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Abstract

Real-time communications differ from traditional data communications as it imposes a

time constraint, such as d,ead,line, on each message transmission' It is weil known that

the Earliest Deadline First (EDF) scheduling policy is optimal for task scheduling in a

centralized real-time system. However, implementing the EDF policy in a distributed

real-time system is d.ifferent from its counterpart in a centralized real-time environment

due to its non-negligible scheduling overhead involved. This work deals with the

implementation of the EDF policy in the context of a speciflc distributed system -

a token ring local area network. Its main objectives are (i) to propose a token ring

protocol which implements the exact network-wide trDF policy for real-time message

transmission, and. (ii) to address the fundamental issue of the appropriate level of

implementing an optimal scheduling poiicy in a distributed real-time environment'

In brief, the work is concerned with the design and performance evaluation of

three token ring protocols for real-time communications' which implement variations

of the EDF. transmission policy with different overheads. The flrst is an existing token

passingprotocol which does not adhere to the EDF poiicy but has a minimal overhead'

The second is a modified priori,ty-ilriuen protocol which approximates the EDF policy

with a moderate overhead. The third is the window protocol which is proposed for
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the token ring networks for the first time' It implements the exact EDF transmission

policy, but its contention overhead may be potentially high'

The worst case performance of the three protocois is analyzed and compared' It

is found that the pert'ormance of a distributed communication protocoi is determined

not oniy by the transmission policy employed, but also by the contention overhead

incurred when implementing such a policy' It is also shown that no protocol can

always outperform the others for the entire parameter langes considered and that

each protocol has its own applicable region where its performance is the best'

Furthermore, the average case performance of the three protocols is evaluated

through simulation. It is found that under the current token ring network

technology, the proposed window protocol achieves the best performance as a result

of implementing the EDF policy. However, it is also shown that when the ring gets

faster, the difierence in the performance of the three protocols is reduced'

Therefore, it is concluded that in designing a distributed scheduling algorithm,

such as a communication protocol, one should seek a balance in achieving an optimai

scheduling policy and minimizing the scheduling overhead.
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Chapter 1

Introduction

1-.1 Motivation and ScoPe

The need for high speed. real-time communications has emerged rapidly over the last

decade from many new real-time appiications, such as office automation, intelligent

manufacturing, advanced air traffic control, space and military projects, distributed

processing and robotics systems 16, !2,18, 31, 45]. Real-time communica'tions differ

from traditional data communications as it imposes explicit timing constraints on

ind.ivid.ual messages. Hence, the correctness of a real-time system depends not only

on the logical results of the computation but also on the time when the results appear

[20, 33, 35, 36, 59].

Local arêa networks (LANs) have gained increasing popularity in supporting these

new real-time applications due to their distributed nature and the potential for

provi,iling high speed reliable resource sharing. The key to the successful use of a LAN

to support real-time communications is an adequate distributed scheduling algorithm,

which ensures the timely messa8e transmission on geographically distributed nodes'

1
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1.1. Motivation a'nd ScoPe

In relation to open system Interconnection (osl) reference model, the Medium

Access control (MAC) protocoi is primarily responsible for scheduling message

transmission over a LAN. It arbitrates access to the network and determines which

message is to be transmitted at any given time. The main design considerations

of existing MAC protocols are to maximize the throughput and to minimize t'he

average delay. In contrast, a MAC protocol for transmission of real-time messages

must address the timing constraints of individual messages' The most important

design objective of a reai-time MAC protocol is to ensure that message deadlines

are met or that the number of messages that miss their d'eadlines is minimized [21]'

Therefore, any traditional MAC protocols that do not consider individual message

timing requirements are inadequate'

Clearly, protocols intended for distributed real-time communications must schedule

message transmission based on global message timing information. However, this

objective may not be achieved in practice, as scheduling real-time messages over a

LAN difiers from scheduling tasks in a processor environment' In a LAN, messages

are located on physically separated nodes and their timing information is local to the

nodes, hence gathering global message timing information not only may incur a non-

negligible overhead, but also may be approximate' As a result, it is conceivabie that

the benefit of employing an optimal centralized scheduling algorithm can be nullified in

a distributed environment if the implementation overhead is too high. Consequently,

under some network and traffi.c conditions it may be desirable that scheduling decisions

are made with less accurate knowledge about the timing constraints of messages on

other nodes in the network. Thus, one of the fundamental issues in the design of

real-time MAC protocois is to determine the appropriate level of implementing the

optimal scheduling policy in a distributed real-time environment.
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1.1. Motivation and ScoPe

Much progïess has been made in designing protocols for real-time message

transmission in LANs over the last decade, predominantly using CSMA/CD (Carrier

sense Multiple Access/collision Detection) and ring networks' The approach

taken by csMA/CD related work is to incorporate weil-established centralized

schcd.uling algorithms to the ba,sic csMA/CD networks to support real-time message

transmission. As a result, these enhanced csMA/CD protocols support both real-time

synchronous and. asynchronous message transmission. on the other hand, the ma'iority

of the solutions developed for ring networks only consider timing constraints of real-

time synchronous/periodic messages. Furthermore, the issue of achieving scheduling

optimaiity and minimizing scheduling overhead has not been addressed'

The main objectives of this work are

o to propose a token ring protocol which implements the Earliest Deadline First

(EDF) optimal scheduling policy for real-time message transmission, and

o to address the fund.amental issue of the appropriate ievel of implementing an

optimal scheduling policy in a distributed reai-time environment.

specifically, the work is concerned. with the design and performance evaluation of

three token ring protocols for real-time communications, which implement variations

of the EDF transmission PolicY'

The first is an existirlgtoken passi,ng protocol which sends messages in the nearest-

neighbor-first order and does not consider individual message timing requirements at

all. As a result, this simple token passing protocol does not adhere to the EDF policy

but has a minimal overhead'

The second. is a modified pri,ori,ty-driaen prolocol. Although the most existing

token ring protocols are priority-driven, they are not suitable for transmitting
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1.1. Motivation and ScoPe

time-constrained messages as they do not explicitly address the individual message

d,eadlines. Hence, we propose to incorporate a priority assignment function which

assigns each message an access priority based on its deadline' This modified priority-

driven protocol then sends messa8es in the highest-priority-fi'rst order' It can be shown

that whcn the number of priority levels is sufficient, the protocol impiements the

exact EDF policy; otherwise it only approximates the EDF policy' Thus this protocoi

considers the individual message deadlines to certain degree with a moderate overhead'

The worst case performance of the token passing and the priority-driven protocols

for real-time message transmission is analyzed. The results show that the worst case

performance of the two protocols is pool. specifically, given a message set, the two

protocols can send only half of the messages even if the overhead is assumed to be

zero. This implies that the dominant factor in deciding the protocol performance in

supporting real-time message transmission is whether or not the transmission policy

used considers the individual message timing requirements explicitly' Therefore, it is

imperative to design a token ring protocol which implements the exact EDF policy'

This lead.s to the third protocol which is a window protocol specifrcally designed for

token ring networks. It is an original contribution of this work' Towsley and venkatesh

[43] proposed the original window protocol for non reai-time message transmissions in

LANs. A desired. property of the window protocol is that it can uniquely locate a

message accord.ing to some message parameter by partitioning the window recursivelY'

zhao et al alld. znalíhave successfully designed window protocols for transmission of

real-time messages in csMA/cD networks. The csMA/CD window protocols are

contention based, in which stations schedule message transmission without the global

knowledge of message deadlines. when a collision occulrs) stations back off and the

window is partitioned in a binary manner'
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Motivated by the csMA/CD window protocols, our goal is to apply the concept

of window protocol to a token ring network, which transmits messages in the eariiest-

deadiine-frrst order. However, unlike the csMA/CD networks, token ring networks

are control based and collision-free. Thus, it requires a special controller to gather

global message dcadline information in order to coordinate window operations and to

locate the earliest deadline message. As a result our new window protocol for token

ring networks difiers significantly from the existing window protocols for csMA/cD

networks. It will become clear later that this new window protocol is much more

sophisticated in window operations and. has much faster cofrvergence in locating the

d.esired message than the existing csMA/CD wind'ow protocols' It can be shown that

the proposed window protocol implements the exact EDF transmission policy, but

the need for gathering globai message deadline information indicates that its overhead

may be high.

The worst case performance of the three protocols is analyzed and compared' It

is found that no protocol can always outperform (in terms of the fraction of messages

sent) the others for the entire parameter ranges considered' It is also shown that

each protocol has its own applicable region where its performance is the best' This

implies that the performance of a distributed communication protocol is determined

not only by the transmission policy employed, but also by the contention overhead

incurred when implementing such a policy' As a result, there may not exist a

communication protocol for message transmission which would be optimai for all

operating environments.

Furthermore, the average case perfolmance of the three protocols is evaluated

through simulations. simulation results show that the average case performance

of a protocol, aithough significantly better than the worst case case performance,
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is stili determined by the transmission policy used. and the contention overhead

incurred. More specifrcally, it is found that under the current technology' the proposed

window protocol achieves the best performance as a result of implementing the EDF

policy. However, it is also noted that when the ring gets faster, the difference in

the perf'ormance of the three protocols is recluced.. This implies that under very high

speeds the benefi.t of implementing the trDF policy by ihe window protocol may be

nullified by its relatively high contention overhead'

Therefore, it is concluded that in d,esigning a distributed scheduling algorithm,

such as a communication protocol, one should' seek a balance in achieving an optimal

scheduling policy and minimizing the scheduling overhead.

L.2 Real-Time Communications

L.2.L Definitions and Objectives

A real-time environment is distinguished from a non real-time system by the

introduction of time as a key factor. The correctness of a real-time system is

determined not only by the logical results of the computation, but also by the time at

which the results are produced. A d,i,stributed real-time system, such as a token ring

network, is a system where communications are conducted among processes located on

geographically distributed nodes. A message in a real-time system is associated with

certain timing constraint such as a d,eadline ot a larity. The deadline of a message is

the time at which the message must be received by its destination. The laxity of a

message is ¿efined as the maximum time the message can wait before its transmission

has to start in order to meet its deadline'
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The most important aspect of real-time communications is that a message must be

received by the destination before its deadline expires; otherwise, it is considered /osú'

Typically, real-time applications generate mixed traffic, including packetized voice

and video, network error, alarm and sensor messages and data transacbions' TheY can

be grouped. into two categories: .synchronozs (periodic) and asynchronous (aperiodic)'

synchronous messages, such as voice and other polling messages' arrive at the system

periodically. Their lengths and periods are known a priori.In many cases' they must

be transmitted before the next arrival from the same message stream' The transmission

of such reai-time synchronous messages can be scheduied by a static scheduling

algorithm. Reai-time asynchronous messages, on the other hand, arrive randomly

during run-time and are associated with difierent deadlines. It is generally perceived

that synchronous messages are urgent and require bounded Ïesponse times while

asynchronous messages can tolerate longer delays' However, real-time asynchronous

messages, such as network ellor, alarm and management messager are equally urgent

and require fast deiivery. Furthermore, real-time asynchronous message transmission

requires dynamic scheduling in order to share the transmission resource effi.ciently'

Thus, the ability to handle real-time asynchronous messages well indicates the good

responsiveness of a system, which will be essential in the next generation of highly

distributed and dynamic real-time systems'

Hence, a protocol intended for real-time communications, should incorporate

explicit timing constraints of both synchronous and asynchronous messages. As

a result, the principle performance considerations of real-time communications are

fundamentally different from those of traditional data communications.
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o The primary performance metrics for conventional data communications is

through,put and. auerage d,elay, which no longer adequately characterize the

performance of a real-time communication protocol. The most important

performance metric of a real-time communication protocol is the loss ratio, which

is the percentage of messages missing their deadlinesl. The chief design objective

of real-time communication protocols is to minimize message loss'

o The performance trade-offs of traditional data communications is offered load

versus a,I)ero,ge ilelay, while that of real-time communications is offered /o¿d versus

nùess(rge /oss for given message timing constraints'

L.2.2 Selection of the Optimal Algorithm

A MAC protocol is essentially a set of ruies which schedule messa8e transmissions'

The basic design requirements of a MAC protocol and a centralized task scheduling

algorithm are similar: both are constrained by time to aliocate a serially-used resource'

The most commonly used centralized scheduling algorithms are: First Corne First

serue (FCFS), Shortest Task First (sTF), Fired Priori'ty scherne (FPS), Mini'mum

Larity First (]ìii'¡LF) and Earliest Dead,line Firstz (EDF). The FCFS policv schedules

the tasks according to the arrival order of the requests. The FPS algorithm gives the

resource to the task that belongs to the highest priority class. The sTF policy always

selects the task with the shortest length fi.rst. Only MLF and EDF poiicies schedule

tasks accord.ing to task timing constraints. That is, they choose the task with the

minimum laxity and earliest deadline respectively'

lAlternatively, the fraction of messages
2If message lengths are constant, then

successfully meeting their deadlines is called the seni ralio'

the MLF and EDF algorithms are essentially the same'
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Hence, we have a spectrum of centralized scheduling algorithms that schedule

message transmission using different amount (from none to perfect) of message timing

information. It has been established from centralized real-time scheduling theory that

the MLF and EDF algorithms are optimal3 in both static and dynamic cases [16, 29]'

Furthermore, it is known that even a policy that oniy approximates the MLF or EDF

policies can still result in a significant reduction in task ioss [13' 53]'

Therefore, it is natural to believe that a protocoi that implements the MLF or EDF

transmission policy is the most desirable for real-time communicatìons. However, the

optimality of MLF or trDF policy is achieved in a centralized scheduling environment

where the scheduling overhead is negligible'

Implementing the MLF or EDF policy requires the global knowledge of message

timing constraints. In a centralized scheduling environment, all message timing

information is known to the scheduler at the time of decision making, while in a

distributed. environment, such as a token ring network, message timing information is

only local to individual nodes. As a result, implementing the MLF or EDF policy in

token ring networks is considerably more difficult and requires the protocoi to include a

special mechanism for collecting the deadline information either explicitly or implicitly'

Furthermore, in a distributed communication network, a MAC protocol

implementing the MLF or EDF policy will take some time to gather message deadline

information in the network before a message can be scheduled for transmission'

The scheiluling ouerhead,, i.e. the time incurred in collecting the message timing

information, is no longer negligible and may be high. Thus, we would expect

the performance of distributed scheduiing algorithms to depend on not oniy the

scheduling policies they use, but also the scheduling overhead they invoke. That is,

I

3In the sense that they minimize the task loss ratio for a given task set
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the performance of a real-time MAC protocol is a trade-off between the scheduling

policy it employs and the overhead. it incurs. Therefore, it is conceivable that a

protocol which incurs a large overhead to implement an 'optimal' (MLF or EDF)

scheduling algorithm may not necessarily produce better performance than another

protocol that employs a simpìe, but 'non-optimal' policv. Hence, in designing a

distributed scheduling algorithm such as a communication protocol, issues in both

achieving 'optimal' (MLF or EDF) scheduling policy and minimizing the scheduling

overhead must be addressed'

1-.3 Related Work

In this section, we examine the recent d.evelopments in real-time communications and

discuss their contributions and limitations. The majority of existing protocols for real-

time communications can be broadly divided into two areas: csMA/CD based and

token ring based.

1.3.1 Related CSMA/CD Based'Work

over the last few yea s, various enhanced csMA/cD protocols have been designed

and studied in the context of real-time communications. These protocols intend to

implement the optimal transmission policy, such as MLF or EDF, and are useful

contribution to the state of the art of real-time communications.

one class of protocols implementing MLF or EDF transmission policy are called

wind,ow protocols. These protocols are the enchancements to the traditional window

protocols [+3], as they use message laxity or deadline as the window axis' The window

protocol proposed by Kurose et al 122] implements the MLF policy, but with the



1.3. Related Wotk
11

assumption that iaxities of all messages are constant' under this assumption' the MLF

policy is equivalent to the FCFS policy' Zhao, Stankovic and Ramamritham extended

this window protocol by reiaxing the above assumption to allow message laxities to

have arbitrary distribution. Also, In their model, a newly arrived message is allowed

to compele for transmission. However, the MLF poiicy is not always preserved in

the presence of a laxity tie, as the protocol uses a probablistic approach to solve a

tie. Furthermore, the protocol uses a constant window in the initial phase to iocate

the contention window, which rnay result in slow convergence to the desirecl minimum

laxity message.

znaj\ [60] designed a window protocol which is intended to improve the performance

of the wind.ow protocol proposed by zhao et aliI_ three ways' First, a binary search

based approach is used during the initial phase to determine a contention window'

rather than a constant window. Hence, it results in faster con'vergence in locating

the minimum iaxity message. second the protocol has an additional reservation

mechanism that prohibits messages with large laxity from competing with messages

that have smaller laxities. This mechanism is useful in reducing the number of deceitful

contentions among messages with large disprepancy in their timing constraints' Third,

the protocol implements the MLF policy even in the presence of a laxitv tie' This

protocol has been shown to have a considerable improvement in its performance

over other proposed window protocols, but the protocol may still be inefficient under

situations where message laxities are very close. This is due to the nature of CSMA/CD

networks where nodes are not able to obtain sufficient timing information about

messages residing on other nod.es. As a result, the binary search may need to partition

the contention window many times in order to locate the minimum laxity message'
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Therefore, many collisions may occur before a successfui message transmissron can

take place.

virtual time protocols are another family of protocols that implement the MLF or

EDF transmission policy. Zhao and Ramamritham 155] studied the modified virtual

time CSMA/CD protocols for real-time communications. In their model, each node

maintains two clocks, a real clock and a virtual clock' whenever a node finds the

channel idle, it resets the virtual clock which then runs at a higher rate than the

real clock. A node is allowed to transmit a message when the time on the vittuai

clock is equal to some parameter of the message. By selecting different parameters,

such as arrival time, transmission time, laxity or deadline, the protocol implements

transmission polices FCFS, STF, MLF and EDF respectively. Their simulation results

have shown that virtual time CSMA/CD protocols yields improved performance over

pure csMA/CD and that protocols implementing MLF or EDF policy perform better

than those implementing trctrs or sTF policy in terms of message ioss and channel

utilization.

Another class of enhanced CSMA/CD protocols for real-time communications uses

a rnulti-aersion rrùesso,ge transmiss'ion scheme 119,27,571' The basic idea of the

enhancement is that the version of a message to be transmitted depends on the overall

network load. When the traffic is heavy or/and the message deadline is tight, only

a fraction of the message is sent instead of the full message in order to meet the

message deadline. The key element is the uersion selection scheme implemented at

each node, which determines which version of the messâge to be sent' The criteria

used by the version selection scheme can be the length of the message queue on a node,

the estimation of the time average network load or the message deadiine density. It

has been shown that the method is efiective when used with the window protocol [27].
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Finally, guaranteed, protocols 14, 26,37] aim to guarantee deadlines of real-time

asynchronous messages in a dynamic fashion. It differs from static scheduling in the

sense that whetheï a message deadline will be met depends on the network load and

deadlines of existing messages, and is known only after the arrival of the message in

the network. This enhancement is useful when some asynchronous messages require

guaranteed d,elivery, but the cost is the reduction in channel utiiization for real-time

synchronous messages and real-time non-guaranteed asynchronous messages'

L.g.z Related Token Bus/Ring Based'Work

In token bus/ring networka, a control frame called tolcen circulates around the ring' A

node wishing to transmit a message must capture the token and then send the message'

After the completion of a message transmission, the sending node is responsible for

releasing the token. various enhancements, such as reselvation scheme, prioritized

access, cyclic control, may be incorporated. into the basic token passing protocol'

Over the last decade, token bus and token ring networks have become the standard

for real-time communication systems. They include Manufacturing Automation

protocol (MAP), IEEE 802.4 token bus, IEEE 802.5 token ring, Fiber Distributed

Data Interface (FDDI) and FDDI-II. The increasing popularity of token bus/ring

networks is mainly due to their performance characteristics, such as the bounded time

clelay, ability to provide guaranteed bandwidth, inherent fairness, and high utilization

under overload.

MAp [4b] has been largely accepted as the OSI solution to real-time manufacturing

communications. Its two bottom iayers are based on IEEE 802.4 timed token protocol

aPhysically, a token bus is a linear or tree-shaped cable onto

stations are organized into a ring
which stations are attached. Logically,
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[2] wliich regulates message transmission using a set of timers' synchronous messages'

assigned the highest priority, are provided with guaranteed bandwidth. Asynchronous

messages are transmitted only if the current token rotation time does not exceed the

pre-defined target token rotation time'

The ItrEE g02.b token ring [1] uses a reservation scheme together with a prioritized

access mechanism. It provid.es eight priorities to accommodate different message

classes, with synchronous messages assigned higher priorities. In this protocol, the

token has a priority field and a reseruation priority fleld. upon the arrival of the

token, a nocLe is allowed to transmit a message if the priority of the message is equal

to or higher than the token priority; otherwise the node can IeseIVe a future token bv

writing its message priority into the token reservation priority if the former is greater

than the latter. This way, the message with the highest priority is always sent first'

A variation of the 802.5 standard is the IBM token ring, which uses a different

prioritized access mechanism. In supporting synchronous traffic, one of the nodes

is assigned as the synchronous band,wi,dth manager and raises the token priority

periodically so that synchronous messages receive guaranteed bandwidth'

The Fiber Distributed Data Interface (FDDI) is the ANSI standard for an 100

Mbit/s fiber token ring. It uses a timed token rotation protocol which is an extension

to the g02.4 standard. In a FDDI network, synchronous messages receive guaranteed

bandwidth, while asynchronous messages a e transmitted only when the current token

rotation rate is faster than the pre-defrned target token rotation time.

Although the timed token rotation protocol guarantees that the maximum token

rotation time is at most twice the target token rotation time [32], it is found that

the timed token rotation scheme alone is not sufficient to meet deadlines of urgent

messages. To compensate this, ANSI defines the FDDI-II to be upward compatible
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with FDDI. It adds circuit switching capability to the basic FDDI to better support

urgent synchronous messages. However, the performance in transmitting real-time

asynchronous messages is adversely affected'

cleariy, for the standard token bus/ring protocols, it is a common practice that

sy¡chronous messagcs are given higher priorities than asynchronous messages' As

a result, these protocols support real-time synchronous messages well' However'

they may produce poor performance in meeting timing requirements of real-time

asynchronous messages, as they do not explicitly incorporate timing constraints of

real-time asynchronous messages'

rwhile the standard, token ring protocols were being developed, many non-standard

token ring protocols have also been proposed over the last decade. They intend to

support integrated real-time applications such as transmission of packetized voice,

video and data. we now examine some of these protocols.

Goyal and Dias [11] proposed. a reservation based prioritized access protocol, which

is an variation of the 802.5 token ring protocol. It aims to increase the ring utilization

of the 802.5 token ring by having eariy token release. Furthermore, it intends to

improve and delay performance of time-critical packets by allowing high priority nodes

(having time-critical packets) to send special packets to the token holder to reserve a

future token or to pre-empt the token holder if it is transmitting a low priority packet.

performance evaluation shows that this enhanced protocol has a good responsiveness

and great ability to support time-critical packets'

Huang and Chen [15] designed an integrated token ring protocol accommodating

voice/data services. It uses a cyclic control mechanism with cycle length being

the period of voice packetization time so that voice packets are deiivered within

the bounded d.elay. In their modei, there are three access types indicated in the
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token, namely voice only, voice/expedited data and expedited/normal data' Real

time asynchronous messages are

heavy.

transmitted if the offered load of voice traffic is not

Tsai and Rubin [44] suggested a token scheme supporting delay-constrained priority

messages with a synchronous cycle and a prioritized access arbitriation mechanism'

In their model, at any time each nod.e is allowed to have at most one real-time

connection for synchronous messages, while transmissions of asynchronous messages

are determined by a global contention resolution scheme through the use of token,

which is similar to the one used in the 802'5 standard'

Kang et al ll1lproposed a dual-channel hybrid token ring, which is also a modif.ed

g02.b token ring. It consists of a ring channel and a direct channel. The ring channel

is used for non real-time message transmission, while direct channels are inserted

dynamically to support real-time and interactive communications between node pairs'

Simulation results show that under light traffic load, the delay performance of this

hybrid token ring is almost the same as that of the standard token ring' while under

heavy load, the hybrid token ring has a much improved delay performance over the

standard token ring.

Cherkassk y et al [8] proposed a new LAN architecture INSTNET to support real-

time traffic, which is also based on the 802.5 standard. The INSTNET incorporates

a logically separated control channel in addition to the ring channel. Messages are

transmitted over the ring channel according to a a reservation based priority contention

resolution mechanism. Real-time traffic is allowed to pre-empt non real-time traffic

by sending interrupts on the control channel. Simulation results show that the delay

performance of real-time traffic is not affected by the load of non real-time traffic.



1.4. Desirable Properties of Protocols for Real-Time communications 77

Although varying in detaiis, these non-stand.ard token ring protocols are similar to

the standard token ring protocols in two ways. First, they do not consider individual

message timing constraints explicitly. Furthermore, they give higher priorities to real-

time synchronous messages at the cost of real-time asynchronous messages' As a result,

the support for real-time asynchronous messages is poor'

However, noticeable progress has been made in designing token ring protocols

that address the explicit timing constraints of synchronous messages' strosnider,

Lehoczky and sha [23, 37] proposed a deferrable servel aigorithm to meet the deadlines

of synchronous messages and also, to improve the response time for asynchlonous

messages. strosnider and Marchok [3s] applied this algorithm to token ring networks,

which results in a highly responsive and deterministic service, and is an useful

enhancement to the ItrEE 802.5 token ring protocol. shin and Hou [34] investigated

the average performance of various token ring protocols in a real-time environment'

clearly, this pioneering work has contributed greatly to the state of the art of real-

time communications in token ring networks. However, the problem of meeting timing

requirements of real-time asynchronous messages in token ring networks, to our best

knowledge, has not been fully addressed'

L.4 Desirable Properties of Protocols for Real-

Tirne Communications

From the preceding discussions, we can conclude that a MAC protocol suitable for

real-time communications must address the explicit timing constraints of individual

messages rather than differentiate messages in terms of their classes. In specifrc, a

desired real-time MAC protocol should
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o incorporate message timing requirements, such as laxity or deadline,

o stlpport real-time synchronous messages as well as real-time asynchron'ous

messages, i.e. to address message timing requirements whether or not they are

known a pri'ori.

o schedule message transmission based on the optimal transmission policy and

minimize overhead incurred'

These desired properties provide a guideline for design and performance evaluation

of real-time MAC protocols.

1..5 Thesis Outline

We have defined the scope of real-time communications, identified its objectives and

discussed advances and limitations of recent work in reai-time communications.

The rest of the thesis is organized as follows. In Chapter 2, we first introduce

the network and message models together with their parameters and attributes' We

then define the protocol notations and performance metrics. Finally, we describe the

methodology for analizing the worst case performance of a real-time MAC protocol.

Chapters 3, 4 and 5 study and analyze lhree different token ring protocols

respectively. In each of the three chapters, we start with a detailed description of the

protocol operation. We then derive the worst case performance ratio of the protocol.

Finally, based on the worst case performance ratio, we discuss the protocol behavior

under different values of network, protocol and message parameters.
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using the results obtained from chapters 3, 4 and 5, chapter 6 compares the worst

case performance of the three protocols and discusses the underlying implication, which

leads to one of the important conclusions of this work.

Chapter 7 evaluates and. compares the average case performance of the three

protocols through simulation. First, we introrluce the simuiation program and

simulation language used. we then describe the traffic model on which the simulation

experiments are conducted. Finally, we present, compare and discuss various

simulation results.

In the final chapter, we summarize the results, significance and contribution of this

work. \Me then propose the direction and agenda for future research in the freld of

real-time communications.



Chapter 2

System Models

In this chapter, we first introduce the network and message models together with their

parameters and attributes. We then define the protocol notations and performance

metrics. Finaliy, we describe the methodology for the worst case performance analysis

of a real-time MAC protocol, which lays the foundation for chapters 3, 4 and 5.

2.L Network Model

In the OSI reference model, the data link layer is subdivided into a Medium Access

Control (MAC) sublayer and a Logic Link Control (LLC) sublayer [41]. A generic

real-time communication layer model is given in Figure 2.1. The primary function

of the MAC protocoi, calied. the global access contention resolution mechanism, is to

provide access control to the shared medium and to schedule the network-wide message

transmission according to the transmission policy used'

20
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Figure 2.1. Generic Real-Time communication Layer Model

Each node maintai ns a paclcet queue at the MAC layer. Messages from the

LLC layer are segmented into fixed-length packetsl before they are admitted to the

correspond.ing MAC packet queues2. A packet queue can be an unsorted queue such

as a FCFS queue where packets are kept in their arrival order or a prioritized queue

where messages are kept according to a parameter such as access priority, laxity or

deadline.

The focus of this work is primarily on the MAC protocol used for real-time

communications in token ring networks, which is a dominant factor in determining the

lThe deadlines of all packets from a message are the same as

successful message transmission requires all component packets of
that of the message. Hence, a

the message be received before

their deadlines expire; otherwise, the message is considered lost'
2Messages from difierent LLC connections at a node are buffered in the common packet queue at

the MAC layer.

Global Access ContÊntion Resoluti0n
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performance of any LANs supporting real-time applications' That is, we are mainly

concerned. with transmission of time-constrained messages in token ring networks3'

In a token ring network, nodes are serially connected by a unidirectional point-to

point transmission links which forms a ring. Nodes communicate in the network via

the ring. Figure 2.2 shows a token ring network of n nodes.

Each stationa is connected. to the ring via a ring i,nterface which has two operating

mod.es: Iisten and transmit. In the listen mode, the ring interface repeats each input

bit to the output. In the transmit mode, the interface breaks the connection between

the input and output and transmit its own data onto the ring' Devices (e'g' terminals,

workstations, printers) are aLtached to the ring through nodes to communicate with

other devices in the network.

A special control frame called the token circulates around the ring to provide access

opportunities for contending nodes to gain access. Once a node detects a token passing

on the ring, it may capture the token by modifying certain fields in the token. It then

transmits its message by appending the data and adding appropriate control, address

and information fields. At any time, oniy the node possessing the token has the right

to transmit.

A packet transmitted by a nod.e onto the ring is passed unidirectionally from

one node to the next. One or more nodes may be identified as destinations in the

destination address field of the packet, and such destination nodes copy the packet as

it passes by. The source node (the one that has transmitted the packet onto the ring)

removes the transmitted packet from the ring when it returns. The node then issues

a new token and resumes its listen mode'

3lssues pertaining to higher layer protocols such as routing, flow

retransmission, reliability and so forth, are the themes for our future
control and congestion control,
research.

aln the following, station and node will be used interchangeablely
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Figure 2.2. A' Token Ring Network

2.2 Network Parameters

We now defrne some parameters to model the simple token ring network described in

the last section. Let lú(rz, u.,) represent a network of r¿ nodes with a token node-to-node

delay of r.o. 
'We assume that the ring is of length / with a medium propagation speed

of p. Hence, the medium propagation delay is / * p. suppose that the network has a

population of r¿ nodes, evenly spaced on the ring, thus the node-to-node propagation

delay is (/ * ù1". The toleen node-to-node delay t¿ is the time for the token to travel

between two adjacent nodes. It includes the mediumpropagation delay rf n andthe

station bit delay d, which is the delay introduced at a station to monitor, repeat or

modify the token fields. Hence'

l* pu:-
TL

0+-
c

(2.r)

/

\
\ 2

It follows that the normalized tolcen node-to-node delay wt is
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Table 2.1. Network Parameters

(2.2)

where Lo atd.,L¿ is the packet and token lengih respectiveiy' Finally,the token walh

time Wt is the total time needed for the token to complete a full circulation around

the ring when the ring idle. That is, W¡ is the summation of the token node-to-node

delay t over r¿ links on the ring,

W¡:n*u (2.3)

Table 2.1 is a summary of the notations and interpretations of these parameters.

2.9 Message Model and Parameters

In this section, we introd.uce parameters and models that characterize a time-

constrained message and message set respectiveiy'

A time constrained message M is associated with the following attributes upon its

arrival.

o arciaal time (1): the time when the message arrives'

24

Notation Parameter

T1, num of nodes

c ring speed

I ring length
p media propagation speed

0 station bit delay

1.1) token node-to-node delay

Wt token time
Le length
Lt token length
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o length (/¡a): the time needed to complete the message transmission'

o position (p): the identiflcation of the node at which the message arrives'

o d,ead,Iine (d): the latest time when the message transmission must be completed'

o d,esti,nation (p): the identification of the node to which the mcssage is destined.

Thus, a message can be characterízed by these five parameters 7, lm, p, d and p.

\Mithout loss of generality, we make the following assumptions which are intended to

reduce the complexity of the analytical analysis [34, 37, 39]'

o We assume that all messages are waiting in the network when the protocol is

invoked.

o We assume that each message consists of a single packet whose length including

the overhead is normalized to one unit of times. Hence, the normalized token

node-to-node delay is the same as the token node-to-node delay, i'e' trt : ''D'

\Me also assume that the token walk time is less than the message transmission

time, i.e.

nw 11. (2.4)

o \Me assume that the network operates reliably such that there is no loss of tokens

an¿ messages. Messages are always received correctly, hence no tetransmission

is needed.
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sFor a time constrained message M = (d,p), we require that
start no later than time d - 1. This is because a message that

the transmission of message M should
cannot be received at its destination

by its deadtine is regarded as lost. If the transmission of the message cannot start by d - 1 (given

the message length is one), it willnot be transmittedbut willbe dropped.
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o We assume that a sending node releases the token immediately after it completes

a message transmission in order to improve the ring utilization. Hence, the time

incurred for the transmitted message to reach the destination is not part of

the protocol overhead. Therefore, the destination node is of no signifrcance in

dctcrmining the protocol performan ce'

with the above assumptions, parameters 7, l¡a and p can be omitted. As a

result, we can now denote a message M by a simplifled notation (d,p), where d is

its deadline and p (I < p 3 n) is the identification of the node where the message

is waiting to be sent. This implies that the number of messages sent depends on the

distribution of deadlines and positions of all messages in the network, which is the

essential information needed to implement a network-wide EDF policy'

A message set A(A) is d,efined as a collection of individuai messages denoted by

parameters d and P,

A(ù : {(dt, pr), (dr, pr),' ", (d, Pr)}, (2.5)

where the number of messages 7 is defined as the size of rnessage set A(r¡). Without

loss of generality, we assume that messages in a set have been sorted according to their

deadlines, i.e. d,¿ < di iÎ i < i.

As the network offered load increases, it will reach a point where a protocol can

no longer control the message transmission in some predefined manner and exhibits

poor performance and instability. Thus, it is important to study the protocol behavior

und.er these situations. Hence, in this work we assume that the network is fuily loaded

with message(s) to be sent at every node, i.e' r¡ )- n'
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on the other hand, given q (q 2 n) messages residing on different nodes, we

define the eli,gible rrLessüge set at time tto be the one containing those messages being

considered for transmission at time t. As at any time only one message from each node

(the head of the message queue) is qualified to compete for transmission, thus only a

maximum of n messages afe considered for tra'nsmission at any time6' This implies

that the maximum size of an eligible set is 4 : n' How to schedule the transmission of

r¿ messages from an eligible set is the responsibiliiy of the MAC protocol. which will

be the focus of this studY.

Relaxations of these assumptions are possible. For example, in the case where the

network is not fully loaded (not all Lhe nodes have pending messages), our analysis

would still be valid if ?, represents the token node-to-node delay between two nearest

actiae nodes where there are pending messages. In fact, from time to time, we will

extend our analysis results to the case when the network is not fully loaded.

2.4 Protocol Notations and Performance Metrics

A MAC protocol is a set of rules used to schedule message transmissions, i'e. to

determine when a message should be sent. Given a set of time constrained messages, \rye

wish to determine how many messages can be transmitted before their deadlines expire.

That is, we consider the fraction of messages successfully sent by the protocol as the

most important performance metric. The goal of designing a protocol for transmitting

real-time messages is to maxirnize the number of messages sent or alternatively to

minimize the number of messages lost.

6subsequent eligible sets can be obtained by adding a new message to

the transmitted message from the set

the eligible set after removing
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Let send,(P, N(n,w), A("), T",()denote the number of messages sent by a protocol

P for a given message set A(n) in a network ¡ú(rz,tr.'). T, and ( denote the initial

conditions of the network and protocol. ?-" defines the time when the protocol is

invoked an¿ ( denotes the node where the token is at time ?"' Unless otherwise

specifi.ed, we assume that the protocoi starts to operate at time 0 ancl the token is

being released from node n, moving towards node 1, then node 2 and so on' In this

case, we can omit ?" and ( from the argument list or send.

As discussed in Chapter 1, for a given distribution of message deadiines and

positions, we expect that the number of messages sent by a protocol is determined

not only by the transmission policy empioyed but also by the overheacl incurred.

In this study, we wiil compare the performance of protocols with an ideal protocol

implementing the optimal scheduling policy without overhead. \Me call this ideal

protocol ¡he Centralizeil Earli,est Deadline First Protocol (CtrDF). Under this protocol,

transmissions of all messages are assumed to be scheduled by a centralized controller

which possesses perfect knowledge about message deadlines without experiencing any

time delay. The controller schedules message transmissions in the trDF order. Clearly,

this protocol is id,eal: it impiements an optimal scheduling policy with no overhead'

We use it to provide an upper bound on performance of other protocols'

We introduce a metric called performance ratio for the protocol performance

evaluation

Definition2.4.L For a tolcen ring of n nodes with a token node-to-node delay of w,

a protocol P is used, to transm'it n messages from a m,ess&ge set A(n), the performance

ratio of protocol P , denoted by r(P, N(n,u:), A(")) ' is defined by
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S end(P,I[(n, u.'), A("))
(2.6)r(P, N(n,w), A(n)) :

Send(CEDF, N(n,.),,4'("))

This performance ratio measures the percentage of messages sent by a protocol against

that by the ideal CEDF Protocol'

Clearly, giverr ??,, rnessage sets of sizc n can have different distributions of deadlìnes

and positions. As a result, they may have difierent performance ratios. we define

the lowest value of the performance ratios of ail message sets of sizen, i.e' the lower

bound. of the performance ratio, as the worst case perforrnünce ratio.

Definition2.4.2 For atolcen ring of n nodes with a tolcen node-to-node delay of w,

if a protocol P is used, to transmit n Tness&ges, the worst case perforrna'nce ratio of

protocol P, denoted by R(P,u,n), i's d"ef'ned by

R(P,u;,n) min (r(P, N (n,w),¿(")))
vA(n)

Send(P, N(n,u), A("))
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(2.7)minl
V,4(n,)' Send(CEDF,w, A(n))

where A(n) is a,ny m,essa'ge set of size n

In general, if message sizeis h (h < n) and the protocol starts at time T" (7, > 0),

then the worst case performance ratio can be written as 'R(P, w,n,,hrT,).

We d.efine that the worst case perforn'¿únce of a protocol occurs when the worst

case performance ratio is reached. The message set which results in the worst case

performance ratio is defrned as the worst ca,se nùessage set.

Definition2.4.3 For a giuen protocol P and the number of messages n, the worst

case rness(rge set is A-"(n), if the following is satisfi'ed'
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r(P, N(n,w), A-"(n)) : R(P,.,n) (2.8)

we also define t:nat the aaerage case pettormance of a protocol occurs when

the performance ratio tloes not reach the minimum. Although the average case

performance indicates the protocol performance under normal situations, the worst

case performance demonstrates how poor the performance of a protocol can be

under the most unfavorable operating cond.itions. To provide predictable and reliable

performance in a real-time system, it is imperative to investigate the worst case

performance of a Protocol.

Before moving on to the next section, we introduce a requirement on message

deadlines, which is observed by all time-constrained message sets under consideration.

Definitio n 2.4.4 A rnessage set A(n) is feasible if the i'deal protocol CEDF can send

all the Irlessages in A(n)' That is,

Send(CEDF,1ú(n, to), A(n)) -- n. (2.e)

If a message set is feasible, then the following can be established

Lemma 2.4.L A sufficient and necesso,ry condition for a rnessage set A(n) to be

feasible is that the deadli,ne of each nlessa,ge satisf,es the followi'ng.

(2.10)

That is, the ileailline of the i-th nxessûge will not erpire until the completion of its

transrnissionJ
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?Although the lemma is intuitively true, we still provide a formal proof for the sake of completeness.
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Proof: We prove the sufficient and necessary condition separately.

o To prove d¿ 2 i is a sufficient condition'

That is, fi di> i, then message set is feasible. we use the induction method.

Lel i :1, we wish to prove that dr I 1 impiies that the message set is feasible.

This is straightforward as the transmission of the message is completed before its

deadline expires. Thus, the message is successfuliy sent' Therefore, the message

set is feasible.

suppose thelemmaholds ror i:k-1, That is, dn¡2k-l impliesthat the

message set is feasible. \Me wish to show that given d"¡, ) k, the message set

is feasible. clearly, the first k - L messages are sent and their transmissions

complete at time k - 1,. As messages are sorted in the order of their deadiines

and the CEDF protocol always sends the message with the earliest deadline fi'rst,

the k-th message sent by the CEDF protocol is the one with the deadline ol d¡.

As d¿ 2 Ic, fuomtime k - 1 there is enough time to transmit the message. Hence,

all k messages are successfully sent. That is, the message set is feasibie.

o To prove d¿2 i is a necessary condition'

That is, if the message set is feasible, then d¿ 2 i. Similarly, we use the induction

method. Let i:1, if the message is sent, then its deadline must satisfy fu> L

Suppose the lemmaholds for the case of i: lc - 1. We wish to prove that it is

also true for the case i : k. As messages are sorted in the order of their deadlines

and EDF policy is used, the k-th message sent by the CtrDF protocol is the one

with the deadline of d,¡,. As the message set having k messages is feasible, ali the

k messages are transmitted. The total time needed to transmit k messages is

k, since each message transmission requires one unit time. As the k-th message
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is transmitted., its d,eadline must not expire before the end of its transmission,

hence, we have d* 2 k.

This conciudes the Proof. Q.E'D

Definition 2.4.5 we d,ef,ne Asrs(n) as the smallest feasible set for nÙesso'ge size n,

if A,(n) is infeasible, where the d,eo,dline of messages i'n A',(r) are the same as those

i,n Asps(n) ercePt

d,'¿1d,¿-7, I<i< (2.11)

where d,¿ anil d,!¿ are ilead,lines of messages in Asps(n) and A'(") respecti'uely

Obviously, for message sets of size n the smaiiest feasible set is

Asrs {I12r3r"',,n'-l,n} (2.12)

n

If a message set is infeasible, then even the CEDF protocol is not able to send all of

the messages in the message set, consequently, no protocol can send ail the messages'

In the extreme case, we may have Send'(CEDF, N(n,w), A(")) : Send(P, N(n'w)'

A(")): 0, resulting in the performance ratio being an indefinite form, i.e'

r(P,w,n)
0

- 0'
(2.13)

This makes the calculation of the performance ratio of the protocol meaningless. The

infeasibility of amessage set reflects the correlation of message deadlines' Thus, failure

in meeting message deadlines due to this correlation should not be regarded as an index
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to the protocol Performance'

ratio of feasible message sets

Therefore, rffe are only concerned with the performance

Definitio n 2.4.6 Giuen that message sets are feasible, (2.6) and (2'7) become

r(P,, N(n,w), A(n)) --
Send(P,1ú(n, u.') , A(")) (2.r4)

n

and

R(P,u,n)

min (
VA(n)'

Send( P, N(n,w), A(n))
(2.15)

n

In general, an infeasible message set can be transformed into a feasible one before

calculating the relevant performance metric of the protocol. The basic idea of the

transformation is as follows. Let I be a subset of an infeasible set A(n) such that

A(n) -1 is feasible, then A(") - 1 is the required transform of A(n).

In specific, given an infeasible message set where message deadlines are

{dr,dr,"'dn}, where d,¿ 1 d'¡, i < i, (2.16)

rMe can transform it to a feasible set by removing messages whose deadlines do not

satisfy d¿ ) i. That is,

d'o: min(d¡), dn ) i and 1 1 lc 1n, (2.t7)

where dl denotes the d.eadline of the i-th message in the feasible set after the

transformation.
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Finally, a protocol ts work conseruing if it does not remain idle while there is a

message waiting on some node. A non-work conserving protocol may drop all the

messages and never send any. Its (worst case) perfolmance ratio would then simply be

zero. Thus, only the work conserving protocols are of interest in terms of the (worst

case) performancc ratio. Therefore, in whatever follows all protocols under studv are

work conserving

2.5 Methodology for 'Worst Case Performance

Analysis

In this section, we discuss the methodology and identify some common protocol

properties which reveal the quantitative relationship between the performance ratio

and the distribution of message deadlines and positions. These properties, presented

in the form of lemmas or theorems, form a foundation for the worst case performance

analysis of the three protocols, which will be carried out in the next three chapters'

Recall that for a token ring of n nodes, the maximum size of an eligible message set

is n, which implies that we only need to be concerned with how the protocol transmits

the n messages. That is, to simplify the analysis, we take a snap shot of the system'

Given a message set of size n,, the worst case performance ratio of a protocol is the

lowest performance ratio achieved by the protocol for ali message sets of size n. Hence,

the most straightforward way to obtain the worst case performance ratio is to compute

the performance ratio for each of those message sets. For instance, suppose the values

of message deadlines and positions are in the range of [i, D] and [1, n] respectively, the

number of different message sets of size n is D x n. Given a network with a population

of n in the ord.er of hundreds and relatively large message deadlines, the number of
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dift'erent message sets can be enormous. cleariy, this approach is formidable, if not

impossible.

By deflnition, the worst case message set yields the worst case performance ratio,

hence an alternative is to identify the worst case message set and then to compute its

performance ratio. This means that we need to establish an ordering among message

sets in terms of the performance ratio. To avoid exhaustive numerical computing as in

the first approach, message sets will not be sorted directly by computing and comparing

their performance ratios. As the performance ratio is determined by the distribution of

message deadlines and positions, it is possibie to identify the quantitative relationship

(in terms of the performance ratio) between two message sets by comparing their

deadiine and position distributions, so that message sets can be sorted out by their

deadlines and positions respectively. consequently, the message set having the lowest

index of both orderings is the worst case message set. This approach is adopted in

this study.

We now formally define the partial ordering among message sets.

Definition 2.5.L Let two n'Lessage sets be

A(")

A'(")

: {(dr,Pr), (dr,Pr),"' ,(d*,P*)}

: {(d\,P'r), (d'r,P'r),''', (d'n,P'n)}, (2.18)

where pi,¡pj € [1,n],I1i, j < n. we defi,ne d,eadline partial ordering as

A'(") <o A(") (2.1e)

if for any (d,¿,,n) e A(n) anil (d''¡,p'¡) e A'(n), P'¡ -- P; implies d'¡ 3 ú (l <i,i 3")'



2,5. Methodology for Worst Case Perfotmance Analysis

The symbol (¿ is read as /ess than or equal to in terms of deadli'ne' For example,

if there are two message sets,

36

A(5)

A'(5) (2.20)

we have A'(5) <n A(5)'

With the above defi.nition, we can d.ef,ne the sensitivity of a protocol to the deadline

distribution of a message set.

Definition 2.5.2 A protocol P is deadl,ine rnonotonic, if

S end, ( P, N (n, u),, A' (")) 1 S end' ( P,l/ (n, t'u), A(")), (2.2r)

wheneuer A'(") <o A(").

This implies that if a protocol is deadline monotonic, then the message set having the

smallest possible deadlines, i.e. the smallest feasible set, has the minimum number of

messages sent.

Lemma 2.6.1 If a protocol is deadline monotonic and u,sed to transmit n n'¿essages'

then the smallest feasible set A5p5(n) is the worst cctse rnessage set'

Proof: First, for n messages we have

Asrs(n) <o A(") (2.22)

As the protocol is deadline monotonic, then with Definition (2'5'2), we have
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Send(P,lú(n, to), A"r"(")) I Send(P,lú(n, r'u), A(")), (2.23)

where A(rz) is any other message set of stze n. This impties that in the worst case the

smallest feasible set Asps(n) minimizes the number of messages sent. It follows that

it is the worst case set. Q.tr'D'

we now d.efine some parameters reiated to message positions in a network.

Definition 2.5.3 The ilistance between nod,es i and i (i, + j ) in a networlc i's defi'ned

üs

Jlx,

gi,i (2.24)

n + (j - i) otherwzse

That is, g;,¡ is the number of iinks between the two nodes'

Lemma 2.5.2 The rnarimum and, minimum ualue of 9;,¡(i ¡ j) is n - | and' 1

respecti,uely

Proof: We have two cases to consider

. J>x

With (2.24), we have gi,i : i - i. It follows that

V¿,¡max(j-i) : n-7

V¿,¡ min(j - i) : 1.

J -?,

(2,25)
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. J <z

In this case we have g¿,¡ : n I (i - i), which implies the following'

V¿,¡max(rz + U - i)) rz-min(i-j))

38
2.5.

Vr,¡ min(n + (j - i)) n-max(i-j)

n-(n-I)

n,- I,

1 (2.26)

This concludes the Proof. Q.E'D'

In a token ring network, the number of links that the token travels before a message

transmission starts is translated into a non-zero overhead, which is the time needed for

the token to reach the next sending node. \Me deflne this overhead as the contention

oaerhead.

Definition 2.6.4 suppose MtrMzr.'.,M¿-rrMir'.'Mx are k n¿essages sent from

rnesso,ge set A(n), the contention oaerhead of transmission of M¿ (l <i sn), denoted

by 
"¿, 

is d,elined, as the time elapsed from the i,nstant when the token leaues the node

haaing mess&ge M¿-1 to the i,nstant when the transmission of message M¿ starts'

The contention overhead incurred by each message transmission may vary from one to

another depending on the protocol used and message deadline and position distribution

in the network. Cleariy, the contention overhead of a message transmission can be

expressed as the product of the token node-to-node delay t¡ and the total distance the

token has traveled from the previous sending node to the current sending node. As
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we will see, the contention overhead is one of the factors determining the worst case

performance ratio.



Chapter 3

The Token Passing Protocol

In this chapter,, we stud,y a simpie tolcen passi,ng (TP) protocol which transmits

messages in the nearest-neighbor-frrst order [24]. The major disadvantage of this

protocol is that it does not consider individual message deadlines. As a result, its

performance on transmitting time-constrained messages in the worst case may not be

desirable.

We fi.rst describe the protocol operation and establish some important properties

of the protocoi. Using these properties, we then identify the message deadlines and

positions in the worst ca,se message set to derive the worst case perfo mance ratio.

Finally, we use numerical examples to demonstrate the protocol behaviors under

difierent values of network and message parameters. The other two protocols will

be presented. and analyzed in chapters 4 and 5 in a similar manner.

40
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3.1- Protocol DescriPtion

In the token passing protocol, each node maintains a message queue where messages

are kept in their arrival order, irrespective of their deadlines. Messages that have

missed dead.lines will not be sent but removed from the queue.

A free token is circulating around the ring. If a node wishes to send a messa8e'

it captures the token and then sends the frrst messa8e from the queue' upon the

completion of the message transmission, the node releases the token to the node

downstream, and the protocol continues this way'

3.2 Protocol ProPerties

The operation of the protocoi indicates that the token passing protocol schedules

the global message transmission in the nearest-neighbor-first order. No mechanism is

included to take care of message deadlines. This implies that whether and when a

message is sent is determined by the its position and its arrival time regardiess of its

deadline.

Before proceeding to the worst case analysis, we first outline some properties of

this token passing Protocol.

Lemma 3.2.L The tolcen passing protocol is deadli,ne rnonoton'ic

Proof: First, we wish to show that for a given message set A(n), if there exists a

message set A'(n), such that A'(r) <, A(n), then the number of messages sent from

A'(") is no more than that from A(n).

In specifrc, let message sets A(n) and A'(n)be
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where il¿ 1 d¿ atd' dl, - d,i,I < i,i 1 ', i + i" Thus A'(n) <o A(n)' We wish to show

A(")

A'(")

: {(dt,p.), (dz,pz),

: {(dt,pr), (dz,pz),

,(d¡',P¿),

,(d'o,Po),

,(d*rP*)j,

,(d*rP^)\, (3.27)

Send(TP, l/(n, tr), A' (")) < Send(TP, N(', w), A(n))' (3.28)

Let t¿ denote the time when the node having message (d¿,,p¿) receives the token. We

have two cases to consider.

o Case 1: message (d¡,p¿) is lost in A(n)

This implies that from f¿ there is not enough time to send messaEe (d¿,i)' That

is, d,¿ 1 t¿:rTrwhere 1 is the message transmission time. As d'o < d¿, conseQuently,

d'n 1 do 1t¿ I l, (3.2e)

indicating that dl will expire earlier than d¿. Hence, (d'.,,i) will be lost. The

remaining message transmission sequence stays the same. Thus,

Send(?P, N (n, w), A' (")) Send(TP, N(n,w),A(")). (3.30)

o Case 2: message (d¿,p¿) is sent in A(n)

As the node havin S @¿,i) receives the token at f¿, the transmission of the message

can start at f¿. Depending on the values of dl and t¿,we have the following'

- di>t¿tr'

This implies that from time f¿ onwards, there is a time interval of at least
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one unit of time before dl expires. Hence, it follows ihat (dl, i) will be

sent too. The remaining message transmission sequence temains the same'

Hence,

Send(?P, .l/(n, u.,), A' (")) Send(TP, N(n,w),,4(")). (3'31)

- di<t¿*1.

This means there is insufficient time to send (di,po) from f¿, thus, (dl,p¿) will

be lost. If there is no message loss in A(n) after (d¿,p¿), then the remaining

message transmission sequence remains the same' Thus,

Send(?P, /ú(n, u.'), A'(")) Send(TP,l/(n,T.o), A(")) - 1. (3.32)

Otherwise, assume (d¡,p¡) is the first message lost in A(n) aftet (d¿,p¿),

whose deadline satisfies the following:

¿,1 d; 1t; lI. (3.33)

Let t¡ and. t" be the token arrival times on node p¡ when transmitting

messages from A(n) and A'(n) respectively. Clearly,

t : t¿t7+(j-i,)w.) (3.34)

As (di,i) is not sent, thus t'j:ti - 1. That is,

tj:t'jlr (3.35)
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With (3.33) and (3'35), we arrive at

d¡2ti:t'j*1. (3.36)

Thus, (d¡rp¡) is sent. Those messages on nodes between node p¿ and p¡

are sent one time unit earlier and the transmission sequence after node p¡

remains the same. Therefore,

Send(TP, N (n, w), A' (")) Send(TP, N(n,w),Á(")). (3.37)

If there does not exist a lost message whose deadline satisfles (3'33), then

those messages lost after ú¿ will still be lost. Transmission of each remaining

message can be started one time unit earlier. In this case,

Send(?P, l/(n, tr.r), A' (")) Send(?P, N(n,w),A(n)) - t. (3.38)

With (3.30), (3.31), (3.32), (3.37) and (3'38), we have

Send(TP, N (n,, w), A' (n)) < Send(?P, N(r, w), A(n)) (3.3e)

In general, for any message set A',(n) such that A'(") <o A(r), A',(") can always

be obtained by d.ecreasing the deadlines of some messages in A(n). Assume that only

one message deadline is decreased each time, using a similar argument as above, we

can ensure that when a message deadline is decreased, the number of messages sent is

either reduced or the same. Hence, using the deduction method, we have
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whenever A,(n) <, A("). This implies that the token passing protocol is deadline

monotonic according to Definition2.5'2' Q'E'D'

Another important property of the protocol is related to message positions in the

network.

Definition 3.2.1 For a giuen nxess&ge set A(n),let A.(n) be another form of A(n)

where rnessa,ges are sorted according to their positions. That is,

where pi 1 pj t il i < i . At ue ußsurne that each node has eractly one rnesso'ge, thus

A. (n) : {(dr, Pt),, (dr, Pr),''', (dn, P")}',

A.("): {(dr, L),(dr,,z),' ' ' ,(d",r)}

with this definition, the following lemma can be established

Lemma 3.2.2 Let two rnessl,ge sets be

(3.41)

(3.42)

(3.43)

(3.44)

A"(r)

A'*(r)

{(dr,1), (dr,2),...,(do,i),(dra.i + 1), ... ,(d^,n)},

{(dï,1), (d,i,2),... ,(d'o,i),(d'o+r,i + 1), ." ,(d'n,r)}.,

where il¡ : d¡ for I 1 j 3n and j + i, d,i : di+t, d'o+, : d,¿ and' d,¿ ) d,¿¡1, 7 1 i 1 n

If the token passing protocol i,s used to transmit these two sets of messages, then

Send(T P,l[(n, tr.'), A.(")) 3 Send(T P, Iú(r, to), A'.(n))'
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That is, for a giuen n-Lesso,ge set A(n), if the deadlines of two rnessages on the

neighboring nod,es are interchanged, so that the token will ui,sit the node with the smaller

d,ead"line nxesso,ge first, then the number of messages sent by the token passing protocol

n¿úa xncrea'se

Proof: Assume that the token arrives at node i and node i * 1 at t'irne t¿ and f¿11

respectively when transmitting messages from A.(")' Similarly, let their counterparts

be úf and fl*, when transmitting messages from A',*(r). It is clear that

t'i: t¿ 1t¿+t

t'i: t¿ 1t¿+t

As (d;ar, i + 1) in A*(n) is sent, thus,

(3.45)

That is, the token arrival times at node i are identical when transmitting messages

from A*(n) and A,"(r).However, the times when the token arrives at node i * 1 may

differ, depending on whether or not the message on node i is sent after swapping'

As messages (d¿, i) and (dn+r,i + 1) from A*(n) can either be sent or lost, we have

four cases to consider'

o Case 1: both messages (dn,i) and (d¿-,'1,i + 1) are sent

we wish to show that from A',*(r), (d'o,i) and (dl*r,i + 1) are also sent. As

message transmission sequences for both sets before t¿ ale the same' We have

(3.46)

d¿+tlf¿+i*1. (3.47)



473.2. Protocol ProPerties

Combining (3.46) and (3.a7), we arrive at

d'¿+t2t¿¡t*I>t'i+I

d,¿) d,¿+t2t¿+t* 1: t|+7+l

Because d'¿: d¿+, > ti+ 1, thus, (d'n,i) is sent' As node i * 1 is the nearest

neighbor of node i and' (d'i,i) is sent, thus tl*t :ti+t'Consequently'

(3.48)

(3.4e)

It follows that

d'i+r:d¿>t'¿*r*l' (3.50)

indicating that (dl*r,i + 1) is aiso sent. The remaining messages are the same

in both sets, thus

Send(TP, N (n, w), A- (")) Send(?P, lú(n, tr), A'.(")). (3.51)

o Case 2: both (do,i) and (d¿1r, i + 1) are lost

We wish to show that (dl, i) and (d'o+r,i + 1) from A'*(rz) are also lost. First, as

messages positioned before node i are the same in both sets, thus fl : f¿ holds'

Second, as (d¿, i) is lost, we have

d,¿<t¿*1. (3.52)

As d¿ ) d¿+y from (3.45) and (3.52), we have
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Thus, it follows that

d,¿¡1 1d,¿ 1t¿* 1 : t'i+I

d'¿:d¿+t<tti+I,

(3.53)

(3.54)

which implies that (di, i) is lost. As node i * 1 is the nearest neighbor of node i

and in both sets the messages on node i are lost, thus, the time when the token

reaches nod.e i * 1 is the same, that is t'o*, -- f¿11' Consequently,

d'i+, : d,¿ 1 t¿+ 1 < t¡¡t I I : t'¿+t I L (3.55)

This impties that (dlo*r,,i + 1) is also lost' Hence,

Send(?P, N (n, u),,4'.(")) Send(TP, N(n,w), A'.(n))- (3.56)

o Case 3: (d¿,i) is sent, but (d¿a1,i + 1) is lost

\Mith regard to time ú¿ and dí+t, we have two subcases to consider

- d¿+tlt¿l1

That is,

d'¿: d¡+t 2 t¿ -l I : t'¿ * I. (3.57)

Hence, (d,!.,i,) is sent. It follows that Ú1..,.r :ti+t'Moreover, if d'¿2t¿¡1*I,

that is,
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d'i+t:d¿)t'¿*r*t, (3.58)

then (dl*r, i + 1) is sent; otherwise, it is lost. Thus, we have

Send(?P, N(n,w),,,4.(")) < Send(?P,Iú(rz,tr), A*('))' (3'59)

- d¿+t <t¿lt
Because d,¿: d¿+t <t¿*I:t'¿+1, (d!i,i) is lost. Let s denote the number

of messages sent before the token arrives at node i, we have

d¿2t¿*1:sliwll. (3.60)

Ãs il¿ is an integer, thus

du >- l" + it¿ * 1'ì

\Mith the assumption iw 3 nw ( 1, we establish the following:

[s*ito*1.] fs+(i+l)u+1.1

It follows that

(3.61)

(3.62)

(3.63)
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Hence, (d'o*rri + 1) is sent.

The remaining messages in both sets are the same. Therefore,

Send(?P,Iú(n, tr.'), A.(")) : Send(?P, N(', w), A'.(n))' (3'64)

o Case 4: (d,¿,i) is lost, but (d¿-,.1,i + 1) is sent

This means

il¿ 1t¿ ! I, and (3.65)

d¿+tlt¿+t{I (3.66)

Because d,¿ ) d,¿¡1and ú¿ 1t¿+t, (3.66) becomes

d,¿) d4¡12t¿+t+ 1> t¿*I, (3.67)

which contradicts to (3'65). Hence, this case does not exist

\Mith (3.4+), (3.51), (3.56) and (3.59), we have

Send(?P, N(n,u),A.(")) I Send(?P,Iú(rz,u.'), A'.(n)). (3.68)

This concludes the proof. Q.E.D
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3.3 'Worst Case Performance Analysis

Lemmas 8.2.1 and 3.2.2 have established the message deadline and position ordering

in terms of the worst case performance ratio among the equal-size message sets. using

these lemmas, we can now id.entify the worst case message set which yields the worst

case performance ratio for the token passing protocol'

Lemma 3.3.L Giuen a token ring of n nodes, if the token passing protocol, is used to

transmit n nxessages, the worst case nùessage set is

A-.(n): {(1, n),(2,, - 7),"' ,(, - L,2),("' 1)} (3.6e)

That is, in the worst ca,se rness(rges o,re positioned i'n th,e networlc in the decreasing

order of their deadlines

proof: Lemma 2.4.1 states that message deadlines of any feasible message sets of

size n must satisry d,¿ 2 i (1 < i < n). with (2.12), we know that for message sets of

size n, the one having message deadlines of {1,2,...,fr - l,n} is the smallest feasible

set, thus we have

A-.(n) 3n A("), (3.70)

where A(rz) is any other message sets of size n'

On the other hand, we see that messages in A*.(n) given in (3.69) are positioned

in the decreasing order of their deadlines, such that the one with the largest deadline

is always sent first by the token passing protocol. From Lemma 3.2.2, we know that

for a given message set, if the deadlines of two messages on the neighboring nodes are
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interchanged so that the token will visit the node with the smaller deadline message

first, then the number of messages sent by the token passing protocol may increase'

It follows that the number of messages sent fuorn A-.(n) is minimized since messages

are positioned such that the largest deadline message is always sent frrst. Therefore,

That is, A-"(n) is the message set that yields the worst case performance ratio of the

token passing protocol Q.E.D'

With the worst case message set given in (3.69), it is straightforward to compute

the worst case Performance ratio'

Theorem 3.3.1 The worst case perforrnunce ratio of the tolcen passi,ng protocol is

0 n(tr{1,

R(TP,w,n) (3.72)

ln*ltLu+2r otherwisen

Proof: we first calculate the number of messages sent from A-"(") by the token

passing protocol. Let s denote Send(TP,N(n,w),A-.(n))'

At time 0, the token is released from node n, moving towards node 1 which holds

message (r,1). It takes T.¿, units of time for the token to reach node 1' We have two

cases to consider.

o No message is sent

This happens if n < u * 1. When the token arrives at node 1, the latest time to



3.3. Worst Case Petfotmance Analysts 53

send. message (r¿,1) has passed. As the deadlines of the rest messages are smaller

than n, all messages have been lost'

o One or more messages are sent.

suppose s messages are sent. As d; ) d¡ fot à < i, and messages are sent in

the latest-deadline-first order, those s sent messages must be (r,1), (n - 1,2),

(n - 2,3), ..., (?r, - " + 1,s). That is, ihe z.th sent message is on node i. Thus,

the overhead for each message transmission is simply the time for the token to

travel from one node to its nearest neighbor, i.e. the token node-to-node delay

u. As a result, each message transmission takes I + w units of time. As the

message having a deadline of n - s * 1 is the last message sent, its deadline must

not expire when the transmission of this message is completed' That is,

n-s+1>sx(1 *r). (3.73)

Solving (3.73) for s in terms of n and tr, we have

- n+I
.9 \ ----------=.- w*2

(3.74)

As a total of s messages are sent, s must be the largest integer which satisfi-es

(3.74). That is,

s (3.75)

As the worst case performance ratio is defined as the fraction of messages sent

from the message set, this leads to (3'72). Q.tr.D'
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This theorem implies that the worst case performance ratio is a decreasing function

of parameters r¿ and t¡.

We now extend Theorem 3.3.1 to more general cases'

Corollary 8.g.1 If the token passing protocol is i,nuolced at time T" to transmit

nxess,ges fromthe worst,rness&ge set giuen in (3.69), then its worst case perforn'¿&nce

ratio zs

0 n1T"ftol1,

R(T P,u,n,T") (3.76)

t n*l-T" tL---+2*) otheruise

Thiscorollarycanbeeasilyprovedbysubstitutingsx(1 *u.') with?"+sx(1 +?l,)

on the right hand side of (3.73), since the protocol is invoked at time 7"'

Corollary 3.3.1 can be further extended to the case where the size of the message

set is smaller than the number of nodes r¿.

Corollary 8.8.2 If the token passing protocol is inuoked at ti'me T" to transrni't h

(h < ") n'¿essa,ges, then its worst case perforrnance rati'o is

0 h<wll,

R(T P,u,n,h,T") (3.77)

proof: As the token passing protocol is deadline monotonic, with a similar

argument used in the proof of Lemma 3.3.1, the worst case message set for h messages

fL

otherwise,
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{(1, pr), (2, pz), "', (h - 7, Pn-t), (h,, Pn)}., (3.7s)

where ptlpz>"'>

messages can reside on any nod.es as long as they are distributed in the decreasing

order of deadlines.

Let s (" < ä) denote the number of messages sent from A(h). As in the worst case

the token passing protocol sends messages in the latest-deadline-first order, thus the

s sent messages must be

(h,pn),(h- 7,Pn-t),"',(h- s * 2,pn-"+z),(å - t * 1,pn-"+r)' (3'79)

As at time ?" the token is at node n, moving towards node p¿ where message (h,po)

resides, evidently the first message transmission incurs an overhead oT gn,onw where

gn,pn ís the distance from node n and node pn as defrned in Definition 2-24- After

the transmission of message (hrpo) completes, the token moves from node pn to node

pn_t. Thus, the overhead involved in the second message transmission is g¡,on-rw.

Likewise, the transmission of the s-th message (h - s * l,Pt -"+t) incurs an overhead

of gh-"+z,ph-s+tu.Hence, the transmission of s sent messages completes at

T" + (gn,pnw + 1) + (go,on-r. + 1) + "'* (gn-"t2,pn-"+t, * 1)

: Tsl (gn,pnw I gh,pn-tw l "'* th-"+z,po-"+r?¿) * s

: T" I (gn,pn * 9n,pn-, + "' + th-"¡z,p¡-"*r)t + t' (3.80)
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The term (gn,on* gh,pr-r+ "'+ th-"¡2,p¿-"*r) it (3'S0) is the total number of links

that the token has traveled when s messages are sent. clearly,

s 1 gn,pn I gt ,pn-r + "' + th-"12,p¡-"*, S n (3.81)

That is, to send. s messages, the token must travel at least s links since these messages

reside on s different nodes.

As messag. (h-s*1, pn-"+t) is the last sent message, its deadlineh- s*1 should

not expire when its transmission complete. with (3.80), we arrive at

h - s+ 1 > T" * (gn,pn I gh,pn-r+ "' + !h-"¡2,p¡-"*r)tr'r * s (3.82)

With (3.81), (3.82) becomes

h-s*7)7,*su¡*s (3.83)

Solving s in terms oT w, h and 7", we have

s
h+7-7"

u +2
(3.84)

As s is the total number of messages sent, s must be the largest integer satisfying

(3.84). Hence,

s (3.s5)

This concludes the Proof. Q.E.D
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g.4 Numerical Results and Discussions

From Lemma 3.4.1, we see that the worst case performance ratio of the token passing

protocol is always less than one. The following factors contribute to the performance

loss

o The token passing protocol implements the neatest-neighbor-frrst transmission

policy. In the worst case, it sends messages in the latest-deadline-first order,

which is in contrast to the CtrDF protocol that always sends the earliest deadiine

message first. This nearest-neighbor-first transmission policy does not consider

individual message deadlines, as a result it has a severe performance impact.

To see this more clearly, we consider the worst case performance ratio given in

(3.72) when the token node-to-node delay tr.' is 0,

:0+
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1n*tt l

R(T P,,u,n) < (3.86)

That is, given the same perfect environment where the contention overhead is

assumed to be zero, the token passing protocol can send only half the messages

sent by the CEDF protocol. This is solely tlue to the non-EDF transmission

policy used by the token passing protocol. Figure 3.1 shows the result. We see

that in the plotted ranges of rz and u.r, the worst case performance ratio is as

low as 0.5. It also shows that the performance of the token passing protocol is

relatively insensitive to parameters to and n, which implies that the dominant

cause for its poor worst case performance is the non-EDF transmission policy

used.

o The token passing protocol requires a non-zero contention overhead, which is

equal to the token node-to-node delay. To send a message, it takes at least 'ttr

units of time for the token to travel from the current node to the node where the

next sending message resides. This amount of time is the contention overhead,

which is also responsible for degrading the protocol performance' However' we

see that its impact is negligible as compared with that of the transmission policy.

58



Chapter 4

The Priority-Driven Protocol

In the last chapter, we analy zed a simple token ring protocol which schedules message

transmission using the nearest-neighbor-flrst policy which does not consider individual

message timing requirements. Because of this, the token passing protocol is not

commonly used. for real-time communications. Instead the predominant approach

taken by many proposed standard or non-standard token ring protocols is priori'ty-

d,riuenll,8, 11, !7,40,44] asdiscussedinchapterl. underthesetokenringprotocols,

messages are assigned different access priorities based on their service classes. At

any time the message with the highest priority is sent flrst. Although discriminating

messages based on service classes is adequate in a non real-time environment, these

protocols may perform poorly in supporting real-time message transmission as they

d,o not explicitly address individual message deadlines'

In this chapter, we propose and study a modifled pri'ori,ty-driuen (PD) token ring

protocol which explicitly addresses individual message deadlines 124, 47,49, 51]' It

uses a prioritized. access mechanism together with a priority assignment function to

support time-constrained message transmission. Different access priority ievels are

used. to differentiate messages with different deadlines. We show that when the number
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of priority levels is suff.cient, the protocol implements the exact EDF transmrssron

policy; otherwise, it only approximates the EDF policy. consequently, in the worst

case, the protocol performance may not be desirable'

4.L Protocol DescriPtion

In this protocol, each node implements a priori,ty assi'gnment functi,on which assigns

an access priority to each message based on its deadline upon its arrival' Each node

maintains a prioritized message queue where messages are kept in the decreasing order

of the access priority. Messages whose deadlines have already expired are discarded'

At any time the head of a message queue at a node represents the highest priority

message queued at that node, and thus is considered for transmission before any other

messages in that queue.

The token contains a priority fietd io facilitate the prioritized access to the ring.

When a free token arrives at a node, the node examines the token priority fleld and

inserts the highest priority of its pending messages (if any) if this priority is higher

than the one currently indicated in the token. This enables the token priority field to

represent the highest priority of messages waiting in the system after the token has

completed at least one full circulation around the ring. A node is allowed to capture the

token an¿ transmit its message only when the token returns with the node's claimed

priority after passing through all other nodes. When the sending node completes the

message transmission, it issues a new token with the token priority field set to the

lowest priority. The protocol continues this way.

As this priority-driven protocol incorporates message deadlines into priorities, it

is expected to perform better than the simple token passing protocoi anaiyzed in the
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last chapter. on the other hand, we can see from the above description that the

contention overhead of this protocol is substantially higher than that of the token

passing protocol. This is because after a message transmission, it takes at least u (aT'

most (n - 1).) units of time for the token to reach the node where the message with

tlre next highest priority resides; it then takes another nw units of time for the token

to return to this node. At that time the node starts transmitting the message' 'We will

show that this higher contention overhead may degrade the protocol performance such

that the priority-driven protocol performs even woIse than the simple token passing

protocoi in some situations.

4.2 Priority Assignment F\rnction

As already mentioned, to incorporate message deadlines into this priority-driven

protocol, a priority assignment function is used to map message deadlines to access

priorities. Before introducing a specific priority assignment function, we first identifv

the characteristics of deadline-to-priority mapping functions in general'

o Non-decreasing

A message with a smaller deadline should always be assigned a higher priority.

Formally, for two messages M and M' with deadlines being d and d/ respectively,

iÎ d < d', then we have

Pri¡,y: l@) 1 Pri¡a, -- f @''). (4.87)

¡ Finite range

In practice, the number of priorities provided by the token is limited by the
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token length. This implies that the priority assignment function must have a

fi,nite rúnge.

o Many-to-one

As the number of message deadlines is theoretically inflnite, given a flnite priority

range, the priority assignment function must map an infinite number of deadlines

to a finite number of priorities. The impact of the many-to-one property is that

no matter what form the mapping function has, more than one message with

djfferent d,eadlines may be assigned the same priority. As a result, the one with

a larger d.eadline may be sent first. Hence, the priority-driven protocoi only

approximates the EDF PolicY.

These properties are common to any mapping functions impiementing the EDF

policy. Following is a general form of priority assignment functions'

I lfl <-,
Pri¡a - f @',q)
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I4q

TN

(4.88)

l!1 > *,

where q is the length of pri,ority ass,ignrnent function. we see that /(d, q) defined in

(4.8S) is a non-d,ecreasing many-to-one function, which has the properties discussed

above.

Theoretically, it is difficult to decide the optimal length of the priority assignment

function as it depends on network and protocol parameters, and the message deadline

distribution of the applications. However, in Chapter 7 which deals with the average

case performance of the protocol, we will examine the impact of the length of priority

assignment function q on the protocol performance'
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To facilitate our worst case analysis, we now introduce a simple priority assignment

function. Assume that there are n'ù priority levels indexed by 1,2,"',ffi, where 1 is

the highest priority and rn is the lowest. Let integer d be the deadline of message M

and pri¡¿ be the priority of M determined by the priority assignment function, we

have

d d 1m,,

P1ila - f @",1)
(4.se)

nx d>m

Clearly, this priority assignment function is non-decreasing and many-to-one.

Furthermore, it is a special case of the priority assignment function defined in (a.88)

with q : l.

It should be pointed out that although many other mapping functions are feasible,

this assignment function is chosen for the purpose of reducing the complexity of the

worst case performance analYsis.

Figure 4.1 shows this priority assignment function when the number of priorities

m is 64 and 256 respectively. For the curve of. m : 64,, we see that a message with

a deadline smaller than 64 is assigned a distinct priorityl. The smaller the deadlines,

the higher the priorities (i.e. the lower numerical value). In this case, when a message

is transmitted, it must have the highest priority, thus the earliest deadline, among

all pending messages at that time. Clearly, the protocoi is implementing the EDF

transmission policy exactlY.

lsimilarobservations can be madefor the curve of m= 256 except that the turning point is now

a,ln= 2S6instead of n=64.
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Figure 4.1. A Priority Assignment Function

On the other hand, messages with deadlines equal to or greater than 64 arc assigned

the same priority o164. These messages are not differentiated for transmission. As a

result, messages with smaller deadlines may have to wait while a message with a larger

deadline is being transmitted. Evidently, in this case the protocol only implements

the EDF policy approximately. Therefore, the EDF policy is observed by the priority-

driven protocol only among different priority levels, but not necessarily within the

same priority level. Consequently, more messages may be lost as compared with the

case where the EDF policy is implemented exactly. The following example illustrates

this point.

Example 4.2.L Suppose there øre two priorities leuels are auailable: Pri 1 and

Pri 2. The pri'ori,ty assignment function is d'ef'ned as

64

m : 64 --ç-
m = 256 --+---
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d d12,

Pri,¡a - f @",1)
(4.e0)

2 d>2.

Suppose there are four rnessages residing on different nodes with deadlines of 2, 3, 4

and, 6 respectiaely. Each nl,essage transmission is assumed to talce 1.1 units of time.

With the priority assignment function defined i,n (1,90), each message is assigned

the same prioritY uPon its arciual:

Pri¡a, - Pril¡, - Priv, : Priun :2.

As messages haue the same priority, the node th,at captures the tolcen f'rst will

send, i,ts rnessage fi,rst. Suppose the node with Ma seizes the token first and completes

transmission of Mq at ti,rne 1.1. Then the node wi,th Ms captures the token and the

transmiss,ion of Ms completes at time 2.2. At that time the deadli'ne of M1 has already

enpireil. The rernaining message M2 will also be lost, since a rnessage transmission

from time 2.2 witt be completed at time 3.3 by when the deadline ol Mz has already

erpi,reil. Thus, in thi,s case, onlg two messages o,re sent. Fi,gure 1.2(a) shows the time

diagram for message transrnission in this case.

Howeuer, if the EDF transm,ission policg i,s strictly obseraed, rnessa,ge transmission

sequence in terms of rnessage deadli,ne sh,ould be 2, 3, /¡ and 6' The times when the

correspond,ing message transmission comltletes are 1.1,2.2, 3.3, and I'1. Clearly, all

lnessages can malce their deadlines as illustrated in Figure 4.2(b).

It is obvious that the priority assignment function defrned in (a.89) maps a deadline

to a priorily staticly, i.e. for a given deadline, its corresponding priority is determined
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Ma(d=6) M3(d=4)
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Figure 4.2. Time Diagram of Message Transmission

and flxed. However, if priorities are assigned dynamically rather lhan staticly, then

fèwer messages would have been lost. That is, upon a message arrival or a transmission,

all message dead.lines are re-ord.ered in the increasing order and then assigned priorities

in the decreasing ord.er (starting from the highest priority). In the above example, if

priorities are assigned dynamically, then initially the message with a deadline of 2

would be assigned, Pri 1 and hence be sent first, followed by messages with Pri 3,

4 and 6 respectively. No messages would be lost. However, it is not difficult to

see that the implementation of such dynamic priority assignment function requires a

centralized controller which has the complete knowledge of explicit deadlines of all

messages waiting in the system. Evidently, it is not possible for each node in a token

ring network, which only knows its own message deadlines, to obtain explicit global

message deadline information in a distributed manner'

It may also be argued that if suffi.cient priorities are available, then the EDF policy

may be observed. In the above example, if four priority levels are available, then each

message would be assigned a distinct priority. As a result, all messages would be sent

4.4
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successfully. In the worst case analysis of the protocol' we will examine the impact of

the number of priorities on the protocol performance'

In the foliowing, we wish to derive the worst case performance ratio of the priority-

driven protocol for a set of messages with arbitrary dea,dlines. Let d and D denote

respectiveiy the earliest and latest deadline of a set of messa,ges. we use PD^>D,

PD*<¿ and' PD¿a^<D to indicate the following'

o p D^>o: the priority-driven protocol is used to transmit a set of messages whose

deadlines are smaller than r¿'

o PD^a¿: the priority-driven protocol is used to transmit a set of messages whose

deadlines are equal to and greater than rn'

o PD¿a*ap: the priority-driven protocol is used to transmit a set of messages

whose deadlines are smailer than, equai to and greater than rn.

As the protocol behaves differently in these three cases, we deal with them separately

in order to reduce the complexity of the analysis. However, it will become clear that

pD*>n and. PD^a¿ are special cases or PD¿ana¿r, thus the worst case performance

analysis of the first two cases will provide some insights and results for the third case.

4.3 \Morst Case Performance of PD*2p

We now analyzethe worst case performance of the priority-driven protocol when used

to transmit messages whose deadlines are smaller than the number of priorities. With

the priority assignment function given in (4.89), each message is assigned a distinct

priority level since its deadline is smaller than rn'
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In the following, we first present several lemmas which characterize the protocol

properties associated wiÏh PD*>¡. With these properties, we then derive the bounds

of the number of messages sent in the worst case and obtain the bounds of the worst

case perfoïmance ratios. Using these bounds, we arrive at an estimation of the worst

case performance ratio. Finally, we give a quantitative measurement of the maximum

error of the estimation.

We begin with the examination of the impact of message deadlines on the number

of rnessages sent bY PD,*2p.

Lemma 4.3.L Giuen two message sets of size n

A(n) : {(dt,p'), (dr,Pz),

A' (") : {(,1\,, nt), (d!r, pr¡,

', (dn-t, Pn-t)', (d", P")j,

' , (d'n-t, Pn-t), (d'n, P*)j,

where d,¿ < d¡ (i < j), d!¿: d,¿ (1 <i 3n-I) and d* 1d!*, i'f the EDF policy is used

to transmit these two message sets, in the tt)orst case,

(4.e1)

(4.e2)Send,(EDF,, N(n,w), A'(")) 2 Send(EDF, N(n,w), A(n)).

proof: As messages are sorted in the deadline order and the EDF policy is

implemented, thus (d*,Pò arld. (d!*,pi) must be the last message sent from A(n)

and, A'(n) respectively if they are sent. We see that message deadlines in A'(n) are

the same as those in A(n) except for dn. Clearly, the message transmission sequence

remains the same up to (dn-t.,P*-t) for both A(n) and A'(n)'

Let f be the time when message transmission of the fi.rst n- 1 messages is compieted.

It follows that the message transmission sequence remains the same up to time l. Let
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r denote the message transmission time plus the contention overhead. There are two

possible cases:

e d,, is sent in A(").

That is, d*>t * r. Hence

d'n) dn2t*r (4.e3)

Thus, dl is sent too. We have

Send'(EDF,I/(n,, tr.'), A'(")) : Send(EDF, N(n,u), A(n))' (4'94)

o d,, is lost in A(").

This implies d"n < t I r. Il d* < d'n 4 t{ r, then d', is also lost, thus

Send,(EDF,Iú(t, w),A'(n)) : Send(EDF, N(n,w), A(n)); (4'95)

otherwise, if d; > dn ) t f r, then dl is sent, hence

Send,(EDF,N(n,w), A'(n)) : Send(EDF, N(n,tr),4(n)) + 1' (4'96)

In summary, we have

Send,(EDF, N(n,w), A'(")) > Send(EDF, N(n,,w),, A(n))' (4.e7)

This concludes the proof. Q.E.D
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Lemma 4.g.2 If the EDF transmiss'ion policy is used to transm'it n messages, the

rness&ge set with a marimum rnessage deadline of n minimizes the number of rnessages

sent.

proof: From Lemma 4,3.7, we know that the smaller the maximum deadline of a

message set, the smaller the number of message sent. For n messages' the deadline of

the last message must satisly d,,2 n to ensure the feasibility of the message set. Hence

a message set with dn : n minimizes the number of messages sent. This concludes

the proof. Q.E.D.

We now compute the number of messages sent from a set of r¿ messages with a

maximum deadline of n.

Lemma 4.g.g If the EDF policy is used to transmit n messages wi'th a, rnarimum

ilead,line of d,n : n and, each transmission takes r (, > I) units of time (including the

ouerheail), then the total number of rnessages sent, denoted' by s, is gi'aen by

s (4.e8)

Proof: Let these n messages be

lL
v
T

where lrl is defined as the largest integer which is small,er than r

A(n) : { (dt, pt ), (dr, pr)',' ", (dn-t, Pn-t), (d", P")} . (4.ee)

I1 s I Lî1, ttt"" either " > L?l o s < L?1. t" the following, we wish to prove that

neither of them is true.

.">L?l
Without loss of generaiitY, let
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":¡?1 +i,

t

t-n

7t

where i > l. (4.100)

The time ú when the transmission of s sent messages completes is

t sXT

{t}l + i) x r

LeI n: l?)r I t, where 0 I s ( r, hence lil -- T'It' follows that

Rearranging the above, we arrive at

.n-€: jz)xr
T

: n-elir.

(4.10i)

(4.102)

'tT-e

."<Li.l
Similarly, let

0 asr)sandi>1.

It follows that f ) rz, which implies that there must exist a message having a

deadline greater than n' This is impossible as d'n: n is the largest deadline and

messages and messages afe sent in the EDF order. Hence " > L?i does not hold.

(4.103)

(4.104)ts
n

T
l-i. wherei>1.

Jl



4.3. Worst Case Petfotmance of P D^2p

Using the same aPProach, we have
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t sXî

([tl - i)xr
T

.n-e(- -z)xr.T

n-e,-?,7

n-e-T,) asi21

n-!, asr)1and€>0' (4.105)

That is, the message transmission is completed before time n - 1. This implies

thatmessage(d,n,p,)withadeadlineold,n:nmusthavebeensent.Asthe

protocolimplementstheEDFpolicyanddn:r¿isthelargestdeadline,itmust

be the last sent message. It follows that messaEe (d*-t,Pn-t) must have be sent

before (d,,p^) and its transmission completes at

n_ I_ r < (4.106)

That is, transmission of message (dn-trP*-t) is completed before Lítne n - 2'

Repeat this process for messages (dn-z,Pn-z),(d^-z,Pn-z),"' ,(dr,Pz) with the

same argument, it is easy to see that transmission of message (drrpr) must be

completed before time 2 - r 11. This is impossible because it takes at least r

units of time to complete the first message transmission since r t 7. Hence, the

hypothesis " < Lil can not be true.

In summary of the above two cases, we must have s : Lil' Q'E'D'

The above lemma can be readiiy extended to more general cases.
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Corollary 4.g.1 Giuen a networlc of n nodes and h (h <

matimum d,ead,line or h, ?,1 rnessages are transmitted in the EDF order starting at

time T" and, each transmission talees r (r > I) units of ti,me (including oaerhead),

then the total number of messages sent, denoted bg s, is giuen by

s (4.107)

Proof: This lemma can be easily proved by substituting f : s X r with t - T"l s xr

in (a.101) and (4.105). Q.E.D'

Let us now consider the contention overhead involved in a message transmission

under PDrn>o Protocol.

Lemma 4.3.4 Gi.uen a tolcen ring of n nodes, under PD*>o n'ùesso,ges are sent in

the EDF ord,er and, the marimum and minimum contention oaerhead of a nlessa'ge

transmission is (2n - 1). and nw respectiuely'

proof: As all message dead.lines are smaller than rn under PD^>n, with the

priority assignment function defrned in (4.89), messages with different deadiines are

assigned distinct priorities. As PD*sp sends messages in the order of decreasing

priority, thus it sends messages in the EDF order'

Assume that at time 0, the token is released from node i moving toward node i * 1.

Suppose that the highest priority message resides on node i (i + i)'

\Mith defi.nition (2.5.3), it takes the token 9;,¡r-u units of time to reach node j (i + i)

which holds the current highest priority message. It then takes another nu; units of

time for the token to pass through the network and return to node j so that it can start
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its message transmission. The contention overhead c of a message transmrssron can

thus be seen as the sum of two components. One is the time c1 needed for the token

to travel from the iast sending node (or the initial token node) to the node having the

current highest priority message. The other is the amount of time c2 required for the

token to complete a full token circulation to confirm that this is indeed the highest

priority message currently in the network' Formally,
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c ct*cz

ï¿,jw I nw. (4.108)

From Lemma 2.b.2, the maximum and minimum value of gi,j is n - 1 and 0 respectively.

Therefore, the maximum and minimum contention overhead, denoted by "*o, 
and c^¿n

respectively, is obtained as follows.

cmax : V¿V¡ max(g;,¡w * nw)

: (n-I)u*nw

: (2n - l)w. (4.10e)

Cmin

0+nw

nLD (4.110)

V¿V¡ min(gi,jw + n.uu)

This concludes the proof' Q.E'D.

From Lemma 4.3.4, it seems that if messages are distributed in such a way that

each transmission always incurs a maximum contention overhead of (2" - 1)tr.t, then
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we would have the worst case performance of PD-;,¡. However, the following example

demonstrates that this is not always true'

Example 4.g.L Gi,uen a network of 10 nodes and the tolcen node-to-node delay w of

0.0p7. A message set A(n) contains 70 rnessages whose deadlines are 1, 2, "', I and

10 respectiuely. Let us now ero,rnine if it is possible that each message tra,nsmission

,incurs a manimurn contention ouerhead of (2n-1)w, i"e. 0'5L3 in this case.

If so, the f,rst ntessüge to be sent must reside on node I and its d,eo'dline must

satisfy the following:

lQ"-1)tr+11

|-0.513 + 1.]

[1.513]

2 (4.111)

In the aboae, lr] is defi,ned as the smallest integer which is greater than t' That is,

rnessage (2, g) is the fi,rst sent rnessúge. In the following, we show that this is indeed

the case. First, rnessage (I,pr), where pt # n - I, has a deadline of 1 and is on a

nod,e which is uisited by the tolcen before node 9, thus message (I,pt) is considered

before lr¡essage (år,9). From Lemma 4.3.4, the ouerhead of & n'ùess&ge transmission'is

at least nu. Thus, the transmission of rnessage (l,pr) wi,ll cornplete no earlier than

time nu * 1 : 1.59 > L This indicates that at that time, the deadline of the rnesso'ge

has erpired". Thus, the node does not write the priority of message (l,pt) into the

token. For other n'Less(rges, thei,r dead,lines are larger than b1. Hence, rnessage (ót'9)

is the fi,rst sent rrùesso'ge'

ór



4.3. Worst Case Performance of PD*sp 76

The transmission of the f,rst message (2, 9) completes at time 1.513 and message

(l,pr) has been 1ost. Si,mi,larly, if th,e transmission of the second sent message incurs

a contention ouerhead of 0.53, then the nxesso,ge must reside on node I and haue a

dead,line of

bz : l2 x ((2n + 1)u + 1)l

: [2 x 1.513']

: [3.026.1

:4. (4.t72)

Let message (4,r+) be on noile 8, thus rnesso,ge (3,pr) is on a node other than node 8,

say noile 7. We wish to show that rnessage (3, 7) is the second sent message rather

than message (4, B). Ctearty, It takes the token 8w units of ti'me to reach node 7 from

noile g. The nod,e writes its priority i,nto the tolcen. It talces the toleen another 10w

units of time to return to node 7. That is, at time

t 1.513+(8+10) xo.o27

1.999, (4.113)

the transntission of message (3, 7) starts. It is completed at time 2.999' At that time,

the d,ead,Iine of message (3, 7) has not erpired yet. so message (3, 7) i's the second

sent message which has an ouerhead of (2n-2)w rather than (2n-1)w.

In the example, we see that message (3, 7) is the message that makes it impossible

for the second sent message to have the contention overhead of (2n - 1).. For the

transmission of message (3, 7), the maximum contention overhead is (2n -2)t'
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4,3.L Lower Bound of R(PDmlDtw,n)

The above example implies that given a n-node token ring' not every message

transmission incurs a contention overhead or (2n - 1)r, but (2n - 1). is indeed the

maximum possible overhead incurred. We now derive the lower bound of the number

of messages sent lry PD*2¡l based on this overhead'

Lemma 4.3.5 Giuen a token ring of n nod,es, if PD*>p is used to tro'nsmit n

rness(rges, the lower bound of the number of messages sent is

S end¡.*(P D^>o, N (n, w)' A(n)) (4.114)

proof: Lemma 4.3.2 indicates that for n messages, if the EDF policy is employed

to transmit messages, the message set with the maximum message deadline being n

minimizes the number of messages sent'

Lemma 4.3.4 states that (2"-1)u is an upper bound of the contention overhead for

a message transmission under PD^>o, a lower bound of send(PD^>o, N(rrw), A(n))

can be obtained by substituting r : (2n - 1). * 1 in Lemma 4.3.3. Q.E.D.

With this lemma and the defrnition of the worst case performance ratio, rwe can

readily obtain the following theorem'

Theorem 4.3.1 The lower bound of the worst case perfornùo,nce ratio of PD*2p is

L u*1 l
R¡"-(PDrr>nrw,n) (4.115)

n
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With Corollary 4.g.L, the above theorem can be extended to the case where the

number of messages is less than n and the protocol is invoked at time ?"" > 0.

Corollary 4.g.2 Gi,uen a networlc of n nodes andh (h <") rnesso'ges, if PD,*'rp is

inuolced, at time T" to transmit these tnessages, then the lower bound of the worst case

performance ratio is

L l
R¡o-(P D*sD ¡ u,¡ fr ¡ h, T r) (4.116)

h

4.3.2 Upper Bound of R(PDm)D¡w,n)

As the upper bound for the message transmission overhead is (2n - 1)r, hence,

nw,(n I 1).,. ..,(2n - 2), are the possible lower bounds. To obtain the upper

bound on the worst case performance ratio, we flrst derive a lower bound on the

contention overhead for a message transmission'

Lemma 4.3.6 TlVhen PD^>n is used to transmi,t messages frorn

A(n) : {(1,pt), (2,pr),"' ,(, - !,Pn-r),(n,p")}, (4.117)

the messages cgn be positioned in the ring such that the contention ouerhead for each

n¿essage transmission i's at least (2n - 2)-'

proof: Let ¡.t¿: (b¿,n¿) be the i-th sent message, where ó¿ is its deadline and n¿ is

its position. Let TLo -- TL and f; be the time when the i-th message transmission starts.

The lemma is proved. if we can show the foliowing statement is true: messages in A(n)

are positioned in such a way that for the i-th sent message h: (b¿,n¿), where
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b¿ [ú¿-r+ (2n- 1)u.'*1'], (4.118)

(4.11e)

(4.120)

n¿-t - 2 n¿ 1n¿-1- l,

t¿-tl(2"-2)w*l t¡ 1t¿-1* (2n - 1)u.' * 1

That is, for lhe message set given in (4.117), the i-th sent message ¡;¿ has a cleaclline

of t¿-t + l(2n - 1), { 1-l and resides either on node rLi-r - 1 or on node n¿-1 - 2' The

transmission of mess a1e y,i completes either aT, t¿-t-l(2n_l)wtL or t¿-tl(2n-2)w*l'

It is clear that the d.eadline and position of message p¿ depends on its predecessors

d.ue to the uncertainty that each message transmission incurs an overhead of either

(2" - l)tr.' or (2n - 2)w.

We prove this by induction. First, we show that ¡;r : (ór, no - 1), where

I

b1 Its¡ (2n - l)tr.' + 1'l

lQ"-l)tr.'f1.1,

no-l

n-1,

to*(2n-l)to*1

(2"-1)u*1.

Tù1

tt

(4.r2r)

As at time 0 the token is moving from node n to node 1, the time when the token

arrives at node n - 1 for the fi.rst time is (rz - 1)tr. It then takes the token another nt¿

units of time to return to node n - L Thus, the transmission of message (fu,,n - I)

starts at time (n-l)w*ntl. Message (fu,n- 1) is sent successfully as there is sufficient

time to complete its transmission before its deadiine expires. That is,
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(n-I)w*nu*1

: (2"-l)tr*1

:h. (4.t22)

\Me need to demonstrate that messages on other nodes are either lost or have iower

priorities than message (fu, n - I). Assume that a message Mt is on node j and has a

deadline of d'. Two cases need to be considered'

o d,, > fu: l(2n - I). { 11. In this case, when the token arrives at node j, the

nod.e writes this message's priority into the token. However, the priority field in

the token will eventually be modifled to a priorifi or l(2n - 1). f 1l by node

n - l. Therefore, M' is not the frrst sent message'

o d,, < fu : l(2n - 1)tr + 11. As PD*s¡| implements the trDF policy, messages

with dead.lines of d', such that 1 < d' < fu, havehigher priorities than message

(h,n - 1), thus they may be considered before message (h,,n - 1). However' as

il < bt and both d' att'd ó1 are integers, we have

h-7

lQ"- 1)u-F1l -1

l(2n - I)wl (4.t23)

On the other hand, it takes the token jto units of time to travel from node n

to node j for the flrst time. Then it takes the token another r¿u.r units of time

to return to node j. Hence, the time when node j can start transmitting its
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message M'is

t¡:jw*nw

If message Mt is sent, its transmission completes at time

t',+I : iw'fnw*1.

\ryith (4.123) and (4.125), we have

il -(t',+t) lQ"- 1)rl - (i.+n.*t)
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(4.r24)

(4.t25)

(4.126)

From Lemma 2.5.2, we know that 0 < i < n - l' It follows that

0 (+.t27)

Note that the algebric inequaliry l(zn - 1)..l < (2n - I). * 1 is used in the

derivation of the above formula. Therefore, we have d' 1t'i f 1, which implies

that the deadline of M'would expire before the transmission of M' completes.

Hence, even though M'has a higher priority than message (fu, n -L), there is
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not enough time to send M'. Thus, node j does not write its message priority

into the token and message M',will be eventually lost.

Theref'ore, none of other messages can be sent before message (btrn - 1), which

implies that (ó1, , - 7) is the flrst sent message. Its transmission completes at time

t1:(2n- 1). * 1: tsI(2n - 1)r* 1. Hence, Lemmaholds for i:1'

Suppose the lemmaholds up to i: le - 1. We nor',r'/ prove the iemmais true for

z : k. Specificallyr we wish to show that message É¿* resides either on node nn-t - I

or on node n¡_1 - 2 and that its deadline is ó¡ - [f¿-r + (2" - 1)u.' + 1-1.

As the minimum contention overhead for a message transmission is nw, thus for a

message whose deadline d is greater than l¡-1 but smaller than ó¡, it is considered for

transmission before b¡, onlY if

bt" > dì ómin : ltn-t+ rzu: * 1'l (4.128)

That is, a message whose deadline d is smaller than b¡ and positioned before ó¡ is

allowed to compete for transmission against ó¡ only if its deadline d would not expire

before its transmission completes; otherwise, there is not sufficient time to complete

the message transmission. Hence, it is lost after f¿-r and before the transmission of

ó¡ is completed. The number of messages with deadlines satisfying (a.128) is

01bn- ómin : lf¡-r+ (2"- l)ur*1'l - l¿*-r *nw*L]

[(r*-' * (2n- 1). + 1) - (f¡-r + nto * 1).1

[(rz - t)tu]

l"rl
1, as0(nw1l. (4.t2e)
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Because messages in (a.117) have distinct deadlines, the a,bove formula indicates that

there may be either zeïo or one message competing for transmission against b¡,. We

deal with these two cases separately'

o btr - ómin : 0. In this case, every message with a deadline smaller than ó¡ has

been lost after f¡-1. If we Iel p,¡: (bt,,nk-t - 1), then the transmission of ¡'r*

completes aI t¡, - tt -t * (2" - l)u * 1. Hence the lemma holds in this case.

o bt, - bmin : 1. In this case, there is only one message with a deadline of d

(d < ó*) that has not expired by time f¡-r' Hence, we have

If the message with a d.eadline of d is on node TLk-t - 1 and the message with

a deadline of ór is on node nk-t - 2, ther_ there is not enough time to send

(d,nn-t - 1). This is because

tn-tl(2"-1)u.'*1

.Tu)

(4.130)

(4.131)

which implies that the deadline d of messa1e (d,fttc-t - 1) would expire before

its transmission completes. On the other hand, message ¡,1¿ is sent regardless it
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is on node nk-t - 1 or on node zz¡-1 - 2 because

tn-t*(2"-1)u.'*1

: b¡r.

tn-t*(2"-2)u* t

L
u lr. (4.132)

That is, message /.¿r whose deadline is ó¡ is either on node Ui-r - 1 or on node

nt_t - 2. Its transmission completes at either tn : t¡-t -l (2n - 2). * 1 or

tt : tt -t i (2n - I)- f 1 as required by the lemma'

This concludes the Proof. Q.E.D.

From the above lemma we see that when P D^>n is used to transmit n messages

withdeadlinesof d¿--í(i:I,2,...,n_ I,n),eachtransmissionincursanoverhead

of either (2" - 1)to or (2" - 2)to. Hence, the following lemma can be established.

Lemma 4.g.7 Giuen a token ring of n nodes, if PD*2p is used to transmit n

n¿essages, in the worst case the lower bound of the contention ouerhead of a message

transmission is (2n - 2).'

Proof: Lemma 4.3.4 and Example 4.2.1 have demonstrated that, given a token

ring of n nodes, if. PD*>n is used to transmit n messages, the possible lower bounds

for the contention overhead are (2n _ 2)*,(2" - 3),rl,r,'" and ntr.r respectively. On the

other hand, Lemma 4.3.6 show that under PD^>D, there exists a message set such

84
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that each message transmission incurs an contention overhead of eithet (2n - l)to or

(2n - 2)w. As we are concerned with the worst case performance ratio, we choose

(2, - 2)w as the lower bound. This concludes the proof for the lemma' Q'E'D'

Lemma 4.3.8 Giuen a token ring of n nodes, i,f PD,,2p is used to transmit n

n'Lessa,ges, in the worst case the upper bound of the number of messages sent is

S endur(P D,*> o, N (n, w), A(n)) (4.133)

proof: Using (2n-2)w as the lower bound of the contention overhead, with Lemma

4.3.3, we concludes the proof. Q.tr.D.

The upper bound of the worst case performance ratio can now be obtained.

Theorem 4.3.2 An upper bound of the worst case perforn't'0"nce ratio of P D*2p is

85

L JI
R,e(PD*>n,w,n) (4.134)

(4.135)

n

Similar to Corollary 4.3.2, the upper bound of the worst case performance ratio

can be extended to more general cases.

Corollary 4.3.3 Giuen a network of n nodes and h (h 3") nt,essúges' if PD*sp is

inuolced at time 7", then the upper bound of the worst case perforrnance ratio is

L l1

h-

Rre(P D*> D j'u) ) n ) h, T 
") h
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4.3.3 An Estimation of R(PDmlD¡w',n)

Based on the lower and upper bounds of the worst case performance ratio, we propose

to use the following to estimate the worst case performance ratio A(PD ^>Drurn)'

r?"r¡(PD- >o,w,n)
Alo* (PD-t.o, u,n) I 'Rup(PD->n,w,n)
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2
ln
L (zn-r)u,'çr l+L I1

2n
(4.136)

We now d.erive the maximum error for the estimation proposed above. For the

convenience ttf our discussion, we let

It follows that

(4.137)o

o (4.138)

We start with deriving the difference between the upper and lower bounds of the

number of messages sent by PD^sp in the worst case'

Lemma 4.g.g For giaen n and u, the difference between the lower and upper bound

of the number of messages sent by PD, 2p i,s either 1 or 0. That i,s,
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Send,o(PD*>n , N (n, w), A(n)) S end¡o*(P D,,rr, ly'(n, w), A(n))

0 otheruise.

Proof: We deal with the two cases separately

o Ir u < ffi, then by solving for ø I 1' we have
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w31

(4.13e)

(4.140)
nø*1( (2"-2)w*r'

Multiplying 1 : ffi to the right half of (4.138), we obtain

oll >

n

(2"-2)wtI
n

(2"-2)w*r

2n-2)w-ll(
X

X

+
u

)u1(2" - 1

(1 - ) (4.141)
2n( i)w +1

Rearranging (+.14l), we arrive at

nnw
ø;Ð-T1 < o t r - 

ç2, - 2¡- ¡ 1 " 2n - 1¡* a' (+.t42)

For n ) 0 and w ) O,we have O < pffi*¡t ( n and 0 < pffi;A 1w. It

follows that

nu
o t 

ç2, - 2¡,, * 1" ç2" -1¡,, *t 
1 nw' (4.143)
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As nu ( 1, we arrive at

n u
<1.0<

(2" - 2)u -17 (2"-1)trf1

Hence, (4.142) becomes

n <o+2(2"-2)w*r

From (4.140) and (4.145), we have

n 1o*2.olIl (2" - 2)w -11

\Mith the definition of the floor function I l, the above inequality implies

ø*1:L n

(2n-2)wtI

Rearranging the above, we have
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I

l:1

(+.r44)

(4.145)

(4.146)

(+.r47)

(4.148)

(4.14e)

n

(2"-2)w*I .l -ø:1

Replacing a by (4.137) in the above, we arrive at

t

L

n j-L n

(2"-2)u:*t (2"-1)u.'*1

With (4.114) and (4.133), we have
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Send,o(PD ^>o, 
N (n,æ)' A(n))

o \f u , ffi, then we have

o*1)

However, (4.137) leads to

Send¿,- (PD *>o 1 N (n, ut) , A(n))

I n t-r n 
I

'(2n - 2)w * LJ '(2n - 1)u.r * 1'
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1 (4.150)

n
(4.151)

(4.t62)

(4.153)

(4.154)

o

From (4.151) and (4.152), we have

(2"-2)zu*L'

n

(2n-2)w*1'

n

"< ç2":ffi(ø*1'

With the definition of the floor function I l, the above inequality implies

With (4.137) and (4.154), we have

o
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(2n-1)u.'*1
TÙ

L l

o-o

0

Send,o (PD *>n, N (n', w), A(n)) Send¡,. (PD,o>o, N (n, w),' A(n))

(4.155)

0 (4.156)

In summary of the above two cases, the lemma is proved' Q'E'D'

Theorem 4.3.3 The d,ifference between the lower bound and upper bound of the worst

cøse perfarm,únce ratio of PD^sp is

R,e(PD^>o, u, n) - R¡o-(PD^>n, w, n)

: u<ffi,

where o i,s defined in (/¡.137).

Proof:

0 otherwise,

Rue(PD, >n,w,n) - 'R¿,.,(PD *>o,u,n)
L l

n
n

L
j t I1

n

n
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(4.158)

0 otherwise

This concludes the proof of the lemma' Q'E'D'

This theorem ind.icates that the maximum difference between the bounds of the

performance ratio of PD^sp is |, which is a decreasing function of n'

Theorem 4.g.4 The marimurn error of the estimation of the worst case perforTn&nce

rati.o of PD^2p 'is

R 6¡(PD^)D ¡ u,t r) - Rt.-(P D*sP, w', n)

7 , n-(o+¡r)

2" w : (o+rl(2n-2))

(4.15e)

0 otherwise.

Proof: With Alo* and .R"s¡ given in Theorem 4.3.1 and (4'136)' we have

,R"r1 (PD- )D ¡ u ¡ n) - R1'-(PD ^sp, 
w, n)

ln
L(zn-t)ut¡1 l+L IL1

'tr
I1

2n

l-L
TT

L
TI

1 I

1

2"
(4.i60)

0 otherwise.

This concludes the proof. Q'tr.D
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4.3.4 Numerical Results and Discussions

We have obtained the worst case performance ratio of the priority-driven protocol when

used. to transmit messages whose deadlines are smaller than the number of priorities'

Theorem 4.3.1 implies that with a sufficient number of priorities, this priority-driven

protocol is able to implement the exact EDF policy and that the contention overhead is

the only factor degrading the protocol performance. Figure 4.3 shows the result' If the

token node-to-node delay u., is 0, then R(PD 
^>D,u,n) 

: 1 implying that if working

in the ideal environment and having a sufficient number of priorities, the protocol can

send. all messages, achieving a worst case performance ratio of 1. If the token node-

to-node delay t¿ is non-zero, the worst case performance ratio is less than 1. This

performance loss is due to the contention overhead, i.e. the time taken for the token

to circulate around the ring to locate the highest priority message. Furthermore, we

see that the worst case performance ratio is a decreasing function of the token node-

to-node delay tl.

As the worst case performance ratio obtained is an estimation, we have derived the

maximum error of the estimation. In practice, parameter n is normally in the order of

100, the error bound given in (a.160) is thus very small. Figure 4.4 shows the curves

of -R11p, AIo* and A"r1 vs. n. we see that the difference between Ruo and R¡o- is

invisible in most cases as the maximum difference between -R1o* and 'R1p is 1/n. This

implies that the bounds of the worst case performance ratio obtained are very tight'

Consequently, the estimation which is the medium value of the bounds is acceptable.
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4.4 Worst Case Performance of P D^a¿

In this section, we analyze the worst case performance of the priority-driven protocol

when used to transmit messages whose deadlines are equal to and greater than the

number of priorities rn'

With the priority assignment function defined in (4.89), messages having deadlines

equal to and greater than m are assigned the same priotity m regardless of their

actual deadlines. As PD*<¿ sends messages in the priority order, it is conceivable

that messages with larger deadlines are sent before those having smaller deadlines

(since they are of the same priority). As a result, PD*a¿ may not observe the EDF

policy.

Lemma 4.4.L PD^<¿ is deadline monoton'ic

proof: The proof of this lemma is similar to that of Lemma 3.2.1, except that

under PD^<¿, the contention overhead is nr.¿r units of time more than that of the

token passing protocol. Hence, replacing the term t¿ l7 with f ¿ I nw * 1 in the proof

of Lemma 3.2.I, we can have this lemma proved' Q'E'D'

Lef A(n) be a message set where message deadlines are equai to and greater than rn,

we define its subsets Y and Z to consist of these two types of messages respectively.

Formally, we have

A(") : YuZ, where

: {(dr,,pt),(dz,pz),"',(d¡,p¡)}, d¿:nL) r<i< j 1n',

: {(dt,p),,(dr,pr),"',(dn-j,P"-¡)}, d¿) m, I < i < n - j

Y

Z

(4.161)
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We now identify the message deadlines in the worst case message set'

Lemma 4.4.2 Giuen a tolcen ring of n nodes, if PD^a¿ is used to transmit messages

from A(n) giuen i" (4.161), rnessage d,ead"Iines in the worst c&se rnessage set are

Aru" : Y-. lJ Z-.,, where

: {d¿ldo:m}, t3i3m,

: {d¿ld¿:mli}, 1 <i < n-nx.

Y-"

(4.162)

That is, subset Y-" consists of m rness&ges that haae identical deadlines of m, and

subset Z has n - n¿ rness&ges whose deadli,nes (rre nù * Lrm *2,"')n - I and n

respecti,uely.

Proof: First, we show that for messages sets defined in (4.161), A-"(n) : Y-"1) Z-"

given in (a.162) is the smallest feasible set'

o To prove that the CtrDF protocol can send all the messages f.omY-"U 2.".

- As CEDF protocol always sends the earliest deadline message first, messages

ftom Y-" are sent before those from 2... It takes the CEDF protocol one

unit time to send a message, thus the transmission of m messages ftornY-"

requires rn units of time. It follows that all messages frorn Y-. are sent as

their deadlines rn would not expire by time rn'

- It follows that the transmission of messages from Z-" starts at time rn.

The transmission of the f.rst message from Z-. cornpletes at time ræ * 1,

by which time its deadline would not expire, hence it is sent. Similar, it

is easy to see that the i-th message from Z-" is sent at time rn f i. Thus,

the transmission of the (n - m)-th message, which is the last message from

Z*"
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Z-., cornpletes at time rr¿ * (" _ m) : n' Hence, all messages from Z*" are

also sent under the CtrDF Protocol'

Therefore, the CEDF protocol can send all the messages from Y-" l) Z-"'

o To prove that the CEDF protocol can not send all the messages from Y-"U Z-"

if any message deadline is reduced'

As we are dealing with the case of PD*<¿, thus no message deadlines are smaller

Ihat rn. Hence, no message deadlines in Y can be reduced.

- Suppose the d.eadline of the i-th message from Z-" is reduced frorn m * i to

rn. Thus there are now mI7 messages have deadlines of m. It is obvious

that und.er the CEDF protocol the transmission of. m 11 messages requires

m * I units of time, but the message deadline rn would expire by time rn.

Therefore, only rn messages are sent and one message is lost.

- Suppose the deadline of the i-th message in Z*. is reduced from r¿ * i to

m I j, where j < i. Under the CEDF protocol, the transmission of rn

messages frorn Y-. completes at time rn. Hence, the transmission of the

i-th message from Z-" completes at time rn + i, by which time its deadline

m -l j would expire. Consequenily the message is lost'

The above demonstrates that if any message deadline in Y-" l) Z-" is reduced

even the CEDF protocol can not send all messages, i.e. the new message set is

not feasible.

In summary of the above, with Definition2.I2 the message set given in (a.a'2) is the

smallest feasibie set. Furthermore, as PD*<¿ is deadline monotonic, with Lemma 2.5.1

the message set given in @.a.2) is the worst case set' Q'E'D'
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we now examine how messages given in (a.162) are sent by PD^a¿ in the worst

97

CASC

Lemrna 4.4.g Giuen a token ring of n nod,es, if PD^1¿ i's used to transmit messages

from the worst c(rse n'ùessage set giaen i" (1r.162), it sends rrLessages i,n the latest-

d,ead,line-first ord,er and, each n'ùessúge transm'iss'ion incurs a contention ouerhead of

(n * 1)u.,'

Proof: As all messages are assigned the same priority m under PD*<d, they are

sent in the order in which the token is captured'

A,s PD*a¿ is deadline monotonic, thus it behaves the same as the token passing

protocol but with a different contention overhead. Replacing r * 1 with r I nu* 1 in

the proof of Lemma 3.2.2 where z is t¿rtt¿,t¿¡1or tt¿*1, we conclude that given a message

set, if the deadlines of two messages on the neighboring nodes are interchanged so that

the token visits the node with the smaller deadline message fi.rst, then the number of

messages sent by PD^Sa may increase. As a result, in the worst case PD*<¿ always

sends the latest deadline message first.

For each message transmission, it takes ur units of time for the token to move from

the current sending node to the next node where the priority of the message is written

into the token priority field. After another n'.r., units of time, i.e. when the token

completes a fuil circulation, the message is sent. Hence, the overhead for a message

transmission is (n + 1),r. Q.tr.D.

With the worst case message set and the contention overhead given in

Lemmas 4.1.62 and 4.4.3 respectively, it is straightforward to compute the number

of messages sent in the worst case.
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Lemma 4.4.4 For the worst c(rse nxessage set gi'uen in (/,.162),let Sv and' Sz be the

number of messages sent from subsets Y-" ønd z-" respectiuely, we haae

0 m < (n - m * 1)((n + l)tll + 1)),

Sv- (4.163)

n-L- n-nl, X

ntl ) otherwise.t
1

1

Sz : min(n-*,tø#*r)) (4.164)

Send(P D,,1a, N(r,w), A(n))

: Sv-lSz

min(n - *,,1øffiø)) m < (n - m lt)((n + 1)u.' * 1),

(4.165)

lrnl
L (n.{1)r,f 1J

otherwise

Proof: Lemma 4.4.3 states that in the worst case PD^1¿ sends messages in the

latest-deadline-fi.rst order, hence messages in Z arc sent before those in Y because

message deadlines in the former are greater than those in the latter'

o Message transmissionltorn Z

As messages in Z are sent in the latest-deadline-first order with a contention

overhead of (rz * 1)t¿, with Theorem 3.3.1 the maximum number of messages

sent from Z is 15ffi1, which can be obtained by replacing tr with (rz * 1)tr

in (3.7a) in the proof of Theorem 3.3.1, On the other hand, the total number of

messages in Z is rL - n'1. Hence, we have
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(4.166)

o Message transmission from Y

Clearly, if any messages are sent from Y, all messages in Z must have been sent'

This is because message deadlines in Z are larger than those in Y and PD^<a

sends messages in the latest-deadline-first order. Thus, we have

Sz:n-m. (4.167)

Transmission of messages fuom Z complete aI' 57 x ((" f 1)ur + i)

- No messages from Y are sent if

(4.168)

This is because by the time the transmission of messages from Z cotnpletes,

the message deadlines rn in Y would expire. Hence, all the messages in Y

are lost, implying Sy :0.

- Otherwise, ali n - rn messages from Z are sent. The transmission of

messages from Y starts at

Sz:min(n-rn)l, "rt t ,=l).(n*1)tr.r +2"

rn

T" : S7x((n1 1),u+1)

: ("-*)x(("+l)tr+1) (4.16e)
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As all messages in Y have the same deadiines, sending them in the latest-

deadline-first order is equivalent to sending them in the EDF order' With

Corollary 4.3.1, we have

rn-7,
Sv t l(n*1)ur*1

m-(n-m) x ((n * l)to + 1)
L

n17
(ntL)w-t2

n*L

(4.170)

(4.r7t)

I

In summary, Send(PD*3d., N(n,w),Á(n) have two possible values

o Only messages fuorn Z are sent

(n*l)tr*1

S end(P D 
^3a, 

N (n, w),, A(n)

Sz -l Sv

min(n - m,,l

min(n - m,l

S end(P D*1a, N (n, u), A(n)

: SzlSv

l)+0

l)(n-lL)wt2

¡ All messages fro:ør Z are sent, followed by some from Y

(n-m)+lm-(r--) x((n*l)u*1)
(n*1)u.'*1

(n-rn) x((n * I)u+ 1) + * - (, - rn) x ((" + 1)u + 1)

j

L

L

l(rz*1)tr*1
n'r

(n*l)tr*1 l (4.172)

This concludes the proof Q.E.D
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4.4.L 'Worst Case Performance Ratio R(PD*<a,w,n)

From Lemma 4.4.4, the following is straightforward

Theorem 4.4.L The worst case perforn'ìnnce ratio of PD^a¿ i,s

R(PD*a¿,w,n)

m 1 (n - m *t)((rz + 1)to -t- 1),

tmlL(n*1)ø*1: otherwi,se

01

(4.173)

4.4.2 Numerical Results and Discussions

We have derived the the worst case performance ratio of the priority-driven protocol

when used to transmit messages whose deadlines are equal to and greater than the

number of priorities rn. Theorern 4.4.I indicates that the worst case performance ratio

of pD*<¿ is less than 1. The following aspects contribute to the performance loss'

o Under PD*<¿, messages with different deadlines are assigned the same priority

due to insuffi.cient number of priorities. Our analysis has shown that in the worst

case messages are sent in the latest-deadline-first order, which may lead to a low

worst case performance ratio. To demonstrate this, we consider the rvorst case

performance ratio given in Theorem 4.4.1 when u) :0,

mln(n-m,lzfl.l)
n n't.<n-mlI,

(4.174)

ITL

n

R(PD^a¿,u,n)

otherwise



4.4. Worst Case Perfounance of P D,n<a

Furthermore, if

n'¿<n-ml1 and n-rn>l

then (4.174) becomes

R(PD*a¿,u,n)

t02

nll
(4.175)

(4.176)

l,
2

n1'l
rrù < 2)

R(PD*a¿,w,n)

Tn otherwise
rL

If r¿ is sufficiently large such that I al 0, then we have

1
2

m1 n*.l
21

(4.177)

Tn otherwise.n

This implies that if the contention overhead of each message transmission is zero'

the limiting value of the worst case performance is determined by the number of

message deadlines n and the number of priorities rn'

- If m a +,then PD^1¿ can send only half of the messages sent by the

CEDF protocol. This is because in this case PD^4¿ sends messages in the

latest-deadline-first order since messages with distinct deadlines have the

same priority. This is solely due to insufficient number of priorities.

- Otherwise, the worst case performance ratio is f, which is an increasing

function of. m. Figure 4.5 demonstrates the effect of rr¿ on the worst case

performance ratio. We observe that for a given rr¿, as n increases the worst
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1
V[:0

n

ú

0.8
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0.2

0
I L6 32 64 r28 256 512 lO24

Figure 4.5. trffect of the Number of Priorities

case performance ratio decreases and eventually approaches 0.5. Hence,

the number of priorities is one of the dominant factors that determines the

worst case performance of PD^<a.

o The contention overhead is also responsible for degrading the performance of

PD^<¿.Figure 4.6 shows the result. We see that the worst case performance

ratio is a decreasing function of the token node-to-node delay u.'. We also notice

that when n ) m: 64 the performance ratio is always less than 0.5 for t¿ ) 0.

This is due to both the transmission policy and the contention overhead incurred.

In summary, if the number of message deadlines is large and the number of priorities

available (d,etermined by the number of bits used for the priority freld in the token) is

small, then the worst case performance of PD^<¿ is poor.
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Figure 4.6. Worst Case Performance ratio oL PD^a¿

4.5 Worst Case Performance of PD¿1*1D

In this section, we study the worst case performance of the priority-driven protocol

when used to transmit messages whose deadlines are smaller than, equal to and greater

than the number of Priorities rn'

To facilitate our analysis, we group the messages into three subsets according to

their dead.lines. We then derive the worst case performance ratio for each subset using

the results obtained Tor PD^s¡t and PD^a¿. Finally, the worst case performance ratio

of. PD¿a^a¿r is computed by summing up the worst case performance of each subset'

For given n and m,Iet A(n)be a message set of sizen and its message deadlines

are smaller than, equal to and greater thar_ m. Let Ak(n) be a subsel o1 A(n), which

has ,b (0 < k < m) messages with deadlines smaller than rn. Consequently, all message

sets {A(rz)} of size n can be seen as a union of subsets Ar(") with k ranging from 0

ú

0

n

: 0 --+--
. 0 01 -+-__

.002 --t'-'

.003 -N'--

V\i

Vf:0
Vl:0
V[:0

R
GI

E}
€ {} B
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to m - 1. That is

{¿(")} {Ao(")} u {41(rz)} u "'u {A*-'(")}. (4.178)

Using a notation similar to that defined in (4.161), we have

,qrØ) :

xk:

Yk:

olcL:

Xk uYk u Zk, where

{(dr, Pr), (dr, Pr), "', (dr, Pn)}, d¿ 1 m, t 1 i 1 k',

{(dr,pr), (dr',pr)',"' ,(d¡,p¡)}, d¿: rn, I < i < j'

{(dr,pt),(dr,pr), "',(dn-x-¡,P^-x-j)}, d¿ } m', I l i 1 n - k - j'

(4.17e)

That is, messages are grouped. into three subsets Xr , Yr and Zk , in which message

deadlines are smaller than, equal to and greater than rn respectively2' With

Definition 2.6 given in Chapter 2, for u, fl, rn and k, the worst case perfolmance

ratio of PD¿a^ap is

R(P D ¿a^an, N (n,, w), n, le)
Send(PD^<n, N(r,w), Ak(n))

),(4.180)n

where Ar(") is any message set of size n, which has /c message whose deadlines are

smaller than m. It follows that for given w, n and m, the worst case performance ratio

of. PD¿a^ap is

2It is obvious that when r¿ = k both Yk and Zk ate empty, hence PD¿1 *<o \s equivalent to

PD^>n. \Mhen /c = 0, Xk is empty, thus PD¿¡-<¿ is equivalent to PD^<a
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R(PD¿a*ao,,u,n) min (
V¿V,4È(n) '

Send(PD- .n, N(r,,w), Ak(n))

106

n

çr*n(n(fl ¿<m<D, N(r, w),n,k)) (4.181)

Therefore, to derive the worst case performance ratio of R(PD¿a*anrurn), we first

derive the bounds for the performance ratio of R(PD¿amlDtu'¡n',1i.)'

4.5.t Properties of PD*<¿

To facilitate the worst case analysis, we first outline some properties of PD¿a^a¡t

when used to transmit messages from Afr(n).

Lemma 4.5.L When PDa<^<n is used, to transmit messages frorn Ak(n) def'ned in

(4.179), in the worst case

. nùesso,ges in xk are transmitted, f,rst, followed by those from zk and Yk

respectiuely, and

. rnessøges in Xk are sent in the EDF order and those i'n Yk and Zk are sent 'in

the latest-deadline-first order'

Proof: As message deadlines in XÉ are smallerthan rn while those inYk and Zk

are equal to and greater than rn respectively, with the priority assignment function

deflned in (4.89), messages in Xk are assigned priorities from I Io m- 1 and those in Y

and. Z are assigned the priority of m. A.s PD¿a^a¡ always sends the highest-priority

message first, thus messages in Xk are sent before those from Yfr arrd Zk.

As all message deadlines in Xk are smaller than rn, from Lemma 4.3.4 messages

in Xk are sent in the EDF order. As message deadlines in Yk and Z are equal to and
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greater than m, it follows from Lemma 4.4.3 that they are sent in the latest-deadline-

first order. Q.E.D.

We now identify message deadlines in the worst case message set.

Lemma 4.5.2 Wen PD¿<^<o is used to tra,nsmit messages from Ak(n) defined in

G.179), rnessage deadlines in the worst co,se n'¿esso,ge set are

tL.Ø) xÍ.¿Yj.u zl", where

{d¿ld;} i and d¡:k}, I<i<lc-! and i:k'

ld;ld¿:ml, I<i<m-k,( .t u ) r

{d¿ld¿:m*i}, (4.1s2)

Proof: For message sets consisting of k messages, it follows from Lemma 4.3.2 that

the one with a maximum deadline of k minimizes the number of messages sent. Hence,

Xf" given, in (a.182) is the worst case set.

Given that there are k messages whose deadlines are smaller than rn and the

largest deadline of these k messages is k, Lemma 4.4.2 írnplies that for the other n - k

messages whose deadlines are equal to and greater than rn, there must be m - lc

messages with deadlines equal to m, which is indicatedby Yj. in (4.182). The number

of the remaining messages is

("-k)-(m-lr):r-*, (4.183)

and their deadlines are d¿ : rnli (1 S i 3 n-*), which is denoted by Zl"" in (a.182).

This concludes the proof. Q.tr.D.

xÍ.

Y:"

zÍ" 1li<n-rn
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4,6.2 Performance bounds for Ak (n)

To facilitate the description, w€ denote Send¿,-(P D¿<*<o, N(t, ,)',U) and

send,o(PD d1m1D,l[(r, ,),,u) as the lower and upper bound of the number of

messages sent from message set [/ respectively, where u is X[", Y[. or Zfi". CIearIy,

Send¿,-(P Dd<^<D, N(r, w), A\"(n))

: Send¿,-(P Da<^<D,, N (n,.), Xf,.u Y:.u ZÍ")

: Send¡,-(P Da<^<o,, N(r,.),X:,") * Send¡o-( PDa<*<o, N(,,w),,Yi") -l

Send¡o-(P Da<*<o,I/(r, .), Zf""), (4.184)

Send,r(PD ir<m<D, N(r,w), A["(n))

: Send,o(PD dKm<D, N (n, *), x!".u Y:" u zl")

: Send,r(PD d,1m1D,N(n,*),Xh) * Send,o(P Dd<^<n,N(n,w),ui") +

Send,o(PD d1m<D, /ú(r, ,), ZÍ"). (4.135)

To derive the bounds for the number of messages sent from Al"(n) in the worst

case, we need. to compute the bounds of the number of message sent from Xf"., Yl*

and Zl" respectively.

Performance Bounds of Subs et Xh"

Lemma 4.5.3 Gi,aen a tolcen ri,ng of n nodes, in the worst case the bounds of the

number of messages sent frorn Xf" are giaen bg
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Send,¿o-(PDa<*<o',N(r,-),X!""): L 
k 

'(2n_ l)tr.'*1r
(4.186)

(4.187)

Proof: From Lemma 4.5.1, we know that messages in X[" arc sent in the EDF

order. With Lemmas 4.3.4 and 4.3.7, in the worst case each message transmission from

Xf" incurs a maximum and minimum contention overhead of. (2n - 1). and (2n -2).

respectively. Thus with Lemma 4.3.3, the lemma is proved. Q.tr.D.

Performance Bounds of Subs et Zk"

Let Tu denote the time when the transmission of the first message from seT' U starts,

where u is Yj" ot Z[.. Furthermore, let T(o arld T,u.* denote the upper and lower

bound. of Tu respectively. It is apparent that Tu is one of the factors determining the

number of messages sent from [/.

As messages from Z[. are sent before those in Y[" in the worst case, ] /e consider

subset Zf"frrst and derive the bounds for Tz . Consequently, the bounds of the number

of messages sent horn Z[" can be determined.

Lemma 4.5.4 The bounds of Tz are

Send,,r(P Dd,<m<D, N(t, .), XL") : I çZrff A)

T3- W+ -r)((z'-2)'+ 1) + (rz * 1)u'', (4'188)

rfo 6+-1)(zn - r),+ 1) + (2n - t)w' (4'1se)
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proof: For the lower bound Tz,, the right sides of (a.189) consists of the following

three items.

o First, l@Å_-l((2" - 2)u -l1) is the lower bound of the time when the last

message transmission from X!" cornpletes. It is the product of the lower bound

of the number of messages sent from Xf" and the minimum time needed for

a message transmission including contention overhead. With Lemmas 4.3.7

and 4.5.3, it is lp;j¡;¡ )((2" - 2)ru + i).

o Second, t¿ is the minimum time needed for the token to reach the node having

the first message fuorn Z[.. As all messages in Z[. have the same priority of m,

this first node is also the first sending node.

o Third, nw is the time taken for the token to complete a full circulation after the

first node in Z[. writes its message priority into the token.

Hence, the lower bound. of the time when the first message transmissi on from Z[.

starts is obtained by summing up the above three items, i.e.

(4.1e0)

which leads to (4.189).

For the upper bound or Tz , t@;+_-l)((z" - l)u * 1) is the upper bound of the

time when the transmission of messages from Xf" completes. (n- l)tr.' is the maximum

time needed for the token to reach the flrst node in Z[". nw is the time needed for the

token to complete a fuli rotation before the node can start its message transmission.

Therefore, we have
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e=-4, - l((zr- 1), + 1) + (n - 1)u., * nw,
'(2, - 2)tr f 1' "

(4.1e1)

(4.1e3)

which yields (4.5.4). This conciudes the proof' Q.E.I)

Using the bounds of.Tz, we norv compute the bounds of the number of messages

sent from Z[" in the worst case.

Lemma 4.5.5 Giuen a toleen ring of n nodes, in the worst case the bounds of the

number of rnessages sent from Z[" are giuen by

S end,¡.-(P D ¿<*<n, N (n, r), ZL")

0 n <T(r+r,
(4.1e2)

min(n -*,lt!ffi&)l otherwi,se

Send,r(P D d<m1D, 1ú(t, .), ZÍ.)

0 n <Tf,*ll,

min(n -*,1!1ffi)) oth,eruise

where T(o and Tf,- are giuen in Lemma 4.5.4.

Proof: We only prove for the upper bound. The lower bound can be obtained with

a similar approach.

From Lemma 4.5,4, we see that the first message transmission Trorn Zl" starts

at time Tfl-. Frorn Lemmas 4.5.1 and 4.5.2, messages in Z[" are transmitted in the
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latest-deadline-first order and the first message sent from Z[" has a deadline of n' We

have two cases to consider.

o Il n < Tl-f 1, there is not enough time from timeTfl- to send the first message

lrorn Z[", which has a deadline of n. Consequently, no other messages ín Zl"

are sent as deadiines of all other messages in Z[" are smaller than rn.

o Otherwise, the message with a deadline of n is sent. From Lemma 4.4.3, each

subsequent message transmission from Z[" takes (n * l)w -|- 1 units of time and

messages are sent in the latest-deadline-first order, which is the same as the

token passing protocol. Note that after the first message is transmitted from

Z[", Ihere are n - rn - 1 remaining messages, of which the maximum deadline

is n - 1. With Corollary 3.3.2, the number of messages sent from the remaining

n - rn - 1 messages in Z[. is

min(n, -*-l,l
rfl- + t)

) ), (4.re4)(n*I)w*2

where Ql.+ 1) is the time when the transmission of the first messagein Z["

completes. Hence, the total number of messages sent from Z[" ts

Send¿,-(P D¿<^<D, N(r,r), ZÍ")

("-1) +1-

: 1 { min(n - rn -r, LCIE-, (Tl-+7) "-,-tt 6*1¡ll,*2 ))

min(n-*,lt*ffill
., ,n*l*(n*1)--Tl-,,,: mln(n - *,1 (r + t)_ * Z l, (4.1e5)
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Note that the algebraic equality C +min(A,B) : min( A+ C, B + C) is used in

the derivation of the above formula.

This concludes the proof of the lemma. Q.E.D

Performance Bounds of Subs et Y*"

We now derive the performance bounds associated with subset Yi"

Lemma 4.5.6 If any message(s) fromYj"'is sent, thebounds of TY are

T"lp rf,+(n-m)((n+1)'u+1) (4.1e7)

Proof: We only prove for the upper bound. The lower bound can be obtained in

a similar way.

If any message(s) ftornYj" is sent, all n-m messages ftorr_ Zf"must have been sent.

This is because messages ín Y[" have smaller deadiines than those Á Z[., and with

Lemma 4.4.3, messages tt Z!" are sent before those inYj. in the latest-deadline-first

order.

As pointed out in the proof of Lemma 4.5.5, the upper bound of the time when

the first message transmission from Z[" completes is

TL. rl-+@-m)((n*1)u*1),

ty

(4.1e6)

(4.ie8)rfr+t
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There are n - n-¿ - 1 messages remaining frorn Z[". \ /ith Lemma 4.4.3, each message

transmission from Z[" inctrs a contention overhead of (n + l)tr. Thus, it requires

714

t2 : (r-*-tX("a1)tr+1)

units of time to transmit the remaining messages' Then, it takes another

ts (n I I)w

(4.1ee)

(4.200)

(4.20t)

units of time for the token to reach the first node in Y[. and to complete a full

circulation round. the ring before it can start its message transmission. With (4'198),

(4.199) and (4.200), the upper bound of the time when the first message transmission

frornYj" starts at

rip : h*tzltz
rlr+ 1*(n -Tn- 1)((n+1)tr*1) +(rz+1).

rl, + @ - m)((nf 1)u.' + 1).

This concludes the proof. Q.E.D'

Now the number of messages sent frornYj" in the worst case can be determined.

Lemma 4.5.7 Giaen a toleen ri,ng of n nodes, in the worst case the bounds of the

nurnber of messages sent from Yj. are gi,uen by
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S end,¡.-(P D d.1m<D, N (r,.),Y:.)

0 m <Tfi+t,
(+.202)

t m+(nll)u-Tl* ttaffil otherwise,

S end,,r(P D d,4n1D, N (n,.),Y:")

0 m <TrY"*+L,

(4.203)

l*+\"!!!- ,T,""* I otherwiseL (nf 1)tr{1 l

where Tfi and T[- are giuen 'in Lemma 4.5.6.

Proof: Again we only prove for the upper bound. As the first message transmission

lrom Yj" starts at T[-, it is clear that if * < Tl"- { 1, then there is not enough time

to send any message from Yj" since its message deadlines rn would expire before the

message transmission completes; if m ) T{o- { 1, then the first message transmission

frornYj" completes at T,Y"-+1. \Mith Lemma 4.4.3, we know that each subsequent

message transmission from Yj" takes (rz * l)tu * I units of time. Furthermore, the

latest time when the message transmission must stop is m, as all message deadlines

ínYj" are equal to m. Thus, with Coroilary 4.3.1, the upper bound of the number of

message sent from Yj" is

l

This concludes the proof. Q.E.D'

(4.204)
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Performance Bounds of Ak@) - Xfo"uY*"u Zk"

Combining the results from Lemmas 4.5.3,4.5.5 and 4.5.7, we obtain the bounds for

the total number of messages sent fuorn A[": X!,"UY:"U Zh" as follows.

Lemma 4.5.8 Giuen a token ring of n nodes, the bounds of the total number of

nxessages sent from Al""(") are giuen by

S end,¡.-(P D a<^<o, N (r, w),'ll"(n))

l/'lL(2n-t)ultJ

I@Å;TJ rmin(n -*,Ët]ffi&l n2-rlotr and' (4'205)

m <T{r+1,

l@Åñl + l!!ffiía) otherwise,

S end,,r(P D it 1m1D, N (n, w), Al"(n))

tklL(zn-z¡u¡t-) n <Tfl-ll,

n <T(o+t,

l@å-,'J *min(n -rn,l

¡ k 1-1ml(n!l)u-Trzou, 1L@;$w+t) -r L (n{1)u{1 I

j) n)T¡2"-ll and (4'206)

m<TrY"-+t

otherwise.

n* n*l
n*r ut*2

where T,X, Tl*, Tfi and T{o_ are giuen in Lemrnas 4.5.4 and, /¡.5.6 respectiaely.

Proof: \Me only prove for the upper bound. The lower bound can be derived in a

similar way.
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Combining the cases discussed in the proofs of Lemmas 4.5.3, 4.5.5 and 4.5.7, we

have the following.

o Oniy messages frorn X[. are sent3

This is the case when , < Tl-+ 1. With Lemmas 4.5.3, the number of message

sent is L@Å--r)

o Oniy messages frorn X[" atd Z[" are sent

The fact that no messages horn Y[. are sent implies that both conditions

n > Tl** 1 and * < Tl** 1 are satisfied. A summation of (4.187) and

(4.193) yields the result for this case.

o Messages from X!".,YJ" and Z[" are sent

As PD¿a*4p sends messages in the latest-deadline-flrst order and messages in

Y[.havesmaller deadlines than those in Z[", hence, the fact that messages from

Y[" are sent implies that all the n - wù messages fuorn Z[" must be sent. Adding

the number of messages sent from each subset, we arrive at

Send,o (PD d1m<D, N(r, w), Al"@))

Replacing T,Y"-with (4.196) in the above, we have

3when we say that messages in a subset are sent, we do not necessarily imply that all of them are

sent.
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Send,, (PD it1m1D, N (n,, w), Al"(n))

118

t
m t (n* l)tr - Tl- - @ -rn)((rz + 1) to*1)

l(n*1)tr*1

l+
(n-m)((nal)u*1) I m *(n * l)tr.' - Tl- - Ø - *)((rz*1)u*1)

L I(n*l)tr*1

(4.208)

This concludes the proof. Q'tr.D

Now the bounds of the worst case performance ratio of Ar(") can be derived.

Theorem 4.6.1 Giuen a toleen ring of n nodes and for w, frt rn and k, the bounds of

the worst case perforTnance ratio of PDa<*<p are giuen by

R¡,-(P D ¿a^<o, N (n, w), n, le)

rktL(2n-7)u+7 J

, k , . ,ml(n-ll)w-Tl*,

--l

'(2r -1)ur* 1r L (n* l)tl,'*1

fL
n<T(o+1,

n>Tlrll and

m<Tfi+t,

Lø=fu+rl+rnin(n-rn,I (4.20e)
n

Lrz;fia+rl+L otherwise,
n
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R,r(P D ¿a*<o, N (n, w), n, lc)

Lr;*¡¡)+rnin(zz-rn,l

119

j+L

n

nl(n*L

n

n <Tf,*+t,

n )-Tfl* * I and (4.210)

m <TrYo-tl,

otherwise.

Similar to the case of P D,n>n, we use the medium value of the performance bounds

as an estimation of the worst case performance ratio. That is,

R""¡(P D ¿a^<n, N (n, w),, n, Ic)

Rto-( P D a<* <o,, N (n, w), n, k) + R"e(P D d<^<o, N (n, w), n, k)

2

(4.21,t)

where R¡o-(P D¿a*<o, N(n,u),n,k) and R,o(P D¿a^<o, N(n,u),n,k) are given in

Theorem 4.5.1. It follows that for given ur, n and m, the worst case performance

ratio of PDa<^<o can be obtained by numerically exhausting k (0 < lc 1m - 1) as

indicated in (a.181).

4.5.3 Numerical Results and Discussions

We have derived the worst case performance ratio of the priority-driven protocol when

used to transmit messages whose deadlines are smaller, equal to and greater than

the number of priorities rn. Theorem 4.5.1 and (4.2LL) show that the worst case
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performance ratio of PD¿a*<D is a function of n, u, m and k. We now examine the

effect of these parameters on the worst case performance ratio.

o We have shown that under PD¿<^<o messages whose deadlines are greater

than rn are sent in the latest-deadline-first order. This has taken place because

those messages are assigned the same priority due to the insufficient number of

priorities. To see this more clearly, we consider the worst case performance ratio

given in (4.211) when the node-to-node delay w is zeroa-

R(P D ¿a^an, N (n, w), n, lc)

n <Tz ¡1,

k{rnin( n-*,Vttsþ)) n2Tz *1and

m <TY +r.

otherwise.

(4.212)

L
n

n

n-L

n

Figure 4.7 shows the impact of the number of priorities rn on the worst case

performance ratio. We observe that for any given n the larger the number of

priorities, the higher the worst case performance ratio. This is can be explained

as follows. When n is smaller than nz all messages are assigned distinct priorities

and messages are sent in the priority order, hence the EDF policy is implemented

exactly. Thus, the worst case perfolmance ratio is mf n, implying that for a

given n the larger the m, the higher the worst case performance ratio. When

n increases to be greater than m, the worst case performance ratio drops to

0.5. This is because in this case messages whose deadlines are greater than rn

aNote that in this caseTz :Tl. =Tu'o,TY =T{o.:Tfi an'd R(PD¿a^al¡,N(n,w),n,lc)=
R",¿(PD¿a^<¿, N(r, w),n,k) = Rto.(PD¿<^<o,N(n, tr), n,lc) - Rur(PD¿a*<n,N(n,w),n,k).
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Figure 4.7. Effect of the Number of Priorities

are assigned the same priority regardless of their actual deadlines. As a result,

messages are sent in the latest-deadline-first order in the worst case.

o Figure 4.8 shows the effect of parameter k on the protocol performance. \Me

observe that for given us, n and rn, increasing le does not result in monotonic

increase in the worst case performance ratio. This is because a smaller & causes

more messages to be sent in the latest-deadline-first order with a contention

overhead of (n t l)tr, while a larger k enables more messages to be sent in the

EDF order, but with a larger contention overhead of at least (2" - 2)to. As a

result, its impact on the worst performance ratio is a trade-off of the transmission

policy used and the contention overhead incurred'

o Theorem 4.5.1 also indicates that the worst case performance ratio is a decreasing

function ol u. Figures 4.9 shows that for u ) 0 even when the number of

ú
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priorities is sufficient, i.e. fl 1ffi, the worst case performance ratio is still less

than 1. This is solely due to the contention overhead. Furthermore, if the

number of priorities is not sufficient, i.e. fr ) ffi, the worst case performalLce

ratio of the protocol drops below 0.5. This is caused by both the contention

overhead incurred and the insufficient number of priorities used.

4.6 Enhancements and Modifications

In this section, we propose and discuss several modifications to enhance the previously

d,escribed priority-driven protocol in order to make it more flexible and adaptive in

handling urgent messages.

o Suppose At time f , if the token holder has a message with deadline d and length /,

such that t *l : d, then the message should be sent immediateiy; otherwise, the

message will eventually be lost since it takes at least another token circulation

before the message transmission can start. By then it is too late for the message

to make its deadline. This modiflcation can be further extended so that a node

sends a message immediately upon capturing the token if the deadiine of this

message is smaller than a pre-defined threshold.

o Upon capturing the token, a node sends a message immediately if the message

has the highest priority. This is because the protocol does not allow a node to

overwrite the token priority field with its message priority if the two are the

same. This implies if a node writes a message priority, which is the highest, to

the token priority fleld, the token wiil return with this priority and the node will

send the message. To improve efficiency, the protocol should allow a node to

send a message of the highest priority immediately upon the token arrival.
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Chapter 7 will investigate the average case performance of the priority-driven

protocol that has incorporated the above modifi-cations.

t24



Chapter 5

The \Mindo\M Protocol

In the preceding chapters, we have shown that the worst case performance ratio

of the simple token passing protocol and the modifi.ed priority-driven protocol can

be less than 0.5. Two factors are responsible for their poor performance, namely

the transmission policy employeed and the contention overhead incurred. We have

demonstrated that the impact of the transmission policy is dominant in determining

the protocol performance. Hence, the key for a protocol to achieve high performance

ratio is to implement the exact EDF policy.

In this chapter, we propose and anaiyze for the first time a ne\ry window (WD)

protocol for token ring networks, which implements an exact network-wide EDF

transmission policy 124,47,48, 50]. We first describe in detail the proposed protocol,

together with the window setting, token format and data structure at each node. We

then derive the worst case performance ratio and discuss the results. In the third part

of this chapter, we propose and examine various encoding schemes for realization of

the protocol. Finally, we propose and discuss a number of possible enhancements,

aiming to make the proposed window protocol more flexible, adaptable and efficient.

t25
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5.1- Basic Concepts

As mentioned in Chapter 1, there exist several window protocols designed for

CSMAi CD networks. In those protocols, each node maintains a data structure called

wind,ow, which is a pair of numbers defining an interva,l on the axis of a message

parameter, such as laxity or deadline. Each node continually monitors the channel

state and keeps the window information updated. When a node senses the channel

idle, it transmits its waiting message if the laxity or deadline of the message falls in the

current window. If a collision occurs, all transmitting nodes abort the transmission and

the current wind.ow is divided into two or more windows which are stored in a stack.

Subsequently, the top of the stack is popped to become the new window in which the

above procedure repeats until a successful message transmission takes place.

It is clear that in those models, at any time only one window is used to regulate

message transmission. This is because in a CSMA/CD network a node obtains the

system state information by monitoring the channei state, consequently the search for

the earliest deadline message is performed in a binary spiit manner which is slow and

inefficient. In a token ring network, the token circulates around the ring, which makes

it possible to convey the global message deadline information to a certain extent, so

that the search can be conducted more efficiently. Hence, we propose a novel rnultiple

window based token ring protocol. It differs from the existing window protocols for

CSMA/CD networks in the window setting and the window splitting, in the search

for the earliest deadline message and in an additional token.

The basic idea of our window protocol is as follows. The message deadline axis

is partitioned into multiple windows. While the token is circulating around the ring

for the first time, information about the number of messages in the first non-empty
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window (i.e. the one contains the earliest deadline message) is collected. After the

first token circuiation, if the first non-empty window contains only one message, then

this message has the earliest deadline and will be sent; otherwise, that window is

further split into many smaller windows and the protocol recursively uses the token

to locate the eariiest deadline message. This way, when a message transmission takes

place, the message involved is always the earliest deadline message amongst those

currently waiting in the network. Therefore, this window protocol implements the

EDF transmission policY.

5.2 Data Structures

Before describing the new window protocol, we first introduce the various data

structures associated with the protocol. They are the window setting, tolcen format,

and data structure at a node.

5.2.L Window Setting

In our model, the interval [ú, oo) on the message deadline axis is partitioned into s

windows: Wr,Wr,...rW", where ú is the current time. Each window defines a half

closed interval on the message deadline axis:

W¿-IL¿,U¡) and U¡:L¿+t forl(i1s-I (5.213)

Let a (> 1) denote the size of windows W2,Wz,'.. ,W"-t. There are two special

windows W1 and W" whose sizes differ from a. The size of W1 is á and its lower

bound is always set to the current time which enables any newly arrived messages to
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w1 w2 wi W-G-l) W_s

128

T , t+ô t+ô+c, t+õ+(i-l)cr t+õ+ia t+ô+(s-3)a t+ô+(s-2)a

Figure 5.1. Initial Window Boundaries

be considered for transmission immediately. The size of. W" is unbounded because its

upper bound is always set to be oo to accommodate messages with arbitrarily long

deadlines. For convenience, in the following we call the upper bound of Wt and W"-1

the window lower bound ar'd windou upper bound respectively.

The exact size of each window changes from time to time, depending on the stage

of the protocol operation. In general, window boundaries at time t can be expressed

in terms of ú, s, o and ó as follows:

Wt : þ,t+ó)

: [t+á,¿*ó*a)
: [¿+6lo,ti6*2a)

W2

Wz

W;

W"-t : [¿ +¡ * (r - 3)o,ú + ó+ (s - 2)a)

: [¿+A*("-2)a,oo).w" (5.2t4)

Figure 5.1 shows these non-overlapping windows partitioning the interval [¿, -).

Assume that the protocol is invoked at time 0, then the initial window lower and

upper bound is á and ó + (s - 2)o respectively.

þ + 6 + (i - 2)a,t+ ó + (i - 1)o)
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We say that a message M is ín window Wn at time f if its deadline falls in the

interval defined by ihe boundaries of Wn at time t, i.e.

L¡ 1 d, 1u¡, (5.215)

Suppose messages M¿ arrd M¡,with deadlines d¿ and d,¡, are in windowsW¡, andW¡,

respectively. With window boundaries defrned in (5.214), tf M¿has a smaller deadline

lhan M¡, then W¡,must be in front of Wn. That is, iÎ d,¿ < d¡, then we must have h I lc.

Therefore, at any time the earliest deadline message must be in the first non-empty

window. There are two possible cases.

o The earliest deadline message under search is unique.

In this case, the earliest deadline message is located only if the number of

messages in the first non-empty window is one.

o There exists a deadline tie it the first non-empty window.

That is, more than one message in the first non-empty window have identical

deadlines. As a result there are more than one earliest deadline message. In this

case, the earliest deadline messages are located (i.e. the deadline tie is detected)

if the size of the fi,rst non-empty window becomes one.

It is apparent that in either case we only need to be concerned with the message

information in the first non-empty window in order to locate the earliest deadline

message. This leads to a simple and unique way to search for the earliest deadline

message in the new window protocol.
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Figure 5.2. Proposed Token Access (AC) Field

5.2.2 Token Format

To implement the EDF transmission policy, we need to know the deadline information

about all messages in the network. As the token is the only means to deliver

information, we propose the token Access Control (AC) fleld to contain several

information fields to facilitate the protocol operation. They are Send Enable (SE),

Sptit Windoto (SW), Preuious Window (PW), Window Counter (WC) and Current

Window (CW) as shown in Figure 5.2.

We now explain the meanings of these fields. Their usages will be detailed in the

next section where the protocol is presented and described.

o SE is a binary flag. A token with SE set indicates that the earliest deadline

message has been located and that the node with the message should capture

the token and transmit the message'

o SW is also a binary flag. It signals whether window boundaries have been

changed since the last token circulation. SW : 0 implies that window

boundaries retain their initial values; otherwise, current windows are derived

from the previous window, indicated l:y PW, as we shall see next.

o PW is an integer in the range from 0 to s, where s is the number of windows.

In an initial token, this field is set to 0. When flag STrflis set, it implies that the

previous window indexed by PW (i.e. Wpyv) has been split for further search.
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Each node uses this information as well as its knowledge of the previous window

boundaries to derive the new window boundaries.

o WC is also an integer. It counts the number of messages in the first non-empty

window. No message counters for other windows are required because we only

need to know the number of messages in the first non-empty window which

contains the earliest deadline message. For example, if there are two messages in

window Wz arrd one message in window W6, then we only need to know that the

message counter for the first non-empty window (l{Zr) it equal to 2 (i.e. WC :2)

in order to locate the earliest deadline message.

o CWis another integer in the range from 0 to s. If CWis zero,it indicates that no

message has been registered yet. A non-zero CWis the index of the current first

non-empty window. This information is used by nodes to determine whether

they should register their messages. If a node has a message in a window with

a higher index lhan CW, then this message is not a potential earliest deadline

message; otherwise, the node registers its message as a potential earliest deadline

message. In the above exampie, only the fact that lhe Wz is the current first

non-empty window (i.e. CW : 3) is needed to eventually locate the earliest

deadline message.

In summary, the token conveys three types of information: whether the earliest

deadline message has been located (SE), whether the window boundaries have been

changed (SW, PW, and the message deadline information (WC, CW. They are

essential to the protocol operation. Initially, all token fields are set to 0.
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5.2.3 Data Structures on a Node

To support the protocol operation, each node maintains a message queue where

messages are kept in the increasing order of their deadlines. Messages with identical

deadlines are placed according to the arrival order. Hence, at any time the first message

in a node's message queue has the earliest deadline among all pending messages on

that node, thus is considered for transmission first. A message is discarded when its

deadline has expired.

Initialiy, all nodes are notified of the values of system parameters s) o and ó.

Using these parameters, each node derives and stores the values of the initial window

boundaries as shown in (5.21a).

5.3 Protocol Description

In this section, we describe the operation of the new window protocol, which is divided

into two parts: one for the monitor node and the other for non-monitor nodes.

The moni,tor node is a special node, which is the controller in the process of

searching for the earliest deadline message. Initially, it is selected by the management

function. After each message transmission, the sending node becomes the new monitor

node.

The monitor node is responsible for

¡ collecting the global message deadline information,

o informing nodes if any window has been split for the current search,

o notifying nodes when the earliest deadline message has been located.
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As wilt become clear later, the use of the token is the key for the monitor node to

carry out the above tasks successfully. The monitor node is allowed to modify ail the

AC fields in the token.

A. non-mon,i,tor nodel differs from the monitor node by its locai role in the search

for the earliest deadline message. That is, a non-monitor node is only responsible

for notifying the monitor node of its message deadline information if ii is relevant

to the search for the current earliest deadline message, but does not participate in

the decision making as whether the earliest deadline message has been located or the

window needs to be split. At any time, a non-monitor node has only partial knowledge

of the deadline information about messages residing on other nodes2. Upon receiving

the token, a non-monitor node examines the information fields in the token and is

allowed to modify only three fields in the token: PW, WC and CW.

Next, we describe in detail the operations performed by the monitor and a non-

monitor node respectively.

5.3.1 Monitor Node

We define the protocol operation by a state machine transition diagram as shown in

Figure 5.3. It consists of three states: Search, Split k Search and Send Enable. The

condition for the protocol operation to be in a particular state is listed as follows:

o Search: initial search for the earliest deadline message and the initial window

boundaries are used,

lThe monitor node can be viewed as a pair of concentrated virtual nodes, one is the monitor
node and the other the non-monitor node. Initially, it is assumed that the token is moving from the

monitor virtual node to the non-monitor virtual node.
2Specifically, only those upstream nodes.



5.3. Protocol Description

Slate 1: Search

11)

power_up

SE <-0, SW <-0, PW <- O,

wc <-0, cw <- 0

Stale 2:Send Enable Stale 3: Split and Search

734

WC=0

WC= 1

sE<-1,SW<-0,PW<-0

WC>1&sizeof W_wc=1WC=1

sE<-1,SW<-0,PW<-0
(32b)

SE<-1

WC>1&sizeof W_wc=1
2b)

SE<-1
WC>1&sizeolW wc>1

after sending a msg
PW <- CW, WC <- 0,
cw <-0

(21)
sE <-0, sw <-0, PW <- 0,

wc <-0, cw <- 0

WC>1&sizeolW wc>1
(13)

cw, sw<- 1,

0,cw<-0

Figure 5.3. Protocol State Machine Transition Diagram

o Split k Search: continued search for the earliest deadline message and window

boundaries have been changed, and

o Send Enable: the earliest deadline message is located.

In a state transition diagram, a transition from one state to another occurs if

certain condition is satisfied. In Figure 5.3, writings above and below each transition

line show respectively the token content seen (i.e. the condition) and the operations

performed by the monitor node.

We now describe in detail the transitions associated with each state.

o State 1: Search

The protocol operation flrst enters Search state when the network is powered up.

2a)

PW <-
wc <-
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The protocol operation remains in this state if the monitor node receives the

token back and fi.nds I4lC : 0. This implies that currently the ring is idle

and there are no messages waiting. The monitor node simply passes the token

without any change. This is labeled by transition 11.

If WC : 1, the monitor node knows that the earliest deadline message has been

located in window CW ar'd the search shouid now be terminated. The monitor

node sets fl,ag SE to notify the prospective node to capture the token and send

the earliest deadline message. Transition 72ø shows this case.

If WC ) 1 and the size of Wcw is 1, the monitor node recognizes that there

exists an unresolvable deadline úie in window CW.It sets fl,ag SE to l to notify

a node having one of these messages to send the message upon the token arrival.

This is indicated by transition 12b.

HWC ) 1 and the size of Wcw is larger than 1, the monitor node detects that

there are moïe than one message in the first non-empty window Wcw and the

search for the earliest deadline message should continue. It sets fl.ag SW to 7

and copies CW to PW to inform other nodes that the potential earliest deadline

message is in window PW, which must now be split. Fields WC and CW are

reset to 0 for collecting message information regarding to the new windows. The

monitor node also computes the new window boundaries and updates its copy

of the current window information3. This case is indicated by transition 13.

o State 3: Send Enable

Denoted by a dashed line, transition 21 is an indirect transition which may

3The procedure for computing the new window operations will be given in the next section when

the procedure for non-monitor nodes are given and discussed.
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involve two different nodes. This is the case that after the completion of a

message transmission, the sending node becomes the new monitor node and

releases an initial token with all fields reset to 0.

o State 2: Split & Search

When the monitor node receives the token back, similar to transitions 12a, 12b

and 13, there are three possible transitions from this state. They are denoted by

transitions 32a, 32b arrd 33.

If WC: 1, the monitor node recognizes the earliest deadline message has been

located tn Wcw. It carries out all operàtions as described for transition 12a,

and in addition it turns off flag SW and resets PWto 0 to indicate no change in

window boundaries. This case is shown as transition 32a.

if WC ) 1 and the size oTWcw is 1, the monitor node detects that there exists a

deadline tie in Wcw. It carries out all operations as describedlor transitions 12b

and in addition it resets flag SW and PW to 0 to indicate no change in window

boundaries. This case is denoted by Transi'tion 32b.

If. WC ) 1 and the size of Wsvr is larger than 1, the monitor node knows

that there are more than one message in the first non-empty window Wcw. II

performs all operations as indicated in transition 13 except setting SWTo 1, since

in this state SW must have already been 1. This is indicated by transition 33.

Table 5.1 summaries the token and window operations performed by the monitor

node as described above. Rows I - 4 correspond to the transitions associated with

Search state and Rows 5 - 7 are for the transitions originating from Split k Search

state. Row 8 represents the case that a sending node becomes the new monitor node

when it completes its message transmission.



Row Token Content
SE SW WC

Size of
Wcw

Interpretation Operations
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1 0 0 0 0 0 no msg waiting no change
in token

2 0 0 0 1 X 1 msg in Wcw SE:= 1.

3 0 0 0 >1 X 1 deadline tie
in Wcw

SE::l

4 0 0 0 >1 X >1 ) 1- msg in Wcw spltt Wg,rrl,
SW := l,
PW :: CW,
WC := 0,

CW ::0
5 0 1 x 1 X x l msg inWcw SE := 7,

SW ::0,
PW:=0

6 0 1 X >1 x 1 deadline tie
in Wcw

SE::1,
SW := 0,

PW:=0
I 0 1 X >l_ x >1 ) 1 msg in Wçy¡ spht W6yr,

PW :: CW,
WC ::0,
CW:=0

I a non-monitor
node becomes

the new monitor
after sending
a rness&ge

reset all token

field,s to 0

Table 5.1. Monitor Node Operations (Explanatory Scheme)

Note that in whatever follows, lor PW or CW, symbol 'x' represents a positive

integer in the range from 1 to s, where s is the number of windows. Symbol '-' means

that the value is of no signifrcance in determining the subsequent operations.

5.3,2 Non-Monitor Nodes

We now describe the procedures associated with a non-monitor node upon the token

arrival. Table 5.2 shows the following information:

o the possible token content seen by a non-monitor node,



Row Token Content
tr w CW

Interpretation Operations

1 1 0 0 1 X Send Enable,
ED msg in Wcw

if lc = CW,
WC ::0, CW ::0,,
send msg,
become new monitor

2 1 0 0 >1 X Send, Enable,,

deadline tie in Wçyr
ifk:CW,
WC ::0, CW ::0,
send msg,

become new monitor
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3 0 0 0 0 0 Search,
no msg so far

WC :: l, CW :: lc

4 0 0 0 1 x Search,

I 1 msg in Wcw
ilk<cw,
WC::l,CW:=k

5 0 0 0 1 x Search,
) 1 msg in Wcw

if k: CW,
\MC:: WC + 1

6 0 0 0 >1 x Search,
) 1 msg in Wcw

ifk>cw,
no change in token

I 0 1 x 0 0 Split k Search,

no msg in Wcw
spht Wps -l- Row 3

8 0 1 x >1 X Split k Search,
) 1 msg in Wcw

spht Wps * Row 4

I 0 1 x 1 X Split k Search,
) 1 msg in Wcw

spht Wpry f Row 5

10 0 1 x 1 x Spli,t k Search,
) 1 msg in Wcw

spht Wpry * Row 6

Table 5.2. Non-Monitor Node Operations (Explanatory Model)

o the interpretation with regard to the current state of the protocoi operation and

message deadline information about upstream nodes, and

o the token and window operations performed by the node before it releases the

token.

Upon the arrival of the token at a non-monitor node, if a node has no messages

waiting, it only updates the window boundaries if necessary and passes the token

without any change; otherwise, the node computes k such that the first message in its

message queue is in lrØr. That is,
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LnSd<Un, (5.216)

where d is the deadline of this message, and L¡, and U¡ are defined in (5.21a). The

node then takes different actions depending on the values of the token frelds and k.

In the following, we divide the description into three parts with regard to the value of

SE and SW.

o SE : 1 (cf. Row L - 2 in Table 5.2)

Once the node sees SE set, WC ) 1 and CW > 0, it knows that the protocol

operation is now in Send Enable state. Counter WC rnay have different values.

Case 1: WC :1 (c/. Row 1)

The node knows that the earliest deadline message has been located

in Wcw.

Case 2: WC > 1 (c/. Row 2)

The node realizes that there exists a deadline tie in Wcw.

In both cases, if the node does not have a message that is in Wçyr, it simply

passes the token without any change; otherwise, the node resets fields WC ar'd

CW to 0. This is to inform the downstream nodes that this is a data frame

as the combination of SE : l, PW :0,WC : 0 and CW :0 is not valid

for a free token. The node then sends out the message immediately. After the

completion of the message transmission, the node becomes the new monitor node

and releases the token with all fields reset to 0.

o SE : 0 and SW - 0 (cf. Row 3 - 6 in Table 5.2)

When the node sees that ,5Eis 0, it knows that the search for the earliest deadline

i39
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message continues and that the initial window boundaries are used. There are

four cases to consider regarding to different values of WC, CW and k.

Case 1: WC :0 Gf. Row 3)

This indicates that no message has been registered by upstream nodes yet.

The node simply writes the window number k in CW freld and sets counter

WC to 1 to indicate that there is now a message inWcw.

Case 2: WC > 0 and k < CW (d Row  )

This means that the node has a message with a deadline smaller than the

one denoted on the token, thus its message is the potential earliest deadline

message. Hence, it overwrites CW with k and resets counter WCto 1.

Case 3: WC > 0 and k : CW (c/. Row 5)

This means that upstream nodes have message(s) in Wcw and that the

node also has a message inWcw. Thus, it simply increments counter WC

bv 1.

Case 4: WC > 0 and k > CW (c/. Row 6)

The node knows that its message is not the potential earliest deadline

message, as there are other messages having smaller deadlines. The node

simply passes the token without any change.

¡ SE : 0 and S'W - 1 (cf. Row 7 - 10 in Table 5.2)

As flag SW is set, the node recognizes that the previous window indexed by

PW has been split and that the window boundaries have changed since the last

token visit. In the following, we only describe how a node derives the new window

boundaries and how to compute the window index k for its message given the
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newly computed window boundaries. Operations on the token fields are exactly

the same as those described for Rows 3 - 6, thus are omitted.

- The node first computes the sizes of the new windows. Figure 5.4 shows

thesplittingof window PW,fot PW:1,21PW < s- l and PW: s

respectively. We consider these three cases separately.

Case 1: the split window is the first window, i.e. PW :7.

The previous I/r is now split into s - 1 smaller equal-sized windows

W!,W|,. . . ,W!-, and their sizes are derived as

6':.,':lfrt (5.2r7)

The new window boundaries are

t'+(i-L)o"

t'¡ia', l<i 1

@, (5.218)

Case 2: the split window is neither the first nor the last window, i.e.

In this case, previous windows W1rWzr... rWpw-t are no\ry merged to

become new window W| This is to accommodate dynamic arrivals

so that any newly arrived messages with deadlines smaller than that

741
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where f/ is the current time.
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Figure 5.4. Splitting of Window Wpw
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intended by the current search can still be considered for transmission.

The size of the new window Wi, becomes

6' 6+(PW -2)o, (5.21e)

where ú, is the current time. The previous window wpw is split into

s - 2 equal-sized windows Wl,W¿,,.' ' ,W'"-t whose sizes are

d,' (5.220)

The new window boundaries become

L

L

ui

1

5

1

1

s

sui

L

U: (5.227)

where f/ is the current time.

Case 3: the split window is the last window, i.e' PW : s.

As the upper bound of window W" is oo, thus, we need to choose

a fraction oT W" for splitting. Let g denote its sizea. The previous

windows Wt,,Wr,,... rW"-t are now merged to become the new first

aln practice, its value can be set differently according to the message deadline characteristic. The

default value can be set to multiples of o.
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window W| Hence, the size of the new fi.rst window Wi is

6' ó * (s -2)o (5.222)

part of the previous ltrl" is now split into s - 2 equal-sized windows

Wl,W!,. . .,W!-r, whose sizes are

d' (5.223)

The new window boundaries are

L\

ui

L

t'+6'

t' + 6'* (i -2\at. 2 </,

t'+6'*(i-L\a'. 2<,'\t,

t' + 6'* (s -2)al

1z

1

s

sU:

L

U:

s

@, (5.224)

where ú/ is the current time.

- With newly computed window boundaries, the node locates window ltrlr

which contains the frrst message in node's message queue. That is,

L'o < d,< ul, (5.225)

where d is the deadline of the first message.
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- The node then takes different actions according to the value of k and the

token fields. The operations are exactly the same as those described for

Rows3-6inTable5.2'

This concludes the description of the new window protocol. Note that the protocol

described. is not intended to be implemented directly and is in need of refinement in two

ways. Firstly, an encoding scheme of the token AC field is needed to efficiently realize

the protocol. Secondly, a variety of performance enhancements can be incorporated

to make the protocol more flexible, adaptive and efficient. We will discuss these two

issues in detail in Sections 5.7 and 5.8.

6.4 'Worst Case Performance Analysis

In this section, we examine the worst case performance of the new window protocol

Lemma 5.4,L suppose messl,ges M¿ and, M¡, hauing deadlines of d¿ and d¡, o,re

in windows Wn and Wn respecti,uely. With the window setti,ng giuen in (5.211) in

section 5.2.1, we must haue

i'f d'¿ 1d'¡ (5.226)

Proof: Ãs M¿ is in W¡, we have

t45
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where L¡ and U¡, denote the lower and upper bound of Wn. There are two cases to

consider.

o L¡1d,¿1d,¡<U¡,

In this case, M¡ is also in window ffi. Thus, h: lc

o L¡ 1 d,¿ < U¡,1 d"¡

In this case, M¡ is in one of the windows with higher index than å. Hence, h < k.

In summary, we have h I k. The concludes the proof. Q.E.D

Lemma 6.4.2 The proposed window protocol i,mplements the EDF transrnxssl'on

policy. That i,s, at timet if a message M i,s transmi,tted, it must be the earliest deadline

rn,essage uaiting at that time'

Proof: Lemma 5.4.1 implies that the earliest deadline message must be in the

window with the smallest index, i.e. the first non-empty window. The operations

given in Tables 5.1 and 5.2 ensure that the earliest deadline message is found only if

the number of messages in the first non-empty window is one or the size of the first

non-empty window is one. Hence, if a node is allowed to send a message, it must be

the earliest deadline message. Q'tr'D.

Lemma 5.4.3 If the window protocol is used to transrnit n messages, the message set

with a marimum nnessûge deadline of n minirn'izes the number of messages sent.

Proof: Lemma 4.3.2 stales that if the EDF policy is employed to transmit n

messages, the message set with a maximum message deadline of n minimizes the

number of messages sent in the worst case. As the new window protocol implements

the EDF policy, we have the lemma proved' Q.E.D.
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We now examine the maximum contention overhead involved in locating the earliest

d.eadline message in the window protocol. Recall that the upper bound of the last

window W"is always set to oo. If all messages are in the iast window, then according

to the protocol part of the last window is split again and again until at least one

message is found not in the last window. As long as message deadlines are bounded, it

is straightforward to calculate the number of splittings required. Hence, without loss

of generality we assume that the actual window upper bound, i.e. the upper bound of

W"-7, is chosen such that it is greater than the largest message deadline. This way,

no splitting occurs in the last window.

Lemma 5.4.4 Giuen a token ring of n nodes, the marimum contention oaerhead c

incurred in locating the earli,est deadline rnessage in the wi,ndow protocol is

Cmar [og" A] nw ] w, (5.228)

where s is the number of windows and L, is the initial aalue of the actual wi'ndow upper

bound (i.e. the upper bound of the initial window ¡ry"-t)'

Proof: According to the protocol, if there are messages waiting in the network,

then there are two cases to consider when the token returns to the monitor node after

one complete circulation.

o Only one message is found in the first non-empty window, implying that it is the

earliest deadline message. In this case, it takes ntr units of time for the token to

complete one full circulation and it¿ (1 < i ( n) units of time for the token to

reach the node having the earliest deadline message. Hence, the total overhead

is nu I iu 12nw.

t47
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r Two or more messages are found in the frrst non-empty window. In this case,

the first non-empty window is further split into many smaller windows and

the protocol continues recursively. Evidently, if the first non-empty window

contains two messages having identical deadlines, then the search for the earliest

deadline message involves a deadline tie. Consequently, it needs [log" A-.| token

circulations, thus [og"A'lnt¿ units of time to reduce the window size to 1 to

solve the deadline tie. After the eariiest deadline message is located, it takes

another t¿ units of time for the token to reach the next node downstream to

inform the node to send its messages. Therefore, the total contention overhead

for a message transmission is [log" L]nu * tn-

Clearly, flog"Alnlu,+w ] Znw since A ] s for a ) 1. Thus, in the worst case all

messages have the same deadlines and each message transmission incurs a maximum

overhead of [og" L']nw * tr. This concludes the proof. Q.tr.D.

The worst case message set can now be identified.

Lemma 5.4.5 Giaen a token ring of n nodes, if the window protocol is used to

transmi,t n rnessages, the worst case set is

A-.(r) {(r,1), (n,2),.-. ,(n,, - l),(",")}. (5.22s)

Proof: As the number of messages deadlines is n, there must be at least one message

with a deadline of n; otherwise, the message set is infeasible. On the other hand, it

5As all message have the same deadlines, the node capturing the token next is the next sending

148
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follows from Lemma 5.4.3 that in the worst case the maximum deadline of messages

must be n. Furthermore, Lemma 5.4.4 states that when there exists a deadline tie,

the message transmission incurs a maximum overhead. Thus we conclude that in the

worst case message set all messages have the same deadlines of n so that every search

involves a deadline tie. As a result, each message transmission incurs a maximum

overhead. Q.E.D.

With Lemmas 5.4.4 and 5.4.5, the number of messages sent from message set A-.(r)

can be determined.

Lemma 5.4.6 Giaen a tolcen ri,ng of n nodes, i,f the window protocol i,s used to send

n n'tessa,ges, then in tlt'e worst case the number of messages sent is

S end(W D, N (r, tn), A-.(n)) I n 
-1. 

(5.280)
'([og" Aln * 1)u.r 1 r-

Proof: With Lemma 5.4.5, we know that when the window protocol is used

to transmit n messages, a1l messages in the worst case message set have the same

deadlines. Hence, any time the search for the earliest deadiine message involves a

deadline tie.

Lemma 5.4.4 shows that for a token ring of n nodes, the maximum overhead in

detecting a deadline tie is [og" Al nu.'. Then, it takes another t¡ units of time for

the token to travel from the monitor node to its nearest neighbor, which is the node

having the earliest deadline message. Hence, the total time needed for a message

transmission is ([og"A'l n+l)* f 1, where 1is the message transmission time. As

the window protocol implements the EDF policy and the maximum message deadline

is n, it follows from Lemma 4.3.3 that the number of messages sent from (5.229) is

t n_t e.E.D.L(["s, A'lnfl)tr{l J'

t49
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with the above lemma, the following can be readily established

Theorem 5.4.L The worst case perforrn(Ince ratio of the window protocol is giuen by

R(W D,w,n) tu*1 (5.231)
n

t

5.5 Numerical Results and Discussions

As the window protocol implements the exact EDF transmission policy, the contention

overhead is the only cause for the performance degradation. We can see this more

clearly when tr,l approaches to zero.

lirtn^R(W D,w,n) : I (5.232)

That is, if working in an ideal environment where u) : 0, the window protocol can

send all the messages as a result of implementing the EDF policy.

Figures 5.5 shows the protocol performance when the number of windows is 64. We

observe that when ?, : 0, the protocol obtains a performance ratio of 1 for any given n.

This implies that the window protocol would have the same behavior as the CEDF

protocol if the contention overhead is assumed to be zero. On the other hand, the

protocol performance degrades signifi.cantly as w atdf or r¿ increases. This is because

in the worst case the contention overhead of the window protocol is ( [og" Al rz * l)u.r.

Theorem 5.4.1 also indicates that the worst case performance ratio is a function

of s and n. Figures 5.6 shows the impact of s and n on the protocol performance.
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Clearly, for a given n the larger the number of windows, the higher the sent ratio6.

Likewise, for a given s the larger the n, the lower the sent ratio. This is because when

ur ) 0, the contention overhead incurred in a message transmission is an increasing

function of lLog(s,A)1. Obviously, increasing s results in a smaller overhead, hence a

higher sent ratio. On the other hand, increasing n gives rise to a larger overhead, and

thus a smaller sent ratio.
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5.6 Major Advantages of the Window Protocol

We now summarize the major advantages of the proposed window protocol.

6We also note that increasing 6 may not result in any increase in sent ratio, this is due to the
property of function I l.
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¡ The protocol implements the network-wide EDF transmission policy. That is,

at any time if a message is sent, it is the earliest deadline message.

o The use of multiple windows offers faster convergence in locating the earliest

deadline message as compared with the existing window protocols designed for

CSMAi CD networks. In those protocols, whenever a collision occllrs the window

upper bound is moved in a binary manner. The protocols continue in this way

until either a message transmission is successful or the window size becomes

one. This inefficient strategy of the window operation is due to the nature

of CSMA/CD networks where nodes are not able to obtain sufficient deadline

information about messages residing on other nodes. Therefore, contention can

only be detected upon a collision, but the actual message deadlines involved

are not known. The new window protocol takes the advantage of the token

n
n
n
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Figure 5.7. Time Diagram for Message Transmission

circulating around the ring and benefits from the multiple window structure, so

that the monitor node is able to gain useful knowledge of the global message

deadline information. As a result, the search for the earliest deadline message

is more effi.cient. Consequently, the new window protocol offers much faster

convergence in locating the earliest deadline message. Figure 5.7 demonstrates

this by a simple example. Suppose two messages have deadiines of 47 and 48

respectively. 'With an initial window size of 56, the binary search in the existing

window protocols starts with window [0,56] and needs to move the window upper

bound at least 5 times before M1 cart be sent successfully. By contrast, in the

new window protocol (with B windows), after one token circulation, the monitor

node finds thal Mt is the only message in W6. Hence, only one token rotation

is needed to locate the earliest deadline message. Evidently, the search for the

desired message in the new window protocol is significantly faster.
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5.7 Protocol Realization

In this section, we discuss how to efficiently realize the previously described window

protocol. We start with the direct realization of the protocol and show how the

information fields on the token can be reduced. This leads to an optimal encoding

scheme using a minimum 5-bit AC field, while the full functionality of the protocol

is correctly preserved. We then derive a general formula identifying the quantitative

relationship between the number of windows obtainable and the number of bits needed,

using the optimal encoding scheme. Finally, we give an alternative encoding scheme

using an 8-bit AC field which confbrms to the IEEE 802.5 standard'

5.7.L Direct Realization

In the window protocol described in Section 5.3, one bit is needed for binary flags SE

and SW respectively. Fields PW and CW arc of equal length and are in the range

from 0 to s (the number of windows), hence the number of bits needed for each of

them is [og, sl. Finally, flog, n.l bits are required for counter WC, where n is the

number of nodes. This is because in the most unfavorable case where each node has

a message waiting and all these messages are in the same window, countet WC has

to record these n messages. The IEEE 802.5 token ring network needs to support up

to 500 nodes, which requires 9 bits for counter WC. Summing up the above, the total

number of bits needed in the token AC field is

2*2* [ogrs'l +9. (5.233)
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This means that at least 13 bits (since " > 2) are needed for the token AC freld if the

window protocol is implemented directly'

5.7.2 Optirnal Realization

In this section, we show how to use a minimum length AC field to implement the

previously described window protocol with its full functionality preserved.

Before we present the encoding scheme, we first discuss some possible reduction

in information needed for locating the earliest deadline message and examine ways in

which the length of the AC freld may be minimized.

o Recall in Table 5.2, when a non-monitor node finds that there is at least one

message in Wcw kf. Rows 5 and 9 in Table 5.2) and its own message is in

the same window, it increments counter WC by 1. This way, after one token

circulation the monitor node has an accurate account of the number of messages

in the first non-empty window Wcw. However, as the earliest deadline message

is located only if one message is found in the first non-empty window (when no

deadiine tie exists), we only need to know whether one or more than oneT

message is in Wcw. This implies that counter WC can now be simplifled to

a binary flag. Together with field CW, three cases reflecting the number of

messages in the first non-empty window can be encoded:

WC :0 and CW :0: no message is found in the network so far.

WC :0 and CW > 0: one message is in the first non-empty window so far.

WC : 1 and CW > 0: more than one message are in the first non-empty

window so far.

TThe exact number is not relevant to the current search of the earliest deadline message.
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Note that with this compound encoding, only one bit is needed for counter

WC, which is a significant reduction from [log, n'l bits required by the direct

realization.

o When a non-monitor node sees SW- :I (cf. Rows 7-10 in Table 5.2),]L knows

that one of the previous windows has been split since the last token visit. The

index of the split window is denoted lry PW (> 0). Clearly, we can use fleld

PW alone to indicate whether any previous window has been split'

PW :0: initial window boundaries are used

PW > 0: previous window Wpw has been split

o We also notice that when a unique earliest deadline message is found or a deadline

tie is recognized (c/. Row I - 2 inTable 5.1), the monitor node sets flag,9Eto 1

and resets freId PW to 0. This implies that when a non-monitor node receives

the token with flag ,SE set, PIII must be 0. if flag SE is off, then PW rmrct

be positive. Hence, it is feasible not to use fl,ag SE in the token at all. This

is done by introducing another local binary flag at each node, so that the node

having the earliest deadline message is able to determine whether it is allowed

to transmit its message upon the arrival of the token if PIzl¡is 0'

Each node now has a binary flag called Message Registered (MR) which is set

to 0 initialiy. When the system is in ,Seørcå state, a node checks whether it

should register its message in the token as previously described. Only if the

node overwÅtes CW on the token with its own message window index, the node

sets flag MR to l. When the token arrives at a node with PW > 0 (window

boundaries have been changed), the node resets flag MR if it is on. It then
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carries out the procedure describedin Table 5.2to see whether it should register

its message in relation to the new window boundaries. If the token arrives with

PW :0 and its flag MR is on, the node knows that the protocol operation is

now in Send Enable state. It compares its message window index with CW ín

the token. If they are the same, then the node resets MR and sends its message;

otherwise, the node simply resets flag MR and passes the token without any

change.

The operations on flag MR described above ensures the following:

- flug MR ot a node is set only if the node overwrites CW wilh its own

message window index;

- fl.g MR on a node is reset before any other operations when the node sees

PW>O;

- when the monitor node starts Send Enable, flags MR on all nodes between

the node having the earliest deadline message and the monitor node are off;

- when the monitor node starts Send Enable, Ihe node with the earliest

deadline message is the last node having flag MR set;

- after a non-monitor node becomes the monitor node and enters Search state,

no node has flag MR set.

The above properties of the operations on flag MR gtarantee that these local

flags are reset once a n-ew search starts. Clearly, the test for a node to check if

the system is ir¡ Send Enable state is PW :0 and MR: l. As a result, the

condition that a node is ailowed to send a message is PW :0, MR: 1 and

le : CW.



Row Token Content Size of
Wcw

Interpretation Operations

PW WC CW

1 0 0 0 no msg waiting no change in token fields

2 0 0 x 1 msg in Wcw no change in token fields

3 0 1 X 1 deadline tie in Wcw no change in token fields

4 0 1 X >1 ) 1 msg in Wcw spltt W6q, PW := CW,
WC := 0, CW ::0

5 x 0 X 1 msg in Wcw PW:=0
6 X 1 x 1 deadline tie in Wcw PW ::0
I x 1 X >1 ) 1 msg in Wcw spht Wçry, PW :: CW,

WC ::0, CW :-- 0

I 0 >0 o" non-rnoni,tor node

becomes the monitor
after sending the msg

reset all token fields
to0
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Table 5.3. Encoding for Monitor Node operations (optimal scheme)

It should be pointed out that when using nodal fl,ags MR to replace the explicit

binary fl,ag SE on the token, idle nodes or nodes that have not registered their

messages during the previous token circulation(s) are not aware of the transition

of the system state from Searchto Send Enable as their fl,ags MR are off in both

cases. Thus the condition specifled above is always evaluated false. Nevertheless,

the protocol operation remains correct.

The optimai encoding schemes incorporating the changes described above are given

in Tables 5.3 and 5.4,,1or the monitor node and non-monitor nodes respectively. We

see that the token AC field is now reduced to inciude only three information fields.

In Table 5.4, fields ^98 and SW no longer appear explicitly on the token, instead their

values shown are computed from the three token fields and the additional node-based

fl,ag MR as discussed above. Note that lor MR, symbol'x'means that its value (either

on or off) has no signifi.cance in determining the node's operations. For PW ar'd CW,

symbol 'x' denotes a positive integer in the range from 0 to s.
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Row Token Content Nodal
MR

Computed Interpretation Operations

P\M \MC CW

1 0 0 x 1 1 0 Send, Enable,
ED msg
in Wçyt

rcset MR,
if Ic = CW,
WC ::0, CW ;:0,
send msg,
become new monitor

2 0 1 X 1 1 0 Send Enable,
deadline tie
in Wcw

reset MR,
if lc : CW,
WC ::0, CW ::0,
send msg,
become new monitor

3 0 0 0 0 0 0 Search, no msg CW :: lc, set MR

4 0 0 x 0 0 0 Search,
1 msg in Wcw

if lr < CW,
CW :: k, set MR

5 0 0 X 0 0 0 ,5earch,

1 msg in Wcw
ifk=CW,
WC::L

6 0 0 x 0 0 0 Search,
1 msg in Wcw

ifk>cw,
no change in token

I 0 1 X 0 0 0 Search,
> 1 msg in Wcw

ilk<cw,
WC ::0, CW : le ,

set MR

8 0 1 X 0 0 0 Search,
) 1 msg in Wcw

ifk:CW,
no change in token

I 0 1 X 0 0 0 Search, ifk> W,
>1 in Wcw no change in token

10 X 0 0 x 0 1 Split k Search,
no msg

reset MA -l-

spht Wpyt * Row 3

11 x 1 x X 0 1 Spli,t k Search,
1 msg in Wcw

reset MA *
spht Wpyt f Row 4

12 X 1 X x 0 1 Split k Search,
1 msg in Wcw

reset MR *
spltt Wp,yy t Row 5

13 x 1 X X 0 1 Split k Search,
1 msg in Wcw

reset MR *
spht, Wp¡,y * Row 6

74 X 1 x x 0 1 Spli,t k Search,

> 1 msg in Wcw
rcset MR *
splst Wpry * Row 7

15 x 1 X X 0 1 Spli,t k Search,

) 1 msg in Wcw
reset MR *
spht Wps * Row 8

16 X 1 x x 0 1 Split k Search,

) 1 msg in Wcw
reset MA *
spht Wpw * Row 9

Table 5.4. Encoding for Non-Monitor Node Operations (Optimal Scheme)
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Evidently, the above encoding scheme replaces the explicit flags ,58 and SW on

the token with a compound encoding. Furthermore, each possible value of a field is

fully utilized. As a result, the explicit information needed on the token is minimized,

while the protocol functionality is fuliy reserved. Therefore, this encoding scheme is

optimal.

Token Length

Under the above optimal encoding scheme, we now derive a general formula to identify

the relationship between the number of bits å needed in the token AC field and the

nurnber of windows s implemented.

One bit is needed for counter WC freld. To implement s windows, [log, sl bits are

needed for PW and CW respectively. Thus, in total we have

b:1*2*[ogrsl (5.234)

Suppose we have multiple windows (" 2 2), then a minimum of 5 bits are needed to

realize the protocol.

On the other hand, for a given å-bit long token AC field, it follows that the minimum

number of windows that can be implemented is8

" - 2(a't)lz (5.235)

Evidently, the number of windows which can be realized by the optimal encoding

method increases erponentially to the length of the token AC field. Consequently,

8In the following formula, we assume that å is an odd number. If ó is an even number, the result

should be rounded to the nearest integer.



5.7. Protocol Realization 161

SD AC ED

(e) Token Format

PPP T M RBR

SD = Sterl Dslimiter (l oclet)
AO = Accs€s Gontrol (1 octet)
ED = End Dslimitor (1 oclêt)

PPP = Prlority bit8 (3 blts)
T = Token bit (1 bit)
M - Monitor bit (1 bit)

RBB = Rossrvetion b¡ta (3 bns)

þ) TokenAocees Control FieH

Figure 5.8. IEEtr 802.5 Token Format

a small increase in the number of bits results in a large increase in the number of

wind.ows, which in turn reduces the contention overhead and thus improves the protocol

performance.

5.7.3 Practical Realization

We have given an optimal encoding scheme which requires a 5-bit token AC field to

realize the protocol,

In practice, the encoding scheme is constrained by the actual token length, hence

we now consider realizing the protocol using an 8-bit token AC field which conforms to

the IEEtr 802.5 standard. Figure 5.8 depicts the token format used in an 802.5 token

ring network.

We see that the AC fleld contains three priority bits, three reservation bits and two

binary flag bits. The priority and reservation bits are protocol related, hence they not

relevant to the window protocol. The Tolcen áiú which distinguishes a data frame from

the free token and the Monitor á¿ú which prevents a packet from endlessly circulating

around the ring are replaced by the compound encoding in our encoding scheme.
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Hence, we have a total of 8 bits which can be used to realizethe previously described

window protocol. One method is to use the optimal encoding scheme described above'

That is, 3 bits are allocated to fields PW and CW respectively, and 1 bit is used for

counter WC,which gives a total of 7 bits.

This leaves us one spaïe bit, which can be used in different ways. In the following,

\/e give one such scheme. Let this spare bit to be used for flag SE That is, we let

Send, Enable to be explicitly indicated on the token rather than to be computed from

the values of PW, CW, WC and iocal fl,ag MR. As a result, there is no need for nodal

flag MR.

Tables 5.5 and 5.6 give the detaiied encoding for operations performed by the

monitor node and non-monitor nodes respectively. Note that 'x' denotes a positive

integer in the range from 1 to s.

5.8 Enhancements and Modifications

In this section, we propose various possible enhancements and modiflcations which can

be incorporated into the previously described window protocol. We then examine and

discuss their feasibility, utility, advantages and disadvantages in terms of making the

proposed window protocol more adaptive, flexible and efficient. These modifications

aim to preserve in principle the EDF transmission policy, while minimizing the

overhead to achieve the best possible protocol performance.

5.8.1- Urgent Pre-emption

The basic version of the proposed window protocol may not be flexible enough in

handling urgent messages which have very tight deadlines. The following simple



5.8. Enhancements and Modifrcations 163

Row Token Content Size of
Wcw

Interpretation Operations

1 bir
PW

3 bits 1 bit 3 bit

L 0 0 0 0 no msg waiting no change in
token flelds

2 0 0 0 X 1 msg in Wcw SE:: I
3 0 0 1 X 1 deadline tie in Wcw SE:=I
4 0 0 1 x >1 ) 1 msg in Wcw spltt Wçyr,

PW :: CW,
CW ::0,
WC ::0

5 0 X 0 X 1 msg in Wcw SE :: l,
PW:=0

6 0 x 1 X 1 deadline tie in Wçyt SE::I,
PW ;:0

7 0 X 1 X >1 ) 1 msg in Wcw spht Wçry,
PW :: CW,
CW ::0,
WC :-- 0

I 1 a non-nloni,tor nod,e

becomes the monitor
after send,ing a msg

reset all
tolcen fields
to0

Table 5.5. Encoding for Monitor Node Operations (Practical Scheme)

example demonstrates the possibility. Suppose a node receives the token at time f

and has a message with a deadline of d : t llnr, where /¡¿ is the message transmission

time plus the overhead. Obviously, if the node registers this message on the token,

it takes at least another token circulation before the node can start the transmission,

by which time it would be too late for the message to make its deadline. Thus, a

straightforward modification is to allow a node having a message with a deadline of d,

such that d, : t * Iu, to send out the message immediately even if flag SE : 0.

This example shows a very extreme case. In practice, the condition can be relaxed to

d < t -l lm -l threshold. The value of the threshold can be chosen small enough so

that the EDF policy can be well approximated.
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Row Token Content Interpretation Operations

SB
1 bit

P\M
3 bits

WC
1 bits

CW
3 bit

1 1 0 0 X Send Enable,
ED msg in Wcw

lf lc : CW,
WC := 0, CW ;= 0,

send msg,
become new monitor

2 1 0 1 X Send Enable,
deadline tie \n Wcw

iÎ lc : CW,
WC ::0, CW ::0,
send msg,
become new monitor

3 0 0 0 0 Search, no msg CW::k
4 0 0 0 X Search,

I msg in Wcw
fik<cw,
CW::k

5 0 0 0 x Search,
1 msg itt Wcw

ifk:CW,
WC::I

6 0 0 0 X Search,
1 msg in Wcw

ifk>cw,
no change in token

7 0 0 1 X Search,

) 1 msg in Wcw
ifk<cw,
CW::krWC:0

B 0 0 1 X Search,
) 1 msg in Wcw

if lc : CW,
no change in token

9 0 0 1 X Search,
) 1 msg in Wcw

ifk>cw,
no change in token

10 0 X 0 0 Split k Search,
no msg

sfl:t Wp¡ar * Row 3

11 0 x 0 Split k Search,
1 msg in Wcw

spht Wpyr * Row 4

72 0 X 0 x Split k Search,
1- msg in Wcw

spht Wpyr * Row 5

13 0 X 0 X Split k Search,
1 msg in Wcw

splst Wpyr * Row 6

l4 0 X 1 X Split k Search,
) 1 msg in Wcw

spht Wpyt * Row 7

15 0 X 1 x Split k Search,

) 1 msg in Wcw
spbt Wpyy * Row B

16 0 X 1 X Spli,t k Search,

) 1 msg itt Wcw
spltt Wpyt f Row I

Table 5.6. Encoding for Non-Monitor Node Operations (Practical Scheme)
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An alternative approach is to allow a node to send a message immediately if the

message is in the frrst window W1. Recall that the upper bound of this window

changes during the search. After a window is split, W1 rna! be formed by merging

all the previous windows up to the first non-empty wìndows. Thus, if a node has a

message in this new first window after the window split, it must be a newly arrived

message with a deadline smaller than the one that is intended by the current search.

Thus this modifi.cation dynamicaliy takes care of newly arrived urgent messages. If the

probability of two or more message artivals during a token circulation is very low, then

the EDtr policy is mostly observed. To maximize the adherence to the EDF policy,

a small initial size of the first window should be used. This modiflcation also implies

that a node is allowed to pre-empt the token with flag SE set on the way from the

monitor node to a node having the previously located the earliest deadline message.

Clearly, the above urgent pre-emption schemes allow urgent messages to be sent

sooner. Under the previously described protocol, a non-monitor node becomes the

monitor node after it transmits a message. However, in the case where the token

with SE set is pre-empted on the way to a non-monitor node, when the pre-empting

node becomes the monitor node after its transmission, it resets the token fields and the

search for the previously located the earliest deadline message starts again. Obviously,

it is wasteful to do so. The solution is that after the pre-empting node completes the

message transmission, it issues the token identical to the one it received and does

not become the monitor node. This way, the non-monitor node having the earliest

deadline message can still send its message upon the token arrival. Consequently, the

overhead involved is minimized.
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5.8.2 Faster Deadline Tie Handling

Recail when a deadline tie is recognized, the monitor node sets flag S E to 1. Then the

first node having such a message captures the token and sends the message first. It

then releases the token with all fields reset to 0 and the window boundaries are reset

to their initial values. However, reseting the token fields also means discarding the

information of the deadline tie. In the worst case where remaining messages involved

in the tie are still the earliest deadline messagese, it requires further token circulations

and window splittings to locate the remaining earliest deadline messages that involved

in the tie. Clearly, this process continues until the message set involved in the tie

is reduced to the last one (no more deadline tie). It is obviously wasteful to do so

and this inefficiency is most pronounced when the number of messages involved in a

deadline tie is large.

The way to overcome the above problem is to modify the protocol so that the first

sending node does not reset the token fields, but releases the same token (i.e. ,SE : 1,

WC :1 and CW > 0 ). The purpose of this is to let other messages involved in the

deadline tie be transmitted one after another once the tie is detected. This way, when

the first sending node receives the token back with S E : 1, it knows that all messages

involved in the tie have been transmitted. It then issues a token with all fields reset

to 0 and the initial window boundaries are resumed.

Clearly, the above modification observes the EDF policy when there are no ne\¡

arrivals or newly arrived messages have larger deadlines than those involved in the

deadline tie. If a node, having a newly arrived message with a smaller deadline,

captures the token before the second node involved in the deadline tie, to preserve the

glf there are no ne\4r message arrivals or if all newly arrived message have deadlines greater than
those involved in the tie.



5.8. Enhancements and Modifr.cations 167

EDF policy, the protocol should allow this node to send the newly arrived message

immediately. This is similar to the urgent pre-emption as discussed before.

5.8.3 Faster Resolution

It is obvious that when there are messages having deadlines very close to the earliest

deadline message (the extreme case would be a deadline tie as discussed above), many

window splits may be needed to reduce the window size to very small. This is especially

true when the initial window size is large and the number of windows is small. For

any messages with identical deadlines or close deadlines, in practice it is perhaps

not benefi.cial to further differentiate themlo. Hence, if the protocol can predict or

estimate in advance and stop further splitting windows, then the overhead can be

reduced significantly. Indeed, in the following we examine three such modifrcations.

One solution is to terminate the search once the monitor node detects that there

is enough time to send all messages in the first non-empty window. Specifically, the

monitor checks to see if the following holds:

Lcwlt!i*17a,, (5.236)

where i is the number of messages inW6yrLl and /¡a is the message transmission time

plus the overhead. The reason thal Lçyr, the lower bound of Wçry, is used in (5.236)

rather than the actual message deadline is that the monitor node only knows the

number of messages in Wçyt, but not the exact message deadlines involved. However,

if a message is in Wcw, its deadline must be at least equal to the lower bound of

l0Unless to differentiate them on the basis of their service classes.
l1ln thir case counter VVC needs to count more than one message.
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Wcw, but less than the upper bound olWcw. If all messages in the fi.rst non-empty

window can make their deadlines, then it does not matter in which order they are

sent. To understand this better, consider the case where the current time ú is 4, and

L6s and [Jcw is 16 and 32 respectively. Suppose four messages, with deadlines of.22,

25,27 and 30 respectively, are found inWcw. Hence, each of them is the potential

earliest deadline message as far as nodes are concerned currently. The monitor node

checks if 16 > 4 + 4 * t hoids. As it is true in this case, the monitor node sets ,5,8

to 1, terminating the search. Note that this estimation is conservative as the actual

message deadlines can be much larger than the lower bound of Wcw. For example,

in the same scenario, if the current time is 15, the test of (5.236) would be evaluated

false, though in fact all these four messages can still make their deadlines.

A less conservative solution is not to be concerned with the number of messages in

the window, but only the window size. That is, when the monitor node detects the

size of Wcw is less than a threshold, WC > 0 and CW > 0, it terminates the search

and sets SE io 1. A node having a message inWcw and capturing the token first sends

its message. If the threshold is set to 1, then this solution is equivalent to resolving a

tie in the previously described window protocol. When the threshold is chosen to be

greater than 1, it becomes an imprecise solution and ihe degree of imprecision depends

on the value of the threshold, WC and CW. 
^lfhough 

the alteration of the order in

which messages are sent may result in different messages to be lost, the performance

of the protocol may be improved as a result of considerably reduced overhead.

Another approach is that when the number of messages in the first non-empty

window is less than a threshold, the monitor node sets flag SE This approach also

reduces the overhead, though it may also violate the EDF policy, the degree of which
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depends on the window size a and the value of counter WC. h practice, a small value

of the threshold may produce significant improvement in performance ratio.

5.8.4 Choice of Threshold

\Me see all the modifications proposed and discussed above aim to offer fast response

time to urgent messages and to reduce the overhead incurred in the search for

the earliest deadline message. They exhibit a good trade-off between the level o{

implementing the optimal EDF transmission policy and the overhead incurred in the

implementation.

Although it is difficuit to determine analytically the optimal values of thresholds

involved in these schemes as they are subject to network load, message arrival pattern,

and message deadline and position distributions. In practice, a threshold can use either

a fixed pre-defined value or a heuristic value assigned dynamically according to the

load and message characteristics.

5.8.5 Possible Realization

These modifications are also simple to be implemented, each of which requires only

one or two additional entries in Tables 5.3, 5.4, 5.5 and 5.6.

The only complication of some of these modifications is the need for additional bits

for counter WCto record the exact number of messages (may be more than one) in the

first non-empty window. Thus, more bits and more encoding are needed to incorporate

the modifi.cations. In practice, a realistic frgure may be chosen as a compromise.



Chapter 6

Worst Case Performance Comparison

In this chapter, we use the results obtained from the previous three chapters to compare

the worst case performance of the three token ring protocols [24]. We first outline the

comparison method, and then present and discuss the results. Finally, we examine the

implication and applicability of the comparison results. This investigation provides

a guideline for the design of distributed scheduling algorithms and communication

protocols.

6.1- Comparison Method

Our objective is to identify the conditions (in terms of network parameters) under

which one protocol may perform better than the others. Specifically, we wish to

partition the parameter space into several regions, in each of which one protocol

outperforms the others.

First, we compare the worst case performance of the three protocols on a pair-wise

basis. As for each protocol, the worst case performance ratio is a function of network

parameters n and ur, thus each pair-wise comparison is made by flrst equating the worst

170
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case performance ratios of the two chosen protocols. We then solve to in terms of n.

However, due to the nature "f L I function contained in the worst case performance

ratios, there may be multiple values of t¿ that satisfy the equation. Therefore, for a

given n) we defi.ne u)rr¿n ãîd u)*o" to be the minimum and the maximum value of u.t

that satisfy the equation. Thus, u^¿n apld lr.nar are functions of n, i.e.

Umin f*;*(n),

Umar Í*",ç'¡ (6.237)

The above equations can be presented as two curves on the n-tr.t plain. We call the

area between the two curves the equal-perforrning band, as the two protocols perform

the same in this area.

To further clarify the concept of the equai-performing band and its usage, let us

consider comparing the token passing protocol with the priority-driven protocol. First,

we set up the following equation:

R(TP,w,n) R(P D,,w,n), (6.238)

where R(TP,w,n) is given in (3.3.1), while R(PD,u.',n) is given in (4.136), (4.4.I)

and (4.3.1) respectively for different r¿. We then numerically solve (6.238) to obtain

rJ)min: f*n@) ar'd u)^o, : f,*o,(n). The two corresponding curves are depicted in

Figure 6.1(a). The area between the two curves is the equal-performing band. Clearly,

the equal-performing band partitions the parameter space into three parts:

o the band itself in which R(TP,w,n) : R(PD,w,n), indicating that two

protocols perform the same;
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o the lower left part (below the curve of f^¡,(n))) in which R(TP,w,n) <

R(PD,ú,n), suggesting that the priority-driven protocol performs better than

the token passing protocol;

o the upper right part (above the curve of f^",(n)) in which R(TP,w,n) >

R(P D , u , n) , implying that the token passing protocol outperforms the priority-

driven protocol.

Other two pairs of protocols are compared in the same manner and their equal

performing bands are shown in Figures 6.1(b) and (c) respectively. The relevant

protocol parameters used for Figure 6.1 are m: 16 for the priority-driven protocol

and s : 16 for the window protocol.

When we compaïe the three protocols, the three pair-wise equal-performing bands

are used. However, superimposing all of them together may not produce a graphical

presentation which is clear and easy to understand. Hence, to simplify the comparison

without lossing the essence of the problem, we reduce an equal-performing band

to an equal-performing cu"rue as follows: for a given equal-performing band, i.e.

umin -- f^;"(n) and u)^o, : Í*o,(n), its corresponding equal-performing curve is

obtained as follows:
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r/ \ -f*;"(n)+f*",(n)'u:J(n): 
2

(6.23e)

That is, for each n we choose the medium value of w-¿n arrd unlaî. In the following,

we use the equal-performing curves to compare the three protocols.
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Figure 6.L. Pair-Wise Equal Performing Bands
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6.2 Pair-Wise Comparisons

The equal-performing curves are depicted in Figure 6.2

o Token passing protocol versus priority-driven protocol

From Figure 6.2(a), we observe that the priority-driven protocol performs better

than the token passing protocol when both n and u., are small. This is because

the token passing protocol does not observe the trDF policy, while the priority-

driven protocol implements the exact EDF policy when the number of message

deadlines is smaller than the number of priorities. Consequently, the priority-

driven protocol produces better performance for small n and tr.,. On the other

hand, as the contention overhead of the priority driven protocol and the token

passing protocol is in the order ol nw and u.' respectively, the impact of increasing

n or f arrd u; on the performance of the priority-driven protocol is greater than

that on the token passing protocol. Hence, the token passing protocol evqntually

outperforms the priority-driven protocol as n or/and u., increases.

¡ Priority-driven protocol versus window protocol

The equal-performing curve is shown in Figure 6.2(b). Recali that when the

number of message deadlines n is smaller than the number of priorities rn, both

the priority-driven and the window protocols implement the EDF policy. Hence,

in this case the performance of the two protocols is determined entirely by their

contention overheads, which are functions of parameters fr, u, rn and s. If the

contention overhead of the priority-driven protocol is smaller, then it outperforms

the window protocol; otherwise, the window protocol yields better performance.

As n becomes greater than rn, the performance of the priority-driven protocol

deteriorates as it no longer impiements the exact trDF policy. Nevertheless,

774



6.2. Pair-Wise Compaúsons

(a) TP vs. PD (n = 16)

È 0.03

o,02

0.01

0.06

0.05

0. 04

0,06

0.05

0. 04

o.02

0.01

0.06

0.05

0.04

È 0.03

0. 02

tb 32

F 0.03

64 L2B 256 5L2 LO24

n

(b) PD vs. WD (m = 16 e s:16)

L6 32 64 L2B 256 512 LO24

n

(c) TP vs. WD (s = 16)

l6 64 t2a 256 5t2 1024

n

0

0.01

175

TP:PD+

PD=ÌlD+

TP=ÍlD+

Figure 6.2. Pair-Wise Equal Performing Curves



6.3. Cornparison of Three Protocols 176

because of the large contention overhead, the window protocol outperforms the

priority-driven protocol only when to is sufficiently small.

o Token passing protocol versus window protocol

The resuit is shown in Figure 6.2(c). We see that the window protocol exhibits

its performance advantage when both n and ur are small. This is because the

token passing protocol does not consider message deadlines, while the window

protocol always implements the EDF policy with a small contention overhead

when r¿ and u are small. As n and/or '¿.r.r increase, the window protocol suffers

from a rapid growth in its contention overhead. As a result, the benefit of an

accurate implementation of the EDF policy is nullified by the increase in its

contention overhead, making it incapable of competing with the token passing

protocol for large n and w.

6.3 Cornparison of Three Protocols

To compare the three protocols, we superimpose the above three pair-wise equal-

performing curves and the result is shown in Figure 6.3.

We see that the three curves corss each other resulting in a small triangle area near

n : 16 and t¿ - 0.03, in which the three protocols have the same performance. As our

goal of the comparison is to partition the parameter space into several disjoint regions,

thus to simplify the presentation we choose a point inside the triangle to replace the

triangle. Figure 6.a(a) shows the result.

We see that the three curves partition the parameter space into six different regions,

labeled as I,II,'..and VI respectively. Each region represents an area where the

performance of one protocol is the same or better than another. For example, in
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Region I, we have -R(P D,w,n) > R(WD,w,n) and R(WD,w,n) > R(TP,w,n),

implying that the performance of the priority-driven protocoi performs either the same

or better than the window protocol, and that the window protocol performs either

the same or better than the token passing protocol. Table 6.1 lists the performance

relationship for each region.

These six regions can be further grouped into three domains, such that one

protocol achieves the best performance in one domain as shown in Figure 6.6(b).

For instance, the domain labeled with "WD" covers regions V and VI, indicating that

the window protocol is either the same or better than both the token passing and

the priority-driven protocol. The three disjoint domains cover the entire parameter

space, implying that no protocol can always dominate the others, and each protocol

has its own applicable area in the parameter space defined by the network attributes

E
B

E} E}

TP : PD --+-
PD = WD --r-__-

TP : WD --e---'
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Region Performance Relationship
I R(P D,u,n D rwrn r and .R(I4lD,,u,n) > R(TP,u,n)
II RI P D,w,n TP,u;,n and T P,w,n WD,u,n
III R P',tnrn P D,tu,n and P Drrnrn Prw',n
IV R 'TP,u;,n) > R(WD,u,n', and D rwrn P D,w,n
V (WD,u;,n) )_ R(TP,u,n t and R(TP,w,n t ) R(PD,u,n
VI R '.W D, w, n) >- R(P D,, u,, n',t and,R(PD,u,n) > R(TP,u,n)

Table 6.1. Performance Relationship in Six Regions

and appiication parameters. This indicates that the performance of a communication

protocol is a trade-off between the optimality of the transmission policy employed and

the contention overhead involved.

Although the comparison results presented and discussed above are generated with

m : 16 and s - 16, many other comparison results have also been obtained under

different values of protocol parameters. The general conclusion is that although the

shape and the size of each domain differs from that in Figure 6.4, similar observations

can be made. Figure 6.5 shows comparison result for m: 32 and s : 32.

The above observations and discussions have implied that in designing a real-time

communication protocol, one should carefully assess the trade-off of implementing

the optimal scheduling policy and minimizing the implementation overhead to satisfy

the design objective. Furthermore, in determining a communication protocol for a

particular network, it is important to conduct the worst case performance analysis

of each candidate protocol and compare their performance in the parameter ranges

associated with the network and applications. The desired protocol should be the one

which yields the best performance within the projected parameter ranges.
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6.4 Applicability of Results

Our study would have little contribution in practice if the parameter values considered

are not within the range supported by the current token ring networks in terms

of parameters n and t¿. \Me validate this in relation to the IEEE 802.5 token ring

standard.

The 802.5 token ring can operate at a speed cof I,4 or 16 Mbi,t/s. It can support

a maximum number z of 500 stations. The bus propagation delay p is 5 ¡.rs/km. The

token length Lt is 24 bits. From Chapter 2, lhe normalized token node-to-node delay

utís

(6.240)

Where d is the station bit delay, / is the ring length , Lo and L¡ are the packet length

and the token length respectively.

Table 6.2 lists the ut values for different combinations of system parameters. The

ring length I is 7 km and the station bit delay 0 is 4 óiús. Although the 802.5 standard

permits a maximum token holding time of l0 ms for message transmission by a token

holder, in the foilowing we use an average packet length o1 7024 bits in order to derive

the maximum possible value of w'. Hence, for ring speeds 1, 4 and 16 Mbit/s, the

corresponding message transmission times are I.024, 0.256 and 0.2256 rns respectively.

Furthermore, we assume that each station only transmits one such frame whenever it

holds the token.

In Table 6.2, we see that'u' ranges from 0.00382 to 0.0119. The dotted line boxes

in Figure 6.5(a) and (b) illustrate the ranges prescribed by the values of n and r"u. It
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Ring speed
(")

f of nodes
(")

Normalized node-to-node delay
(-')

1 l) 0.00477

4 5 0.00763

16 t) 0.0119

1 500 0.00382

4 500 0.00385

16 500 0.00396

Table 6.2. Range of Normalized Token Node-to-Node Delay

is obvious that given the current token ring networks no protocol among the three can

always outperform the others. Hence, for a given environment one should carefully

select a protocol in order to achieve the best possible performance. Specifically, when

ur and n are small, the priority-driven protocol should be used; otherwise, the window

protocol should be used unless (r,*) is in the upper-right corner in which the token

passing protocol is the best choice.
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Chapter 7

Average Case Performance Comparison

The worst case performance of the three protocols analyzed in the previous chapters

has deterministically established a lower bound of the performance ratio for each

protocol. However, this performance ratio is pessimistic and characterizes only the

protocol behavior under the worst case scenario. This chapter deals with the average

case performance of the three protocols by means of simulation. The average case

performance reflects the protocol performance under normal operational environments.

Therefore, it forms an integral part of the performance evaluation of a protocol.

Our goal is to investigate the performance of each protocol in supporting real-

time heterogeneous traffic under various network loads, traffic mix, and network and

protocol parameters [47]. First, we introduce the simulation model and simulation

language used. We then describe the traffic model on which the simulation experiments

are conducted. Finally, we present, compare and discuss various simulation results.

184
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7.L Simulation Program

We have developed a discrete-event simulation ptogram written in SIMSCRIPT II.5.

SIMSCRIPT IL5 is a discrete event-driven simulation language and was selected in

view of the following advantages:

o programming flexibility and portability,

o modularity and structured programming,

o built-in data collection and analysis,

o real-time event scheduling capacities, and

o on-line debugging.

Figure 7.1 is a simplified flow chart of the simulation program. At the beginning

of the simulation, network, protocol, message and simulation parameters are read

in. Then the initialization routine is called to activate all processes and to initialize

all parameters used in the simulation. The simulation is initiated by the creation

of message generators which schedule subsequent message arrivals according to the

specifled arrival distribution. The control then enters the token ring emulation

program. At the end of each simulation run, various statistics are collected and written

to an output file.

The simulation program can be divided into eight major modules defined as

either processes or routines in SIMSCRIPT. The functionalities of these processes

and routines are described as follows.

o Routine read-datareads in network, protocol, message and simulation parameters

specifi.ed by users. They include the simulation time, number of simulation
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runs for a given set of parameter values, debugging level, number of nodes, ring

length and propagation delay, system offered load, message length, position and

deadline distributions, message arrival rate, etc.

o Routine i,ni,tializati,on activaïes all the processes, creates all the permanent

entities and initializes all the system variables used in the simulation. This

routine is first called at the time when simulation starts and is called repeatedly

at the end of ecah simulation run to reset the system variabies and reactivate

processes.

o Process n'ì,sg-gener0,tor is responsible for generating messages throughout the

simulation. The process schedules the next message generation according to the

given message inter-arrival time distribution and assigns each message an arrival

time, a message class, a deadline and a length. In our model, each node has a

message generator which generates five classes of messages.

o Process ring-mgr is responsible for managing the ring states and co-ordinating

the activities of ail the nodes in the network. They include passing token from

one node to the next, removing messages whose deadlines have expired, caliing

designated routines to update statistics, etc.

o Routine access-control ís called whenever a node sees a token. It checks whether

the node should capture the token and send a message, or only modify the token

flelds, or simply let the token pass by without any change.

o Routine msg-trans is entered whenever a message transmission takes place. It

updates various ring, message and node variables.
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o Routine update-staúes updates relevant statistics, e.g. number of messages sent,

ring utilization, etc. whenever a successful message transmission has taken place.

o Process get-results awakes at the end of each simulation run to record statistics.

The overail results for the ïuns are displayed or saved in the output files. This

process is first called at the end of the warm-up period to reset the statistical

variables and then at the end of each simulation run.

7.2 Traffic Model and Pararneters

To cvaluate and compare the average case performance of the three protocols, we have

chosen a traffi.c model based on a local area network operating in a typical real-time

manufacturing environment [60].

The profile of this trafic model is given in Table 7.1. Trafic generated by sources

includes voice, data and various control messages. Each message class is assumed to

have an independent Poisson arrival process. In our model, messages are packetized

before they are transmitted. Packets of length 240, 1024 and 8192 bits are used for

different messages classes. The reason to use short and long packets is to maximize

the ring efficiency for lengthy data transfer and to minimize the loss for short and

urgent messages. Message deadlines ïange from 0.9 msecr for short alarm messages to

50 msec for lengthy file transfer messages.

Note that the packet length shown in Table 7.1 includes both payload and an

overhead of 13 bytes as in the IEEE 802.5 standard. A packet with a smaller

information field is padded with zeros, so that there are no partial packets. Figure 7.2

lThis is a relative deadline which indicates that the message needs to be received within 0,9 rr¿s

from its arrival at a node.
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Class
Id

Tlaffic
Type

Msg Length
(bits)

Pkt Length #of
Pkts

of Deadline
bits Traffic msec)

1 File Transfer 16000 - 32000 8192 2-4 0.27 50

2 File Transaction 1600 r024 2 5 20

3 Telephone 2000 1024 2 37 15

4 Sensor 240 240 1 57 5

5 Alarm 240 240 1 0.73 0.9

Table 7.1. Traffic Profile

shows the token AC fleld used for each protocol. Although it is different for each

protocol, in the simulation a token length o13 bytes is assumed for all protocols.

With the above five traffi.c classes, we define the network offered load as

n5
p:ÐÐÀ0,¡ xrltt¡, (7.241)

i=L j=l

where n is the total number of nodes in the network, À¿,¡ is the arrival rate of message

class j on node i, and If ¡,t¡ represents the transmission time of message class j. In the

simulation, it is assumed that the arrival rate of class j message is the same for each

node, that is,

Àt,i : Àz,i : I flJ (7.242)

Nodes are uniformly distributed along a l-lcm long ring which operates at a speed

of. 7,, 4 and 16 Mbit/s. We assume 4 bits latency delay at each node and a medium

propagation delay o15 p,s/km.



7.3. Performance Metrics 190

T M reserved

(a) Token AC Field for Token Passing Protocol

P PPPPP T M

(b) Token AC Field for Priority Driven Protocol

SE PW WC cw

T = Token bit (1 bit)
M = Monitor BÍt (1 bit)

T = Token bit (1 bit)
M = Mon¡tor B¡t (1 bit)
P - Priority Bits (6 b¡ts)

(c) Token AG Field for Window Protocol

Figure 7.2. Token Access Control Field Format

7.3 Performance Metrics

As in the worst case performance analysis, the performance metric to be used is the

sent rat'io which is defined as the percentage of messages successfully meeting their

deadlines.

¡ For a class i messages, the sent ratio is defined as

(7.243)

where sent(i) and lost(i) denote respectively the number of class i sent and lost

messages. Note that for a messages consisting of multipie packets, unless all

packets make their deadlines, the message is considered lost.

o To give an indication of the overall protocol performance for rn message classes,

we define the auerage sent ratio as

521



7.4. Simulation Results 191

ll=, sent ?,

r(aus) :
(sent(i) + tost(i))'

(7.244)

Using these metrics to measure the protocol performance, simulation results for

the three protocols can now be analyzed.

7.4 Simulation Results

Message characteristics are summarized in Table 7.1. In each simulation run, statistics

are reset after the transient phase and then collected after an additional 50,000 average

message arrivals. Multiple runs of simulations are conducted to ensure that the

maximum range (diameter) of 95% confrdence intervals are kept within 10%.

In the following sections, we discuss simulation results obtained under various

network, protocol and load parameters for the three protocols. Although we examine

the sent ratios of all message classes, our discussions may focus more on the the sent

ratio of class 5 messages, which indicates how well a protocol handle urgent messages.

The simulation results are presented using tables and/or graphs whenever appropriate.

This is to facilitate our discussion, as tables give accurate numerical numbers while

graphs show the change in protocol performance more clearly.

7.4.L Effect of Offered Load

Results in Tables 7.2(a)-(e) show the impact of the load change on the protocol

performance for a 50-node ring operating at a speed of I Mbi,t/s. Each table compares

the sent ratio of a particular message class for the three protocols under various offered

loads.
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a : Class 1 Mess Sent Ratio
Offered Load Token Passing Priority-Driven Window Based

0.50
1.00

1.50
2,00

0.992
0.924
0.821

0.754

0.991
0.910

0.781
0.695

0.934
0.664

0.611
0.588

b 2 Mes Sent Rat IO

Offered Load Token Passing Priority-Driven Window Based

0.50
1.00

1.50

2.00

0.996
0.966

0.881

0.803

0.995
0.955

0.841

0.750

0.996
0.927

0.801

0.722

'c): Class 3 Message Sent Ratio
Offered Load Token Passing Priority-Driven Window Based

0.50
1.00
1.50
2.00

0.992
0.946
0.833
0.749

0.992
0.936

0.807
0.726

0.997
0.925

0.798
0.723

(d): Class 4 Message Sent Ratio
Offered Load Token Passing Priority-Driven Window Based

0.50
1.00
1.50
2.00

0.983
0.907
0.770
0.695

0.986
0.92t
0.825
0.776

0.992
0.959
0.882
0.823

(e): Class 5 Message Sent Ratio
Offered Load Token Passing Priority-Driven Window Based

0.50

1.00

1.50

2.00

O.B88

0.685

0.558
0.540

0.927

0.817

0.760
0.726

0.945

0.868

0.831
0.801

Table 7.2. Effect of Offered Load
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We see that for all protocols and message classes, the message sent ratios decrease

as load increases, however the degree of the reduction varies for different protocols and

message classes.

When the network is lightly loaded, each protocol achieves very high sent ratios for

all message classes and the performance difference between one protocol and another

is minimal. This is because under the light load there are few messages in the network

and almost all of them are successfully transmitted. Hence, the effect of transmission

policy is not obvious. On the other hand, we see that for each protocol message

class 5 has the lowest sent ratio as compared with other message classes. This is

because message class 5 has the most urgent deadlines which may not be met even

under light load.

When the offered load increases from light to heavy, and eventually to sustained

overload, all protocols have degraded performance. This is because as load increases,

there are more messages competing for transmission. However, the load change affects

each protocol and message class differently. In particular, message classes 1 and 5 are

of interest to the foliowing discussion.

'When under sustained overload, the token passing protocol has a relativeiy high

sent ratios for message class 1-4 while its sent ratio of message class 5 is as low

as 0.540. This is in a sharp contrast with the picture of the window protocol. The

latter maintains a high sent ratio of 0.801 for message class 5, though the sent ratio of

its class 1 messages is 0.588 which is much lower than that of of token passing protocol.

This can be explained as follows: although class 5 messages have the most stringent

deadlines while class 1 messages have the largest deadlines, they are not differentiated

by the token passing protocol. That is, in the token passing protocol messages are sent

in the order of the token circulation regardless of their deadlines, while in the window



7.4. Simulation Resulús

protocol class 1 messages are not considered by the protocol if other class messages

with smaller deadlines a e waiting for transmissions. For the priority-driven protocol,

its performance ranks between that of the token passing and the window protocols,

due to the fact that it only implements the trDF policy approximately.

Figure 7.3(a) shows that the sent ratio of class 5 messages under the window

protocoi is substantially higher than those of the token passing and priority-driven

protocols. The effect of different transmission policies can be readily seen. On the

other hand, in Figure 7.3(b) we notice that the window protocol only outperforms the

other two protocols marginally in terms of the average sent ratio. This implies that the

token passing protocol may achieve a similar average sent ratio as any other protocols

implementing the EDF transmission policy. However, the difference lies in whether

or not a protocol can differentiate messages with regard to their deadlines, which is

precisely the consequence of the transmission policy employed by a protocol. Figure

7.3(a) has revealed that token passing protocol yields a substantially low sent ra,tio for

message class 5 which represents short, urgent and critical messages. In practice, a high

loss ratio of these messages may impose severe penalty on the system performance,

hence may not be acceptable to a real-time system which requires very high success

rate in delivering critical control messages. Thus, in a network of mixed traffic the

average message sent ratio alone is not sufficient as a performance index and it is

imperative to grant the transmission right to urgent messages to ensure good quality

service for this message class. Therefore, a good real-time communication protocol

should maximize both the average message sent ratio and the sent ratio of urgent

messages. In this respect, the proposed window protocol achieves better performance

and quality of service than both the token passing and priority-driven protocols.

194
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7.4.2 Effect of Ring SPeed

Another important aspect of performance evaluation is to examine the protocol

performance when operating at different ring speeds. With the advent of the

optical fiber technology and its falling price, optical fiber will become the dominant

transmission medium for future high-speed LANs/MANs. Hence, it is important to

examine the suitability of the protocol for future high-speed networks.

Tabies 7.3(a)-(e) show sent ratios of individual message ciasses for the three

protocols. The ring has a population of 50 and an offered load of 1.25.

We see that the increase in ring speed results in substantial increase in the sent

ratios for all message classes. This is because the increase in the ring speed is transiated

into reduction not only in message transmission time, but also in the delay introduced

at each node when the node relays the token or a message. This eventually leads to

a smaller contention overhead for each message transmission, and hence higher sent

ratios.

We observe that as the ring gets faster, the sent ratio of each message class increases

in general due to the reduction in message transmission time and contention overhead.

However, the absolute values of the sent ratios vary from one protocol to another.

It is obvious that when the ring speed reaches 16 Mbit/s the token passing protocol

achieves high sent ratios for message classes 1-4, but its sent ratio of message class 5 is

still as low as 0.731. In contrast, the window protocol obtains very high message sent

ratios for all message classes except for class 1 messages which have largest deadiines.

This is because although the reduction in message transmission time and contention

overhead brings in increase in the sent ratios for the token passing protocol, the

penalty of not implementing the trDF policy is still a dominant factor. The impact
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Ring Speed Token Passing Priority-Driven Window Based

1

4

16

100

0.873

0.934

0.934

0.934

0.861

0.893

0.799

0.799

0.620

0.673

0.699

0.999

(e): Class 5 Message Sent Ratio
Ring Speed Token Passing Priority-Driven Window Based

t97

1

4

16

0.597

0.607

0.731

0.611

0.735

0.852

0.851

0.920
0.976

a : Class 1 Message Sent Ratio

(b): Class 2 Message Sent Ratio
Ring Speed P Priority-Driven Window Basecl

1

4

16

0.928
0.930
0.933

0.917
0.904
0.909

0.856
0.880
0.907

(c): Class 3 Message Sent Ratio
Ring Speed 

I
Token Passing Priority-Driven Window Based

1

4

16

0.892
0.905

0.926

0.875
0.882
0.908

0.856
0.876
0.904

(d): Class 4 Message Sent Ratio
Ring Speed Token Passing Priority-Driven Window Based

1

4

16

0.836

0.864
0.92t

0.817

0.871

0.968

0.920

0.926
0.979

Table 7.3. Effect of Ring Speed
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of transmission policy is most pronounced in its low sent ratio of class 5 messages,

which have the most urgent deadlines. On the other hand, apart from the reduced

message transmission time the window protocol has the advantage of impiementìng

the exact EDF policy under which class 5 messages are always privileged and class 1

messages discriminated against. Furthermore, the increase in ring speed brings down

the contention overhead to a higher extent in the window protocol than that in the

token passing protocol. Hence, the window protocol performs much better than the

token passing protocol in terms of supporting transmission of urgent messages. Finally,

the priority-driven protocol also has much improved performance in terms of the sent

ratio of message class 5. Although its performance is better than that of the token

passing protocol, it is still much lower than that of the window protocol. This is

because the priority-driven protocol only implements the EDF policy approximately

and the reduction in the contention overhead is not as much as that in the window

protocol.

Figure 7.4 shows the effect of high speeds on the sent ratio of message class 5 for

each protocol. We see that when the ring operates at 100 Mbit/s, the window protocol

achieves a sent ratio as high as 0.980 while the token passing protocol still has a

low sent ratio of 0.766. The priority-driven protocol comes very close to that of the

window protocol. This demonstrates that although increasing the ring speed improves

the protocol performance, within a certain speed range the fundamental factor in

determining the protocol performance in supporting urgent message transmission is

the transmission policy used. However, when the ring speed increases further all three

protocols are able to achieve a sent ratio of 1. This is because under very high speeds,

the reduction in message transmission time and contention overhead as a result of

speed increases overshadows the impact of transmission policy.
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7.4.3 Effect of Ring Population

In the worst case performance analysis, we see that the ring population (i.e. the number

of nodes in the ring) is an important factor affecting the protocol performance. In this

section, we examine the impact of the increase in the ring population on the protocol

performance. Figures 7.5(a) and (b) compare the sent ratio of message class 5 for each

protocol when the offered loads are 0.75 and 1.5 respectively. The ring operates at a

speed of 4 Mbit/s. We see in both figures that the window protocol performs the best

and is least sensitive to the increase of the number of nodes, while the token passing

protocol is most sensitive to the change. It is also clear that under lighter load the

change in ring population affects the protocol performance to a lesser extent. Hence,

in the following we concentrate our discussion on the case where the offered load is 1.5.

TP --o-
PD -+

WDT
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The results are shown in Tables 7.a(a)-(e). W" observe that the common trend is

that the sent ratio of each message class decreases as the network population increases.

This is because the increase in the number of nodes yields an increased token walk

time, which leads to a larger contention overhead of message transmission. However,

this increase may not be uniform across each protocol as the contention overhead

incurred in each protocol is different.

For the token passing protocol, the contention overhead of a message transmission

is the delay between the nodes where two consecutive message transmissions take place.

The larger the number of nodes, the higher contention overhead it may incur. \Me see

that this increase in contention overhead causes the sent ratio of class 5 messages to

drop close to 20%. However, the sent ratios of message classes 1-3 are less sensitive

to the increase in the ring population as they have much larger deadlines than class 5

messaSes.

The picture for the window protocol is quite different. Increasing the number of

nodes has yielded only a moderate drop in the sent ratio of message class 5. This is

because for the window protocol the contention overhead of a message transmission

is a function of the ring population. Hence, the increase in ring population translates

into an increase in the contention overhead and consequently a higher message loss.

However, message class 5 still has relatively high sent ratio. This can be explained

by the fact that the window protocol implements the EDF policy which always give

privileges to messages with smaller deadlines.

The performance of the priority-driven protocol is similar to that of the window

protocol except that the sent ratio of message class 5 is much lower. This is because

the priority-driven protocol only approximates the EDF transmission policy.



7.4. Simulation Results

0.8

0.6

0.4

0.8

6

0.4

0.2

(a) Offered Load = 0.75

32 64

Ring Popul-ation

(b) Offered Load : 1.5

8 16 32

Ring Popul-ation

]-28 256

64 L28 256

20r

1

20

Lr)

(n
.t)
rd
rl()
0)
b'ì
d
U)
a)
c)
E
q-l
o
o

._t
Ð
rú
ú
Ð
É
(l)
(n

0
l_6

1

ra)

a
a)
rd

F.{

C)

q)
t¡
rü
(/)
(J)

o
E
q-.r

o
o

..1
Ð
rd
ú
tJ
0)
U)

0

0
t 4

VÍD E}

--__u_________---. El__-__-______-_G_________

Ec

s

TP --€-
---- f¡-':-¡:---'

Figure 7.5. Effect of Ring Population



t

7.4. SimulationResulús 202

(".l: Class 1 Message Sent Ratio
Number of Nodes Token Passing Priority-Driven Window Based

4

16

64

256

0.924
0.923
0.922
0.903

0.708
0.678

0.64+
0.611

0.657
0.647
0.635
0.605

(b): Class 2 Message Sent Ratio
Number of No Passing Priority-Driven Window Based

4

16

64

256

0.875
0.864

0.855
0.846

0.835
0.809

0.776
0.711

0.841
0.829

0.754
0.657

(" ): Class 3 Message Sent Ratio
Number of Nodes Token Passing Priority-Driven Window Based

4

16

64

256

0.867

0.841

0.837
0.833

0.835

0.806

0.762
0.728

0.836

0.823

0.778

0.716

(d): Class 4 Message Sent Ratio
Number N Token Passing Priority-Driven \Mindow Based

4

16

64

256

0.834
0.799
0.789
0.732

0.914
0.906

0.863
0.756

0.946
0.925
0.909
0.897

: Class 5 Message Sent Ratioe

Number of Nodes Token Passing Priority-Driven Window Based

4
16

64

256

0.74t
0.654
0.572
0.552

0.915
0.884
0.839
0.782

0.964
0.925
0.911
0.899

Table 7.4. Effect of Ring Population
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7.4.4 Effect of Protocol Parameters

In the preceding sections, we have examined the impact of three system parameters,

namely the offered load, the ring speed and the ring population, on the protocol

performance. From the worst case performance analysis, we know that the protocol

performance is also affected by parameters associated with a particular protocol. For

example, in the priority-driven protocol, message sent ratios may vary considerably

for different number of priorities or priority assignment functions. For the window

protocol, we have aiso predicted that the initial window size and the initial window

lower bound could affect the protocol performance. In this section, we examine the

impact of these protocol parameters on the protocol performance. This investigation

should give us insights into whether or not protocol parameters need to be fine-turned

in order to achieve the best possible performance.

7.4.4.1 Effect of Number of Priorities

Figures 7.6(a) and (b) show message sent ratios of the priority-driven protocol. The

ring has 30 nodes, operates at 4 Mbi,t/s and has an offered load of 1.0 and 1.25

respectiveiy.

It is obvious that the increase in the number of priorities affects the sent ratio of

each message class differently. In both figures we observe that when the number of

priorities increases, there is a significant increase of sent ratio for class 5 messages,

while the sent ratio of class 1 message drops sharply. This is because when there

are fewer priorities, more class 5 messages are assigned same priorities as other class

messages though the former have smaller deadlines. Consequently, messages with

larger deadlines such as class 1 messages may be transmitted before class 5 messages.
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On the other hand, increasing the number of priorities results in greater accuracy in

implementing trDF policy, hence more class 5 messages are distinguished from other

class messages and meet their deadlines successfully. As a result, their sent ratios

increase while sent ratios of message class 1 drops significantly.

\Me notice that when the number of priorities increases to 512, the sent ratio of

message 5 reaches as high as 0.970 and 0.921 respectively, however further increasing

the number of priorities to 1024 does not result in much improvement in sent ratios for

all message classes. This demonstrates that when operating with a sufficiently large

number of priorities, the priority-driven protocol can achieve a reasonable performance

uncler certain load condition in supporting real-time message transmission.

7.4.4.2 Effect of Length of Priority Assignment Function

Alihough various forms of priority assignment functions are feasible provided they are

non-decreasing and many-to-one, the form defined in (4.88) is the most common one

whose argument is the length of the mapping function. In the following, we examine

the impact of this length.

Figures 7.7(a) and (b) show the results. The ring has a population of 30, operates

at a speed o14 Mbit/s and employs 16 priority levels. We see that changing the length

of the priority assignment function does not canse a monotonic increase of sent ratios.

In both fi.gures, we observe that the sent ratios of message classes 1 and 5 are most

affected by the increase in the length. More specifically, the curve corresponding to

the sent ratio of message class 5 goes from low to high and then from high to low,

reaching the highest when the length is near 1000. On the other hand, the sent ratio

of class 1 messages takes the reverse trend, dropping to its minimum when the iength

is near 1000. This demonstrates that for a given network configuration and message
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deadline distribution, there exists an "optimal" length with which the protocol can

achieve the highest sent ratio for urgent messages. This is because when the length is

too small or too large, many class 5 messages are assigned the same priorities as other

class messages. Consequently, critical messages can not be distinguished in terms of

transmission, which gives rise to lower sent ratios of class 5 messages.

7.4.4.3 Effect of Initial Window Size

Recall that in the window protocol described in Chapter 5, parameter a is the

initial size of windows Wz,Wz,. ..,W"-2,W"-t. All subsequent sizes of these windows

are partly derived from this iniiial vaiue which may affect the rate of the search for

the earliest deadline message and the protocol performance. Figures 7.S(a) and (b)

show the impact of o on message sent ratios when the offered load is 1.0 and 1.25

respectively. The ring has a population of 30 and operates at 4 Mbi,t/s. The number

of windows used is 32.

In both figures, we observe that message sent ratios are not very sensitive to a

except that of class 5 messages in Figure 7.8(a). We see that as o increases to 1000,

the sent ratio of class 5 messages has a signiflcant improvement, however when a

increases further the trend is now reversed. We notice that the sent ratio of class 5

messages is decreasing while other messages classes have the improved performance.

Clearly, there exists an "optimum" value of a (around 1000 in this case) with which

the sent ratio of class 5 messages reaches its maximum.

We now investigate why the protocol displays such behavior as described above.

Recall that after transmitting the earliest deadline message, the window is set to the

initial size a before being used to locate the next message. Hence, one may prefer to

use a smaller initial window size to reduce the number of window partitions in order
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to speed up the search for the earliest deadline message, however this is not always the

case. For example, when all messages are in the last window, a smaller window size

would result in more (partial) partitions of the last window ancl slower convergence

rate. This explains why an optimum value of a exists. However, we also noticed that

in a relatively wide range the network performance stays very close to the optimum.

This indicates that it is not difficult to select an o value which yields a good and stable

protocol performance under various load conditions'

7.4.4.4 Effect of Initial Window Lower Bound

In Section 5.8, we see that in the enhanced window protocol a node is allowed to send a

rnessage immediately if the message deadline is smaller than the window lower bouncl.

Therefore, the window lower bound reflects how the enhanced window protocol deals

with urgent messages. Consequently, the choice of its initial value 6 determines the

trade-off between the degree of the approximation of the EDF policy and the reduction

in the contention overhead.

Figures 7.9(a) and (b) display message sent ratios when the offered load is 1.0 and

1.25 respectively. The ring has 30 nodes and operates at 4 Mbit/s. The number of

windows used is 32 and the initial window size is 100.

It is obvious that for each message class, there exists an "optimum" value of ó which

maximizes its sent ratio. In both frgures, the sent ratio of message class 5 reaches its

maximum when á increases to near 1000 and then drops sharply when ô increases

further. On the other hand, the sent ratio of class 1 messages increases monotonically

as á increases. This is because when ó is too small only few urgent messages are

transmitted immediately upon the token arrival, as a result the contention overhead

may be high which leads to a slightly low message class 5 sent ratio. When ó is too
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10

100

1000

10000

100000

0.921
0.917
0.933

0.997
1.000

0.991
0.992
0.996

0.999
0.999

0.992
0.992
0.996

0.999
0.999

0.995
0.997
0.999

1.000
1.000

0.994

0.996
0.999

0.99i
0.966

Table 7.5. Effect of Initial Window Lower Bound

large, the majority of messages are sent in the token rotation order rather tha,n in the

EDF order, In this case, messages with larger deadlines may take the advantage at

the cost of urgent messages, which leads to a low message class 5 sent ratio.

Table 7.5 shows the results for the same configuration except now the ring speed

is 16 Mbit/s. We see that the higher speed greatly reduces the impact of ó on the

protocol performance. This suggests that when operating in high-speed environment,

the choice of ó is not as critical as in a low-speed environment.

7.5 Discussions

In this chapter, we have evaluated the average case performance of the three protocols

through simulation. The experiments have given us insights into the protocol behavior

under various network and protocol parametets, message characteristics and load

conditions. We noted that the average case performance of a protocol was more

complex and less predicatable than its counterpart in the worst case scenario.

The simulation results shown and discussed have demonstrated quantitatively how

each protocol performs in terms of message sent ratios. We conclude that for a real-

time system required to maximize the sent ratio of critical and urgent messages, the

proposed window protocol is the best choice. The priority-driven protocol may also be

Message Sent Ratios
6 Class 1 Class 2 Class 3 Class 4 Class 5
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acceptable provided the number of priorities is suficient and the length of the priority

assignment function is adequate. The simple token passing protocol is not suitable for

supporting real-time urgent message transmission, but can achieve comparable average

message sent ratio.

Finally, it is important to note that when the ring gets faster, the difference in the

performance of the three protocols is reduced.



Chapter 8

Conclusions and Recommendations for

Future Research

In this final chapter, we summarize the results obtained from this research, outline its

significance and contribution and propose future research direction and agenda in the

field of real-time communications.

8.1- Summary of Results

This thesis has addressed some important issues involved in real-time communications

in token ring networks. We began our study by defining the problem of real-

time communications. We identified that the most important objective of real-time

message transmission r,4/as to meet individual message deadlines. We observed that

the predominant approach taken by many existing token ring protocols for real-

time communications was priority-driven in which real-time synchronous messages

are given higher priorities at the cost of real-time asynchronous messages. As a result,

most of these protocols couid handle real-time synchronous messages well, but their

performance in supporting real-time asynchronous messages might be poor. Thus,

2t3



8.1. Summary of Results

we argued that a protocol suitable for real-time message transmission must address

the individual message deadlines explicitly. From the centralized scheduling theory

we knew that the trDF policy was optimal, however we noted that implementing the

EDF policy in a distributed system, such as a token ring network, not only may incur

a non-negligible overhead, but also may be approximate. Hence, we concluded that

in designing a distributed scheduling algorithm such a,s a communication protocol,

issues in both achieving 'optimal' (e.g. EDF) scheduling policy and minimizing the

scheduling overhead must be addressed.

In Chapter 2,, we first introduced the network and message models together

with their parameters and attributes. We then defined the protocol notations and

performance metrics. Finally, we described the methodology to analyzethe wotst case

performance of MAC protocols for real-time communications.

In Chapters 3, 4 and 5, we studied in detail three token ring protocols implementing

variations of the EDF transmission policy respectively. First, we descr-ibed a simple

token passing protocol which sent messages in the nearest-neighbor-first order. As a

result, this simpie token passing protocol does not adhere to the EDF policy.

Next, we proposed a modified priority-driven protocol in an attempt to incorporate

message deadlines. In this protocol, each message was assigned a priority based on its

deadline and the highest priority message was always sent first. We observed that this

protocol would approximate the trDF policy when the number of priorities was less

than the number of deadlines.

We analyzed the worst case performance of the token passing and the priority-

driven protocols for real-time message transmission. The analytical results

demonstrated that the worst case performance of the two protocols was poor.

Specificaily, given a message set the two protocols could send only half of the messages

2t4
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even if the contention overhead was assumed to be zero. This implied that the

dominant factor in deciding the protocol performance in supporting real-time message

transmission was whether or not the transmission policy used considered the individual

message deadlines explicitly. Thus, we concluded that it was imperative to design a

token ring protocol which could implement the exact EDF policy.

As a result, in Chapter 5 we proposed a novel window token ring protocol which

could implement the exact network-wide EDF policy. In our approach, the message

deadline axis was divided into a number of non-overlapping windows. Once the earliest

deadline message was located in the first non-empty window, the message was sent.

This new window protocol for token ring networks differed significantly from the

previously proposed window protocols for CSMA/CD networks in that it employed

multiple windows and that the search for the earliest deadline message converged much

faster. The worst case performance analysis of the new window protocol demonstrated

that if the contention overhead is assumed to be 0, this protocol could achieve a

performance ratio of 1. Thus, the contention overhead was the only factor degrading

its performance.

In Chapter 6, we compared the worst case performance of the three protocols in the

dimension prescribed by the number of nodes and the normalized token node-to-node

delay, hoping to provide a guideline for selecting the best protocol for given operating

parameters. We noted that no protocol always outperformed the others for the entire

parameter ranges considered and that each protocol had its own applicable region

where its performance \ryas the best. These observations implied that the performance

of a distributed scheduling aigorithm or a communication protocol was determined

not only by the transmission policy employed, but also by the contention overhead

incurred when implementing such a policy. As a result, there might not exist a
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communication protocol for real-time message transmission which would be optimal

for all operating environment. Hence, in designing a distributed scheduling algorithm,

such as a communication protocol, one should seek a balance in achieving an optimal

scheduling policy and minimizing the scheduling overhead.

In Chapter 7, we studied the average case performance of the three protocols

through simulation. From the simulation results, we observed that the new window

protocol was predominantly superior to the other two under the cases studied. The

token passing protocol, as a result of not considering message deadiines, had the

lowest sent ratio, while the priority-driven protocol obtained a sent ratio in between

as it approximated the trDF policy in some cases. This meani that under the current

technologies the window protocol was the best choice in terms of the average case

performance. Furthermore, we also noted that when the ring gets faster, the difference

in the performance of the three protocols is reduced. It implied that under very

high speeds the benefit of implementing the EDF policy by the window protocol was

overshadowed by its relatively high contention overhead and that using the simple

token ring protocol might be sufficient.

8.2 Significance and Contribution

This research has provided a systematic investigation of real-time communications in

token ring networks. The work has advanced the state of the art of research in the

distributed scheduiing and real-time communications in two distinct respects. Firstly,

we addressed and revealed the fundamental difference between distributed real-time

scheduling and centralized real-time scheduling. Secondly, we proposed and studied

three token ring protocols implementing variations of EDF transmission policy to
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support real-time communications. In particular, the new window protocol offers

much needed integration in supporting both real-time synchronous and asynchronous

messages by considering individual message deadlines explicitly. Furthermore' \ve

carried out performance evaluation and comparison of the three protocols and showed

how to select the best protocol for given operating parameters. The following outlines

the major contributions made by this research.

o For the first time, we have addressed in depth the issue that a distributed

scheduling environment is fundamentally different from a centralized scheduling

system and revealed the importance of seeking a balance in implenenting the

"optimal" scheduling algorithm and minimizing the scheduling overhead.

o We have proposed a modified priority-driven token ring protocol which can be

easily incorporated to the existing 802.5 token ring standard to support real-

time communications. We have shown that with a sufficient number of priorities,

this modified priority-driven protocol can achieve a reasonable performance in

transmitting reai-time messages.

o \Me have proposed a new window protocol which is the first of its kind for the

token ring network. It takes a novel approach using multipie non-overlapping

windows offering fast convergence to the earliest deadline message. This new

window protocol provides a much needed integrated approach for supporting

real-time message transmission. We have also devised an efective coding

scheme which can realize the proposed protocol wiih a token of limited lengih.

Simulation results have demonstrated that this protocol achieves an excellent

performance under current network technologies.
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¡ Much of the research in real-time communications uses simulation to evaluate

the protocol performance. While simulation is an effective tool, it does not

provide insight into protocol performance under the most unfavorable operating

conditions, which is crucial for a real-time system. This research studied not

only the average protocol performance by simulations, but aiso the worst case

performance which provides a lower bound to the performance ratio. The results

can be readily used to predict the worst case protocol performance once the

various parameters are given, and hence can serve as a guide to the protocol

selection

o This research has also developed a simple but effective methodology to analyze

the worst case performance of protocols. The importance of this methodology

is that it can be effectively applied to the worst case analysis of general

communication protocols. Therefore, it is a valuable tool which can be used

for future research in this field.

8.3 Recommendations for Future Research

Currently, \/e are studying one extension of this work, which is an adaptive token ring

protocol combining the advantages of the token passing, priority-driven and window

protocols. This is because if the size of all windows is 1, then the window protocol

is equivalent to the priority-driven protocol and if the size of the first window is

larger than the maximum message deadiine, then the window protocol is equivalent

to the token passing protocol. The transition between the window protocol and the

other two protocols can be easily achieved by adding two control functions to the

window protocol, namely traffic monitor and conf"guration mon'itor. Whenever the
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traffic monitor detects the offered load reaches a certain threshold or the network

configuration changes, the network enters the corresponding protocol operation mode

by changing the protocoi parameters. Such an adaptive protocol should give the best

possible performance according to the offered load and network configuration.

Although our study concentrated on real-time communications in token ring

networks, the methodology developed in this study can be extended to many other

network environments. Currently, there is great interest in using high-speed networks,

such as FDDI, DQDB and ATM networks, to support real-time applications. We

now briefly discuss the issues to be addressed when using these network for real-time

applications.

o FDDI is an ANSI standard for 100 Mbits/s optical fiber token ring based on a

timed token access method. FDDI supports both synchronous and asynchronous

messages. The key to supporting transmission of real-time synchronous messages

is the synchronous capacity allocation scheme, which determines how long a node

is allowed to transmit its synchronous messages every time it captures the token.

However, how to deal with asynchronous real-time messages in FDDI networks

is still an open question and is a very important research issue.

o DQDB is the IEEtr 802.6 MAN subnetwork standard. It consists of two

counter-flow point-to-point unidirectional optical fiber buses and is based on the

distributed queue concept with prioritized access. DQDB differs from FDDI in its

distributed control of message transmission and information collection. However,

like FDDI, it provides guaranteed bandwidth for real-time synchronous messages,

but real-time asynchronous messages ar-e still disadvantaged. In addition,

due to the unfairness evidenced in DQDB under heavy load, some real-time



8.3. Recommendations for Future Research 220

asynchronous messages may suffer from positional discrimination. Hence, DQDB

alone may not be adequate to provide timely delivery of real-time messages.

¡ ATM has been specified as the transfer mode for the future B-ISDN. It uses

fixed-size cell and is envisaged to provide both telecommunication and LAN

type services. The Generic Flow control (GtrC) protocol is intended to regulate

multiple terminals within the Customer Premises Network (CPN) accessing the

B-ISDN network through the User Network Interface (UNI). If the CPN is

required to support real-time applications, the GFC protocol must have the

ability to ensure the timely delivery of these real-time messages. So far, this

aspect has not been addressed in the design of the GFC protocol.

One impact of high speed networking is that the message transmission time will

be greatly reduced, whereas the relative contention overhead incurred will increase

dramatically. Therefore, while the goals in designing real-time communication

protocols remain the same, the phiiosophy and approach to solving the problem may

be totally different. This will impose a new challenge, dimension and direction for

future research in real-time communications.



App"ndix A

Publications and Presentations

P. Potter, M. Zukerman, L. Wedding and L. Yao, "A Multi-Service Generic

Flow Control Protocol" , Proc. The 1993 IEEE International Conference on

Communications (ICC'93), Geneva, Switzerland, May 1993.

Zukerman, L. Yao and P. Potter, .DQDB Performance Under Sustained Overioad

with BWB and MRO", Computer Communicat'ions, Vol 16, No 1, January 1993.

Z. L. Brdrikis, G. Mercankosk, M. Blasikievicz,M. Zttkelman, L. Yao, and P. Potter,

"Access Protocol for a Shared Medium", Australian Teletrffic Research Journal,

Vol 26, No 2, November 1992.

L. Yao, W. Zhao and C.C. Lim, "An Efficient Window Protocol for Real-time

Communications in Token Ring Networks", Proc. The 2nd Internati,onal Computer

Conference, Data and Knowledge Engi,neering: Theory and Applications, Hong Kong,

December 1992.

22t



222

C.C. Lim, L. Yao and W. Zhao, "Transmitting Time-Dependent Multimedia Data in

FDDI Networks" , Proc. SPIE's International Symposium, OE/FIBERS'92, Boston,

September 1992.

P. Potter, M. Zukerman, L. Wedding and L. Yao, "A Proposed Generic Flow

Control Protocol" , Proc. Australian Broadband Swi,tching and Seruices Symposium'91,

Melbourne, July 1992.

Z. L. Brdrikis, G. Mercankosk, M. Blasikievicz,M. Zttkerman, L. Yao, and P. Potter,

"A Generic Flow Control Protocol for B-ISDN", Proc. The IEEE 11th Internati,onal

Conference on Computer Communications (INFOCOM'92),Florcnce,Italy, May 1992.

M. Zukerman, L. Yao and P. Potter, "Performance under Sustained Overload of

DQDB with Bandwidth Balancing and Multiple Requests Outstanding", Proc. The

\th IEEE Worlcsh,op on MANs, Taormina, Italy, May 1992.

P. Potter, L. Yao and M. Zukerman, "A Revised Generic Flow Control Protocol for

B-ISDN", Australian Contribution to CCITT Study Group XVIII, Working Party 8,

Melbourne, Australia, December 1991.

P. Potter, L. Yao and L. Wedding, "Simulation Results of the Proposed GFC

Protocol," Australian Contribution to CCITT Study Group XVIII, Working Party 8,

Melbourne, Australia, December 1991.



223

M. Zukerman, L. Yao and P. Potter, "Performance of DQDB under Sustained

Overload with Bandwidth Balancing and Multipie Requests Outstanding", Proc. The

6th Australian Teletrffic Research Seminar, Wollongong, Australia, November 1991.

M. Zukerman, L. Yao and P. Potter, "A Generic Flow Control Protocol for B-ISDN',

Proc. Australian Broadband Switching ønd Seraice Symposium'91-, Sydney, Australia,

July 1991.

M. Zukerman, L. Yao and P. Potter, "A Generic Flow Control Protocol for B-ISDN',

Â,ustralian Contribution to CCITT Study Group XVIII, Working Party 8, Geneva,

Switzerland, June 1991.

C.C. Lim, L. Yao and W. Zhao, "A Comparative Study of Three Token Ring

Protocols for Real-Time Communications" , Proc. The 1lth International Conference

on Distributed Computing Systerns, Arlington, Texas, May 1991.

L. Yao and W. Zhaor "Performance of an Extended IEEE 802.5 Protocol" , Proc. The

IEEE 10th International Conference on Computer Communications (INFOCOM'?I),

Miami, April 1991.

L. Yao and W. Zhao, "Token Ring Protocols for Transmission of Time Constrained

Messages", Proc. The ïth Australian Fast Packet Swi,tchi,ng Workshop, Melbourne,

Australia, July 1990.



224

L. Yao and W. Zhao, "Implementing the Minimum-Laxity-First Transmission Policy

in a Real-Time Token Ring Network", Proc. The /th Australi,an Teletrffic Research

Semi.nar, Bond University, Australia, December 1989.



Bibliography

[1] IEtrE Standard 802.5-1989, Token Ri,ng Access Method and Physical Layer

Specifi,cations, 1989.

[2] ANSI/IEEE Standard 802.4-1985(ISO/DIS 8802-4), Tolcen-Passi,ng Bus Access

Method and Physical Layer Specifi"cation, 1985.

[3] D. W. Andrews and G. D. Schulz, "A Token Ring Architecture for Locai-Area

Networks: an update", Proc. COMPCON F82,1982.

[4] K. Arvind, K. Ramamritham and J. A. Stankovic, "A Local Area Network

Architecture for Communication in Distributed Real-Time Systems" , The Journal

of Real-Time Systems, 3(2), May 1991.

[5] S. Bakry, B. trl-Redaisy and M. Ai-Turaigi, "Computer Simulation of a Packet

Switching Computer Network", Computer Communications, Vol 11, No 3, June

1988.

[6] G. Carlow, "Architecture of the Space Shuttle Primary Avionics Software

System", Tutorial, Hard Real-Time Systems,,IEEE Press, 1988.

[7] W. Y. Cheng and J. Liu. "Performance of ARQ Schemes in Token Ring Network",

IEEE Transactions on Cornputers, 37, July 1988.

225



BIBLIOGRAPHY 226

[8] V. Cherkassky, H. Lari-Najafi and N. Lawrie, "Performance of a New LAN for

Real-Time Traffic", Computer Communications, Vol 13, No 5, June 1990.

[9] S. Casale, V. Catania, A. Faro and N. Parchenkov, "Design and Performance

Evaluation of an Optical Fibre LAN wiih Double Token Rings", Computer

Communications, Vol 12, No 3, June 1989

110] tr. G. Economou, D. J. Mouzakis and G. Philokyprou, "Skipnet: A Two Channel

Token Access Scheme" ,, Computer Communications,VoI12, No 5, October 1989

[11] A. Goyal and D. Dias,, "Performance of Priority Protocols on High Speed Token

Ring Networks", Data Communicati,on Systems and Their Performance, Elsevier

Science Publishers B. V (North-Holland), IFIP, 1988.

[12] D. T. Green and D. T. Marlow, "SAFENET - A LAN for Navy Mission Critical

Systems" , Proc. The llth Conference on Local Computer Networlcs, Minneapolis,

Minnesota, October 1989.

[13] J. Hong, X. Tan, and D. Towsley, "A Performance Analysis of Minimum Laxity

and Earliest Deadline Scheduling in Real-Time System" , IEEE Transactions on

Computers, 38(12) : 1736-17 44, December 1989.

[14] D. Towsley and G. Venkatesh, "Window Random Access Protocols for Local

Computer Networkstt, IEEE Transactions on Computers, Vol C-31, No 8, 1982.

[15] J. H. Huang, C. W. Chen and M. C. Lee, "A Distributed, Fair and Efficient

Protocol for Integrated Voice/Data Services on Token Ring Networks", Proc.

International Conference on Communications, ICC'91, June 1991.



BIBLIOGRAPHY 227

[16] E. D. Jensen, C. D. Locke, and H. Tokuda, "A Time-Driven Scheduling Model

for Real-Time Operating SysteÍus", Proc. IEEE Real-Time Systems Symposium,

December 1985.

[17] C. S. Kang, E. K. Park and J. H. Herzog, "Hybrid Token Ring: A Load Sharing

Local Area Networkr" Computer Communicat'ions, Vol 14, No 9, November 1991

[18] H. Kasahara and S. Narita, "Parallel Processing of Robot-Arm Control

Computation on a Muitimicroprocessor System", Tutorial, Hard Real-Time

Systems, ItrtrE Press, 1988.

[-l9] R. G. Kim and D. Towsley, "Dynamic Flow Control Protocols for Packet-

Switching Multiplexers Serving Multipacket Messages", IEEE Tran.so,ction, on

Communications, Vol COM-34, Nov 4, 1986.

[20] C. M. Krishna and Y. H. Lee, "Special Issue on Real-Time Systerns", IEEE

C omputer, 2+(5), May 1991.

[21] J. F. Kurose, M. Schwartz and Y. Yemini, "Multiple-Access Protocols and Time-

Constrained Communications", Computing Serueys, Vol 16, No 1, March 1984.

l22l J. F. Kurose, M. Schwartz and T. Yemini, "Controlling Window Protocols for

Time-Constrained Communications in Multiple Access Environment", Proc. The

9th IEEE Data Communication Synposiums, 1983.

[23] J. P. Lehoczky and L. Sha, "Performance of Real-Time Bus Scheduling

Algorithms" , ACM Performance Eualuation Reuiew, special issue, Vol 14, No 1,

May 1986.



BIBLIOGRAPHY 228

124] C. C. Lim, L. Yao and W. Zhao, "A Comparative study of Three Token

Ring Protocols for Real-Time Communications" , Proc. The 1lth International

Conference on Distributed Computing Systerns, Arlington, Texas, May 1991.

[25] C. L. Liu and J. W. Layiand, "Scheduling Algorithms for Multiprogramming in

Hard Real-Time Environment", Journal of ACM, Vol 20(1), 1973.

[26] N. Malcolm, W. Zhao and C. J. Barter, "Guarantee Protocols for Communication

in Distributed Real-Time Systems" , Proc. IEEE INFOCOM '90, San Francisco,

June 1990.

[27] N. Malcolm and W. Zhao, "Version Selection Schemes for Hard Real-Time

Communications", Proc. The 12th IEEE Real-Time Systems Symposium, San

Antonio, December 1991.

[28] D. Marinescu, "A Protocol for Multiple Access Communication with Real-Time

Delivery" , Proc. IEEE INFOCOM'9?, San Francisco, June 1990.

[29] A. K. Mok and M. L. Dertouzos, "Multiprocessor Scheduling in a Hard Real-Time

Environmerrt", Proceeding, The Tth Teras Conference on Computer Systems,,

November 1978.

[30] J. K. Y. Ng and J. W. S. Liu, "Performance of Local Area Network Protocols

for Hard Real-Time Applicatioîs", Proc. The 1lth International Conference on

Distributed Computing System.s, Arlington, Texas, May 1991.

[31] J. Schoeffier, "Distributed Computer Systems for Industrial Process Control",

Tutorial, Hard Real-Ti,me Systerns, IEEE Press, 1988.



BIBLIOGRAPHY 229

[32] K. C. Sevcik and M. J. Johnson, "Cycle Time Properties of the FDDI Token Ring

Protocol" , IEEE Transactions on Software Engineerinc, March 1987.

[33] K. G. Shin, "special Issue on Real-Rime Systems", IEEE Transactions on

Computers, 36(8), 1987.

[34] K. G. Shin and C. J. Hou, "Analysis of Three Contention Protocols in f)istributed

Real-Time Systems", Proc. The llth IEEE Real-Time Systems Symposium,

Florida, December 1990.

[35] J. A. Stankovic, "Misconceptions about Real-Time Computing: A Serious

Problem for Next Generation Systems", IEEE Computer,,21(10), October 1988.

[36] J. A. Stankovic and K. Ramamritham, Editors, Tutorial, Hard Real-Ti,me

Systems, IEEE Press, 1988.

[37] J. K. Strosnider, T. Marchok, and J. Lehoczky, "Advanced Real-Time Scheduling

Using the IEEE 802.5 Token Ring", Proc. IEEE Real-Time Systems Symposium,

December 1988.

[3S] J. K. Stronsnider, T. Marchok, "Deterministic IEEE B02.5 Token Ring

Scheduling" , The Journal of Real-Time Systems, Vol 1, Nov 2, September 1989.

[39] T. Suda and T. T.Bradley, "Packetized Voice/Data Intergrated Transmission on a

Token Ring Local Area Network" ,IEEE Transaction on Communications, 37(3),

March 1989.

[40] B. Tangney and D. O'Mahony, Local Area Networks and Thei,r Applicati,ons,

Prentice-Hail International, 1st edition, 1988.



RTBLIOGRAPHY 230

[4i] A. S. Tanenbarrn, Computer Networks, Prentice-Hall International, 2nd edition,

1988

142] H. Tokuda, C. W. Mercer, Y. Ishikawa, and T. E' Marchok, "Priority

Inversions in Real-time Communication", Proc. The 10th IEEE Real-Time

Systems Sgmposi,um, Santa Monica, California, December 1989.

[43] D. Towsley and G. Venkatesh, "Window Random Access Protocols for Local

Computer Networks", IEEE Transactions on Computers, Vol C-31, No 8, 1982.

144] 7,. Tsai and I. Rubin, "Performance of Token Schemes Supporting Delay-

Constrained Priority Traffic Streams", IEEE Transacti,ons on Cornmunications,

38(11): 1194-2003, November 1990.

[45] A. Valenzano, C. Demartini, L. Ciminiera, "MAP and TOP communications

Standards and Applications", Addison-Wesley Publication, 1992.

[46] J. W. Wong and P. M. Gopal, "Anaiysis of a Token Ring Protocol for Voice

Transmission", Computer Networks and ISDN System, S(4), August 1984.

l47l L. Yao, W. Zhao and C. C. Lim, "Perforamnce of Three Token Ring Protocols for

Real-Time Communications" , To appear in Proc. 1991 Internati,onal Conference

on Communication Technology, Shanghai, China, June 1994.

[48] L. Yao, W. Zhao and C. C. Lim, "An Efficient Window Protocol

for Real-time Communications in Token Ring Networks", Proc. The 2nd

International Computer Conference, Data and l(nowledge Engineering: Theory

and Appli,cati,ons, Hong Kong, December 1992.



BIBLIOGRAPHY 23L

[49] L. Yao and W. zhao, "Performance of an Extended IEEE 802.5

Protocol," Proceedings, The IEEE 10th International Conference on Computer

Communicat'ions (INFOCOM'? 1), Miami, April 1991.

[50] L. Yao and W. Zhao, "Token Ring Protocols for Transmission of Time Constrained

Messages Proceedings, The íth Australian Fast Paclcet Switchi,ng Worlcshop,

Melbourne, July 1990.

[51] L. Yao and W. Zhao, "Implementing the Minimum-Laxity-First Transmission

Policy in a Real-Time Token Ring Network," Ptoceedings, "The 4th Australian

Teletraffic Research Seminar", Bond University, December 1989.

[52] J. Zhang and E. Coyle, "The Transient Performance Analysis of Voice/Data

Integrated Networks", Proc. IEEE International Conference on Computer

Communications, June 1990.

[53] W. Zhao and J. A. Stankovic, "Performance Analysis of FCFS and Improved

FCFS Scheduling Algorithms for Dynamic Real-Time Computer Systerns", Proc.

th,e 10th Real-Time Systems Symposium, Santa Monica, California, December

1989.

[54] W. Zhao, K. Ramamritham and J. A. Stankovic, "Scheduling Tasks with Resource

Requirements in Hard Real-Time Systems" , IEEE Transactions on Software

Engineeri,ng, Vol SE-13, No 5, May 1987.

[55] \ /. Zhao and K. Ramamritham, "Virtual Time CSMA Protocols for Hard Real-

Time Communications" ,IEEE Transact'ions on Software Engineering,Vol SE-13,

No 8, August 1987.



BIBLIOGRAPHY 232

[56] W. Zhao, K. Ramamritham and J. A. Stankovic, "Preemptive Scheduling under

Time and Resource Constraints", IEEE Transactions on Computers, Vol C-36,

No. 8, 1987.

[57] W. Zhao, C. Barter and N. Malcolm, "Virtual Time CSMA Protocols with

Two Version Message Model for Real-Time Communications",, Proc. 1989 IEEE

International Conference on Networks, Singapore, July 1989.

[5S] W. Zhao,, J. A. Stankovic and K. Ramamritham, "A Window Protocol for

Transmission of Time Constrained Messages", IEEE Transactions on Computers,,

Vol 39, No 9, September 1990.

[59] W. Zhao, "Special Issue on Real-Time Operating Systems",, ACM Operating

Systems Reaiew, 23(3), 1989.

[60] T. Znati, "A Minimum-Laxity-First Window Protocol for Transmission of Real-

Time Traffic" , Proc. 10th Annual IEEE International Pheoni,x Conference on

Computers and Communications, Pheonix, March 1991.




