INTERACTIONS BETWEEN THYROID HORMONES AND REPRODUCTIVE FUNCTION IN PREPUBERTAL AND SEXUALLY MATURE MERINO RAMS.

by

YALLAMPALLI CHANDRASEKHAR B.V.Sc., M.V.Sc..

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy.

Department of Animal Sciences,
Waite Agricultural Research Institute,
The University of Adelaide,
Adelaide.

November 1985
CONTENTS

Page No.

ACKNOWLEDGEMENTS vii

DECLARATION viiii

SUMMARY ix

PUBLICATIONS xiii

GENERAL INTRODUCTION 1

CHAPTER 1. LITERATURE REVIEW 5
1. THE THYROID GLAND 5
1.1. HISTOLOGY 5
1.2. THE THYROID HORMONES 6
 1.2.1. Thyroxine (T4); Triiodothyronine (T3) 6
 1.2.2. Mechanisms of action of T4 and T3 7
 1.2.3. Metabolism and excretion of thyroid hormones 9
1.3. CENTRAL CONTROL OF THYROID ACTIVITY 10
 1.3.1. Thyrotrophin releasing hormone (TRH); thyroid stimulating hormone (TSH) 10
 1.3.2. Thyroid hormone feed back on hypothalamus and pituitary 11
1.4. FUNCTIONS OF THE THYROID 13
 1.4.1. Growth and development 13
 1.4.1.1. Prenatal 13
 1.4.1.2. Prepubertal 14
 1.4.2. Mature animals 15
 1.4.2.1. Metabolic rate 15
 (i) oxygen consumption 15
 (ii) protein turnover 16
1.5. THE THYROID AND REPRODUCTION 17
 1.5.1. Thyroid hormone effects on luteinizing hormone-releasing hormone (LHRH) 17
1.5.2. Thyroid hormone effects on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 19
1.5.3. Thyroid hormone effects on prolactin (Pr1) 21
1.5.4. Thyroid hormone effects on testes 22
1.5.4.1. Weight of the testes 22
1.5.4.2. Steroid secretion and metabolism 22
 (i) Androgens 22
 (ii) Oestrogens 26
1.5.4.3. Spermatogenesis 28
1.5.5. Thyroid hormone effects on the epididymides 29
1.5.6. Thyroid hormone effects on semen quality and libido 30
1.5.7. Thyroid hormone effects on sexual maturation 33
1.6. ACTIONS OF THYROID STIMULATING HORMONE ON TESTES 36
1.7. AIMS OF THE PRESENT STUDY 37

CHAPTER 2. MATERIALS AND METHODS 40
2.1. REAGENTS 40
2.2. ESTIMATION OF TESTIS VOLUME 40
2.3. SEMEN COLLECTION AND EVALUATION 40
2.4. BLOOD SAMPLING 41
2.5. RESPONSES TO LUTEINIZING HORMONE RELEASING HORMONE (LHRH) 41
2.6. TESTICULAR BLOOD PLASMA FLOW AND RESPONSE TO HUMAN CHORIONIC GONADOTROPHIN (hCG) 42
2.7. TESTICULAR HISTOLOGY 43
2.8. DAILY SPERM PRODUCTION 44
2.9. HORMONE ASSAYS 45
2.9.1. Buffers and solutions 45
 2.9.1.1. Phosphate buffers 45
 2.9.1.2. Blocker solution with $^{125}\text{I-}$ thyroxine 45
 2.9.1.3. Thyroxine-free serum 46
 2.9.1.4. Liquid scintillation system 46
2.9.2. Testosterone radioimmunoassay 46
2.9.3. Thyroxine radioimmunoassay 50
2.9.4. Pituitary hormones radioimmunoassays 51
 2.9.4.1. Iodination of pituitary hormones 51
(i) Preparation of Bio-Gel columns for filtration of iodinated hormone preparations 51
(ii) Reagents 54
(iii) Iodination procedures 54

2.9.4.2. Luteinizing hormone (LH) radioimmunoassay 55
2.9.4.3. Follicle-stimulating hormone (FSH) radioimmunoassay 58
2.9.4.4. Prolactin (Prl) radioimmunoassay 59

CHAPTER 3. INTERACTIONS OF THYROID HORMONES WITH REPRODUCTIVE FUNCTION IN MATURE RAMS; SPERMATOGENESIS, SEMINAL CHARACTERISTICS AND REPRODUCTIVE HORMONE LEVELS IN MATURE RAMS 61

3.1. INTRODUCTION 61

3.2. EXPERIMENTAL PROCEDURE 63
3.2.1. Animals 63
3.2.2. Treatments 63
3.2.3. Weekly measurements 63
3.2.4. Responses to LHRH 64
3.2.5. Testicular blood plasma flow and responses to hCG 64
3.2.6. Testicular histology 64
3.2.7. Daily sperm production 64
3.2.8. Hormone assays 65
3.2.9. Statistical analyses 65

3.3. RESULTS 65
3.3.1. Effectiveness of treatment and body weight 65
3.3.2. Weekly changes in plasma testosterone, LH, FSH and Prl 68
3.3.3. Responses to LHRH 69
3.3.4. Semen characteristics and spermatogenesis 72
3.3.5. Testicular blood plasma flow, testosterone production and responses to hCG 76

3.4. DISCUSSION 80

CHAPTER 4. INTERACTIONS OF THYROID HORMONES WITH REPRODUCTIVE FUNCTION IN POSTPUBERTAL RAMS 84

4.1. INTRODUCTION 84
4.2. EXPERIMENTAL PROCEDURE
4.2.1. Animals 85
4.2.2. Treatments 85
4.2.3. Weekly measurements 85
4.2.4. Responses to LHRH 85
4.2.5. Testosterone clearance rate 86
4.2.5.1. Infusions 86
4.2.5.2. Analysis of samples 86
4.2.5.3. Preparation of Celite columns 87
4.2.5.4. Chromatography 87
4.2.6. Sex-hormone binding globulin 88
4.2.7. Testicular blood plasma flow and responses to hCG 92
4.2.8. Testicular histology, Daily sperm production and hormone assays 92
4.2.9. Statistical analyses 93

4.3. RESULTS
4.3.1. Effectiveness of treatment and body weight 93
4.3.2. Changes in plasma testosterone, LH, FSH and Prl 93
4.3.3. Responses to LHRH 97
4.3.4. Semen characteristics and spermatogenesis 97
4.3.5. Testosterone production and responses to hCG 103
4.3.6. Testosterone clearance rate 107
4.3.7. Sex-hormone binding globulin 107

4.4. DISCUSSION 107

CHAPTER 5. INTERACTIONS OF THYROID HORMONES WITH THE ACTIVITY OF THE HYPOTHALAMO-PITUITARY AXIS AND TESTICULAR DEVELOPMENT IN PREPUBERTAL RAM LAMBS

5.1. INTRODUCTION 111
5.2. EXPERIMENTAL PROCEDURE
5.2.1. Animals and treatments 112
5.2.2. Weekly measurements 113
5.2.3. Serum LH profiles and responses to LHRH 113
5.2.4. Characterization of LH profiles 113
5.2.5. Testosterone clearance rate 114
5.2.6. Sex-hormone binding globulin 114
5.2.7. Testicular blood plasma flow and responses to hCG 114
5.2.8. Testis histology 115
5.2.9. Hormone assays 115
5.2.10. Statistical analyses 115

5.3. RESULTS 115
5.3.1. Serum T_4 and body weight 115
5.3.2. Testis size and histology 117
5.3.3. Longitudinal changes in plasma testosterone, LH, FSH and Prl 117
5.3.4. Serum LH profiles 122
5.3.5. Responses to LHRH 125
5.3.6. Testosterone clearance rate 125
5.3.7. Sex-hormone binding globulin 125
5.3.8. Testosterone production and responses to hCG 129

5.4. DISCUSSION 129

CHAPTER 6. DELAYED PUBERTY CAUSED BY HYPERTHYROIDISM IN RAM LAMBS IS NOT A RESULT OF SUPPRESSION IN BODY GROWTH 136

6.1. INTRODUCTION 136
6.2. EXPERIMENTAL PROCEDURE 137
6.2.1. Animals and treatments 137
6.2.2. Weekly measurements 138
6.2.3. Hormone assays 138
6.2.4. LH pulse analysis 138
6.2.5. Statistical analyses 138

6.3. RESULTS 139
6.3.1. Plasma T_4 and body weight 139
6.3.2. Testicular size 139
6.3.3. Longitudinal changes in plasma testosterone, LH, FSH, Prl 144
6.3.4. Serum LH profiles 148
6.3.5. Responses to LHRH 148

6.4. DISCUSSION 151

CHAPTER 7. REPRODUCTIVE ENDOCRINE FUNCTION AND SPERMATOGENESIS IN THYROIDECTOMIZED MATURE RAMS RECEIVING GRADED DOSES OF EXOGENOUS THYROXINE 155

7.1. INTRODUCTION 155
7.2. EXPERIMENTAL PROCEDURE 156
7.2.1. Animals 156
7.2.2. Treatments 156
7.2.3. Surgical thyroidectomy of rams 157
7.2.4. Weekly measurements 157
7.2.5. LH profiles and responses to LHRH 157
7.2.6. Testosterone clearance rate 158
7.2.7. Sex-hormone binding globulin 158
7.2.8. Testicular blood plasma flow and responses to hCG 158
7.2.9. Testis histology, Daily Sperm Production and hormone assays 159
7.2.10. Statistical analyses 159

7.3. RESULTS 159
7.3.1. Completeness of thyroidectomy and T₄ supplementation 159
7.3.2. Changes in plasma testosterone, LH, FSH and Prl 161
7.3.3. LH profiles 161
7.3.4. Responses to LHRH 166
7.3.5. Testicular size, semen characteristics and spermatogenesis 166
7.3.6. Testosterone clearance rate 169
7.3.7. Sex-hormone binding globulin 169
7.3.8. Testosterone production rates and responses to hCG 172
7.3.9. Testosterone concentration in lymph draining the testis 172

7.4. DISCUSSION 178

CHAPTER 8. GENERAL DISCUSSION 182

CHAPTER 9. BIBLIOGRAPHY 191
SUMMARY

A number of hormones secreted by various endocrine glands are directly or indirectly involved in normal functioning of the reproductive processes in various species and the thyroid hormones appear to be one of those that are intricately linked with reproduction. Thyroid hormones may influence reproductive activity either by direct action on the gonads or by effects mediated at the level of the hypothalamo-pituitary axis. Investigations carried out were designed to examine the interactions between thyroid hormones and male reproductive function in mature, prepubertal and postpubertal Merino rams. Hypothyroidism or hyperthyroidism was induced in these rams for 8-10 weeks and their reproductive endocrine axis and testis functions were assessed.

In a preliminary experiment, mature Merino rams (5 years old) were made hypothyroid or hyperthyroid for 8 weeks. Neither hypothyroidism nor hyperthyroidism had any apparent effect either on spermatogenesis or on daily sperm production, but motility of ejaculated spermatozoa and circulating testosterone levels were reduced in both conditions. The decreased spermatozoal motility suggest that reduced testosterone levels had altered the androgen-dependent maturation of spermatozoa in the epididymis. The ratio of testosterone concentration in the plasma from internal spermatic vein to that in peripheral blood plasma was higher in hyperthyroid than in control and hypothyroid rams suggesting elevation of testosterone clearance rate in hyperthyroid rams. Testosterone production and particularly the response to human chorionic gonadotrophin (hCG) was very much reduced in hypothyroid rams, suggesting a requirement of thyroid hormones for normal
functioning of Leydig cells. Reduced basal LH and response to LH releasing hormone (LHRH) indicates the influence of thyroid hormones on the pituitary gland. Serum prolactin levels were higher than controls in both hypothyroid and hyperthyroid rams, whereas there were no differences in FSH levels. These results suggest that thyroid hormones can influence the reproductive function in mature rams through their actions at both the pituitary gland and testis.

In a second experiment, hypothyroidism or hyperthyroidism was induced in postpubertal rams (12-16 months old) for 8 weeks to compare with the results obtained in the mature animals. Postpubertal rams were similar to the mature rams since spermatogenesis or daily sperm production were not altered, but sperm maturation and circulating testosterone levels were reduced in both hypo- and hyperthyroid rams. Secretion of LH and testosterone were again reduced in hypothyroid animals. Elevated testosterone clearance rates (TCR) without changes in sex hormone binding globulin (SHBG) in hyperthyroid and lower SHBG levels without changes in TCR in hypothyroid rams indicated that an apparent disassociation between SHBG and TCR can occur in rams.

In a third experiment effects of hypothyroidism and hyperthyroidism on the development of reproductive endocrine function in ram lambs (16 weeks old) were studied. Hyperthyroidism was associated with decreases in LH pulse frequency, basal LH and mean LH concentrations, together with arrested testicular growth and aspermatogenesis. Hypothyroid lambs showed normal pubertal development. After intravenous injection of exogenous LHRH hyperthyroid lambs showed similar LH responses to control and hypothyroid rams but reduced testosterone response. Basal secretion of testosterone and the
response to hCG were reduced in hyperthyroid rams. These results indicate that retarded testicular development in hyperthyroid ram lambs results from changes in hypothalamo-pituitary activity manifested in a decreased LH pulse frequency. However in this study the hyperthyroid lambs did not grow; therefore I examined further the basis for the retarded testicular development in these animals by comparing sexual maturation of hyperthyroid rams, with that of ram lambs maintained at a constant body weight by restricting dietary intake. Hyperthyroid and restricted-intake lambs remained at a constant body weight during the period of treatment whilst control lambs gained body weight. The testis of the restricted-intake lambs underwent normal growth; however testis growth was suppressed in hyperthyroid animals. Hyperthyroidism but not food restriction was also associated with decrease in LH pulse frequency compared with controls. Even after cessation of treatment in hyperthyroid animals testicular growth was reduced for up to 30 weeks. It was concluded that hyperthyroidism directly influences sexual maturation in ram lambs through an action at hypothalamic and/or higher brain centres which control the LHRH pulse generator. Transient hyperthyroidism during an important phase of sexual maturation may cause permanent impairment of sexual development.

To obtain a better understanding of the finer influence of thyroid hormones on the reproductive endocrine axis and testis function mature rams (5 years old) were thyroidectomized and supplemented with daily subcutaneous injections of T_4 at subnormal, normal, and supranormal dose levels and the reproductive functions were assessed. This approach, it was anticipated would give the indication of the threshold level of thyroid hormones required for normal reproductive function.
Spermatogenic function was not affected but sperm maturation and circulating testosterone levels were lower in thyroidectomized rams. Steroidogenic capacity of the Leydig cells was also reduced in these rams. Serum LH pulse frequency and LH secretion in response to LHRH were very much reduced in thyroidectomized rams. Supplementation with only 30% of normal thyroxine restored the above mentioned effects to normal. Rams supplemented with supranormal T4 levels showed a similar effect on the various reproductive functions as hyperthyroid rams in the first experiment. These results, therefore, indicate that thyroxine at low levels (30%) can maintain normal function of the reproductive system in the rams suggesting a passive role for thyroid hormones in male reproductive function in sheep.