a { y'sin o)(-z'sin a * U' cos o)): 0

or

257

or

tan2a*ctanc*1:0

where

< r'yt >

which determines a, the angle of axis rotation.

sample from the distributions, which now have zero means and nerv inde-

pendent variances o1,,",,, c1,,o,,, calculated from

< (*" - 0)("" - 0) >

:1 (r'cosa ! y'sina)(r'cosa I y'sina) >

:< t't' > coszal < y'y' > sin2a +2 < r'y' > cosasina

and

1 (v" - 0)(y" - 0) >

:1 r'/ > sin2a* < a'y' > cos2a -2 < r'y' > cosasina

and of course < *"y"): 0 since the axis was rotated to ensure this.

Now the data set may be constructed by sampling independently the

variables r" and y" frorn distributions with zero means and variances

c1,,r,,., o1,,o,,.

reverse the process to obtain a good representation of the original data,

by unrotating and unsltifting the axes, and finally checking that the

simulated mean and variance closely match the original statistics.

c

0

258

Appendix C

Bargarn Equivalence toa

Newton-Raphson Iteration

Where I proae that my method of using p.e. partner aoltages is, in the limit,

equiualent to the Newton-Raphson method for fi,nding the root of a function

of one aariable.

C.1 Proof

Consider the situation using the overlappitg current/voltage plots:

0 5

We denote the currents calculated in the first r as i and those in the

second as j; the voltage assumed at the face in the first is u, and in the

second u; the points on the first curve are i(z) and i(u); on the second are

j(u) and j(u).

The two straight lines joining the points on each curve are generally:

i -- Al Bu

j:c*Du

u)j(i(v)

u

i(u) i(v)

V

259

evaluated at the points shown on the graph we have

i(u):A+Bu

i(u) : A+ Bu

j("): C + Du

j(u): c + Du

whence the constants A, B,,CrD, provided that z and u differ.

These lines intersect at u.r, the next guess for the common face voltage,

where

A+ Bu - C + Du.

Inserting the expressions for the constants provides

?J) "j (u) - "j (") * ui(u) - ui(u)

Rearranging this in terms of the current difference

k=i-j

gives
uk(r) - uk(u)*:

4u¡ - 4r,
and if the voltages differ slightly to the extent that

u--ul6

then
uk u*á) - u+6 k uu:

k(u + ó) - k(u)

/r(r)
-

4t _

(k(u+6)-k(u))16
which as ó --+ 0 becomes

?.D:U-
fr(r)
k'(")

260

This is nothing but the Newton-Raphson algorithm for producing a new

guess t¿ from air existing guess u of the root of the function fr(u) : i(u) -f (r),
i.e., we find u so the face currents are equal.

¡(v)-j(v)

Note that this works if the function is non-reflexive, which is certainly

valid for adjoined transistors, resistors and capacitors.

V-+

261

Appendix D

I)etails of GAME Prograrrr

In this I am concerned with discussing the internal details of the proposed

o"rray stochastic mo deller.

D.1 Prograrn Description

This appendix is all about the parallel-processing array simulator. It contains

all the details needed to understand the program in Appendix E.

Operating System

The simulator was run on a Sun-4 (SPARC) computer under the BSD 4.2

UNIX operating system.which involved command procedures for executing

programs written in the 'C'programming language.

Data Structures

The array to be simulated may contain up to 9 rows and 9 columns of process-

ing elements. Each processing elerrent pelforms the function of simulating

the operation of a single transistol or, lvhele there is no transistor present,

a simple lattice of resistors and/or capacitors connected to GND or VDD.

262

The transistor model is of the form:

W

with the substrate connected to ground and an option as l,o which face

the gate is connected.

The resistor network is of the form:

which allows current paths to anywhere in the array.

Since I am not concerned with any particular transistor model, but only

with whether such an array will work with strictly local rather than global

information, then the transistor model is the simplest one that will produce

realistic currents for given face voltages. It is

f os : B¿a(vcs+6)(I - e-'vot¡

and is adapted from Warner and Grung [WG83].

Thus each p.e. containing a transistor needs the values of. a, B and ó,

along with the face to which the gate connects. The parameters in this are

a, B and7, where: o- scales thedraincurrent; B- sets thegain; ó- models

depletion mode nMOSFtrTS.

The resistor network is specified by saying which resistor has which pa-

rameters - all resistors have a current of the form

i -- a * u(b * u(c+ u(d)))

which is a legacy of early heuristic simulations carlied out using non-linear

current sources instead of transistors and resistors. The resistor is specified

by its number in the p.e. (I,2,3,4,5,or' 6) and a,b,c,d.

N

S

E-J

2

3

-+'oï
'

263

The last thing to notice about the data within a p.e. is the sign con-

vention: positive currents are in the direction of the arrows (right and up)

on
+

+

the convenience of which will become clear in what follows.

Each p.e. is modelled by a C language data typ", containing all the

information needed by it.

On the outside of the 9 x 9 aÌray there is a ring of dummy plocessing

elements, which are useful both for ensuring that any algorithm works even

at the edge of the array, and for entering external dliving voltages into the

array.

Program Disposition

The simulations I have run are concerned with answering the two questions:

Does this model converge to a solution in the quasi- static approximation?

How many iterations does it take per timestep, on average, for an entire run?

With these questions in mind, the simulation naturally decomposes into

two parts: solving for one timestep, and repeating this over and over while

extracting useful results at each timestep.

Thus the core program simply starts with the proposed or actual (or

any) set of face voltages, iterates until convergence, and produces the final

set of face voltages and currents. From these, plots and summaries may be

produced for the whole run.

The latter being a relatively trivial operation, only the core operation is

dicussed here in some detail.

264

One Time Step

The pulpose of the program listed in the appendix is to take a set of node

voltages and ploduce a ne\À/ set of node voltages which causes all face currents

to balance.

What follows is an implementation of the ideas discussed in the main text

of this thesis.

First, we have seen that this is to be a parallel array processor of the

SIMD type, and so each processing element executes exactly the same code

as all others, at exactly th,e same instant. There- fore some care has to be

taken to ensure that data is exchanged between p.e.s in such a way as to be

valid - i.e., not to destroy the old data when the new is copied across. This

is one reason for the preferred orientation:

since, if in simulation, sequentially, and in reality, sirnultaneozsly, all data

is transferred by all p.e.s to the right and then up into temporary buffers then

correct simultaneous operation can be ensured, because these are completely

independent operations.

Nomenclature

Now we turn to what is going on inside each p.e., and some definitions are

necessary to avoid confusion when referring to the Program.

Broadly speaking, given the initial set of all face voltages, each processing

element has to do a complete cycle of (normally a) Newton-Raphson itera-

tions with each neighbour. In practice, the confusion that would cause while

trying to keep track of which end-voltages are kept constant would be enough

to make debugging very difficult, distracting from the problem itself, which

is: does this method work?

+

+

265

This is where the systematic application of the orientatron

+

+

helps, because each p.e. really only needs to deal cornpletely with its

North and East neighbours - its West and South iterations are then taken

care of by the West and South neighbours - this is particularly vital at the

edge of the array (left, bottom).

Right and North Iteration

Concentrating, then, as we may, only on these two neighbours which we now

call "the north partner" and "the east partner" of the p.e., and recalling the

current calculations necessary for producing local convergence at one face,

the situation is: I north I

I prrtn"l. I

fixed fixed
EO

(v)

east
partner .la

Now recall that to complete one Newton-Raphson iteration the p.e. only

needs the 4 numbers representing the points on the graph:

and it obtains 2 of them from within itself - i(") and i(u) - and the other

2 - j(") and j(u) - from its relevant partner (Iú or E). This means that it

has to pass these values to the left and down, in its turn.

Also remember from the study of the Newton-Raphson convergence, that

while the 4 iterations proceed, the voltages at the outelmost ends of the rel-

i(v)i(u)

v

u)(
i(v)

u

266

evant p.e. 'pair' (the p.e. and its .^ú- or E- partner) must remain constant

These are the voltages l4lo and -86 below, whilst u is being determined,

or the voltages l/s and ^9o whilst u is determined, below

Thus at the start of the 4 Newton-Raphson iterations, the face voltages

need to be preserved, only being updated at the end of the 4 iterations, the

'preserved'values being used where appropriate in the calculations.

The notation for the four values required by each p.e. is now to be settled.

\b i(u)

V

bu\b

V

/^

i(v)

Consider the p.e. pair above.

The currents within the p.e. calculated using u and u are: i(u) and i(u)

These correspond to the points on the superimposed plot for the pair:

i(v)

¡(u)

0
u

The currents calculated in its partner by its partner are denoted j(u) and

5
v

No

so

267

j(u) corresponding to the points on the conjugate plot

i(u)
(v)

V

Thus in each set of processing elements,

the West and South values are transferred in one go.

The Iteration Algorithm

The complete Newton-Raphson sequence is thus:

for each timestep

for each face-pair (North, East)

50
u

o establish the voltage common to the p.e.s at the common face -

callitz;] u I
o force them to hold slight different values u I6 : u,)'I)

v

o compute internal currents i(z) and i(u), keeping all other face

voltages constant (i.e at their original values);

¡(u)
i(v

u

26E

o establish the voltage at the partner's face - call it u : u + 6;

v

o compute the internal currents to be passed left and down - j(")
and 7(u);

o put (to left and down), or get (from right and up), the curlents

from the partner element via the relevant face.

o compute the new estimate of the voltage at the common face and

share it with partner (right and up), being careful of the edge

driving voltages.

This takes us towards an economical and systematic notation, which is

the same as that employed in the program listing.

The exact correspondence between this scheme and the 'C' program is

shown in these scheme:

r(p).i¡¡(a) +-+ i.n

r(p).i¡¡(a+) +-+ ip.n

n(P+ l).is(o) * j.n

n(p+ 1).i5(o+) * jp.n

Since each p.e. only calculates for the East and North faces, then this

minimum notation is sufficient.

j(u)
j(v)

269

This notation relates to the diagram, with inner and outer sets of param-

eters:

a

pe(p) in(ct)

in(a)

b

One further note on the sign of currents

For transistors:

+

For resistors

ffi=ffi 1.

or both can be present:

w

and this is reflected in the program - for example, the west current:

iu:+il+i5-i4.

\

)

270

Running the Simulator One Tirne Step

The operating system is:

g.tn g.new.nodes

g.wanted

rations

g.timesteP

i.plot

g.v.nodes
g.v.plot

where the files used are:

g.in - general inputs, such as the contents of each p.e.,how many iterations

to try and the criteria for convergence;

g.tirnestep : this timestep;

g.wanted : list of voltage nodes for plotting;

g.v.rnodes : s€t of face voltages at start of timestep

g.new.nodes : set of face voltages at end of timestep, with voltages and

currents within specified tolerance;

g.iterations : number of iterations to converge;

g.i.plot : face currents at each iteration for plot;

g.v.plot : face voltages at each iteration for plot

g.xge - exchange rates for- each array element

g.exe

27r

Input/Output Files

These are examples of the main files used for the run involving the flip-flop.

g.in g.wanted

53 number of bits
100 reporting interval
I 5 1 5 1 5 1 5 s1xfl s2xf2 s3xl3 s4xf4
5000 grand iterations
1000.0 current limit (uA)
0.1 dr (usec)
0.05 delta voltage (V)
5.0 vss (V)

g.circuit

T27I8
T77I8

w81
e8B
n7 2
n77
0

g-xqe

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

g.nodes

1.5 s
1.5 s

226
27 6
326
37 6
426
476
s26
57 6
623
626
634
643
6ss
66s
674
67 6
7I3
7 2r
722
734
7 32
7 45
7 46
754
763
7 6B
77I
772

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
10 10 se00
100
100

0s0000s0
000000000
03000040
000000000
02000040
000000000
02000040
000000000
02000030
000000000
01000030
001033300
01130030
012110330
10031303
000301000
00000000

7 84tOO
841100
8s2100
81712 0w
837120e
867 L2Ów
BB7120e
000

00000000
00000000
00000000
00000000
00000000
00000000
00000300
00000000

272

Appendix E

GAME Prograrn Listitrg

273

/* program GAME.C */

#include <stdio.h>
#include <math'h>

/* masks for double floating point numb ers*/
unsigned char masksetl [8]: { 2 5 5,240,000,000,000,000,000,000} ;

unsigned char maskset2 [8]=l 2 5 5,248,000,000,000,000,000,000] ;
unsigned char maskset3 [8]:f 2 5 5,2 5 2,000,000,000,000,000,000] ;

unsigned char maskset4[B]:{25 5,254,000,000,000,000,000,0001;
unsigned char masksets[8]:f 255,255,000,000,000,000,000,000];
unsigned char maskset6[8]:{25 5,25 5, 128,000,000,000,000,000};
unsigned char masksetT [B]:{2 5 5,255,I92,OO0,000,000,000,000};
unsigned char masksetSt8l:{ 2 5 5,255,224,000,000,000,000,000};
unsigned char maskset9[8]:{255,255,240,000,000,000,000,000};
unsigned char masksetl0 [8]:l 2 5 5,2 5 5,248,000,000,000,000,000] ;

unsigned char masksetl 1 [8]:{25 5,25 5,252,O00,000,000,000,000};
unsigned char masksetl2 [B]:{25 5,255,254,O00,000,000,000,000};
unsigned char masksetl3 [8]:f 2 5 5,2 5 5,2 5 5,000,000,000,000,000] ;

unsigned char masksetl4[8]:{255,255,255, 128,000,000,000,000};
unsigned char masksetl 5 [8]:{25 5,255,255, 192,000,000,000,000};
unsigned char masksetl 6 [8]:{ 2 5 5,25 5,25 5,224,000,000,000,000} ;

unsigned char masksetlT [8]:{2 5 5,255,25 5,240,000,000,000,000} ;

unsigned char masksetlS [8]:{ 25 5,2 5 5,2 5 5,248,000,000,000,000};
unsigned char masksetl9 [8]:{ 2 5 5,2 5 5,2 5 5,252,000,000,000,000} ;

unsigned char maskset20[8]:{ 25 5,2 55,2 5 5,254,000,000,000,000} ;

unsigned char maskset2 1 [8]:{25 5,25 5,255,255,000,000,000,000};
unsigned char maskset22 [8]:{25 5,255,25 5,255, 128,000,000,000};
unsigned char maskset23 [8]:[25 5,255,25 5,255, 192,000,000,000];
unsigned char maskset24[8]:{ 2 5 5,2 5 5,2 5 5,25 5, 2 24,000,000,000 } ;

unsigned char maskset2 5 [8]:{ 2 5 5,2 5 5,2 5 5,25 5, 240,000,000,000} ;

unsigned char maskset2 6 [8]:{ 2 5 5,2 5 5,25 5,25 5,248,000,000,000} ;

unsigned char maskset2 7 [8]:{2 5 5,2 5 5,2 5 5,2 5 5, 2 5 2,000,000,000} ;

unsigned char maskset2 8 [8]: { 2 5 5,2 5 5,2 5 5,25 5, 2 5 4,000,000,000 } ;
unsigned char maskset29 [8]:{25 5,255,25 5,255,255,000,000,000};
unsigned char maskset30 [8]={ 2 5 5,25 5,25 5,25 5,2 5 5, 1 2 8,000,000} ;

unsigned char maskset3 1 [8]:{ 2 5 5,2 5 5,2 5 5, 25 5, 2 5 5, 192,000,000} ;
unsigned char maskset3 2 [8]:{ 2 5 5,2 5 5,2 5 5, 2 5 5,25 5,224,000,000} ;
unsigned char maskset33 [8]:{ 2 5 5,2 5 5,2 5 5,2 5 5,25 5,240,000,000} ;

unsigned char maskset34[8]={ 2 5 5,2 5 5,2 5 5, 25 5, 2 5 5,248,000,000};
unsigned char maskset3 5 [8]: { 2 5 5,2 5 5,25 5,25 5,2 5 5,2 52,000,000 } ;

unsi gned c har maskset3 6 [8] : { 2 5 5,2 5 5,2 5 5,25 5,2 5 5,2 5 4,000,000 } ;

unsigned char maskset3 7 [8]: { 2 5 5,2 5 5,25 5, 25 5,2 5 5,2 5 5,000,000} ;

unsigned char maskset3 I [8]={ 2 5 5,2 5 5,2 5 5, 25 5, 2 5 5,2 5 5, 1 2 8,000 } ;

unsigned char maskset39 [8]:{ 2 5 5,2 5 5,2 5 5, 2 5 5,2 5 5,2 5 5, 192,000} ;

unsigned c har maskset40 [B] : { 2 5 5,2 5 5,2 5 5,25 5, 2 5 5, 2 5 5,224,OOO1 ;

unsigned char maskset4l [8]: { 2 5 5,2 5 5,2 5 5, 2 5 5, 2 5 5,2 5 5,24O,0O01;
unsigned char maskset42 [8]:{ 2 5 5,25 5,25 5,25 5, 2 5 5,2 5 5,248,000} ;

unsigned char maskset43 [B]:{ 2 5 5,25 5,25 5,25 5, 2 5 5,2 5 5,2 5 2,000 } ;

unsigned char maskset44[8]: { 25 5,2 5 5,2 5 5, 2 5 5, 2 5 5,2 5 5,2 54,000} ;

unsigned char maskset4s [8]:{ 25 5,2 5 5,2 5 5,255,2 5 5,2 5 5,2 5 5,000};
unsigned char maskset46 [8]: { 2 5 5,25 5,25 5,25 5,2 5 5,2 5 5,2 5 5, 1 2 8 } ;

unsigned char maskset4T [8ì: { 2 5 5,25 5,25 5,25 5, 2 5 5,2 5 5,25 5,1921;
unsigned char maskset48 [B]:{ 2 5 5,2 5 5,2 5 5, 25 5, 2 5 5,2 5 5,25 5,2241;
unsigned char maskset49 [B]:{ 2 5 5,2 5 5,2 5 5, 25 5, 2 5 5,2 5 5,25 5,2401 ;

unsigned char masksets 0 [8]:{ 2 5 5,25 5,25 5,2.5 5,2 5 5,2 5 5,25 5,2481;

unsigned char masksets 1 [8]: { 2 5 5,25 5,25 5,25 5, 2 5 5,2 5 5,25 5,2521;
unsigned char masksets 2 [B]:{ 25 5,2 5 5,2 5 5,25 5,2 5 5,2 5 5,25 5,25 4l¡'
unsigned char masksets3 [B]:{ 25 5,2 5 5,2 5 5,25 5,2 5 5,2 5 5,2 5 5,2 55 };

274 GAME.C

#define ROWS 8
#define COI-S 8
#define TRUE 1
#defìne FALSE 0

süuct currentstruct
{
double n;
double e;
double w;
double s;

h

sftuct voltagestruct
f
double n;
double e;
double w;
double s;

Ì;

struct capacitorstruct
{
double cn,ce,cw,cs;

double c;
double r;
double v;
double jnjejwjs;
double dv;

t;

struct wantedstruct
{

int n,e,w,s;
t;

struct pricestruct
{
double n,e,w,s;
l;

struct quantitystruct
{í
double n,e,w,s;
Ì;

struct outlaystruct
{
double n,e,wrs;
Ì;

struct pestruct
{
struct voltagestruct v;
double conductance[7] ;

double alpha;
double beta;
double delta;
double volts[7];
double iamps[7];
double sign[7];
double igate;
double idrain;

275 GAME.C

char gateconnection;
stn¡ct capacitors tTuct cap;
struct currentstruct i;
struct Çurrentstruct j;
struct curTentstruct ip;
struct currentstruct ip;
struct voltagestruct v0;
struct currentstruct i0;
int done;
struct voltagestruct new;
struct currentstruct residual;
struct pricestruct price[3];/* use only 1 and 2*/
double exchangerate;
double profit[3][3][3][3];/"use only 1 and 2/
Ì;

unsigned char bitmaskl8];
int masking; ./*TRUE if bits valid (between 1 and 53)"/
double multiply(X
double divide0;
double add0;
double subtractQ;
double expf0;
double fetchQ;
double store0;
double absolute0;
int bis;
int numberadd;
int numbersubtract;
int numbermultiply;
int numberdivide;
int numberfetch;
int numberstore;
int numberabsolute;

crlfO;
int alldoneo;
double modelno;
double modele0;
double modelwO;
double models(X
double largestresidual();

FILE *arrayfile;
FILE *inputfile;
FILE "outpuffile;
FILE "nodefìle;
FILE *exchangefile;
FILE *wantedfile;
FILE *circuitfile;
FILE *plotfile;
FILE *operationsfì[e;

int iterations;
int granditerations;
struct pestruc t pe IROWS+ 2] [COIS+ 2] ;

stTucr wanredsrruct wanted [ROWS+ 2] [COtS+ 2] ;

double currentlimit;
double deltavoltagc;
double dt;
double vss;
int plotting;
int progress;

276 GAME,C

int reportinterval;
int applygamecriterion[1000];/* boolean at which iteration to apply game
theory*,2
int gamein tervalstartl ;
int gameintervalstart2 ;
int gameintervalstart3 ;

int gameintewalstart4;
int gamefrequencyl;
int gamefrequency2;
int gamefrequency3;
int gamefrequency4;
clotrble capjn,capje,capjw,capjs;
char string[80];

main()
{
printf("\nprogram GAME started\n");

inputfile:fopen(" g.in","r") ;

if (inputfile::Null) {printf("WHERE IS G.lN???\n"); exit(8);}
printf("input data read from G.lN\n");
fscanf(inputfi le,"%od",&bits) ; fgets(string,S0,inputfile);
masking:fftug; /*default*/
if ((bits<l) ll (bitÞ53))

fbits:53;
masking:FAISE;I

if (masking::TRuE)
f
setupbitmask(bits);
printf("using bit mask foro/od bits: %od o/do/do/do/ño/ño/od
%od\n",bits,bitmask[0],bitmask[1],bitrnsk[2],bitmask[3],biûnask[4],bitrnask[S],
bitmask[6],bitmask[7] X
l
else printf("S3 bits, no masking\n");

initialise0;
gameheadingO;
iterations:0;
progress=0;
plotdata0;
do
[,
iterations:iterations+ 1 ;
progless:progress+ 1;
if (progress>:reportinterval) reportprogress();
iterare(x
plotdataO;
Ì
while ((iterations<granditerations) && !(alldone0));
reportprogress();
computecapacitori ncrement() ;
savenodes0;
savenodesininputformatQ; /*forpassingtobargain*,/
if (masking::TRuE)
{
saveoperations ();
p rintf(" proces sor operatio ns per iteration: \n ") ;
printops(numbermultiply); printf(" multiplications\n");
printops(numberdivide); printf(" divisions\n");
printops(numberadd); printf(" additions\n");
prin tops (n umbers u b tract) ; printf(" su b traction s\ n") ;

Ì

277 GAME.C

printf("total of o/o4d iterations taken using %2d bits\n",iterations,bits);
if (masking::TRuE)
{

. printf("total +-xl operations (index of total time) :");
index(n untberadd+numbersubtract+ n umbermultiply+ numberdivide) ;

Ì
printf(" program GAME fìnished\n");

index(total)
int total;
{
if ((total<1000))

pnnú (" o/A.1 f\n", (fl oat) to tal) ;

if ((totaÞ=1000) && (total<1000000))
prinú("o/o4.1 f thousand\n",(float)total/ 1000.0) ;

if ((totaÞ=1000000) && (total<l000000000))
printf("%6. 1 f miltion\n",(float) total/ 1000000.0 X

Ì

printops(operations)
int operations;
{
extern int iterations;
printf("%6.0f thousand", (float)operations/(float)iterations,z 1000.0) ;

Ì

getwantedo
{
extern int plotting;
int r,c;
char face;
char carriagereturn;

,/* set all default wanted to false*,/
plotting:FAISE;
for (r:1; r<:ROWS; r:r++)
{
for (c=1; c<:COIS; c:c++)
{
wanted [r] [c]. n:FALSE;
wanted[r] [c].e:FALSE;
wanted[r] [c].w:FAtSE;
wanted[r] [c].s:FAISE;

Ì
Ì

wantedfi le:fopen (" g.wanted", "r") ;

if (wantedfile::NUll) {printf("WHERE IS G.WANTED???\n"); exit(7);}
printf("plots from G.WANTED: ");
fscanf(wantedfile, "%oc",&face) ;

while ((face::'n') ll (face::'s') ll (face::'w') ll (face::'s'))

{
plotting:TRUE;
printf("o/0c", face);
fscanf(wan tedfi le,"o/od %od ",&r,&c) ;

printf(" %1 do/old ",r,c);
switch(face)
{

278 GAME,C

case tnt: wanted[r] [c].n:TRUE; break;
case'e': wanted [r] [c].e=TRUE; breaþ
case'w': wanted[r] [c].w:TRUE; break;
case's': wanted[r] [c].s:TRUE; brealri;
defaulc printf("ERROR IN G.WANTED\n"); exit(6);
Ì
fscanf(wantedfìIe,"%oc %oc",&carriagereturn,&face);
I

if (plotting::FAtsE) printf("(none)\n");
else
{
plotfile:fopen(" g.plot","w") ;

printf("\nplotting to G.PLOT in excel format\n");
fprintf(plotfi le," iter.\t morres\t ") ;

for (r:1;r<:ROWS;r++)
{
for (c:1;c<:8; c++)
t
if (wanted [r] [c]. n=:TRUE) fprintf(plo tfile, "
if (wanted [r] [c].e::TRUE) fprin tf(plotfile,"
if (wanted [r] [c].w::TRUE) fprintf(ploúile,"
if (wanted [r] [c].s::TRUE) fprintf(ploffile,"
Ì
Ì
fprinú(plotfile," \n") ;

l
Ì

n%ld%1d\t ",r,c);
e%1d%ld\t ",r,c);
w%1d%ld\t ",r,c);
s%1d%1d\t ",r,c)i

initialise()
{
extern int
granditerations,
reportinterval,
applygamecriterion[1 000],
gameintervalstartl,
gameintervalstart2,
gameintervalstart3,
gameintervalstart4,
gamefrequencyl,
gamefrequencyZ, .

gamefrequency3,
gamefrequency4;
extern double dt,
currentlimit,
delatvolt,
VSS;

FILE "appliedfile;
int r,c,i;
int dummy;
int p;
char 11,12,T3,f4;

fscanf(inputfi le,"%od",&reportinterval) ;fgets (string,80,inputfi le) ;

fscanf(inputfi le, "%od o/Ã o/ñ o/od o/od o/d o/d o/odt,

&gameintervalstartl,
&gamefrequencyl,
&gameintervalstart2,
&gamefrequency2,
&gameintervalstart3,

279 GAME.C

&gamefrequency3,
&gameintewalstart4,
&gamefrequency4) ;fgets (s tring, 80,inpudìle) ;

fscanf(in putfi le, "%od",
&granditerations); fgets(string,80,inp utfi le) ;

fscan f (i n p utfi le, "0z6l f ',
¤tlimit) ; fgets (s tring, I 0,in p utfile) ;

fscan f(inp u tfi le, " %ol f ',
&dt); fgets(string,80, inputfile);

fscan f(i np u tfi le, "
o/olfl ',

&deltavoltage); fges (strin g,80,inputfi le) ;

fscanf(i nputfi le,"o/ol f ',
&vss) ; fges(string,S0,inputfile) ;

currentlimit:cufrentlimit/ 1 000000.0;
dt:drl1000000000.0;
printf("Vod report interval\ngame from o/od xo/od; fromo/od x o/od; from

o/od xo/od; fromo/od x 7od\nolod max. iterations\n",
reportinterval,
gameintervalstartl,
gamefrequencyl,
gameintervalstart2,
gamefrequency2,
gameintervalstart3,
gamefrequency3,
gameintervalstart4,
gamefrequency4,
granditerations);

printf("%o6.1f uA current convergence criterion\n",(1000000.0*currentlimit));
prinú("%6.1f nSec time step\n",(1000000000.0*dt));
pnntf ("o/o4.2f deltavoltage\n %3. 1 f vss\n",deltavoltage,vss) ;

/* at each ftequency wanted to apply game theory, put a TRUE marker*/
for (p: 1 ;p<1000;p++) applygamecriterion[p] :FAISE;
for (p=gameintervalstartl ;(p>0 && p<1 000) ;

p: p+ gamefrequency 1)
ap p lygamecri terion [p] =TRUE;
for (p: gameintervalstart2 ;(p>0 && p<l 000) ; p=p+ gamefrequency2)
ap p lygamecriterion [p] :TRUE;
for (p:gameintervalstart3 ;(ptO && p< 1 000) ; p= p+ gamefrequency3)
ap plygamecriterion [p] :TRUE;
for (p=gameintervalstart4;(p>0 && p<l000);p:p+gamefrequency4)
ap p lygamecriterion [p] :TRUE;
,/* write out for referece*,/
appliedfi le:fopen(f 'applied.dat","w") ;

fprintf(appliedfile," game criterion applied at iterations:\n") ;

for (p:1;p<1000;p++)
if (applygamecriterion tpl::TRUE)

fp ri n tf (a pp liedfrle," o/o4d\n", p) ;

fclose(appliedfìle);
printf(" game cri terion applications to APPLIED. DAT\n") ;

/* read array data for whole pe */

arrayfi le:fopen("array.dat","r") ;

if (arayfìle::NuLt)
{ printf(" ERROR GFITI NG ARRAYFILE ARRAY.DAT\n") ; exit(1) ; }

fread(pe,sizeof(struct pestruct),(ROWS+2)*(COIS+2),arrayfile);
fclose(arrayfi[e);
if (ferror(arrayfile)!:0) {printf("pe array not read in\n"); exit(13);}
getwanted0;
clearnumbersO;
Ì

280 GAME,C

plotdara()
{
extern int iterations;
extern int numberadd;
extern int numbersubtracq
extern int numbermultiply;
extern int numberdivide;
int r,c;

if (plotting::TRUE)
{

fprintf(plotfile,
"%o4d \t %10.0f \t " ,

iterations,(I 000000.0"largestresidual())) ;

fprintf(plotfile,
"o/o12d \t",

(numberadd+numbersub tract+numbermultiply+ numberdivide)) ;
for (r:1;r<:ROWS;r++)
{
for (c:1;c<:COtS: c++)
{
if (wanted [r] [c].n::TRUE) fprintf (plotfile,"%o1 2.9f \t",pe [r] [c].v.n) ;

if (wanted [r] [c].e::TRUE) fprintf (p loifile," o/ol2. 9 f \t", pe [r] [c] .v.e) ;

if (wanted[r] [c].w::TRUE) fprintf(plotfile,"o/012.9f \t",pe[r] [c].v.w);
if (wanted[r]lcl.s::TRUE) fprintf(plotflrle,"o/ol2.9f \t",pe[r][c].v.s);
if (wanted[r][c].n::TRUE) fprintf(plotfile,"o/o15.12If \t",pe[r][c].i.n);
if (wanted[r] [c].e:TRUE) fprintf(plotfile,"%o15.12If \t",pe[r] [c].i.e);
if (wanted [r] [c].w::TRUE) fprintf(plotfi le, "% 1 5. 1 2 If \t",pe [r] [c].i.w) ;

if (wanted[r][c].s::TRUE) fprintf(ploúile,"%o15.12If \t",pe[r][c].i.s);
Ì

Ì
fprintf(plo tfi le, " \n") ;

Ì
Ì

saveoperations()
{
extern int numberadd;
extern int numbersubtract;
extern int numbermultiply;
extern int numberdivide;
extern int numberabsolute;
extern int numberfetch;
extern int numberstore;
int r,c;

operationsfile:fopen(" g.operations", "w") ;
printf(" operation count to G.OPERATIONS\n ") ;

fprinú(operationsfile,"absolute\f/o1 2d\n ",numberabsolute) ;

fprintf(operationsfìle,"add \P/o1 2d\n ",numberadd) ;
fprintf(operationsfi le,"divide \f/o1 2 d\n ",numberd ivide) ;

fprintf(operationsfi le,"fetch \tolo 1 2 d\n ",numberfe tch) ;

fprintf(operationsfi le,"multiply\t9zo1 2d\n ",numbermultiply);
fprintf(o perationsfi le,"store \f/o 1 2 d\ n ", numbers to re) ;

fprintf(operationsfile,"subtract\t7o1 2d\n ",numbersubtract) ;

fclos e (o p era tions fìle) ;

Ì

281 GAA(E,C

clearnumberso
f
numberadd:O;
numbersubtract:0;
numbermultiply:O;
numberdivide:0;
numberfetch:0;
numberstore:O;
numberabsolute:0i
Ì

allcurrents(r,c,vn,ve,vw,vs)
int r,c;
double vn,ve,rr'w,vs;
{
extern double capjn,capje,capjw,capjs;
int i;
double vgs;
double vds;
struct pestruct *p;
p:&pe[r][c];
p->volts [1]:store(subtract(fetch(vn),fetch(vw))) ;

if (fetch(p>volts[1])>0) p>sign[1]:store(1.0); else p-
>sign[1]:store(-1.0);
p>vo I ts [2] :s tore (s ub trac t(fetc h (vn), fetch (ve))) ;

if (fetch(p>volts[2])>0) p>sign[2]:store(1.0); else p-
>sign[2]:store(-1.0) ;
p->vols [3] :store(subtract(fetch(ve),fetch(vs))) ;

if (fetch(p>vols[3])>0) p>sign[3]=store(1.0); else p-
>sign[3]:store(-1.0);
p->volts [4]:store(subtract(fetch(vw),fetch(vs)));

if (fetch(p>volts [4])>0) p>sign [4]=store (1.0) ; else p-
>s i gn [4] =51ere (- 1.0) ;
p->volts[5]:store(subtract(fetch(ve),fetch(vw))) ;

if (fetch(p>volts[5])>0) p>sign[5]:store(1.0); else p-
>sign[5]:storeC1.0);
p->volts [6] :store(subuact(fetch (vn),fetch(vs))) ;

if (fetch(p>volts[6])>0) p>sign[6]:store(1.0); else p-
>sign[6]:store(-1.0);

if (p->gateconnection::'n') vgs=store(subtract(fetch(vn),fetch(vs)));
else i:

if (p->gateconnection=:'e') vgs=store(subtract(fetch(ve),fetch(vs)));
else
if (p->gateconnection=:'w') vgs:store(subtract(fetch(vw),fetch(vs)));
else
if (p->gateconnection::'s') vgs:store(subtract(fetch(vs),fetch(vs)) X
else vgs:store(subtract(fetch(vw),fetch(vs)));
vds:store(subtract(fetch(vn),fetch(vs)));

for (i:1; i<:6; i:i++) p->iamps[i]:
store(divide(

multiply(
fetch(p->signlil),
multiply(

absolute(fetch(p->volts [i])),
fetch(p->conductance[i])
)

),
fetch(1000.0)
)

X

282 GAME.C

p->igate:store(0.0);
if (vd>O) p->idrain:

store(
(' (fetch(p->beta)*
(expf(

multiply(
fetch(p->alpha),
add(fetch(vgs),

fetch(p->delra)
)

)

)"
(fetch(1.0)-

exPf(
mul ti ply(-fetch (p-> al pha),

fetch(vds)
)

)

)

)
)
/ferch(1000.0))
);

else p->idrain:store(0.0) ;
capjn:store(multiply((fetch(vn)-fetch(p->cap.v)),

fetch(p>cap.cn)
)

);
capje:store(multiply((fetch(ve)-fetch(p->cap.v)),

fetch(p->cap.ce)
)

);
capjw:store(multiply((fetch(p->cap.v)-fetch(vw)),

fetch(p->cap.cw)
)

);
capjs:store(multiply((fetch(p->cap.v)-fetch(vs)),

fetch(p->cap.cs)
)

);

p->cap jn:store(capj n) ;
p->cap j e:store(capje) ;
p->cap.jw:store(capjw) ;
p-> cap j s :store (capj s) ;

Ì

double modeln(r,c,vn,ve,vw,vs)
int r,c;
double vn,ve,vw,vs;
{
extern double capjn;
struct pestruct *p;
p:&pelrllcl;

allcurrens (r,c,vn,ve,vw,vs) ;

return
add(

fetch(p->iamps[1]),
add(

283 GAA,IE.C

fetch(p->iamps[6]),
add(

fetch(p->iamps[2]),
add(

fetch(p->idrain),
fetch(capjn)

)
)

double modele(r,c,vn,ve,vw,vs)
int r,c;
double vn,ve,vw,vs;
{
extern double capje;
struct pestruct *p;
p:&pe[r][c];

allcurrents (r, c,vn,ve,vw,vs) ;

return add(
-fetch(p->iamps[2]),
add(

fetch(p->iamps[5]),
add(

fetch(p->iamps[3]),
fetch(capje)

)

)

double modelw(r,c,vn,ve,vw,vs)
int r,c;
double vn,ve,vw,vs;
{
extern double capjw;
struct pestruct *p;
p:&pe[r][c];

1'

allcurrents (r,c,vn,ve,vw,vs) ;

return add(
fetch(p->iamps[1]),
add(

fetch(p->iamps[5]),
add(

-fetch(p->iamps[4]),
add(

fetch(p->igate),
fetch(capjw)

)

)
)

)

);

);

);

284 GAlvlE.C

double models(r,c,vn,ve,vw,vs)
int r,c;
double vn,ve,vw,vs;
{
extern double capjs;
sftuct pestruct *p;
p:&pelrllcl;

allc urrents (r,c,vn,ve,vw,vs) ;

return add(
fetch(p>iamps[4]),
add(

fetch(p->iamps[6]),
add(

fetch(p->iamps[3]),
add(

fetch(p->idrain),
fetch(capjs)

)
)

)

computecurrents (r,c)
int r,c;
{
extern double deltavoltage;
struct pestruct *p;
p:&pe[r][c];
p->i.n:store(modeln (r,c,fetch(p->v.n),

fetch(p->vO.e),
fetch(p->vO.w),
fetch(p>vO.s))

);
p->ip.n:store(modeln(r,c,add(fetch(p->v.n),fetch(deltavoltage)),

fetch(p->vO.e),
fetch(p->vO.w),
fetch(p>vO.s))

);
p->i.s:store(models (r,c,fetch(p->v0.n),

fetch(p->v0.e),
. fetch(p->vO.w),

fetch(p->v.s))
);

p->ip.s:store(models (r,c,fetch(p->vO.n),
fetch(p->vO.e),
fetch(p->vO.w),
add (fetch(p>v.s),fetch(deltavoltage)))

);

p->i.e:s tore (modele(r,c,fetch (p->v0.n),
fetch(p->v.e),
fetch(p->v0.w),
fetch(p->vO.s)));

p-> ip. e:s tore(modele(r,c,fetch (p->vO.n),
add(fetch(p->v.e), fetch(deltavoltage)),
fetch(p->vO.w),
fetch(p->v0.s)));

p-> i.w:s tore (modelw (r,c,fe tch (p->vO. n),
fetch(p->vO.e),
fetch(p->v.w),
fetch(p->vO.s)));

);

28s GAL,TE,C

p->ip.w:store(modelw(r,c,fetch(p->v0.n),
fetch(p->vO.e),
add(fetch (p->v.w),fe tch (deltavoltage)),
fetch(p->vO.s)));

Ì

maxpro fitcriterion (r,c)
int r,c;
{
double maxprofit;
int nmax,emax,wmax,smax;
int n,e,wrs;

maxprofi t:s tore (- 1 0000000.0) ;
nmaX:2;
em¿\:2;
wmÐ(=Z;
SmÐi:2;
for (n:1; n<:2; n++)

{for (e:1; e<:2; e++)
{for (w:1; w<:2; w++)

{for (s:1; s<:2; s++)
{

if (fetch (pe [r] [c].profi t[n] [e] [w] [s])>=fetch (maxprofi t))
{
maxprofit:store (pe [r] [c].profi t[n] [e] [w] [s]) ;
nmax:ni
emax:ei
wlllâX:W'
smaX:Si

Ì
l

Ì
Ì

Ì
pe [r] [c].v. n=store (pe [r] [c].price[nmax].n) ;
pelrl [c].v.e:store (pe [r] [c].price [emax].e) ;
pe[r] [c].v.w:store(pe [r] [c].price [wmax].w) ;
pe [r] [c].v.s:store(pe [r] [c].price [smax].s) ;

computepossibles (r,c)
int r,c;
{
int n,e,w,s;
struct quantitys tmct quantity;
s truct outlaystruct outlay;

for (n:1; n<:2; n++)
{for (e:1; e<:2; e++)
{for (w:1;w<:2;w++)
{for (s:1;s<:2;s++)

{quantity.n:store(modeln(r,c,fetch(pe[r] [c].price[n].n),
fetch(pe [r] [c].price[e].e),
fetch(pe [r] [c].price [w].w),
fetch(pe[r] [c].price[s].s))) ;

quantity.e:store(modele(r,c,fetch(pe [r] [c].price[n]. n),
fetch (pe [r] [c].price[e].e),
fetch(pe[r] [c].price [w].w),
fetch(pe [r] [c].price[s].s))) ;

quantity.w:store(modelw(r,c,ferch(pe[r] [c].price[n].n),
fetch (pe [r] [c].price[e].e),

286 GAME.C

fetch (pe[r] [c].price [w].w),
fetch(pe[r] [c].price[s].s)) X

quantity.s:store(models(r,c,fetch(pe[r] [c].price [n].n),
fetch(pe [r] [c].price[e].e),
fetch (pe[r] [c].price [w].w),
fetch(pe[r] [c].price[s].s))) ;

outlay.n:
store(

multiply(fetch (pe [r- 1] [c].exchangerare),multiply(fetch(pe[r][c].price[n].n),
fetch(quantity.n)

)

)

);
outlay.e:

store(
multiply(fetch(pe [r] [c- 1].exchan gerate),
multiply(fetch(pe[r] [c].price[e].e),

fetch(quantity.e)
)

)

X
outlay.w

store(
multiply(fetch(pe [r] [c+ 1].exchangerate),
multiply(fetch(pelrl [c].price[w].w),

fetch(quantity.w)
)

)
);

outlay.s:
store(

multiply(fetch(pe[r+1][c].exchangerare),
multiply(fetch(pe[r][c].price[s].s),

fetch(quantity.s)
)

)
);

pe[r] [c].prontlnl [e] [w] [s]:store(
add(fetch(outlay.n),
add (

fetch(outlay.e),
add (fetch(outlay.w),

fetch(outlay.s)
)

)
)
);

Ì

comp uteresiduals (r,c)
int r,c;
{
if (Þ1)

pe[r] [c].residual.n:fabs(pe[r] [c].i.n-
pelr-11[c].i.s

Ì
Ì
Ì

287 GAME.C

else
pe[r] [c].residual.n:0;

if (c<COtS) pe [r] [c].residual.e:fabs (pe [r] [c]. i.e'
pelrllc+1l.i.w

);
else
pe[r] [c].residual.e:0;
Ì

receivefro mp artner(r,c)
int r,c;
{
if (r::1)
{

pelrl [c] j.n:store(fetch(pe [r] [c].i.n)) ;
pe [r] [c].j p.n:s tore(fe tch (pe [r] [c].ip.n)) ;

Ì
else
{

pelrl [c] j.n:store(fetch(pe [r-1] [c].i.s)) ;
pe [r] [c] j p.n:s tore (fetch (pe [r- 1] [c].ip.s)) ;

Ì
if (c::COtS)

Í
pelrl [c] j.estore(fetch(pe [r] [c].i.e));
pe[r] [c].j p.e:store(fetch(pe [r] [c].ip.e)) ;

Ì
else

{
pe [r] [c].j.e:store(fetch(pelrl [c+ 1].i.w)) ;
pe [r] [c].jp.e:store(fetch(pe [r] [c+ 1].ip.w)) ;

Ì
Ì

calculatenewnodenorth (r,c)
int r,c;
{
extern double deltavoltage;
extern double vss;
double aa,bb,cc,dd;'
bb= store(divide (

subtract(fetch (pe [r] [c].ip. n),
fetch(pe[r] [c].i.n)),

fetch(deltavoltage)
)

);
store(
subtract(fetch(pe[r] [c].i.n),

mulriply(
fetch(bb),
fetch(pe[r] [c].v.n)
)

divide(
subtract(fetch (pe[r] [c].j p. n),

fetch(pelrl [c].j.n)
),

fetch(deltavoltage)

ã7:

);
dd:store(

2BB GAME.C

Ì

)
);

CC:StOre(
subtract (fetch(pe[r] [c].j.n),

mulriply(ferch(dd),
fetch(pelrl [c].v.n)
)

)

);

if (absolute(subuact(fetch(bb),fetch(dd)))>fetch(0.0000 I))
pe[r] [c].new.n:store(divide(subtract(fetch (cc),fetch (aa)),

su bract(fetch(b b),ferch (dd))
)

else
);

pe [r] [c].new.n:store(fetch (pe [r] [c].v.n)) ;
if (fetch(pe[r][c].new.n)detch(-vss)) pe[r][c].new.n:store(fetch(-vss));
if (fetch(pe[r][c].new.n)>fetch(vss)) pe[r][c].new.n:store(fetch(vss));

calc ulatenewnodeeas t(r,c)
int r,c;
{
extern double deltavoltage;
extern double vss;
double aa,bb,cc,dd;

bb:store(
divide(subtract(fetch(pe [r] [c].ip.e),

fetch(pe[r] [c].i.e)
),

fetch(deltavoltage)
)

);
aa:Store(

subtract(fetch (pe [r] [c].i.e),
multiply(fetch(bb),

fetch(pe[r] [c].v.e)
)

)
);,

dd=store(
divide(subtract(fetch(pe[r] [c].jp.e),

fetch(pe[r][c] j.e)
),

fetch(deltavoltage)
)

);
cC:store(

subtract(fetch(pe [r] [c].j.e),
multiply(fetch(dd),

fetch(pe[r] [c].v.e)
)

)

);
if (absolute(subtract(bb,dd))>0.00001) pelrl[c].new.e:divide(subtract(cc,

):
subtract(bb,

dd
)

289 CAME.C

);
else pe[r] [c] .new.e=pe [r] [c].v.e;
if (pe[r] [c].new.e<-vss) pe[r] [c].new.€:-vssi
if (pe[r] [c].new.e>vss) pe[r] [c].new.e:vss i

Ì

calculatenewnodes (r,c)
int r,c;
(
t
calculatenewnodenorth (r,c) ;
calculatenewnodeeast(r,c) ;

Ì

upd atenewnodes (r,c)
int r,c;
{

pe[r] [c].price [2].e:pe[r] [c].new.e;
pe[r] [c].price[2].n:pe [r] [c].new.n;
pe [r-1] [c].price[2].s:pe[r] [c].new.n;
pelrl [c+ 1].price[2].w:pe[r] [c].new.e;

pe[r] [c].v.e:pe [r] [c].new.e;
pe[r] [c].v.n:pe[r] [c].new.n;
pe[r-1] [c].v.s:pe[r] [c].new.n;
pe[r] [c+ 1].v.w:pelrl [c].new.e;

saveedgevoltages (r,c)
int r,c;
f

pe[r] [c].v0.n:pe [r] [c].v.n;
pe [r] [c].v0.e=pe [r] [c].v.e;
pe [r] [c].v0.w=pe [r] [c].v.w;
pe[r] [c].v0.s:pe[r] [c].v.s;

pe [r] [c].price[1].n:pe[r] [c].v0.n;
pe [r] [c].price [1].e:pe[r] [c].v0.e;
pe [r] [c].price [1].w:pelrl [c].v0.w;
pe [r] [c].price [1].s:pe [r] [c].v0.s;

Ì

saveedgec urrents (r,c)
int r,c;
{

pe[r] [c].i0.n:pe[r] [c].i.n;
pe[r] [c].iO.e:pe [r] [c].i.e;
pe[r] [c].i0.w:pe[r] [c].i.w;
pe[r] [c].i0.s:pe [r] [c].i.s;

l

updateedgevoltages (r,c)
int r,c;
{
if (e1) pe[r][c].vO.w:pe[r][c].v.w;
if (c<COtS) pe[r][c].vO.epe[r][c].v.e;
if (Þ1) pelrllcl.vO.n:pe[r][c].v.n;
if (r<ROWS) pe[r][c].v0.s=pe[r][c].v.s;

Ì

290 GAAfE,C

solveforn ewnodes (r,c)
int r,c;
{

computec urrents(r,c) ;
receiVefrompartner(r,c) ;
calc ulatenewnodes(r,c) ;
updatenewnodes(r,c);

l

iterate()
{
extern int iterations;
int r,c;
for (r:1;r<:ROWS;r:r++) {for (c:1;c<:COtS;c:c+1)

{saveedgevoltages(r,c) ;} };
for (r: 1 ;r<:ROWS;r:r++) { for (c: I ;c<:COtS;c:c+ 1)

{ saveedgecurrents (r, c) ;} } ;
for (r: I ;r<:ROWS;r:r++) {for (c: 1 ;c<:CO[S;c:c+ I)

{ computecurrents (r,c) ; } } ;
for (r: 1 ;r<:ROWS;r:r+ +) { for (c: 1 ;c<:COtS;c:c+ 1)

{computeresiduals(r,c) ;} };
for (r: 1 ;r<:ROWS;r:r++) { for (c: I ;c<:COtS;c:c+ 1)

{solvefornewnodes (r,c) ; } } ;

for (r: 1 ;r<:ROWS;r:r++) {for (c: 1 ;c<:COtS;c:c+ 1)
{ updateedgevoltages (r,c) ; } } ;

if (applygamecriterion [iterations] =:TRUE)
{

for (r: 1 ;r<:ROWS;r:r++)
{
for (c:1;c<:CO[S;c:c++)
computepossibles (r,c) ;
Ì
for (r: 1 ;r<:ROWS;r:r++)
{
for (c: 1;c<:COtS;c=c++)
maxprofi tcriterion(r,c) ;

l
Ì

Ì

int alldoneO i'

{int r,c;
int flag;
for (r:1;r<:ROWS;r++)
{
for (c:1;c<:COIS;c++)

{
if ((pe[r] [c].residual.n<currentlimit)
&& (pe[r] [c].residual.e<currentlimit))

pe[r][c].done:TRUE;
else
pe[r][c].done:FAISE;

Ì
ì

flag:TRUE;
for (r:1;r<:ROWS; r++)
{for (c:1;c<:COtS; c++)
Iif (pelrllcl.done::FAtSE) flag:FAtSE; Ìl

return flag;
Ì

29r GAME,C

computecapacitorincrement()
{
extern double dt;
int r,c;
double' dqn,dqe,dqw,dqs,dq;
for (r:1;r<:ROWS;r++)
{

for (c:1;c<:CO[S;c++)
{

if (pe[r][c].cap.eO)
{

dqn:pe[r] [c].cap j n*dt;
dqe:pe[r] [c].cap je*dt;
dqw:pe [r] [c].cap jw*dt;
dqs:pe[r] [c].cap js*dt;
dq:dqn+dqe+dqw+dqs;
pe [r] [c].cap.dv:-dqlpe[r] [c].cap.c;

Ì
else

pe[r] [c].cap.dv:O;

double largestresidualo
{
double largest;
int r,c;

largest:0;
for (r=1;r<:ROWS;r++)
{

for (c:1;c<:COtS;c++)
{

if (fabs (pe[r] [c].residual.n)>largest)
largest:fabs (pe [r] [c].residual.n) ;

if (fabs(pe[r] [c].residual.e)>largest)
largest:fabs (pe [r] [c].residual.e) ;

Ì
Ì
return largest;
l.

savenodeso
{
extern FILE *ouçuúile;
int r,c;

outp utfi le:fope n(" g.end", "w") ;
if (outputfile::NULL) printf("G.END WILL NOT OPEN\n");
else printf("final nodes saved in readable text form in G.END\n");
for (r:1;r<:ROWS;r++)
I
for (c:1; c<:CO[S; c++)

fprin tf (o u tp u tfi le, "
o/o 1 5. 1 2 f ', p e [r] [c].v. n) ;

fprintf(ouçutfi le, "\n") ;

for (c:1; c<:COIS; c++)
fprintf(o utputfi le,"%o I 5. 1 2 f ',pe [r] [c].v.e) ;

fprintf(outp utfi le,"\n") ;

for (c:1; c<:CO[S; c++)

292 GAAIE.C

fprintf(outputfìIe,"9ó1 5. 1 2 f ',pe [r] [c].v.w) ;

fp rintf(o utputfìle, " \ n") ;

for (c=1; c<:COIS; c++)
fprintf(outputfìle,"9ó1 5. 1 2 f ',pe [r] [c].v.s) ;

fpri ntf(o utp utfìIe, " \n") ;

l

savenodesi ninputformat()
{
int r,c;
int dummy;
FILE "nodefile;

printf("voltage nodes saved in input format to G.NODES.INPUT\n");
nodefile:fopen("g.nodes.input","w");

for (r:1;r<:ROWS;r++)
{
for (c: 1 ; c<:COtS;c+ +) fpri ntf(nod efrle," o/ol2.9l f ',pe [r] [c] .v. n) ;
fprintf(nodefi le,"\n") ;

for (c: 1 ;c<:(COtS+ I);c++) fprintf(nodefi le, "o/o1 2.9 lf ', pe [r] [c].v.w) ;

fprintf(no defi le, " \n") ;

Ì
for (c:1;c<:COtS;c++)
fp rin tf (no d efrle," o/ol2.9l f ', p e [ROWS + 1] [c] .v. n) ;

fprintf (nodefi le, " \n") ;

for (r=1;r<:ROWS;r++)
{
fprintf(nodefile," ");
for (c:1;c<:COI-S;c++)
f printf (nodefrle,"o/oLZ.9lf ',pe[r][c].cap.v);
fprintf(nodefile,"\n") ;

Ì
Ì

reportprogress ()
{
extern int iterations;
extern int progress;

printf("%4d iterations out of %od max. residual:o/o9.Of\n",
iterations, granditerations, (1 000000.0"largestresidual())) ;

pro$ress=0i
Ì

293 GANTE.C

double expf(x)
double x;
{
double r;
double sum;
double n;
int c,count;
if (masking::FAtSE) return exp(xX
count:O; /* if x ok*/
if (p1.0)
{

for (c:0; p1.0; c++) /* cut x down, keep count *,/

{
x:x/2;
Ì

count:c;
Ì

/* when get here, count:number of times halved",/

,/* calculate exponent of number <:l */
r:1.0;
n:1.0;
sum:1.0;
for (n:1.0; n<15.0; n:n+1)
{ .,

r=.multiply(x,
divide(r,

n
)

);
sum:add(sum,

r
);

Ì
/* if it was halved (sqrt) then power back up count times *./

if (counÞO)
{for (c:1; c<:counti c:c++)
sum:multiply(sum,

sum
);

Ì
return divide(1.0,

sum
);

Ì

double multiply(a,b)
double a,b;
{
double c;
if (masking::FALSE) return (a"bX
mask(&a);
mask(&bX
c=a*bi
mask(&c);
numbermultiply++;
return c;
Ì

294 GAME.C

double divide(a,b)
double a,b;
{
double c;
if (masking::FAtsE) return (a/b);
mask(&a);
mask(&b);
c:a/bl
mask(&c);
numberdivide++;
return c;
Ì

double add(a,b)
double a,b;
t
double c;
if (masking::FALSE) return (a+b);
mask(&a);
mask(&b);
c=a+b;
mask(&c);
numberadd++;
return c;
Ì

double subtract(a,b)
double a,b;
{
double c;
if (masking:=FAISE) return (a-b);
mask(&a);
mask(&b);
c:a-bi
mask(&c);
numbersubtract++;
return c;

Ì

double fetch(a)_.
double a; I

{
if (masking:=FAISE) return a;
mask(&aX
numberfetch++;
return a;
Ì

double store(a)
double a;
{
if (masking::FAtsE) return a;
mask(&a);
numberstore++;
return a;

l

29s GAME,C

double absolute(a)
double a;
{
if (masking::FAISE) return fabs(aX
mask(&a);
numberabsolute++;
return fabs(a);
Ì

mask(s)
,/* mask a double float number*/
,/* s:address of double */

unsigned char *s;

{
unsigned char *m;

m:&bitmask[0];
*5:*g {¿ *m; s++; m++;
*s:*s & *m; s++; m++;
*s:*s & *m; s++; m++;
*s:*s & *m; s++; m++;
*s:*s & *m; s++; m++;
*s=*s & *m; s++; m++;
*s:*s & *m; s++; m++;
*S:*S & *m;

l

crlfo
{

printf("\n");
Ì

296 GAA,IE.C

setupbitmask(bits)
int bits;
{
int i;
switch.(bits)
{
case
case
case
case
case
case
case
case
case
case
CASC

(i:O;i<8;i++) bitmask[i]:masksetl [i]; return;
(i:O;i<B;i++) bitrnask[i]:maskset2 [i]; return;
i:0 ; i<8 ;i+ +) bitmask[i] :maskse t3 [i] ; re turn;
i:0;i<8;i++) bitmask[i]:maskset4[i]; return;
i:0; i<8; i++) bitmask[i] :masksetS [i] ; return ;
i:0;i<B;i++) bitmask[i]:maskset6[i]; rerurn;
i:0;i<8;i++) bitmask[i]:masksetT[i]; return;
i:0;i<8;i++) bitmask[i]:maskset8[i]; return;
i:0;i<8;i++) bitmask[i]:maskset9[i]; return;
i:0;i<8;i++) bitmask[i]:masksetl0[i]; return;
i:0;i<8;i++) bitmask[i]:masksetll [i]; return;

(i=0;i<8;i++) bitmasklil :maskset34 [i] ; return;
(i:0;i<8 ;i++) bitmasklil :maskset3 5 [i] ; return;
(i:0;i<8;i++) bitmask[i]:maskset36[i]; return;
(i:0;i<8;i++) bitmasklil:maskset3T[i]; return;
(i=0;i<8 ;i++) bitmasklil :maskset3 8 [i] ; return;
(i:0;i<8 ;i++) bitmasklil :mas kset39 [i] ; return;
(i:0;i<8;i++) bitmask[i]:maskset4O[i]; return;
(i:0;i<8;i++) bitmask[i]:maskset4l [i]; return;
(i:0;i<B;i++) bitmasklil:maskset42 [i]; return;
(i:0;i<8;i++) bitmask[i]:maskset43 [i]; return;
(i:0;i<8;i++) bitmask[i]:maskset44[i] ; return;
(i:0;i<8;i++) bitmask[i]:maskset45 [i]; return;
(i:0;i<8;i++) bitmask[i]:maskset46[i]; return;
(i:0;i<8;i++) bitmasklil:maskset4T[i]; return;
(i:0;i<B;i++) bitmask[i]:maskset48[i]; return;
(i:0;i<B;i++) bitmask[i]:maskset49[i]; return;
(i:0;i<8;i++) bitmasklil:maskset50[i]; return;
(i:0;i<8;i++) bitmask[i]:masksetSl [i]; return;
(i:O;i<B ;i++) bitmask[i]:masksets2 [i] ; return;
(i:0;i<8;i++) bitmask[i] :masksetS 3 [i] ; return;

1: for
2: for
3: for
4: for
5: for
6: for
7: for
8: for
9: for
10: for
11: for

case 12: for (i:0;i<8;i++) bitmask[i]:masksetl2[i]; return;
case 13: for (i:0;i<8;i++) bitmask[i]:masksetl3[i]; return;
case 14: for (i:0;i<8;i++) bitmask[i]:masksetl4[i]; return;
case 15: for (i:O;i<B;i++) bitmask[i]:masksetl5[i.l; return;
case 16: for (i:0;i<8;i++) bitmask[i]:masksetl6[i]; return;
case 17: for (i:0;i<8;i++) bitmask[i]:masksetlT[i]; return;
case 18: for (i:0;i<8;i++) bitmask[i]:masksetlS[i]; return;
case 19: for (i:0;i<8;i++) bitmask[i]:masksetl9[i]; return;
case 20: for (i:O;i<B;i++) bitmask[i]:maskset2O[i]; return;
case 2 1: for (i:0;i<8;i++) bitmask[i]:maskset2l[iì; return;
case 22: for (i:0;i<8;i++) bitmask[i]:maskset22[i]; return;
case 23: for (i:0;icB;i++) bitmask[i]:maskset23[i]; return;
case 24l. for (i:0;i<8 ;i++) bitmask[i] :maskset24 [i] ; reftrrn;
case 25: for (i:O;i<B;i++) bitmask[i]:maskset25[i]; return;
case 26: for (i:0;i<8;i++) bitmask[i]:maskset26[i]; return;
case 2 7: for (i:0;i<8;i++) bitmask[i] :masks et27 [i]; return;
case 28: for (i:0;i<8;i++) bitmask[i]:maskset28[i]; return;
case 29: for (i:0;i<8;i++) bitmask[i]:maskset29[i]; return;
case 30: for (i:0;i<8;i++) bitmask[i]:maskset3O[i]; return;
case 31: for (i:0;i<8;i++) bitmask[i]:maskset3l[i]; return;
case 32: for (i=0;i<8;i++) bitmask[i]:maskset32[i]; return;
case 3 3 : for (i:0;i<8 ;i++) bitmask[i] :maskset33 [i] ; return;
case 34: for
case 35: for
case 36: for
case 37: for
case 38: for
case 39: for
case 40: for
case 41: for
case 42: for
case 43: for
case 44: for
case 45: for
case 46: for
case 47:1or
case 48: for
case 49: for
case 50: for
case 51: for
case 52: for
case 53: for
Ì
Ì

297 GAME.C

Appendix F

SPICE deck Listittg

298

MULTIPUER CELL PROGRAM - MEAN VALUES OF PARAMF|ERS
.MODEL ENH NMOS VTO= 0.850 GAMMA= 0.620 PHI=0.65 I"AMBDA:0.06
+ LEVELF2
+ CGSO:48-10 CGDO=4E-10 CGBO:28-10
+ CBD:2OFF CBS:zOFF
+ RS:1.0 RD=1.0
+ TOX:lE-7 NSUB:2E15
.MODEL DEPL NMOS WO=-2.750 GAMMA= 0.650 PIII:0.65 TAMBDA:O.O4
+ LA/EF2
+ CGSO:48-10 CGDO:48-10 CGBO:2E-10
+ CBD:2OFF CBS:2OFF
+ RS:1.0 RD:1.0
+ TOX:18-7 NSUB:2E15
.SUBCKTYINV1 T23
Ml 3 2 2 0 DEPL l-22.5U W: 5.0U AD:l12.0p AS:100.0p
M2 2 I0 0 ENH L: 5.0U W:10.0U AD:100.0p AS:125.0p
.ENDS YII.{V1
.SUBCKTYII.{VZ I?3
M3 3 2 2 0 DEPL t=20.0U W: 5.0U AD:112.0p AS:137.0p
M4 2 T O O ENH L: s.OU W: s.OU AD:137.0P AS:lB7.OP
.ENDS YINV2
.SUBCKTXII{VI I23
M5 3 2 2 0 DEPL t-22.5U W:5.0U AD:112.0p AS:100.0p
M6 2 7 0 0 ENH L: 5.0U W:10.0U AD:100.0p AS:125.0p
.ENDS XINV1
.SUBCKTXINVz I23
M7 3 2 2 0 DEPL t=20.0U W: 5.0U AD:112.0p AS:100.0p
M8 2 1 0 0 ENH L: 5.0U W: 5.0U AD:100.0p AS:125.0p
.ENDS XIÌ.IV2
.SUBCKTAII.TVI T23
M9 3 2 2 0 DEPL t=20.0U W: 5.0U AD:112.0pAS:100.0p
M10 2 1 0 0 ENH L: 5.0U W:10.0U AD:100.0p AS:125.0p
.ENDS AI¡{VI
.SUBCKTAII.IV2 123
Mll 3 2 2 0 DEPL L:20.0U W: 5.0U AD:112.0p AS: 87.0p
Mtz 21 0 0 ENH tF 5.0U W= 5.0U AD: 87.0p AS:112.0p
.ENDS AI}N/z
.SUBCKT CII{VI I2 3
M13 3 2 2 0 DEPL tF22.5U W: 5.0U AD:l12.0p AS:100.0p
Mt4 2 1 0 0 ENH L= 5.0U W:10.0U AD=100.0p AS:125.0p
.ENDS CINVl
.SUBCKTCI}V2 L23
M15 3 2 20DEPL t=20.0U W:5.0U AD:112.0pAS:137.0p
M16 2 1 0 0 ENH L= 5.0U W= 5.0U AD:137.0p AS=112.0p
.ENDS CIl.IV2
.SUBCKTII{V L23
M17 3 2 2 0 DEPL L:20.0U W: 5.0U AD:112.0pAS: 87.0p
M18 2 10 0 ENH tF 5.0U W-- 5.0U AD:87.0p AS:125.0p
.ENDS II.{V
.SUBCKTNAND L234
MIg 4 3 3 O DEPL L:4O.OU W: 5.OU AD:25O.OP AS: 2O.OP
M20 3 1 5 0 ENH L: 5.0U W:10.0U AD:250.0p AS: 75.0p
M21 5 2 0 0 ENH L:5.0U W:10.0U AD:75.0p AS:123.0p
.ENDS NAND
.SUBCKTMUX1234567B9
M1 81 2 82 O ENH L:5.0U W: s.OU AS: 6O.OP AD: 6O.OP
M2 82 4 84 O ENH L: 5.OU W: 5.OU AS: 6O.OP AD: 6O.OP
M3 85 10 86 O ENH L: s.OU W:5.0U AS: 6O.OP AD:6O.OP
M4 86
M5 89
M6 90
M7 93
MB 94
M9 63
M10 62

L:5.0U W:5.0U AS: 60.0P AD:60.0P
L:5.0U W: 5.0U AS: 60.0P AD:60.0P
L:5.0U W: 5.0U AS: 60.0P AD: 60.0P
L:5.0U W: 5.0U AS: 60.0P AD:60.0P
L: 5.0U W:5.0U AS: 60.0P AD:60.0P
L:5.0U W: 5.0U AS: 60.0P AD:60.0P
t= 5.0u w: 5.0u AS: 60.0P AD: 60.0P

31880
21900
3L920
11 94 0
42960
22620
42600

ENH
ENH
ENH
ENH
ENH
ENH
ENH

299 SPICE deck

Ml1
M12
M13
M14
M15 74 13 73
M16 73 447r
"MFTAL MAINLY

w:5.0u
w:5.0u
w= 5.0u
w:5.0u
w= 5.0u
W:5.0U

AS: 6O.OP
AS:6O.OP
AS= 60.0P
AS:6O.OP
AS: 6O.OP
AS: 6O.OP

AD:6O.OP
AD:6O.OP
AD:6O.OP
AD:6O.OP
AD:6O.OP
AD:6O.OP

66 12 65
6s 33 64
70 23 69
69 33 67

O ENH
O ENH
O ENH
O ENH
O ENH
O ENH

LF 5.0U
LF 5.0U
I"= s.OU
I- s.OU
Þ 5.0u
Þ 5.0u

cl 1 0 0.005000P
c10 10 0 0.00s000P
cll 11 0 0.00s000P
cl2 12 0 0.00s000P
c13 13 0 0.00s000P
c2 2 0 0.00s000P
czr 210 0.00s000P
c22 22 0 0.00s000P
c23 23 0 0.005000P
c24 24 0 0.00s000P
c3 3 0 0.00s000P
c31 31 0 0.005000P
c32 32 0 0.00s000P
c33 33 0 0.00s000P
c34 34 0 0.00s000P
c4 4 0 0.00s000P
c4r 410 0.00s000P
c42 42 0 0.00s000P
c43 43 0 0.005000P
c44 44 0 0.00s000P
csO s 0 0.010000P
*MAINLY DIFFUSION
Rl r 10 1.000
R10 10 11 r.000
Rll 11 12 1.000
R12 12 13 1.000
R2 2 2r r.000
R2L 27 22 1.000
R22 22 23 1.000
R23 23 24 1.000
R3 3 31 1.000
R31 31 32 1.000
R32 32 33 r.000
R33 33 34 1.000
R4 4 4r r.000
R4r 41 42 1.000
R42 42 43 r.000
R43 43 44 1.000 '
R84 84 0 1.000
R88 88 s 1.000
R92 92 6 1.000
R96 96 6 1.000
R60 60 6 1.000
R64 64 6 1.000
R67 67 7 1.000
R71 71 7 1.000
R81 81 I r.000
R85 8s 8 1.000
RB9 89 8 1.000
R93 93 8 1.000
R66 66 9 1.000
R70 70 9 1.000
R74749 1.000
R63 63 9 1.000
.ENDS MUX
*NOMINAL CIRCUIT
"DIFFUSIONR16 2t 31 600.00

300 SPICE deck

R17 23 30 580.00
*ME-|AL
R3 5 6 850.00
"POLYSILICON

343.0
223.0
247.O
285.0

13 7 80.0
8 27 353.0
25 26 187.0

77.O2l

t2
34
824
910
11 1

R1
R2
R4
R5
R6
R7
R8
R9
R10 14 15 587.0
Rl1 L6 L7 260.0
R12 18 28 180.0
R13 t629 347.0
R14 19 20 3s7.0
R15 21 72 170.0
*CAPACITORS
*DIFF

cr7 23 0 0.070000P
*METAL

c3 s 0 0.200P
c5 9 0 0.050P
c7 13 0 0.004P
c9 25 0 0.009P
J.POLY

c132
c133
C4
C1
C2
C6
C8
c10

11 0
BO
140

0.100P
0.010P
0.008P

0.030P
0.050P
0.010P
0.009P
0.020P
0.0B0P
0.009P
0.099P

132 0 0.010P
133 0 0.010P
0 0.120P
0
0

I
1

3

cll 16 0
c72 18 0
c13 16 0
cI4 19 0
c15 2LO
c16 21 0
*GATES

2
4
10
72
15

X1
x2
X3
x4
x5
X6
x7
X8
X9
x10
xl1

99 YINV1
99 YIl.Wz
99 XIÌ.{VI
99 XINV2
99 AIN\/I
99 AIÌ.IV2
99 CIl.ñ/l
99 CIl.tVz
99 NAND
99 IòÑ/
28 29 99 30 3r r32 133 MUX

*VOLTAGES

VDD 99 O DC 5.0
vcrN 19 0 0 pursE(0 5 lN sN 5N 200N 400N)
vsrN L4 o 0 PUrsE(O 5 lN 5N 5N 200N 400N)
vxrN 9 0 0 PUrsE(O 5 1N 5N 5N 200N 400N)
vyrN 1 0 0 PUrsE(O 5 lN 5N 5N 200N 400N)
*SIMUI.ATION

.PRTNT TRAN V(132) V(133)

.OPTIONS TNOM:27.0 NOPAGE

.TRAN lNSEC lsONSEC

.END

3
5
11
13
t6

17 18
20 2L
22 23
67 8
2425
26 27

301 SPICE deck

lA+881

IABHSBeI

Bibliography

A.R. Alvarez et al. Application of Statistical Design and Re-

sponse Surface Methods to Computer-aided VLSI Device De-

sign. IEEE Transactions on Computer-Aided Design,, CAD-

6:272-288, February 1 988.

M.C. August, G.M. Brost, C.C. Hsiung, and A.J. Schlif-

fleger. Cray X-MP: The Birth of a Supercomputer. Com-

puter, 22(L) :a5-52, January 1989.

[AC8e] B.D. Ackland and R.A. Clark. Event-EMU: An Event Driven

Timing Simulator for MOS VLSI Circuits. Proceedings of the

International Conference on Cornputer-Aided Design, pages

80-83, November 1989.

[ACS85] V. Ashok, R. Costello, and P. Sadayappan. Distributed Dis-

crete Event Simulation using Dataflow. In Proceedings of the

International Conference on Parallel Processing, pages 503-

510, August 1985.

lAG75l R.B. Ash and M.F. Gardner. Topics in Stochastic Processes.

Academic Press, New York, 1975.

lAG82l B.W. Arden and R. Ginosar. MP/C: A Multiproces-

sor/Computer Architecture. IEEE Transactions on Comytut-

ers, C-31(5):455-473, I\{ay 1982.

302

lAJ88l

IAmb85]

IArn7a]

IBan88]

lBDe2l

IBel8e]

lBFeol

lBHSvsll

R. Agrawal and H.V. Jagadish. Partitioning Techniques for

Large-Grained Parallelism. IEEE Transactions on Cornput-

ers, 37 (12) :1627 -1634, December 1988.

A. Ambler. Microprocessor Design Speeds Simulation. Elec-

tronics Week, pages 30-31, April 1985.

L. Arnold. Stochastòc Differential Equations: Theory and Ap-

plications. John Wiley, New York, 1974.

P. Banerjee. A Tutorial on the Use of Parallel Processing

in VLSI CAD Applications: Parallel Algorithms for Design

Verification. In International Conference on Computer Aided

Design, November 1988.

I(. Bogineni and P.W. Dorvd. An Optically Interconnected

Distributed Shaled Memory System: Architecture and Per-

formance Analysis. International Journal of High Speed Corn-

puting,, aQ) :17 9-212, 1992.

C.G. Bell. The Future of High Performance Computers

in Science and Engineering. Cornrnunications of the ACM,

32(9):1091-1101, September 1989.

N. Bergmann and X. Fan. Data Formats and Arithmetic Op-

erators for Serial/Parallel Trade-Offs in Pipelined Architec-

tures. IEEE International Symposiurn on Circuits and Sys-

tems, pages 1248-125\, \{ay 1990.

R.I(. Brayton, G.D. Hachtel, and A.L. Sangiovanni-

Vincentelli. A Survev of Optimization Techniques for

Integrated-Circuit Design. Proceedings of the IEEE, 69(10),

October 1981.

303

lBJSeol

[BKB82]

IBra75]

IBro88]

IBry8a]

IBry88]

lBS8ol

lBS87l

P. Banerjee, M.H. Jones, and J.S. Sargent- Parallel Simulated

Annealing Algorithms for Cell Placement on Hypercube Mul-

tiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 1 (1):91-106, JanuarY 1990.

D. Bondurant, M. I(opman, and P. Bytheway. A High-

Performance Configurable Microprocessor. VLil Design,

pages 16-19, November 1982.

J.V. Bradley. Probability ; Decision; Statistics. Prentice-Hall,

Englewood Cliffs, N.J., 1975.

A. Brocco. Macromodeling CMOS Circuits. IEEE Transac-

ti o ns o n C o mp ut er - A i d e d D es i g n,, 7 (12) :12a0 -1248, D ecemb er

1988.

R.E. Bryant. A Switch-Level Model and Simulator for MOS

Digital Systems. IEEE Transactions on Cornputers, C-

33(2): 160-1 77, February 1984.

R.E. Bryant. Data Parallel Switch-Level Simulation. In Pro-

ceedings of the International Conference on Cornputer-Aided

Design, pages 354-357, November 1988.

R.I(. Brayton and R. Spence. Sensitiuity and Optimisation.

-,1980.

J. Benkoski and A.J. Strojwas. A New Approach to Heirarchi-

cal and Statistical Timing Simulations . IEEE Transactions

on Cornputer-Aided fi¿-sign, CAD-6(6):1039-1052, November

1987.

I. Buch and Y. Taumann. Bargaining with a Ruler. Interna-

tional Jou,rnal of Game Theory,21:131-148, 1992.

lBre2l

304

Icai90] In E.R. Caianiello, editor, Third ltalian Worlcshop on Parallel

Architectures and Neural Networlcs, page 65, Singapore, May

1990. World Scientific.

lcBEs6l P. Cox, R. Burch, and B. Bpler. Circuit Partitioning for Paral-

lel Proc.essing. Tn Proceedings of the International Conference

on Computer-aided Design, pages 186-189, November 1986.

IcFLe1] V. Cantoni, M. Ferretti, and L. Lombardi. A Comparison of

Homogeneous Hierarchical Interconnection Structures. Pro-

ceedings of th.e IEEE,79(a):arc-428, April 1991.

lcG86l A.tr. Charlesworth and J.L. Gustafson. Introducing Repli-

cated VLSI to Supercomputing: the FPS-164/MAX Scientific

Computer. Computer, pages Il-23, March 1986.

lcGRs3l W.M. Coughran, Jr., B. Grosse, and D.J. Rose. CAzM: A

Circuit Analyzer with Macromodelling. IEEE Transactions

on Electron Deuices, ED-30(9):1207-1209, September 1983.

[chi6g] Paul M. Chirlian. Basic Network Theorg. McGraw-Hill, 1969

lcMSe2l \M.E. Clark, G.L. McColm, and W.R. Stark. On the Complex-

ity of Deadlock-Free Programs on a Ring of Processors. Jour-

nal of Parallel and Distributed Computing,16:67-Tl, 1992.

ICoh83] P.B. Cohen. Layout Considerations in Predicting VLSI Per-

formance. VLil Design, pages 64-65, January 1983.

ICol82] A. Colman. Game Theory and Erperimental Games: The

Study of Strategic Interaction. Pergarnon Press, 1982.

Icsv88] G. Casinovi and A. Sangiovani-Vincentelli. A New Aggrega-

tion Technique for the Solution of Large Systems of Algebraic

Equations. IEEE Trattsactions on Com'puter-Aided Design,,

7(9):976-986, Septernber' 1988.

305

IDet86]

lcr84l

lcwrs3l

IcYC84]

[DCR82]

lDGrssl

lDKPssl

lDLSs6l

lDMSssl

N.H. Christ and A.E. Terrano. A Very Fast Parallel Processor-.

IEEE Transactions on Comqtuters, 33(4), April 1984.

M. Canepa, B. Weber, and H. Talley. VLSI in Focus: Design-

ing a 32-bit CPU Chip. VLil Design, pages 20-24, January

1983.

P. Cox, P. Yang, and P. Chatterjee. Statistical Modelling for

Bfficient Parametric Yield Bstimation. In Proceedings of the

International Electron Deuice Meeting, pages 242-245, 1984.

T. Downs, A.S. Cook, and P.G. Rogers. A Partitioning Ap-

proach to the Statistical Design of Large Circuits and Sys-

tems. Intern.ational Symposiurn on Circuits and Systerns,

i:138,1982.

R. Dettmer. The Artful Transputer. Electronics and Power,

August 1986.

J. Demongeot, E. Goles, and M. Tchuente, editors. Dynamical

Systems and Cellula Automaúø. Academic Press, Paris, 1985.

M. Denneau, E. Kronstadt, and G. Pfister. Design and Imple-

mentation of a Software Simulation Engine. Computer Aided

Design, 15(3), May 1983.

J.T. Deutsch, T.D. Lovett, and M.L. Squires. Parallel Com-

puting for VLSI Circuit Simulation. VLil Systems Design,

pages 46-52, July 1986.

S.W. Director, W. Maly, and A.J. Strojwas. VLSI Design

for Manttfacturing: Yield Enhancernent. I(luwer Academic

Publishers, Boston, 1988.

D. Dumlugol, P. Odent, J.P. Cockx, and H.J.D. Man.

Switch-trlectrical Segnrented Wavefolm Relaxation for Dig-

lDocMsTl

306

ital MOS VLSI and its Acceleration on Parallel Comput-

ers. IEEE Transactions on Computer-Aided Design, CAD-

6(6):992-1005, November 1987.

IDon88] J.J. Dongarra. Experimental Parallel Computing Architec-

tures. In Special Topics in Supercomputinq, Amsterdam,

1988. Elsevier Science.

lDSSSGell F. Distante, M. Sami, R. Stefanelli, and G. Storti-Gajani.

Mapping Neural Nets onto a Massively Parallel Architec-

ture: A Defect-Tolerance Solution. Proceedings of the IEEE,

79@):aaa-460, Aplil 1991.

IDun90] R. Duncan. A Sulvey of Parallel Computer Architectures

C ornputer, 23(2) :5-16, February 1 990.

IEAKHAK92] M.O. Esonu, A.J. Al-Khalili, S. Harir, and D. At-Khalili. Syt-

tolic Arrays: How to Choose Them. In IEE Proceedings-U,

volume 139, pages 179-188, May 1992.

IEice2] J. Eichberger. Cooperative Game Theory; Games with In-

complete Information; Bargaining Theory; Zero-Sum Games.

In Research Papers: Uniuersity of Melbourne, Victoria, Aus-

tralia, (284, 290, 330, 332), 1991-1992.

IFAGssl D.K. Ferry, L.A. Akers, and E.W. Greeneich. Ultra Large

Sco,le Integrated Microelectronics. Prentice Hall, New York,

1988.

IFHJ+83] H. Fromm, U. Hercksen, Ii-H. John, R. Klar, and W. Kleindo-

der. Experiences with Performance Measurement and Mod-

eling of a Processor Array. IEE Transactions on Cornputers,

C-32(1):15-19, January 1983.

S.L. Freeney. Special Purpose I{ardware for Digital Filtering.

Proceedings of th.e I.E.E.E., April 1975.

IFre75]

307

IGab86]

IGGK+831

lGJMwell

lGSTel

lGS82l

R.P. Gabriel. Massively Parallel Computels: The Connec-

tion Machine and NON-VON. Science, 23I:975-978, Febru-

ary 1986.

A. Gottlieb, R. Grishman, C.P. I{ruskal, K.P. McAuliffe,

T,. Rrrdolf, ancl M. Snir. The NYU Ultracomputer - Designing

an MIMD Shared Memory Parallel Computer. IEEE Trans-

actions on Computers, C-32(2):175-189, February 1983.

K. Gallivan, W. Jalby, A. Malony, and H. Wijshoff. Perfor-

mance Prediction for Parallel Numerical Algolithms. Inter-

national Journal of High Speed Computing, 3(1):31-62,799I.

I.I. Gilman and A.V. Skorohod. The Theory of Stochastic

Processes, Volume 11L Springer-Verlag, Berlin, 1979.

S. Garcia and K.S. Sriram. A Survey of IC CAD Tools for

Design, Layout and Testing. In VLSI DESIGN, pages 68-73,

September 1982.

L.A. Hageman. Applied Iteratiue Methods. Academic Press,

New York, 1981.

N. Herr and J.J. Barnes. Statistical Circuit Simulation mod-

elling of CMOS VLSI. IEEE Transactions on Computer-

Aided Desi,gn, CAD-5:15-22, Jantary 1986.

W.D. Hillis. New Computer Architectures and their Relation-

ship to Physics or Why Computer Science is No Good. In-

ternational Journal of Theoretical Physics, 2I(31 4):255-262,

1982.

R.B. I{itchcock. Timing Verification and the Timing Analysis

Program. In 19th p¿-sign Autonation Conference, page 594,

1982.

[Hag81]

lHB86l

lHil82l

lHirs2l

308

IHM8e]

lHNSBe0l

IHon87]

lHPeol

IIch83]

lJazT0l

J.P. I{ayes and T. Mudge. Hypercube Supercomputers. Pro-

ceedings of th,e IBEE,77(12):1829-1841, Decernber 1989.

D.S. Ilarrison, A.R. Newton, R.L. Spickelmier, and T.J.

Barnes. Electronic CAD Frameworks. Proceedings of the

IEEE, 78(2):393-41 7, February 1990.

R.W. Hon. Dynamic Analysis Tools. In S.M. Rubin, edi-

tor, Computer Aids for ITLSI Design, Reading, Mass., 1987.

Addison-Wesley.

J.L. Hennessy and D.A. Patterson. Comytuter Architecttt're: A

Quantitatiue Aqtproaclz. N{organ l(aufmann, San Mateo, CA,

1990.

T. Ichiishi. Game Tlteory for Economic Analysis. Academic

Press, New York, 1983.

A.H. Jazwinski. Stochastic Process and Filtering Theory

Academic Press, New York, 1970.

N.P. Jouppi. Timing Analysis and Performance Improvement

of MOS VLSI Designs. IEEE Transactions on Cornputer-

Aided Design, CAD-6(a):650-665, July 1987.

IJou87]

IKob82]

lKoeol E.S. I{uh,and T. Ohtsuki. Recent Advances in VLSI Layout.

In Proceedings of the IEEE, page 237, February 1990.

R.K. Koblitz. Interactive Design Centering by an Efficient

Assessment Criterion. IEEE Transactions on Circuits and

Systems, pages 130-133, 1982.

[Kun87] S. Y. Kung. VLil Array Processors. Prentice Hall, 1987

H.W. Lang. The Instr-ttction Systolic Alra5', A Parallel Archi-

tecture foL VLSI. [ntegrat.ion VLSI Journal, 4:65-74, 1986.

ILan86]

309

ILew72]

ILew88]

ILig87]

lLJell

[LMP82]

lLR88l

lLSell

lLSVs2l

ILuk75]

D. Lewin. Theory and Design of Digital Comqtuters. Nelsoni

1972.

D.M. Lewis. Hardware Accelerators for Timing Simulation

of VLSI Digital Circuits. IEEE Transactions on Computer-

Ai,derl l)esign, 7(1 1):1 134-1 149, November 1988.

M.R. Lightner. Modeling and Simulation of VSLI Digital Sys-

tems. In Proceedings of the IEEE, volume 75, pages 786-796,

1987.

R.M. Lea and I.P. Jalowiecki. Associative Massively Parallel

Computers. Proceedings of the IEEE, 79@):a69-479, April

1991.

Y.H. Levendel, P.R. Menon, and S.H. Patel. Special-Purpose

Computer Logic Simulation using Distributed Processing.

The BeIl Systern Technical Journal, 61(10):2873-2909, De-

cember 1982.

S.W. Lee and R.C. Rennick. A Compact IGFET Model

- ASIM. IEEE Transactions on Computer-Aided Desi,gn,

7 (9):952-975, September 1988.

H. Li and Q.F. Stout. Reconfigurable SIMD Massively Paral-

lel Computerc. Proceedings of the IEEE,79@):a29-443, April

1991.

E Lelarasmee and A.L. Sangiovanni-Vincentelli. A New Re-

laxation Technique for Simulating MOS Integrated Circuits.

IEEE Transactions on Circuits and Systerns, pages 1202-

1205, June 1982.

Y.L. Luke. Mathematical Functions and their Approximation.

Academic Press, New York, 1975.

310

IMal82]

ILVeo]

lLwe2l

IMal8e]

IMale0]

IMar82]

IMaz92]

lMcsol

[McG80]

[McM82]

L.A. Lopez and.I{.4. Valimohamed. Software Environment

for Implementing Engineering Applications on MIMD Com-

puters. Engineering with Computers, 6:195-210, 1990.

K-J. Lin and C-W. Wu. Realisation of Pipelined Mesh Algo-

rithms on I{ypercubes. IEE Proceedinqs-U, 139(3):189-194,

May 1992.

W. Maly. An Approach to Yield Optirnization by a Sample

Neiglrbourlrood Method. In IEEE, page 202, 1982.

W. Maly. treasibility of Large Area Integrated Circuits. In

Wafer Scale Integration, pages 31-56, Boston, 1989. I(luwer

Academic Publishers.

W. Maly. Computer-Aided Design fo¡ VLSI Circuit N4anufac-

turability. Proceedings of the IEEE, 78(2):356-392, February

1990.

G.I. Marctn;J. Methods of Numerical Mathematics. Springer-

Verlag, New York, 1982.

P. Mazumder. Layout Optimisation for Yield Enhancement in

on-chip-VLSI/WSI parallel processing . In IEE Proceedings-8,

volume 139, pages 2l-28, January 1992.

Carver Mead and Lynn Conway. Introducti,on to VLSI Sys-

tems- Addison-Wesley, 1980.

T.P. McGarty. Stochastic Systems and State Estirnation.

John Wiley, New York, 1980.

S. McMinn. Semiconductor Manufacturing Considerations for

VLSI Designels. VLSI Design, pages 16-18, July i982.

L. Mei and R.W. Dutton. Technology Modeling for VLSI

Devices. Solid State Technology, pages 139-143, June 1983.

lMD83l

311

IMF86a]

lMFs6bl

lMFell

lMGsel

[MH8e]

[Mir81]

lMM83l

lMP80l

lMRsol

[MSeo]

D. May and T. Fuge. The T800 Tra,nsputer. In Electronics,

November 1986.

V. Mulitinovic and D. Fura. An Introduction to GaAs Mi-

croprocessor Architecture for VLSI. Computer, pages 31-41,

March 1986.

M. Maresca and T.J. Fountain. Massively Parallel Comput-

ers. volume 79, pages 395-401, April 1991.

C. McCreary and H. Gill. Automatic Determination of Grain

Size for Efficient Parallel Processing. Communications of the

ACAI, 32(9): 1073-1078, September 1989.

T. Merrow and N. Henson. System Design for Parallel Com-

puting. High Perforn¿ance Systems, pages 36-44., January

1989.

W.L. Miranker. Numerical Methods for Sti,ff Equati,ons. D.

Reidel, Holland, 1981.

J.V. McCanny and J.G. McWhirter. Yield Enhancement

of bit-level Systolic Array Chips using Fault Tolerant Tech-

niques. Electronics Letters., lg!a):525-526, July 1983.

O. Moesqhlin and D. Pallascke, editors. Game Theory and

Math,eínatical Econornics. North-Holland, Amsterdam, 1980.

E.F. Mishchenko and N.Kh. Rozov, editors. Di,fferential

Equations with Small Parameters and Relaxation Oscillations.

Plenum Press, New York, 1980.

P.I(. Mozumder and A.J. Strojwas. Statistical Control

of VLSI Fabrication Processes. Proceedings of the IEEE,

7 8Q):a36-455, February 1990.

312

IMSB88]

lMSDs6l

[Mur82]

[Mur90]

INev89]

[New79]

lNPSVsel

lNSDs6l

P.I(. Mozumder, A.J. Strojwas, and D. Bell. Statistical Pro.

cess Simulation for CAD/CAM. ln Proceedings of the IEEE

1988 Custom INtegrated Circuits Conferencq pages 13.5.1-

13.5.4, May 1988.

W. Malv, A.J. Stroiwas, and S.W. Dilector. VLSI Yield Pre-

diction and Estirnation: A Unified Framework. IEEE Trans-

actiotzs on Computer-Aided Design, CAD-5(1):114-130, Jan-

uary 1986.

S. Muroga. Fabrication and Cost Analysis. In VLSI Sys-

tern Design - When and How to Design Very-Large-Scale In-

tegrated Circuits. John Wiley and Sons, 1982.

O.J. Murphy. Nearest Neighbour Pattern Classification Per-

ceptrons. In Proceedings of the IEEE, volume 78, pages 1595-

1597, 1990.

O. Nevanlinna. Remarks on Picard-Lindelof lteration. BIT,

29:328-346, 1989.

A.R. Newton. Techniques for the Simulation of Large-Scale

Integrated Circuits. IEEE Transactions on Circuits and Sys-

tems, CAS-26(9) :7 4l-7 49, September 1979.

A.R. Newton, D.O. Pederson, and A. Sangiovanni-Vincentelii.

SPICE 381 User's Guide. University of California, August

1989.

S.R. Nassif, A.J. Strojwas, and S.W. Director. A Methodol-

ogy for Worst-Case Analysis of Integrated Circuits. IEEE

Transactions on Computer-Aided Design, CAD-5:104-113,

January 1986.

313

lNSVs4l A.R. Newton and A.L. Sangiovanni-Vincentelli. Relaxation-

based Electrical Simulation. IEEE Transactions on

Computer-Aided. Design, CAD-3(a):308-331, October 1984.

locDsel P. Odent, L. Cla,esen, and H. De Man. Feedback Loops and

T,a,rge Sr¡bcilcuits in the Multiprocessor Implementation of

a Relaxation-Based Circuit Simulator. In Proceedings of the

26th Design Autornation Conference)pages 25-30, June 1989.

loHH8el D. Overhauser, I. Hajj, and Y. Hsu. Automatic Mixed-Mode

Timing Simulation. In Proceedings of the International Con-

ference on Computer-Aided Design, pages 84-87, November

1989.

loN86l P. Odryna and S. Nassif. The ADEPT Timing Simulation

Algorithm. VLil Systems Design, pages 24-34, mar 1986.

[oPPe1] L.F. Ortiz, R.Y. Pinter, and S.S. Pinter. An Array Language

for Data Parallelism: Definition, Compilation and Applica-

tions. Journal of Supercomputing, S(1):7-30, June 1991.

[Pape1] A. Papoulis. Probability, Random Variables and Stochastic

Processes. McGraw-Hill, New York, 1991.

[Pel83] D.L. Peltzer. Wafer-Scale Integration: The Limits of VLSI?

VLil Design, pages 43-47, September 1983.

D. Parkinson and H.M. Liddell. The Measurement of Perfor-

mance on a Highly Parallel System. IEEE Transactions on

Cornputers, C-32(1) :32-40,, January 1983.

IPoi83] C.J. Poirier. QRS User's Guide. Microelectronics Centre of

North Carolina, 1983.

lPL83l

314

IPR82]

IPrie0]

IPw8e]

IRDe3]

IRen89]

lRM83l

[Rob87]

IRSeo]

lRsvs6l

D.J. Pradhan and S.M. Reddy. A Fault-Tolerant Communi-

cation Architecture for Distributed Systems. IEEE h'ansac-

tions on Computers, C-31(9):863-870, September 1982.

J.F. Prins. A Framework for Efficient Execution of Array-

Based Languages and SIMD Computers. Third Symposium

on the frontiers of Massiuely Parallel Computers, page ??,

1990.

R.S. Peipho and W.S. Wu. A Comparison of RISC Architec-

tures. IEEE Micro,9(a):51-62, August 1989.

A.E. Ruehli and G.S. Ditlow. Circuit Analysis, Logic Simu-

lation and Design Verification for VLSI. Proceedin.gs of the

IEEE, 71(1):3a-143, January 1093.

P.V. Renterghem. Transputers for Industrial Applications.

Concurrency: Practice and Erperience, 1(2):135-147, Decern-

ber 1989.

J.E. Requa and J.R. McGraw. The Piecewise Data Flow Ar-

chitecture: Architectural Concepts. IEEE Transactions on

C ornputers, C-32(5) :425-437, May 1 983.

F. Robert. Discrete Iterations: A Metric Study. Springer-

Verlag, New York, 1987.

S. Ranka and S. Sahni. Computing Hough Transforms

on Hypercube Multicomputers. Journal of Supercornputing,

aQ):169-190, June 1990.

D. Riley and A. Sangiovanni-Vincentelli. Models for a New

Plofit-Based Methodology for Statistical Design of Integrated

Circuits. IEEE Transactions on Contputer'-Aided Design,

CAD-5(1):131-151, Januar.y 1986.

315

IRut8e]

IsAFre2]

lsB88l

[Sca91]

lscHs6l

ISch8e]

[Sche1]

lsD86l

R.A. Rutenbar. Simulated Annealing Algorithms: An

Overview. IEEE Circuits and. Deuices Magazine, pages 19-

26, January 1989.

G.B. Steven, R.G. Adams, P.A. Findlay, and S.A. Trarnrs.

iHARP: A Multiple Instruction Issue Processor. In IEE

Proceedings-E, volume 139, pages 439-452, September 1992.

L. Soule and T. Blank. Parallel Logic Simulation on Gen-

eral Purpose Machines. In Proceedings of the 25th Design

Automation Conference, pages 166-171, June 1988.

D.H. Scaefer. The Characterization and Representation of

Massively Parallel Computing Structures. Proceedings of the

IEE E, 79(\:a61479, April 1991 .

J.P. Spoto, W.T. Coston, and C.P. Hernandez. Statistical In-

tegrated Circuit Design and Characterization. IEEE Transac-

tions on Computer-Aided Design, CAD-5(1):90-103, January

1986.

H. Schroder. Top-Down Design of Instruction Systolic Ar-

rays fpr Polynomial Interpolation and Evaluation. ,Iournal of

P arallel and Distributed Computing,, 6:692-703, 1989.

K.R. Schneider. A Remark on the Wave-Form Relaxation

Method. International Journal of Circuit Theory and Appli'-

cations, 19: 101-104, 1991.

C.J.B. Spanos and S.W. Director. Parameter Extractionfor

Statistical IC Process Characterization. IEEE Transactions

on Comytuter-Aided Design, CAD-5(1):66-78, January 1986.

F.S. Shaw and S. Frederick. An Intriduction to Relaration

A,[et.hods. Dover Publications, New York, 1953.

[sF53]

316

lsG82l

lsGC+8el

E.E. Swartzlander and B.I(. Gilbert. Supersystems: Tech'

nology and Architecture. IEEE Transactions on Computers,

C-31(5):399-409, May 1982.

R.A. Saleh, I(.4. Gallivan, M-C. Change, I.N. Hajj, D. Srnart,

and T.N. Trick. Parallel Circuit Simulation on Supercomput-

ers. Proceedings of the IEEE,77(12):1915-1931, December

1989.

[Shee1]

lsrell

W. Shen.

Transforms

1991.

Systolic Arrays fol Multidimensional Discrete

Journal of Suytercomputing, 4(1):1-16, January

IShu83] M. Shubik. Game Theory in the Social Sciences: Concepts

and Solutio¿s. MIT Press, 1983.

D. Smitley and I{. Iobst. Bit-Serial SIMD on the CM-2 and

the CRAY-2. Journal of Parallel and Distributed Computing,

11:135-145,1991.

D.B. Skillicorn. A Taxonomy for Cornputer Architectures

Computer, 2l(Ll):a6-57, November 1988.

D.B. Skillicorn. Models for Practical Parallel Computation.

International Journal of Parallel Programming, 20(2):733-

158, 1991.

A.P. Sage and J.L. Melsa. Estimation Theory: with Appli-

cations to Cornmunications and Control. McGraw-Hill, New

York, 1971.

M.A. Styblinski and L.J. Opalski. Algor-ithms and Software

Tools for IC Yield Optimization Based on Fundamental Pab-

rication Parameters. IEEE TRansactions on Computer-Aided

Design, CAD-5(1):79-89, Janualy 1986.

lski8sl

[skiel]

lsM7ll

lsoB6l

3i7

ISoua3] R.V. Southwell. On Relaxation Methods: a Mathematics for

Bngineering Science. Proceedings of the Royal Society of Lon-

don: Series 4,184:253-288, 1943.

M.A. Styblinski and A. Ruszczynski. Stochastic Approxima-

tion Approach to Statistical Circuit Design. Electronics Let-

lers, 19(8):300-301, April i983.

J.J. Shynk and S. Roy. Convergence Properties and Station-

ary Points of a Perceptron Lear-ning Algorithm. In Proceed-

ings of the IEEE, volume 78, pages 1599-1603, 1990.

A.J. Strojwas and A. Sangiovanni-Vincentelli. Foreward to

Statistical Techniques in VLSI Design Issue. IEEE Trans-

actions on Cornputer-Aided Design, CAD-5(1):1-2, January

1986.

M.L. Stein. An Efficient Method of Sampling for Statistical

Circuit Design. IEEE Transactions on Computer-Aided De-

sign, C AD-5(l):23-29, January 1986.

L. Stiller. Group Graphs and Computational Symmetry on

Massively Parallel Architecture. Journal of Supercomputing,

5(2):99-118, October 1991.

A.J. Strojwas. Design for Manufacturability and Yield. In

Proceedings of the 26th Automation Conference, pages 454-

459, 1989.

V.L. Smith and A.W. Williams. Experimental Market Eco-

nomics. S cientifi c Arneri can, 7 7 (12) :7 2, December 1 992.

A.D. Singh and Y. Youn. Defect Tolerance Scheme for gi-

gaFlop WSI Architectures. Proceedings of the International

Conference on Wafer Scale Integration, pages 109-115, 1990.

lsR83l

lsReol

lssvs6l

lStes6l

lstiell

lStrsel

Iswe2]

lsYeol

318

ITak62]

[Tam91]

[TC86a]

lrcs6bl

[Sze83] Sze. VLil Technology. McGraw l{ill, 1983.

L. Takacs. Introduction to th.e Theory of Queues. Oxford

University Press, New York, 1962.

K. Tamura. High Speed Computing System for Scientific and

Technological Uses. Journal of SuperConzputitzg, 5:157-168,

1991.

D. Tsao and C. Chen. A Fast-Timing Simulator for Digital

MOS Circuits. IEEE Transactions on Computer-Aided De-

sign, C AD-5(a):536-540, October 1986.

B-Y. Tsaur and C.I{. Chen. Submicrometer CMOS Devices

in Zone-Melting-Recrystallized SOI Films. IEEE Electron De-

uice Letters, trDL-7(7):43-445, July 1986.

[rej85] E.R. Teja. Distributed Supermicro Architectures tackle Com-

putationally Intensive Chores. EDN, pages 5I-54, May 1985.

[TMVKe2] E.H. Tizwell, S.A. Matar, D.A. Voss, and A.Q.M. Khaliq.

Explicit Numerical Methods with Enhanced Stability Prop-

erties for First-Order Autonomous Initial-Valued Problems.

Internati,onal Journal of Engineering Science, 30(3):379-392,

1992.

IVau92] J.G. Vaughan. Static Performance of a Divide and Con-

quer Information-Distribution Protocol Supporting a Load-

Balancing Scheme. In IEE Proceedings-E, volume 139, pages

430-438, September 1992.

IvDe0] H.A. Vander. Vorst and P.Van. Dooren. Parallel algorithms

for numerical linear algebra. In Aduances in Parallel Comqtut-

ing, Amsterdam, 1990. Nolth-Holland.

319

lvP82l

[Wer8a]

lwG83l

[Won71]

IWTHPel]

lwYc8Tl

[YC82]

IYHC+861

lziasz)

A. Vladimirescu and D.o. Pederson. Performance Limits of

the Classie Circuit Simulator Program. IEEE Transactions

of Circuits and System.s' pages 1229-1232, 1982'

J. Werner. A System engineer's Guide to Simulators' VLSI

Design, pages 27-3I, FebruarY 1984.

R.M. Warner and B.L. Grung. Transistors: Fundam'entals for

the Integrated Circuit Engineer. John Wiley, New York, 1983'

E. Wong. Stoclt.astic Processes in Information and Dynamical

Systems. Springer-Verlag, New York, 1971.

N.B. Wilding, A.S. Trerv' K.A. Hawick, and G.S' Pawley' Sci-

entific Modeling with Massively Parallel SIMD Computers.

Proceedings of the IEEE,79(\:57a-585, April 1991'

I{.C.K. Weng, P. Yang, and J.H. Chern. A Predictor/CAD

Model for Buried-Channel MOS Transistors. IEEE Trans-

actions on Cornputer-Aided Design, CAD-6(1):4-16, January

1987.

P. Yang and P.K. Chatterjee. SPICE Modelling for Small Ge-

ometry MOSFET Circuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systerns, CAD-

1(a):169.182, October 1982.

P. Yang, D.E. Hocevar, P.F. Cox, C. Machala, and P'K' Chat-

terjee. An Integrated and Efficient Approach for MOS VLSI

statistical Design. IEEE Transactions on computer-Aided

Design, CAD-5(1):5-14, January 1986.

S.G. Ziavras. On the Problem of Expanding Hypercube-

Based Systems. Journal of Parallel and Distributed Comput-

ing, 76:41.-53, 1992.

320

