DEFINING THE
EARLY LYTIC REGION
OF COLIPHAGE 186
AND THE CONTROL OF
MIDDLE GENE TRANSCRIPTION

A Thesis submitted for
for the degree of
Doctor of Philosophy
at the
University of Adelaide

by

HELENA ELIZABETH RICHARDSON (B.Sc.Hons.)

Adelaide Centre for Gene Technology,
Department of Biochemistry,
University of Adelaide,
South Australia. April, 1987
TABLE OF CONTENTS

SUMMARY

STATEMENT

ACKNOWLEDGEMENTS

ABBREVIATIONS

1. INTRODUCTION

1.1 COLIPHAGE 186

1.2 GENETIC ORGANIZATION OF THE 186 GENOME
 1.2.1 Genes and Predicted Genes
 1.2.2 Transcription Promoters

1.3 186 LYTIC GENE TRANSCRIPTION
 1.3.1 186 Late Gene Transcription
 1.3.2 186 Early Lytic and Middle Gene Transcription
 1.3.2(a) In Vivo Transcription Studies
 1.3.2(b) In Vitro Transcription Studies

1.4 POSITIVE CONTROL OF GENE TRANSCRIPTION
 1.4.1 Promoter Activation
 1.4.1(a) Activator Proteins
 1.4.1(b) Activated Promoters
 1.4.1(c) The Mechanism of Promoter Activation by RNA Polymerase Accessory Factors

1.4.2 Antitermination
 1.4.2(a) The Role of Antitermination in λ Lytic Development
 1.4.2(b) The Requirements of λ gpN and gpQ Antitermination
 1.4.2(c) The Mechanism of λ gpN Antitermination

1.4.3 Comparison of Promoter Activation and Antitermination Control Mechanisms

1.5 AIMS AND APPROACH

2. MATERIALS AND METHODS

2.1 BACTERIAL STRAINS

2.2 BACTERIOPHAGE STRAINS
 2.2.1 186 Strains
 2.2.2 Other Bacteriophage Strains

2.3 PLASMID-VECTORS AND PLASMID-CLONES
 2.3.1 Plasmid-Vectors
 2.3.2 Plasmid-Clones

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents (contd.)</td>
<td>31</td>
</tr>
<tr>
<td>2.4 M13-VECTORS AND M13-CLONES</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1 M13-Vectors</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2 M13-Clones</td>
<td>32</td>
</tr>
<tr>
<td>2.5 OLIGONUCLEOTIDES</td>
<td>34</td>
</tr>
<tr>
<td>2.6 ENZYMES</td>
<td>35</td>
</tr>
<tr>
<td>2.7 RADIOCHEMICALS</td>
<td>36</td>
</tr>
<tr>
<td>2.8 CHEMICALS</td>
<td>36</td>
</tr>
<tr>
<td>2.9 MEDIA</td>
<td>40</td>
</tr>
<tr>
<td>2.9.1 Liquid Media</td>
<td>40</td>
</tr>
<tr>
<td>2.9.2 Solid Media</td>
<td>41</td>
</tr>
<tr>
<td>2.10 BUFFERS</td>
<td>42</td>
</tr>
<tr>
<td>2.11 MOLECULAR WEIGHT MARKERS</td>
<td>43</td>
</tr>
<tr>
<td>2.11.1 DNA Molecular Weight Markers</td>
<td>43</td>
</tr>
<tr>
<td>2.11.2 cDNA Molecular Weight Markers</td>
<td>44</td>
</tr>
<tr>
<td>2.12 MISCELLANEOUS MATERIALS</td>
<td>44</td>
</tr>
<tr>
<td>2.13 STORAGE OF BACTERIA AND BACTERIOPHAGE</td>
<td>44</td>
</tr>
<tr>
<td>2.14 GROWTH OF BACTERIAL CULTURES</td>
<td>45</td>
</tr>
<tr>
<td>2.15 CONSTRUCTION OF BACTERIAL STRAINS</td>
<td>45</td>
</tr>
<tr>
<td>2.15.1 186 Lysogens</td>
<td>45</td>
</tr>
<tr>
<td>2.15.2 Thy Strains</td>
<td>46</td>
</tr>
<tr>
<td>2.15.3 H Transduction</td>
<td>47</td>
</tr>
<tr>
<td>2.15.4 Transformation with Plasmids</td>
<td>48</td>
</tr>
<tr>
<td>2.16 PHAGE AND BACTERIAL ASSAYS</td>
<td>48</td>
</tr>
<tr>
<td>2.16.1 Phage Assays</td>
<td>48</td>
</tr>
<tr>
<td>2.16.2 Bacterial Assays</td>
<td>49</td>
</tr>
<tr>
<td>2.17 186 BURST ANALYSIS</td>
<td>49</td>
</tr>
<tr>
<td>2.17.1 Infection</td>
<td>49</td>
</tr>
<tr>
<td>2.17.2 Heat-Induction of 186 Lysogens</td>
<td>50</td>
</tr>
<tr>
<td>2.18 DNA LABELLING STUDIES</td>
<td>50</td>
</tr>
<tr>
<td>2.18.1 Pulse-Labelling with (^3^H)Thymidine</td>
<td>50</td>
</tr>
<tr>
<td>2.18.2 Pre-Labelling with (^3^H)Thymine</td>
<td>51</td>
</tr>
<tr>
<td>2.19 GALACTOKINASE ASSAYS</td>
<td>51</td>
</tr>
<tr>
<td>2.20 MUTAGENESIS OF PLASMIDS AND CELLS</td>
<td>53</td>
</tr>
<tr>
<td>2.20.1 Nitrosoguanidine Mutagenesis of Cells</td>
<td>53</td>
</tr>
<tr>
<td>2.20.2 Nitrosoguanidine Mutagenesis of Plasmid DNA</td>
<td>54</td>
</tr>
<tr>
<td>2.21 CURING CELLS OF PLASMIDS</td>
<td>54</td>
</tr>
<tr>
<td>2.22 PREPARATION OF PHAGE STOCKS</td>
<td>55</td>
</tr>
<tr>
<td>2.22.1 Low-Titre Phage Stocks</td>
<td>55</td>
</tr>
<tr>
<td>2.22.2 High-Titre Phage Stocks by Heat-Induction</td>
<td>55</td>
</tr>
<tr>
<td>2.22.3 High-Titre Phage Stocks by Liquid infection</td>
<td>55</td>
</tr>
</tbody>
</table>
2.23 PHAGE DNA PREPARATION

2.24 PLASMID PREPARATION
 2.24.1 Analytical Preparation
 2.24.2 Large-Scale Preparation
 2.24.2(a) Preparative, Modified Birnboim and Doly Method
 2.24.2(b) CsCl Gradient Method

2.25 M13 REPLICATIVE-FORM (RF) PREPARATION
 2.25.1 Preparative, Modified Birnboim and Doly Method
 2.25.2 CsCl Gradient Method

2.26 CsCl DENSITY GRADIENT CENTRIFUGATION
 2.26.1 CsCl Block Density Gradient for Preparation of High-Titre Phage Stocks
 2.26.2 CsCl Equilibrium Density Gradient for Plasmid Purification

2.27 PHENOL EXTRACTION OF DNA
 2.27.1 Phenol Equilibration and Storage
 2.27.2 Phenol extraction of Bacteriophage DNA
 2.27.3 Phenol Extraction and Ethanol-Precipitation of DNA Solutions

2.28 RESTRICTION ANALYSIS OF DNA

2.29 GEL ELECTROPHORESIS
 2.29.1 Agarose Gel Electrophoresis of DNA
 2.29.2 Agarose Gel Electrophoresis of RNA
 2.29.3 Polyacrylamide Gel Electrophoresis
 2.29.3(a) Non-Denaturing Gels
 2.29.3(b) Denaturing (Sequencing) Gels
 2.29.3(c) Denaturing (Sequencing) Gels to Resolve Band Compressions
 2.29.3(d) De-ionization of Solutions
 2.29.4 Autoradiography

2.30 ISOLATION OF DNA FRAGMENTS FROM GELS
 2.30.1 Extraction of DNA from Agarose Gel Slices
 2.30.1(a) Extraction of DNA from Low-Gelling-Temperature (LG) Agarose Gel Slices
 2.30.1(b) Electro-Elution from Agarose Gel Slices
 2.30.2 Recovery of DNA from Acrylamide Gel Slices

2.31 PLASMID AND M13 CLONING
 2.31.1 Preparation of Vector DNA for Cloning
 2.31.2 End-labelling and End-Filling
 2.31.2(a) End-Labelling and End-Filling using the Large Fragment of T4 DNA Polymerase 1 (Klenow)
 2.31.2(b) End-Filling using T4 DNA Polymerase
Table of Contents (cont'd.)

2.31.3 Ligation and Transformation (Transfection) with Plasmid or M13-Vectors
- 2.31.3(a) Ligation with Plasmid-Vectors
- 2.31.3(b) Transformation with Plasmid-Vectors
- 2.31.3(c) Ligation with M13-Vectors
- 2.31.3(d) Transformation with M13-Vectors
2.31.4 Identification of Plasmid Recombinants
2.31.5 Identification of M13 Recombinants
- 2.31.5(a) Preparation of M13 Single-Stranded DNA Phage Stocks
- 2.31.5(b) Preparation of M13 Single-Stranded DNA
- 2.31.5(c) Sizing of M13 Single-Stranded DNA by Agarose Gel Electrophoresis
- 2.31.5(d) Complementarity Test for M13 Single-Stranded DNA Clones

2.32 RECONSTRUCTION OF 186 FROM DNA FRAGMENTS BY RECOMBINATION IN VITRO
2.32.1 Ligation and Transfection
2.32.2 Identification of Recombinants

2.33 DNA SEQUENCING
- 2.33.1 Annealing
- 2.33.2 The Extension Reaction

2.34 PREPARATION OF RADIOACTIVE DNA PROBES
- 2.34.1 Preparation of Radioactive DNA Probes by Primer Extension on M13 Single-Stranded DNA Clones
- 2.34.2 Preparation of Radioactive DNA Probes by Kinasing Oligonucleotides

2.35 Oligonucleotide SITe-DIRECTED MUTAGENESIS
- 2.35.1 Kinasing the Oligonucleotide
- 2.35.2 Extension-Ligation Reaction
- 2.35.3 Transformation
- 2.35.4 Testing Plaques for the Presence of the Mutated DNA
 - 2.35.4(a) Transfer of Plaques to Nitrocellulose
 - 2.35.4(b) Hybridization
 - 2.35.4(c) Washing
 - 2.35.4(d) Confirmation of the Mutation by DNA Sequencing

2.36 RNA ANALYSIS
- 2.36.1 RNA Preparation
- 2.36.2 Removal of DNA from RNA Preparations
- 2.36.3 Northern Transfer and Hybridization
 - 2.36.3(a) Glyoxilation and Transfer from Agarose Gels
 - 2.36.3(b) Hybridization and Washing
- 2.36.4 RNA Dot Blots
- 2.36.5 In Vitro Transcription of 186 DNA
- 2.36.6 Determination of 5'-Ends of RNA Transcripts by Primer Extension

RESULTS: SECTION I

3. DNA SEQUENCE ANALYSIS OF THE 186 EARLY LYTIC REGION

3.2 RESULTS AND DISCUSSION
3.2.1 Sequencing Strategy
3.2.2 Analysis of the DNA Sequence
3.2.2(a) Gene Content
3.2.2(b) Properties of the Predicted Proteins
3.2.2(c) Transcriptional Control Signals

3.3 SUMMARY

4. GEL ANALYSIS OF THE PROTEIN PRODUCTS ENCODED IN THE 186 EARLY LYTIC REGION

4.2 RESULTS AND DISCUSSION
4.2.1 The 186 Early Lytic Gene-Products
4.2.2 Evidence that CP75 Encodes a Protein
4.2.3 Evidence that CP71 and CP70 Encode Proteins

4.3 SUMMARY

RESULTS: SECTION II

5. THE 186 EARLY LYTIC GENES dhf AND fil

5.2 RESULTS AND DISCUSSION
5.2.1 The Dhf Effect
5.2.2 Isolation of Dhf Mutants
5.2.3 The Effects of the Dhf Mutations on the Phage
5.2.4 The Effect of Dhf on the Host
5.2.4(a) The Effect of Dhf on E. coli DNA Replication
5.2.4(b) The Effect of Dhf on Cell Viability
5.2.4(c) The Effect of Dhf on Cell Division
5.2.5 Investigation of the Mechanism of Action of Dhf
5.2.5(a) The Role of the SOS Response in the Dhf Effect
5.2.5(b) Isolation of Dhf-Resistant Host Mutants
5.2.6 The Identification of the dhf Gene
5.2.6(a) DNA Sequencing of Dhf Mutants
5.2.6(b) Analysis of Clones of CP71 and CP70
5.2.7 Investigation as to whether fit (CP77) and dhr (CP78) are Essential to 186 139
5.2.7(a) Amber Mutants in CP77 and CP78 139
5.2.7(b) Deletions of CP77 and CP78 140

5.3 SUMMARY 141

RESULTS: SECTION III

6. THE ANALYSIS OF THE IN VIVO RIGHTWARD RNA TRANSCRIPTS OF THE 186 EARLY LYtic AND MIDDLE REGIONS 143

6.1 INTRODUCTION 143

6.2 RESULTS AND DISCUSSION 144
6.2.1 The Quantitation of RNA Produced from the Early Lytic and Middle Regions during 186 Lytic Development 144
6.2.2 Detection of the 186 Early Lytic and Middle Transcripts 145
6.2.3 Mapping the 3'-Ends of the 1.5 kb, 1.4 kb and 1.1 kb Early Lytic Transcripts 146
6.2.4 Mapping the 5'-Ends of the 2.8 kb and 3.1 kb Middle Transcripts 149
6.2.5 Mapping the 3'-Ends of the 2.8 kb and 3.1 kb Middle Transcripts 151

6.3 SUMMARY OF THE TRANSCRIPTION PATTERN OF THE 186 EARLY LYtic AND MIDDLE REGIONS AND THE RELEVANCE TO THE CONTROL OF MIDDLE TRANSCRIPTION 153

7. INVESTIGATION OF THE MECHANISM OF PRODUCTION OF THE 186 EARLY LYtic AND MIDDLE TRANSCRIPTS 157

7.1 INTRODUCTION 157

7.2 RESULTS AND DISCUSSION 159
7.2.1 Investigation as to whether the 3.1 kb and 2.8 kb Middle Transcripts are due to Initiations from Activated Promoters 159
7.2.2 186 Early Lytic and Middle Transcription in an RNaseIII Strain 161
7.2.3 Investigation of the Mechanism of RNaseIII Cleavage of the 4.0 kb Transcript 164
7.2.4 Investigation of the Role of RNaseIII Processing in 186 Lytic Development 165

7.3 SUMMARY 168
8. INVESTIGATION OF THE CONTROL OF 186 MIDDLE GENE TRANSCRIPTION

8.1 INTRODUCTION

8.2 RESULTS AND DISCUSSION

8.2.1 Investigation of 186 Early Lytic and Middle Transcription after the Inhibition of Protein Synthesis

8.2.2 The Strength of the 186 Early Terminators In Vivo

8.2.3 Investigation of the Involvement of 186 Early Lytic and Middle Functions in Middle Gene Transcription

8.2.3(a) The Effect of Fil and Wdr on Termination at the 186 Early Terminators

8.2.3(b) The Effect of CP90, CP80, CP81 and CP83 on Termination at the 186 Early Terminators

8.3 SUMMARY

9. CHARACTERIZATION OF A VIRULENT MUTANT WITH AN INSERTION IN THE 186 EARLY LYTIC REGION AND IMPLICATIONS FOR MIDDLE GENE TRANSCRIPTION

9.1 INTRODUCTION

9.2 RESULTS AND DISCUSSION

9.2.1 Restriction Analysis of 186 del2

9.2.2 DNA Sequence Analysis of the 186 del2 Deletion and the A6 Promoter Region

9.2.3 DNA Sequence Analysis of the 186 del2 Duplication

9.2.4 In Vitro Transcription Studies with pBup

9.2.5 Investigation of 186 del2 Virulence

9.3 SUMMARY AND RELEVANCE TO THE REQUIREMENTS OF 186 LYTIC DEVELOPMENT

10. CONCLUDING DISCUSSION

10.1 INTRODUCTION

10.2 THE 186 EARLY LYTIC FUNCTIONS DHR AND FIL

10.2.1 The Mechanism of Action of Dhr and Fil and their Role in 186 Lytic Development

10.2.2 Comparison of dhr and fil to Similar Genes Encoded by other Phages

10.2.2(a) P2 Functions

10.2.2(b) P4 Functions

10.2.2(c) The A Function

10.2.2(d) The T4 Wdd Function

10.2.2(e) λ Functions

10.2.2(f) Mu Functions

10.2.2(g) General Comparisons

10.2.3 Future Studies
10.3 RNaseIII CLEAVAGE OF 186 EARLY LYtic AND MIDDLE TRANSCRIPTS 205
10.3.1 RNaseIII Cleavage Sites 205
10.3.2 RNaseIII Cleavage Sites in the 186 Early Lytic-Middle Region 205
10.3.3 Possible Involvement of RNaseIII Cleavage in the Generation of the 1.8 kb and the 2.1 kb Transcripts that were Detected after T1 209
10.3.4 Future Studies 209

10.4 THE CONTROL OF 186 MIDDLE GENE TRANSCRIPTION 211
10.4.1 Does a Control Mechanism Exist for the Transcription of 186 Middle Genes? 211
10.4.1(a) The In Vivo Transcription Pattern of the 186 Early Lytic and Middle Regions in the Absence of Translation 211
10.4.1(b) The Strength of the Early Terminators In Vivo 212
10.4.1(c) The Involvement of 186 Early Lytic and Middle Functions in Antitermination at the Early Terminators 213
10.4.1(d) The Analysis of the Virulent Phage 186 del12 215
10.4.1(e) Concluding Comment on the Control of 186 Middle Gene Transcription 217
10.4.2 The Control of RA Gene Expression 218
10.4.3 Future Studies 219

BIBLIOGRAPHY 220
DEFINING THE EARLY LYtic REGION OF COLIPHAGE 186 AND THE CONTROL OF MIDDLE GENE TRANSCRIPTION.

This thesis describes work carried out to provide an understanding of the expression of the early lytic and middle genes of the temperate coliphage 186. The specific aims of this study were to identify the 186 early lytic genes, and to investigate the mechanism of control of middle gene transcription.

The DNA sequence of the early lytic region was completed. Computer-assisted analysis of the DNA sequence led to the prediction that the early lytic transcript encoded four genes: CP75, CP76, CP77 and CP78. This transcript was predicted to terminate after the CP78 gene at a potential rho-independent terminator structure, t31. The gene, CP79, following the terminator t31, was predicted to be the first gene in the middle region. These predicted genes were cloned into a plasmid expression vector and their protein products were identified by SDS-polyacrylamide gel electrophoresis.

The functions of the CP75 and CP76 genes have been determined by other members of the laboratory and are involved in the lysis-lysogeny decision. Thus, the assignment of functions to CP77 and CP78 was required. Two functions have been previously described that are likely to be encoded by CP77 and CP78: Dhr, which results in an inhibition of E. coli DNA replication, and Tom, which was postulated to be an essential function required for 186 middle gene transcription. The investigation of the Dhr function revealed that it was encoded by CP78. CP78 is a non-essential gene but appears to be important in 186 lytic development. It was expected that the CP77 gene would encode the Tom function, however this study also revealed that CP77 is a non-essential gene, the expression of which results in an inhibition of E. coli cell division. CP77 was named the fil gene.
Thus, it appeared that the predicted Tom function was not encoded in the early lytic region.

Previous studies carried out in this laboratory, led to the prediction that middle gene transcription occurs either by antitermination of the early lytic transcript or by promoter activation of a new transcript. As a first step towards understanding the control of middle gene transcription, Northern analysis was used to identify, size and determine the approximate 5'‐ends and 3'‐ends of the in vivo transcripts from the 186 early lytic and middle regions. The transcription pattern of the early lytic and middle regions was consistent with a mechanism for middle gene transcription involving antitermination and RNaseIII processing.

Studies were carried out to determine whether an antitermination mechanism for middle gene transcription was likely. This study did not provide evidence for the existence of a control mechanism for 186 middle gene transcription, and it is likely that middle gene transcription occurs simply by transcription passing through the relatively weak early terminators. However, these studies revealed that translation was important for transcription of the 186 early lytic and middle regions and it was postulated that an attenuation‐type mechanism may be involved in the control of middle gene transcription. The work presented in this thesis provides the basis for further studies concerning 186 middle gene expression.