ACUTE HAEMODYNAMIC EFFECTS OF THREE CARDIOACTIVE AGENTS: METOPROLOL, SOTALOL AND MILRINONE. INFLUENCE OF MYOCARDIAL CONTENT AND SYSTOLIC INTERVAL.

by

Rebecca Helen Ritchie, B.Sc (Hons)

A thesis submitted for the degree of

Doctor of Philosophy

in

The University of Adelaide

(Faculty of Medicine)

February 1994

Department of Medicine (Cardiology Unit, The Queen Elizabeth Hospital)

The University of Adelaide

Adelaide, SA, 5000.
TABLE OF CONTENTS

Table of contents i
Declaration vii
Acknowledgements viii
Publications and communications to learned societies in support of thesis ix
Summary xi

Chapter 1: General Introduction 1

1.1 Overview 2
1.2 Acute effects of cardioactive drugs 3
 1.2.1 Drug effects 4
 1.2.2 Determinants of drug effects 5
1.3 Myocardial drug uptake of cardioactive agents 8
 1.3.1 Methods of assessment in humans in vivo 9
 1.3.2 Results of previous studies 10
1.4 Influence of cardioactive drugs on contractile state 11
 1.4.1 Conventional indices 11
 1.4.2 The staircase phenomenon 12
 1.4.3 The mechanical restitution curve 12
1.5 The present study 14
 1.5.1 Current relevant knowledge of the acute haemodynamic effects of the cardioactive drugs under investigation 14
 1.5.1.1 Metoprolol 15
 1.5.1.2 Sotalol 28
 1.5.1.3 Milrinone 43
 1.5.2 Current relevant knowledge of the short-term pharmacokinetics of the cardioactive drugs under investigation 59
 1.5.2.1 Metoprolol 59
 1.5.2.2 Sotalol 71
Chapter 2: Materials and Methods

2.1 Methods utilized for in vivo (human) and in vitro (animal) experimentation

2.1.1 Protocol for cardiac catheterization for determination of myocardial drug uptake and measurement of acute effects in humans

2.1.2 Protocol for isolated perfused rat hearts

2.2 Analytical methods

2.2.1 HPLC quantization of metoprolol in human whole blood and rat heart homogenates

2.2.2 HPLC quantization of sotalol enantomers in human whole blood

2.2.3 HPLC quantization of milrinone in human whole blood

2.2.3.1 Analysis of milrinone in biological samples - results of previous investigations

2.2.3.2 Methodology developed for analysis of milrinone in human whole blood samples in the current investigation

2.2.4 Lowry protein assay in rat heart homogenates

2.2.5 RIA determination of cAMP concentrations in human plasma

2.3 Quantitation of haemodynamic, electrocardiographic and electrophysiological effects

2.4 Calculation of myocardial drug uptake

2.5 Correlation between myocardial drug content and simultaneous effects

2.6 Pharmacokinetic and pharmacodynamic models utilized for examining the relationship between myocardial drug content and effect

2.7 Statistical analyses utilized in this thesis
Chapter 3: Determination of rate-related inotropic effects in humans

3.1 Mechanical restitution curve construction
3.2 Development of a quantitative model for the mechanical restitution curve
 3.2.1 Background
 3.2.2 Methods
 3.2.3 Results
 3.2.3.1 Theoretical considerations
 3.2.3.2 The present investigation
 3.2.4 Discussion
3.3 Other methods of examining the potential for rate-dependence of drug effects on contractile state

Chapter 4: Acute myocardial metoprolol uptake: correlation with acute effects and influence of hypoxia

4.1 Background and Aims
4.2 Methods
4.3 Results
 4.3.1 Patient characteristics
 4.3.2 Acute haemodynamic effects of metoprolol in humans
 4.3.3 Acute electrocardiographic effects of metoprolol in humans
 4.3.4 Validity of utilizing femoral arterial metoprolol concentrations as a surrogate for those in the aorta
 4.3.5 Acute myocardial metoprolol uptake in humans
 4.3.6 Acute myocardial metoprolol uptake by isolated Langendorff-perfused rat hearts: influence of hypoxia
 4.3.7 Correlation between myocardial metoprolol content and acute effects in humans
 4.3.8 Pharmacokinetic-pharmacodynamic link models between myocardial metoprolol content and effect in humans
Chapter 5: Acute myocardial uptake of d- and l-sotalol: correlation with acute effects in humans

5.1 Background and Aims
5.2 Methods
5.3 Results
 5.3.1 Patient characteristics
 5.3.2 Acute haemodynamic effects of sotalol
 5.3.3 Acute electrocardiographic effects of sotalol
 5.3.4 Acute electrophysiologic effects of sotalol
 5.3.5 Validity of utilizing femoral arterial sotalol concentrations as a surrogate for those in the aorta
 5.3.6 Acute myocardial sotalol uptake
 5.3.7 Correlation between myocardial sotalol content and acute effects
 5.3.8 Pharmacokinetic-pharmacodynamic link models between myocardial sotalol content and effect
 5.3.9 Sotalol redistribution into other vascular beds
 5.3.10 Serial mechanical restitution curve construction

201
Chapter 6: Acute myocardial uptake of milrinone: correlation with acute effects and a biochemical marker in humans

6.1 Background and Aims
6.2 Methods
6.3 Results

6.3.1 Patient characteristics
6.3.2 Acute haemodynamic effects of milrinone
6.3.3 Acute electrophysiologic effects of milrinone
6.3.4 Acute electrophysiologic effects of milrinone
6.3.5 Influence of milrinone on plasma cAMP concentrations
6.3.6 Validity of utilization of femoral arterial milrinone concentrations as a surrogate for those in the aorta
6.3.7 Acute myocardial milrinone uptake
6.3.8 Correlation between myocardial milrinone content and acute effects
6.3.9 Milrinone redistribution into other vascular beds
6.3.10 Serial mechanical restitution curve construction
6.3.11 Post-extrasystolic potentiation without a compensatory pause
6.3.12 Post-extrasystolic potentiation with a compensatory pause
6.3.13 Application of the curve-fitting model to mechanical restitution curves obtained post-milrinone injection
6.3.14 Examination of hysteresis between myocardial milrinone content and the rate dependence index
6.3.15 Influence of rapid atrial pacing on LV+ dP/dt before and after milrinone injection
6.3.16 Submaximal coronary vasodilator reserve 285
6.3.17 Summary of results 286
6.4 Discussion 287

Chapter 7: General Discussion 294

7.1 Overview 295
7.2 Acute effects of cardiovascular drugs 296
7.3 Determinants of drug effects: influence of myocardial drug content in the present investigation 297
7.4 Myocardial drug uptake of cardiovascular agents: comparison with previous studies 299
7.5 Influence of cardiovascular drugs on contractile state: modulation by changes in cycle length 301
7.6 Conclusions 304

Bibliography 306
SUMMARY

The acute effects of cardioactive agents are determined, at least in part, by the process of their uptake into the heart. However, for several drugs at least, there is evidence that effects are also modulated by inter-beat interval, leading to accentuation of haemodynamic effects of some agents during tachycardia. The potential for this phenomenon to be beneficial or deleterious is largely unknown, except for a few agents.

Utilizing a paired transcoronary sampling technique, serial determination of myocardial drug content was determined following intravenous bolus injection in patients undergoing diagnostic cardiac catheterization for the investigation of chest pain. During this procedure, serial determinations of various haemodynamic, electrocardiographic, and electrophysiological parameters were obtained. Examination of the potential for rate-related inotropic effects involved construction of a component of the mechanical restitution curve (MRC), utilizing atrial pacing with insertion of premature beats at progressively shorter diastolic intervals. MRC construction permits evaluation of a surrogate of tachycardia without significant risk of induction of ischaemia. A curve-fitting model for the component of the MRC associated with diastolic intervals shorter than those at spontaneous heart rate in man was developed, to facilitate accurate quantization of drug effects.

Three cardioactive agents were chosen for study:

(i) metoprolol, as a classical β₁-selective adrenoceptor antagonist, which has been associated with reduced mortality after acute myocardial infarction;

(ii) sotalol, a non-selective β-adrenoceptor antagonist which also possesses class III antiarrhythmic effects, and which appears to be the most effective agent currently available for the management of ventricular tachyarrhythmias; and

(iii) milrinone, a phosphodiesterase III inhibitor, which exerts both positive inotropic and vasodilatatory effects. Milrinone appears to increase risk of cardiac death during long-term administration. However, the mechanism of these deleterious effects is uncertain.
Metoprolol, a relatively lipophilic β-adrenoceptor antagonist, has a short elimination half-life (3-4h) and a reasonably high apparent volume of distribution. Following intravenous bolus administration (4mg), peak myocardial content was achieved within three minutes of injection. Conversely, peak haemodynamic and electrocardiographic effects were not observed until 5-10mins post administration, indicating a time lag between content and effect. Significant reductions in spontaneous heart rate and LV +dP/dt at constant heart rate were observed, accompanied by prolongation of PR intervals. However, the negative inotropic effects of metoprolol became progressively diminished with reductions in extrasystolic interval, indicating "reverse use-dependent" negative inotropic effects. Utilizing Langendorff-perfused rat hearts, the influence of a period of hypoxia on the uptake process of metoprolol was assessed: while myocardial uptake was not significantly modified by the hypoxic perfusion conditions, the efflux of the drug from the heart was impaired.

Sotalol, a relatively hydrophilic β-adrenoceptor antagonist, has a longer elimination half-life than metoprolol (≥7h) and a lower apparent volume of distribution. Despite this, following intravenous bolus administration (20mg), peak myocardial content was achieved less than one minute after injection. Peak haemodynamic, electrocardiographic and electrophysiologic effects were not observed until 10minutes post administration. Significant reductions in spontaneous heart rate and LV +dP/dt at constant heart rate were observed, accompanied by prolongation of PR and AH intervals, and atrioventricular nodal effective refractory periods. However, the negative inotropic effects of sotalol tended to be augmented during pacing-induced tachycardia, suggesting a small degree of use-dependence of sotalol's negative inotropic effects, in contrast to the reverse use-dependence exhibited for the electrophysiological effects of both the racemate and the d-enantiomer in vitro.

Milrinone, a phosphodiesterase inhibitor, has a short elimination half-life (1-2h) and a low apparent volume of distribution. Following intravenous bolus administration (1mg), peak myocardial content was also achieved less than one minute after injection. Again, peak haemodynamic effects were not observed until 7-10mins post administration. Significant in-
creases in spontaneous heart rate and LV+dp/dt at constant heart rate were observed, accompanied by reductions in PR intervals, LV systolic and mean arterial pressures. The positive inotropic effects of milrinone were significantly less marked with progressive reductions in systolic interval in isolated premature beats.

Thus, for all agents studied, acute drug uptake into the human heart precedes attainment of maximal effects. There was significant modulation of the haemodynamic effects of all three drugs according to changes in systolic interval. Therefore for some cardioactive agents, the relationship between myocardial drug content and acute effects is determined by baseline haemodynamic status.