N-3 FATTY ACIDS, EICOSANOIDs AND
CONTROL OF INFLAMMATION

by

Joanna Susan Hawkes, B.Sc.

A thesis submitted to the University of Adelaide
as the requirement for the degree of
Doctor of Philosophy

Department of Clinical and Experimental Pharmacology
University of Adelaide

and

Rheumatology Unit
Royal Adelaide Hospital

November 1993
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>i</td>
</tr>
<tr>
<td>Summary</td>
<td>viii</td>
</tr>
<tr>
<td>Declaration</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvi</td>
</tr>
<tr>
<td>Publications</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 LITERATURE REVIEW

1.1 INTRODUCTION

1.2 PROSTAGLANDINS AND LEUKOTRIENES

1.2.1 Fatty acid chemistry and nomenclature

1.2.2 Biosynthesis of eicosanoids

1.2.2.1 Cyclooxygenase

1.2.2.2 Lipooxygenase

1.2.3 Pharmacological actions of n-6 eicosanoids

1.2.4 Inhibition of eicosanoids

1.3 N-3 FATTY ACIDS

1.3.1 Pharmacological actions of n-3 eicosanoids

Thromboxane A3
2 MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 Chemicals

2.1.2 Buffers/Medium

2.1.3 Fat-free rat food

2.2 METHODS

A. ANIMALS AND DIETS

2.2.1 Rats

2.2.2 Mice

2.2.3 Diets

B. ADJUVANT-INDUCED ARTHRITIS

2.2.4 Induction of disease

2.2.5 Joint scores

2.2.6 Paw swelling by volume displacement

2.2.7 Spleen weight
C. CELL HARVESTING PROCEDURES

2.2.8 Induction and collection of peritoneal exudate cells (PEC) 48
2.2.9 Collection of resident peritoneal cells from rats and mice 48
2.2.10 Collection of whole blood and purification of mononuclear cells and neutrophils 49
2.2.11 Adherent cell cultures 49

D. GLC ANALYSIS OF PHOSPHOLIPID FATTY ACIDS 50

E. HPLC ANALYSIS OF LEUKOTRIENES AND 5-HYDROXY FATTY ACIDS 51

F. MOUSE PAW SWELLING EXPERIMENTS 52

G. SEPARATION AND DETECTION OF PGE 52

2.2.12 Derivatizing reaction 52
2.2.13 Purification and recovery of sample 53
 Thin layer chromatography (TLC) 53
 Solid phase extraction column chromatography 54
2.2.14 Separation and detection by HPLC 54

H. METHOTREXATE EXPERIMENTS 54

2.2.15 In vitro studies 54
2.2.16 In vivo administration of MTX - rat 55
 Subcutaneous 55
 Intraperitoneal 55
 Oral 56
2.2.17 Ex vivo studies - human 56

I. STATISTICAL ANALYSES 56

2.2.18 Chapter 3 56
2.2.19 Chapter 4 57
2.2.20 Chapter 7 57
EFFECT OF INFLAMMATION ON EPA INCORPORATION

3.1 INTRODUCTION

3.2 EXPERIMENTAL PROTOCOL

3.3 RESULTS

3.3.1 Fatty acid analysis of diets

3.3.2 Weight gain

3.3.3 Joint scores for adjuvant-injected rats

3.3.4 Paw swelling

3.3.5 Effect of inflammation on spleen weight

3.3.6 Fatty acid analysis of peritoneal exudate cells

3.3.7 Leukotriene production by peritoneal exudate cells

3.4 DISCUSSION

BIOLOGICAL ACTIVITY OF PGE₃ WITH REGARD TO OEDEMA FORMATION IN MICE

4.1 INTRODUCTION

4.2 RESULTS

4.2.1 Preliminary experiments

Histamine in 1 mM Na₂CO₃/10% EtOH

Histamine + PGE₂ in 1 mM Na₂CO₃/10% EtOH

PGE₂ in 1 mM Na₂CO₃/10% EtOH

Histamine + PGE₂ and PGE₂ alone in 1 mM Na₂CO₃/1% EtOH

4.2.2 PGE₃ v PGE₂

4.3 DISCUSSION
ASSAY DEVELOPMENT FOR THE SEPARATE DETECTION OF PGE₃

5.1 INTRODUCTION

5.2 RESULTS
5.2.1 Derivatizing reaction
5.2.2 Purification and recovery of sample
 Thin layer chromatography
 Solid phase extraction column chromatography
5.2.3 High pressure liquid chromatography of standards
 Fluorimeter settings and solvent conditions
 Isotope effect
 Separation and detection of PGE₃
5.2.4 Concentration curves
5.2.5 Internal standards
5.3 DISCUSSION

6 HPLC OF DERIVATIZED PROSTAGLANDINS FROM BIOLOGICAL SAMPLES

6.1 INTRODUCTION

6.2 RESULTS
6.2.1 Assessment of culture conditions for the production of PGE₂ by adherent cells
 4 hour incubation
 4 hour pretreatment with zymosan
 15 minute stimulation with A23187 in the presence of AA
 Overnight incubation in RPMI/1% FCS
 Overnight incubation in RPMI/1%FCS in the presence of IL-1β
6.2.2 Effect of EPA and AA in vitro
6.2.3 Effect of other stimulators and inhibitors
 Lipopolysaccharide (LPS) 137
 Leukotriene B4 (LTLB4) 137
 Indomethacin 137
 Ibuprofen 138

6.2.4 Effect of EPA in vivo 145
6.2.5 Analysis of fatty acids following fish oil feeding 145
6.2.6 Analysis of lipoxygenase products following fish oil feeding 148
6.3 DISCUSSION 148

7 THE EFFECT OF METHOTREXATE ON LIPXYGENASE METABOLISM IN NEUTROPHILS

7.1 INTRODUCTION 154
7.2 RESULTS 156
7.2.1 In vitro effects of MTX on lipoxygenase metabolism in rat peritoneal exudate cells 156
 Effect of MTX and EPA in vitro 156
7.2.2 Ex vivo effects of MTX on lipoxygenase metabolism in rat peritoneal exudate cells 159
 (a) Subcutaneous 159
 (b) Intraperitoneal 160
 (c) Oral 161
7.2.3 In vitro effects of MTX on lipoxygenase metabolism in neutrophils from healthy humans 161
7.2.4 Ex vivo effects of MTX on lipoxygenase metabolism in neutrophils from subjects with rheumatoid arthritis 163

7.3 DISCUSSION 166
8 GENERAL DISCUSSION AND DIRECTIONS

8.1 DISCUSSION AND CONCLUSIONS 169
8.2 SCOPE FOR FURTHER STUDIES 172
8.2.1 Dietary studies 172
8.2.2 Drug/diet interactions 173
8.2.3 Eicosanoid/cytokine interactions 173
8.2.4 Prophylactic dietary intervention? 176

BIBLIOGRAPHY 178
SUMMARY

This thesis addresses issues arising from the observation that dietary fish oils favourably modify experimentally induced inflammation in animals and in human diseases including rheumatoid arthritis (RA). The anti-inflammatory effects described appear related to the presence of n-3 fatty acids in the fish oil, in particular eicosapentaenoic acid (EPA). EPA is a potential substrate for the enzymes 5-lipoxygenase (5-LO) and cyclooxygenase (CO) which are pivotal in the synthesis of lipid mediators of inflammation, known as eicosanoids. Although there have been many studies on the 5-LO metabolites of EPA, little is known about the production or activity of the cyclooxygenase metabolite of EPA, prostaglandin E\textsubscript{3} (PG\textsubscript{E3}). The studies undertaken for this thesis required the development of an assay for the measurement of PG\textsubscript{E3} and assessment of its biological activity. Possible interactions between conventional drug therapy and dietary fish oil supplements in therapeutic regimens designed to control inflammation were also investigated. Studies were undertaken to assess the mechanism for the putative inhibition of synthesis of leukotriene B\textsubscript{4} (LT\textsubscript{B4}) by the anti-inflammatory agent methotrexate (MTX) since this drug is an effective anti-arthritis agent and the possibility of favourable drug/diet interactions was sought.

Adjuvant-induced arthritis in rats was used as a model of systemic inflammation and polyarthritis in which to investigate the effects of inflammation on the incorporation into leukocytes of dietary n-3 fatty acids. No effect on the rate or level of incorporation of EPA or depletion of arachidonic acid (AA) was seen and further studies were undertaken in normal animals.

The biological activity of PG\textsubscript{E3} with regard to oedema formation in mice was examined. Paw swelling was measured 30 minutes after injection of 10 µl PGE\textsubscript{2} or PG\textsubscript{E3} into the plantar region of the hind paw. Doses investigated ranged from 1 ng - 10 µg. Both PGE\textsubscript{2} and PG\textsubscript{E3} had substantial oedemogenic activity in this system.

An assay was developed which resolved PGE\textsubscript{3} from PGE\textsubscript{2}. Prostaglandins E\textsubscript{1}, E\textsubscript{2} and E\textsubscript{3} were derivatized with p-(9-anthryloxy)phenacyl bromide (panacyl bromide)
and partly purified by thin layer chromatography (TLC). The PGs were further separated and analysed by reverse phase high pressure liquid chromatography (HPLC) with fluorometric detection. Human, rat and mouse adherent cells were incubated overnight and the culture medium extracted, derivatized and analysed for PG production. PG\(_2\) was detected in supernatants from cells from each species. PG\(_2\) synthesis was reduced following addition of EPA (5 \(\mu\)M) to the overnight culture. PG\(_3\) was not detected under these conditions. Studies were also undertaken using adherent cells from rats, mice and humans given dietary fish oil supplements rich in EPA. PG\(_3\) was not detected although the dietary intervention yielded substantial incorporation of EPA into cell membranes and LTB\(_4\), a metabolite of EPA, was produced by leukocytes after appropriate stimulation and analysis by HPLC.

These observations suggest that although PG\(_3\) has inflammatory activity comparable to that of PG\(_2\), PG\(_3\) may not be generated in sufficient quantities to play a major role in mediating inflammatory reactions.

Studies were also undertaken to examine the effect of MTX \textit{in vitro} and \textit{ex vivo} on the production of the 5-lipoxygenase metabolites of arachidonic acid by rat and human neutrophils. MTX added \textit{in vitro} to normal rat or human cells was weakly inhibitory and without a convincing dose response relationship. No inhibition of LTB\(_4\) production by leukocytes was seen following administration of MTX orally to subjects with RA or by any of three routes of administration investigated in healthy rats (gavage, subcutaneous injection and intraperitoneal injection). The studies thus yield no support for earlier claims that MTX is an inhibitor of 5-LO and the possibility of an additive or synergistic effect of MTX and EPA on 5-LO metabolism was not pursued.