On the Computational Role of the Simple Cells in Early Vision

by

Tim R. Pattison, B.E. (Hons.), B.Sc.

Thesis submitted for the degree of

Doctor of Philosophy

The University of Adelaide
Faculty of Engineering
Department of Electrical and Electronic Engineering

October, 1993
TABLE OF CONTENTS

Abstract vii
Declaration ix
Acknowledgments xi
List of Figures xiii
List of Tables xv
Glossary xvii

1 Introduction 1

1.1 Background and Motivation 1
1.1.1 The Simple Cell Receptive Field Profile 1
1.1.2 Neural Networks for Sensory Signal Processing 2
1.1.3 Summary 3
1.2 Overview 4
1.3 Intended Audience 5

2 The Gabor Function Model of Simple Cell Receptive Field Profiles 7

2.1 Introduction 7
2.2 Simple Cell Receptive Field Profiles 7
 2.2.1 Spatial Receptive Field Profile 7
 2.2.2 Spectral RFP 11
 2.2.3 Spatial Linearity 12
 2.2.4 Spatiotemporal RFP 15
 2.2.5 Bicocular RFP 18
 2.2.6 Summary 20
2.3 Gabor Function Models 20
 2.3.1 Spatial RFP 20
 2.3.2 Spectral RFP 26
 2.3.3 Optimal Joint Localization 29
 2.3.4 Spatiotemporal RFP 33
 2.3.5 Bicocular RFP 35
3 On the Computational Role of the Simple Cells

3.1 Introduction ... 37

3.1.1 Bottom-up vs. Top-down 38

3.1.2 Qualified Completeness 39

3.1.3 Filtering and Decomposition 40

3.1.4 Verification of Bottom-up Theories 42

3.1.5 Hierarchical Processing 42

3.1.6 Summary .. 44

3.2 Feature “Detectors” 44

3.2.1 Nonlinear Detectors 44

3.2.2 Linear Matched Filters 45

3.2.3 Summary .. 48

3.3 Directional Spatial Derivatives 48

3.3.1 Retino-Cortical Derivative Operators 48

3.3.2 Fractional Derivatives 51

3.3.3 Discriminant Functions 51

3.3.4 Gaussian Derivatives 53

3.3.5 Summary .. 53

3.4 Spatial Frequency Analysis 54

3.4.1 Introduction 54

3.4.2 The Gabor Expansion 55

3.4.3 Do Simple Cells Perform a Gabor Decomposition? 58

3.4.4 Weyl-Heisenberg Frames 60

3.4.5 Discrete Window Fourier Transform 61

3.4.6 Efficient Coding Through Gabor Expansion 69

3.4.7 Summary .. 65

3.5 Wavelet-like Analysis 65

3.5.1 Introduction 65

3.5.2 Discrete Wavelet Transform 67

3.5.3 Do Simple Cells Perform a Discrete Wavelet Transform? 69

3.5.4 Gabor “Wavelet” Expansion 70

3.5.5 Efficient Coding Through Wavelet-like Analysis 71

3.6 Applications of Gabor Functions 72

3.7 Conclusion .. 73
7 Do The Simple Cells Perform Image Decomposition?

8 Conclusions

A Spatial and Spectral RF Investigations

B RFP Identification Using Impulses

C Gabor Function Applications in Image Coding and Analysis
D Stability in Nonlinear Networks

D.1 Boundedness of Solutions of the BCP Network .. 193
D.2 Convergence Proof for CGBSB Network ... 193
D.3 Uniform Decay of Lateral Connections of BCP Network 195

E Hebbian Weight Development ... 197

Bibliography .. 199
ABSTRACT

The simple cells in feline and primate primary visual cortex are involved in the coding and early processing of spatiotemporal information acquired binocularly from the visual field. Each simple cell can be viewed as an approximately linear device characterised by its receptive field profile (RFP), a spatially reversed version of its spatiotemporal impulse response function.

The Gabor function model of the simple cell RFP is evaluated, and the recent controversy concerning the relevance to early vision of its achievement of the lower bound on joint spatial and spectral spread dictated by the Weyl-Heisenberg Uncertainty Principle is illuminated. In an investigation of the multi-dimensional signal processing performed by the simple cells, image processing and coding schemes which might explain the observed variety of simple cell spatial RFPs are reviewed. These schemes are classified into the categories of filtering and decomposition, according to whether the RFP is used as the kernel of a spatial filter, or as an expansion function whose coefficients are to be calculated for the visual image.

Artificial neural networks (ANNs) which find the least-squares solution to the set of linear equations posed by the image decomposition problem are critically reviewed, and a single-layered, linear recurrent ANN is proposed for this task. The linear neural activation function used by this network is then replaced by a more biologically plausible, piece-wise linear, saturating nonlinearity, and the resultant globally stable network is shown to effect the optimisation of more general (semi)definite quadratic forms subject to bound constraints on the optimisation variables. Although biologically plausible, these networks, when used as models of simple cell processing, are found to predict simple cell spatiotemporal RFPs whose spatial component differs in general from the chosen expansion functions. It is concluded that the simple cell spatial RFPs are not used as visual expansion functions, but rather as the kernels of (possibly position-dependent) spatial filters, as is suggested by their definition.