Real-Time Communications

in Token Ring Networks

Li-Jun Yao

A thesis submitted for the degree of
Doctor of Philosophy
n
Department of Computer Science

The University of Adelaide

January 1994

Abstract

Real-time communications differ from traditional data communications as it imposes a
time constraint, such as deadline, on each message transmission. It is well known that
the Farliest Deadline First (EDF) scheduling policy 1s optimal for task scheduling in a
centralized real-time system. However, implementing the EDF policy in a distributed
real-time system is different from its counterpart in a centralized real-time environment
due to its non-negligible scheduling overhead involved. This work deals with the
implementation of the EDF policy in the context of a specific distributed system —
a token ring local area network. Its main objectives are (i) to propose a token ring
protocol which implements the exact network-wide EDF policy for real-time message
transmission, and (ii) to address the fundamental issue of the appropriate level of
implementing an optimal scheduling policy in a distributed real-time environment.
In brief, the work is concerned with the design and performance evaluation of
three token ring protocols for real-time communications, which implement variations
of the EDF transmission policy with different overheads. The first is an existing token
passing protocol which does not adhere to the EDF policy but has a minimal overhead.
The second is a modified priority-driven protocol which approximates the EDF policy

with a moderate overhead. The third is the window protocol which is proposed for

i

the token ring networks for the first time. It implements the exact EDF transmission
policy, but its contention overhead may be potentially high.

The worst case performance of the three protocols is analyzed and compared. It
is found that the performance of a distributed communication protocol is determined
not only by the transmission policy employed, but also by the contention overhead
incurred when implementing such a policy. It is also shown that no protocol can
always outperform the others for the entire parameter ranges considered and that
each protocol has its own applicable region where its performance is the best.

Furthermore, the average case performance of the three protocols is evaluated
through simulation. It is found that under the current token ring network
technology, the proposed window protocol achieves the best performance as a result
of implementing the EDF policy. However, it is also shown that when the ring gets
faster, the difference in the performance of the three protocols is reduced.

Therefore, it is concluded that in designing a distributed scheduling algorithm,
such as a communication protocol, one should seek a balance in achieving an optimal

scheduling policy and minimizing the scheduling overhead.

111

Declaration

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text of the thesis.

I give consent to this copy of my thesis, when deposited in the University Library,

being available for loan and photocopying.

SIGNED:....cccvireriemmmmnariniisninnsees DATE:... . i

iv

Acknowledgments

T wish to express my deep gratitude and appreciation to my former supervisor
Prof. Wei Zhao for suggesting this project and for his devoted guidance, support and
help. I am very grateful to Prof. Chris Barter for having facilitated my coming
to Australia to undertake this research and for his immense enthusiasm, support and
encouragement as my later supervisor. I thank Dr. Moshe Zukerman for expanding my
research horizon tremendously when I was working in the Network Analysis Section,
Telecom Research Laboratories in 1991. I also thank Dr. Cheng-Chew Lim from
the Department of Electrical and Electronic Engineering for his helpful advice and
comments.

I am deeply indebted to my parents and my sister who are remote but near
and whose love, understanding and support are invaluable. Special thanks to
Piero Ammirato for his love and support and for sharing the good times and bad
times over the past four years. I thank Fred Thornett who introduced Australia to me
seven years ago for his friendship, help and confidence in me. Finally, I am thankful to
all the staff members in the department and all my friends who in one way or another
have contributed to the making of this thesis.

This work was supported by the Univerity of Adelaide Postgraduate Research

Scholarship.

Contents

Abstract ii
Declaration iv
Acknowledgments v
1 Introduction 1
1.1 Motivation and SCOpe o oo e e 1
1.2 Real-Time Communications« .« v oo v v oo e e e 6
1.2.1 Definitions and Objectives. v« o v v v oo e 6

1.2.2 Selection of the Optimal Algorithm 8

1.3 Related Work . . .« o v o v i v i e 10
1.3.1 Related CSMA/CD Based Work oo oo v 10

1.3.2 Related Token Bus/Ring Based Work 13

1.4 Desirable Properties of Protocols for Real-Time Communications. . . 17
1.5 Thesis Qutline . . . « o o v v v v v v v o vt v m o v et 18

2 System Models 20
91 Network Model v v v e 20
99 Network Parameters o o v v v v v v oo e 23

vi

2.3

2.4

2.5

The

3.1

3.2

3.3

3.4

The
4.1
4.2

4.3

4.4

4.3

4.6

Message Model and Parameters« ..o 24

Protocol Notations and Performance Metricso oo v s 27
Methodology for Worst Case Performance Analysiso 00 .. 34
Token Passing Protocol 40
Protocol Description v v i e e e 41
Protocol Properties« oo e 41
Worst Case Performance Analysis v o oo o oo oo oo o 51
Numerical Results and Discussions « ¢ o o v oo oo oo oo v 57
Priority-Driven Protocol 59
Protocol Description« v oo oo e 60
Priority Assignment Function 61
Worst Case Performance of PDysp « - o v v v v v o o v v oo e e e 67
4.3.1 Lower Bound of R(PDpsn,WyM) o« v v v v v v oo e e 7
4.3.2 Upper Bound of R(PDpmsp,w,n) -~ o« v v v v v oo oo e 78
4.3.3 An Estimation of R(PDpmspyW,M) « « v v v oo v v v e e 86
4.3.4 Numerical Results and Discussions 92
Worst Case Performance of PDp<d + + » - - v v o o v o oo e e e e 94,
4.4.1 Worst Case Performance Ratio R(PDp<a,w,n) « « o o o o - - 101
4.4.2 Numerical Results and Discussions o . 101
Worst Case Performance of PDgcma<D - « + « « 0 v v v o oo oo v v a s 104
4.5.1 Properties of PDpcd « v v« v v v v e e 106
452 Performance bounds for A¥(n) 108
4.5.3 Numerical Results and Discussions« 119
Enhancements and Modifications« oo o0 oo e 123

vil

5 The Window Protocol 125

5.1 Basic CONCEPtS . - « o v v v v e e e e e e 126
5.9 Data SETUCIUTES . « « « « o v v v o e e e e 127
5.9.1 Window Setting« o oo 127
599 Token Format« v v v o v e 130
5.9.3 Data Structuresona Node oo v v e e 132

5.3 Protocol Description v« oo e 132
53.1 Monitor Node v v v v v i e 133
53.2 Non-Monitor Nodes« oo v vt 137

5.4 Worst Case Performance Analysis v v v vvve e 145
5.5 Numerical Results and Discussions« o v oo oo v v o 150
5.6 Major Advantages of the Window Protocol oo 151
5.7 Protocol Realization« oot oot 154
5.7.1 Direct Realization.« oo 154
5.7.2 Optimal Realization v 155

5.7.3 Practical Realization« . 0o 161

58 FEnhancements and Modificationso e 162
5.8.1 Urgent Pre-emption. oo o 162
5.8.2 Faster Deadline Tie Handlingo v oo o 166
5.8.3 Faster Resolution v v v v v v v v v v oo oo 167
5.8.4 Choice of Threshold v v oo o 169
5.8.5 Possible Realization o v oo oo e 169

6 Worst Case Performance Comparison 170
6.1 Comparison Methodo 170

viil

6.2 Pair-Wise COMPAriSOns . . .« « « oo v v v v oo s 174

6.3 Comparison of Three Protocolso covvveoe oo 176
6.4 Applicability of Results« v v v 181
Average Case Performance Comparison 184
71 Simulation Programo e 185
7.9 Traffic Model and Parameterso 188
7.3 Performance Metrics o« v oo oo e 190
7.4 Simulation Results oo 191
74.1 FEffect of Offered Load« . o v v v 191
7.4.9 FEffect of Ring Speed oo 196
74.3 TEffect of Ring Population 199
74.4 Effect of Protocol Parameters 203
7441 FEffect of Number of Priorities 203

74.4.9 Effect of Length of Priority Assignment Function . 205

7.4.4.3 Effect of Initial Window Size 207

7.4.4.4 FEffect of Initial Window Lower Bound 209
75 DISCUSSIONS .« « ¢ v v o v v e e e e e e e e 211
Conclusions and Recommendations for Future Research 213
8.1 Summaryof Results oo v 213
8.2 Significance and Contribution 216
8.3 Recommendations for Future Research v v v v v v v v o o 218
Publications and Presentations 221
RefErences . « c o v s s u s s o sm v o s s s womoir s ta v oo v sia s i 225

1X

List of Tables

2.1
5.1
5.2
5.3
5.4
5.9
5.6
6.1
6.2
7.1
7.2
7.3
7.4

7.5

Network Parameters o v o v v v v v v v e e e
Monitor Node Operations (Explanatory Scheme).
Non-Monitor Node Operations (Explanatory Model)
Encoding for Monitor Node Operations (Optimal Scheme)
Encoding for Non-Monitor Node Operations (Optimal Scheme)
Encoding for Monitor Node Operations (Practical Scheme)
Encoding for Non-Monitor Node Operations (Practical Scheme)

Performance Relationship in Six Regions oo oo
Range of Normalized Token Node-to-Node Delay
Traffic PTofile . . . v v o o v e e e e e e e e
Fffect of Offered Load« o o o v v v oo oo
Effect of Ring Speed« oo oo
Effect of Ring Populationo

Effect of Initial Window Lower Bound

24

138
158
159

163

List of Figures

2.1

2.2

3.1

1.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

3.5

5.6

Generic Real-Time Communication Layer Model 21
A Token Ring Network« . oo oo ci o 23
Worst Case Performance Ratioof TP v oo v v oo o v 57
A Priority Assignment Functiono e 64
Time Diagram of Message Transmission.o v e e o 66
Worst Case Performance Ratio of PDysp v - v v v o v i e oo e e 93
Comparison of Riow, Rup and Regt « « o« v v v o e e e 93
Fffect of the Number of Priorities« . oo v v v oo v v e ve 103
Worst Case Performance ratio of PDm<a - o v o v v oo oo oo e v 104
Effect of the Number of Priorities« o v v v oo v v v o 121
Effect of Parameter k o o o v oo oo e 122
Worst Case Performance of PDgcmaD « « « « « + v v v v oo o oo o e 122
Initial Window Boundaries o o oo oo s e e 128
Proposed Token Access (AC) Fieldooovv oo 130
Protocol State Machine Transition Diagram 134
Splitting of Window WEW v v v e e e e e e e e e e e 142
Worst Case Performance Ratioof WDo v oo oo v vs 151
Effect of Number of Windows« . o oo v oo e e 152

x1

5.7
5.8
6.1
6.2
6.3
6.4
6.9
6.6
7.1
7.2
7.3
7.4
7.9
7.6
7.7
7.8

7.9

Time Diagram for Message Transmissionov v e 133

IEEE 802.5 Token Format« c oo v v oo oo oo o 161
Pair-Wise Equal Performing Bands covven e e 173
Pair-Wise Equal Performing Curves oo v v oo ve e 175
Comparison of Three Protocols oo oo oo e e e e 177
Comparison of Three Protocols vvevee oo e 178
Comparison of Three Protocols oo e 180
Parameter Range of Current Token Ring Networks 183
Simulation Program Flow Charto v v v oo e e 186
Token Access Control Field Format 190
Effect of Offered Load . . .« . .« oo v v v i i i oo 195
Effect of Ring Speed« « oo v 199
Effect of Ring Population« . oo v i 201
Effect of Number of Priorities« oo oo oo 204
Effect of Length of Priority Assignment Function 206
Effect of Initial Window Size« o oo 208
Effect of Initial Window Lower Bound oo v 210

xii

Chapter 1

Introduction

1.1 Motivation and Scope

The need for high speed real-time communications has emerged rapidly over the last
decade from many new real-time applications, such as office automation, intelligent
manufacturing, advanced air traffic control, space and military projects, distributed
processing and robotics systems [6, 12, 18, 31, 45]. Real-time communications differ
from traditional data communications as it imposes explicit timing constraints on
individual messages. Hence, the correctness of a real-time system depends not only
on the logical results of the computation but also on the time when the results appear
[20, 33, 35, 36, 59].

Local area networks (LANs) have gained increasing popularity in supporting these
new real-time applications due to their distributed nature and the potential for
providing high speed reliable resource sharing, The key to the successful use of a LAN
to support real-time communications is an adequate distributed scheduling algorithm,

which ensures the timely message transmission on geographically distributed nodes.

1.1. Motivation and Scope 2

In relation to Open System Interconnection (OSI) reference model, the Medium
Access Control (MAC) protocol is primarily responsible for scheduling message
transmission over a LAN. It arbitrates access to the network and determines which
message is to be transmitted at any given time. The main design considerations
of existing MAC protocols are to maximize the throughput and to minimize the
average delay. In contrast, a MAC protocol for transmission of real-time messages
must address the timing constraints of individual messages. The most important
design objective of a real-time MAC protocol is to ensure that message deadlines
are met or that the number of messages that miss their deadlines is minimized [21].
Therefore, any traditional MAC protocols that do not consider individual message
timing requirements are inadequate.

Clearly, protocols intended for distributed real-time communications must schedule
message transmission based on global message timing information. However, this
objective may not be achieved in practice, as scheduling real-tfime messages over a
LAN differs from scheduling tasks in a processor environment. In a LAN, messages
are located on physically separated nodes and their timing information is local to the
nodes, hence gathering global message timing information not only may incur a non-
negligible overhead, but also may be approximate. As a result, it is conceivable that
the benefit of employing an optimal centralized scheduling algorithm can be nullified in
a distributed environment if the implementation overhead is too high. Consequently,
under some network and traffic conditions it may be desirable that scheduling decisions
are made with less accurate knowledge about the timing constraints of messages on
other nodes in the network. Thus, one of the fundamental issues in the design of
real-time MAC protocols is to determine the appropriate level of implementing the

optimal scheduling policy in a distributed real-time environment.

1.1. Motivation and Scope 3

Much progress has been made in designing protocols for real-time message
transmission in LANs over the last decade, predominantly using CSMA /CD (Carrier
Sense Multiple Access/Collision Detection) and ring networks. The approach
taken by CSMA/CD related work is to incorporate well-established centralized
scheduling algorithms to the basic CSMA/CD networks to support real-time message
transmission. As a result, these enhanced CSMA/CD protocols support both real-time
synchronous and asynchronous message transmission. On the other hand, the majority
of the solutions developed for ring networks only consider timing constraints of real-
time synchronous/periodic messages. Furthermore, the issue of achieving scheduling
optimality and minimizing scheduling overhead has not been addressed.

The main objectives of this work are

e to propose a token ring protocol which implements the Earliest Deadline First

(EDF) optimal scheduling policy for real-time message transmission, and

e to address the fundamental issue of the appropriate level of implementing an

optimal scheduling policy in a distributed real-time environment.

Specifically, the work is concerned with the design and performance evaluation of
three token ring protocols for real-time communications, which implement variations
of the EDF transmission policy.

The first is an existing token passing protocol which sends messages in the nearest-
neighbor-first order and does not consider individual message timing requirements at
all. As a result, this simple token passing protocol does not adhere to the EDF policy
but has a minimal overhead.

The second is a modified priority-driven protocol. Although the most existing

token ring protocols are priority-driven, they are not suitable for transmitting

1.1. Motivation and Scope 4

time-constrained messages as they do not explicitly address the individual message
deadlines. Hence, we propose to incorporate a priority assignment function which
assigns each message an access priority based on its deadline. This modified priority-
driven protocol then sends messages in the highest-priority-first order. It can be shown
that when the number of priority levels is sufficient, the protocol implements the
exact EDF policy; otherwise it only approximates the EDI policy. Thus this protocol
considers the individual message deadlines to certain degree with a moderate overhead.
The worst case performance of the token passing and the priority-driven protocols
for real-time message transmission is analyzed. The results show that the worst case
performance of the two protocols is poor. Specifically, given a message set, the two
protocols can send only half of the messages even if the overhead is assumed to be
zero. This implies that the dominant factor in deciding the protocol performance in
supporting real-time message transmission is whether or not the transmission policy
used considers the individual message timing requirements explicitly. Therefore, it is
imperative to design a token ring protocol which implements the exact EDF policy.
This leads to the third protocol which is a window protocol specifically designed for
token ring networks. It is an original contribution of this work. Towsley and Venkatesh
[43] proposed the original window protocol for non real-time message transmissions in
LANs. A desired property of the window protocol is that it can uniquely locate a
message according to some message parameter by partitioning the window recursively.
Zhao et al and Znati have successfully designed window protocols for transmission of
real-time messages in CSMA/CD networks. The CSMA/CD window protocols are
contention based, in which stations schedule message transmission without the global
knowledge of message deadlines. When a collision occurs, stations back off and the

window is partitioned in a binary manner.

1.1. Motivation and Scope 5

Motivated by the CSMA/CD window protocols, our goal is to apply the concept
of window protocol to a token ring network, which transmits messages in the earliest-
deadline-first order. However, unlike the CSMA/CD networks, token ring networks
are control based and collision-free. Thus, it requires a special controller to gather
global message dcadline information in order to coordinate window operations and to
locate the earliest deadline message. As a result our new window protocol for token
ring networks differs significantly from the existing window protocols for CSMA /CD
networks. It will become clear later that this new window protocol is much more
sophisticated in window operations and has much faster convergence in locating the
desired message than the existing CSMA /CD window protocols. It can be shown that
the proposed window protocol implements the exact EDF transmission policy, but
the need for gathering global message deadline information indicates that its overhead
may be high.

The worst case performance of the three protocols is analyzed and compared. It
is found that no protocol can always outperform (in terms of the fraction of messages
sent) the others for the entire parameter ranges considered. It is also shown that
each protocol has its own applicable region where its performance is the best. This
implies that the performance of a distributed communication protocol is determined
not only by the transmission policy employed, but also by the contention overhead
incurred when implementing such a policy. As a result, there may not exist a
communication protocol for message transmission which would be optimal for all
operating environments.

Furthermore, the average case performance of the three protocols is evaluated
through simulations. Simulation results show that the average case performance

of a protocol, although significantly better than the worst case case performance,

1.92. Real-Time Communications 6

is still determined by the transmission policy used and the contention overhead
incurred. More specifically, it is found that under the current technology, the proposed
window protocol achieves the best performance as a result of implementing the EDF
policy. However, it is also noted that when the ring gets faster, the dilference in
the performance of the three protocols is reduced. This implies that under very high
speeds the benefit of implementing the EDF policy by the window protocol may be
nullified by its relatively high contention overhead.

Therefore, it is concluded that in designing a distributed scheduling algorithm,
such as a communication protocol, one should seek a balance in achieving an optimal

scheduling policy and minimizing the scheduling overhead.

1.2 Real-Time Communications

1.2.1 Definitions and Objectives

A real-time environment is distinguished from a non real-time system by the
introduction of time as a key factor. The correctness of a real-time system 1is
determined not only by the logical results of the computation, but also by the time at
which the results are produced. A distributed real-time system, such as a token ring
network, is a system where communications are conducted among processes located on
geographically distributed nodes. A message in a real-time system is associated with
certain timing constraint such as a deadline or a laxity. The deadline of a message is
the time at which the message must be received by its destination. The laxity of a
message is defined as the maximum time the message can wait before its transmission

has to start in order to meet its deadline.

1.2. Real-Time Communications 7

The most important aspect of real-time communications is that a message must be
received by the destination before its deadline expires; otherwise, it is considered lost.

Typically, real-time applications generate mixed traffic, including packetized voice
and video, network error, alarm and sensor messages and data transactions. They can
be grouped into two categories: synchronous (periodic) and asynchronous (aperiodic).
Synchronous messages, such as voice and other polling messages, arrive at the system
periodically. Their lengths and periods are known a priori. In many cases, they must
be transmitted before the next arrival from the same message stream. The transmission
of such real-time synchronous messages can be scheduled by a static scheduling
algorithm. Real-time asynchronous messages, on the other hand, arrive randomly
during run-time and are associated with different deadlines. It is generally perceived
that synchronous messages are urgent and require bounded response times while
asynchronous messages can tolerate longer delays. However, real-time asynchronous
messages, such as network error, alarm and management message, are equally urgent
and require fast delivery. Furthermore, real-time asynchronous message transmission
requires dynamic scheduling in order to share the transmission resource efficiently.
Thus, the ability to handle real-time asynchronous messages well indicates the good
responsiveness of a system, which will be essential in the next generation of highly
distributed and dynamic real-time systems.

Hence, a protocol intended for real-time communications, should incorporate
explicit timing constraints of both synchronous and asynchronous messages. As
a result, the principle performance considerations of real-time communications are

fundamentally different from those of traditional data communications.

1.2. Real-Time Communications 8

o The primary performance metrics for conventional data communications is
throughput and average delay, which no longer adequately characterize the
performance of a real-time communication protocol. The most important
performance metric of a real-time communication protocol is the loss ratio, which
is the percentage of messages missing their deadlines’. The chief design objective

of real-time communication protocols is to minimize message loss.

e The performance trade-offs of traditional data communications is offered load
versus average delay, while that of real-time communicationsis offered load versus

message loss for given message timing constraints.

1.2.2 Selection of the Optimal Algorithm

A MAC protocol is essentially a set of rules which schedule message transmissions.
The basic design requirements of a MAG protocol and a centralized task scheduling
algorithm are similar: both are constrained by time to allocate a serially-used resource.
The most commonly used centralized scheduling algorithms are: First Come First
Serve (FCFS), Shortest Task First (STF), Fized Priority Scheme (FPS), Minimum
Lagity First (MLF) and Earliest Deadline First? (EDF). The FCFS policy schedules
the tasks according to the arrival order of the requests. The FPS algorithm gives the
resource to the task that belongs to the highest priority class. The STF policy always
selects the task with the shortest length first. Only MLF and EDF policies schedule
tasks according to task timing constraints. That is, they choose the task with the

minimum laxity and earliest deadline respectively.

1 Alternatively, the fraction of messages successfully meeting their deadlines is called the sent ratio.
21f message lengths are constant, then the MLF and EDF algorithms are essentially the same.

1.2. Real-Time Communications 9

Hence, we have a spectrum of centralized scheduling algorithms that schedule
message transmission using different amount (from none to perfect) of message timing
information. It has been established from centralized real-time scheduling theory that
the MLF and EDF algorithms are optimal® in both static and dynamic cases [16, 29].
Furthermore, it is known that even a policy that only approximates the MLF or EDF
policies can still result in a significant reduction in task loss [13, 53].

Therefore, it is natural to believe that a protocol that implements the MLF or EDF
transmission policy is the most desirable for real-time communications. However, the
optimality of MLF or EDF policy is achieved in a centralized scheduling environment
where the scheduling overhead is negligible.

Implementing the MLF or EDF policy requires the global knowledge of message
timing constraints. In a centralized scheduling environment, all message timing
‘nformation is known to the scheduler at the time of decision making, while in a
distributed environment, such as a token ring network, message timing information is
only local to individual nodes. As a result, implementing the MLF or EDF policy in
token ring networks is considerably more difficult and requires the protocol to include a
special mechanism for collecting the deadline information either explicitly or implicitly.

Furthermore, in a distributed communication network, a MAC protocol
implementing the MLF or EDF policy will take some time to gather message deadline
information in the network before a message can be scheduled for transmission.
The scheduling overhead, i.e. the time incurred in collecting the message timing
information, is no longer negligible and may be high. Thus, we would expect
the performance of distributed scheduling algorithms to depend on not only the

scheduling policies they use, but also the scheduling overhead they invoke. That is,

3In the sense that they minimize the task loss ratio for a given task set

1.3. Related Work 10

the performance of a real-time MAC protocol is a trade-off between the scheduling
policy it employs and the overhead it incurs. Therefore, it is conceivable that a
protocol which incurs a large overhead to implement an ‘optimal’ (MLF or EDF)
scheduling algorithm may not necessarily produce better performance than another
protocol that employs a simple, but ‘non-optimal’ policy. Hence, in designing a
distributed scheduling algorithm such as a communication protocol, issues in both
achieving ‘optimal’ (MLF or EDF) scheduling policy and minimizing the scheduling

overhead must be addressed.

1.3 Related Work

In this section, we examine the recent developments in real-time communications and
discuss their contributions and limitations. The majority of existing protocols for real-
time communications can be broadly divided into two areas: CSMA /CD based and

token ring based.

1.3.1 Related CSMA/CD Based Work

Over the last few years, various enhanced CSMA /CD protocols have been designed
and studied in the context of real-time communications. These protocols intend to
implement the optimal transmission policy, such as MLF or EDF, and are useful
contribution to the state of the art of real-time communications.

One class of protocols implementing ML¥ or EDF transmission policy are called
window protocols. These protocols are the enchancements to the traditional window
protocols [43], as they use message laxity or deadline as the window axis. The window

protocol proposed by Kurose et al [22] implements the MLF policy, but with the

1.3. Related Work 11

assumption that laxities of all messages are constant. Under this assumption, the MLF
policy is equivalent to the FCFS policy. Zhao, Stankovic and Ramamritham extended
this window protocol by relaxing the above assumption to allow message laxities to
have arbitrary distribution. Also, In their model, a newly arrived message is allowed
to compele for transmission. However, the MLF policy is not always preserved in
the presence of a laxity tie, as the protocol uses a probablistic approach to solve a
tie. Furthermore, the protocol uses a constant window in the initial phase to locate
the contention window, which may result in slow convergence to the desired minimum
laxity message.

Znati [60] designed a window protocol which is intended to improve the performance
of the window protocol proposed by Zhao et al in three ways. First, a binary search
based approach is used during the initial phase to determine a contention window,
rather than a constant window. Hence, it results in faster convergence in locating
the minimum laxity message. Second the protocol has an additional reservation
mechanism that prohibits messages with large laxity from competing with messages
that have smaller laxities. This mechanism is useful in reducing the number of deceitful
contentions among messages with large disprepancy in their timing constraints. Third,
the protocol implements the MLF policy even in the presence of a laxity tie. This
protocol has been shown to have a considerable improvement in its performance
over other proposed window protocols, but the protocol may still be inefficient under
situations where message laxities are very close. This is due to the nature of CSMA/CD
networks where nodes are not able to obtain sufficient timing information about
messages residing on other nodes. As a result, the binary search may need to partition

the contention window many times in order to locate the minimum laxity message.

1.3. Related Work 12

Therefore, many collisions may occur before a successful message transmission can
take place.

Virtual time protocols are another family of protocols that implement the MLE or
EDF transmission policy. Zhao and Ramamritham [55] studied the modified virtual
time CSMA/CD protocols for real-time communications. In their model, each node
maintains two clocks, a real clock and a virtual clock. Whenever a node finds the
channel idle, it resets the virtual clock which then runs at a higher rate than the
real clock. A node is allowed to transmit a message when the time on the virtual
clock is equal to some parameter of the message. By selecting different parameters,
such as arrival time, transmission time, laxity or deadline, the protocol implements
transmission polices FCFS, STF, MLF and EDF respectively. Their simulation results
have shown that virtual time CSMA/CD protocols yields improved performance over
pure CSMA/CD and that protocols implementing MLF or EDF policy perform better
than those implementing FCFS or STF policy in terms of message loss and channel
utilization.

Another clags of enhanced CSMA /CD protocols for real-time communications uses
a multi-version message transmission scheme [19, 27, 57]. The basic idea of the
enhancement is that the version of a message to be transmitted depends on the overall
network load. When the traffic is heavy or/and the message deadline is tight, only
a fraction of the message is sent instead of the full message in order to meet the
message deadline. The key element is the wersion selection scheme implemented at
each node, which determines which version of the message to be sent. The criteria
used by the version selection scheme can be the length of the message queue on a node,
the estimation of the time average network load or the message deadline density. It

has been shown that the method is effective when used with the window protocol [27].

1.3. Related Work 13

Finally, guaranteed protocols [4, 26, 37] aim to guarantee deadlines of real-time
asynchronous messages in a dynamic fashion. It differs from static scheduling in the
sense that whether a message deadline will be met depends on the network load and
deadlines of existing messages, and is known only after the arrival of the message in
the network. This enhancement is useful when some asynchronous messages require
guaranteed delivery, but the cost is the reduction in channel utilization for real-time

synchronous messages and real-time non-guaranteed asynchronous messages.

1.3.2 Related Token Bus/Ring Based Work

In token bus/ring network®, a control frame called token circulates around the ring. A
node wishing to transmit a message must capture the token and then send the message.
After the completion of a message transmission, the sending node is responsible for
releasing the token. Various enhancements, such as reservation scheme, prioritized
access, cyclic control, may be incorporated into the basic token passing protocol.

Over the last decade, token bus and token ring networks have become the standard
for real-time communication systems. They include Manufacturing Automation
Protocol (MAP), IEEE 802.4 token bus, IEEE 802.5 token ring, Fiber Distributed
Data Interface (FDDI) and FDDI-TL. The increasing popularity of token bus/ring
networks is mainly due to their performance characteristics, such as the bounded time
delay, ability to provide guaranteed bandwidth, inherent fairness, and high utilization
under overload.

MAP [45] has been largely accepted as the OSI solution to real-time manufacturing

communications. Its two bottom layers are based on IEEE 802.4 timed token protocol

4Physically, a token bus is a linear or tree-shaped cable onto which stations are attached. Logically,
stations are organized into a ring.

1.3. Related Work 14

[2] which regulates message transmission using a set of timers. Synchronous messages,
assigned the highest priority, are provided with guaranteed bandwidth. Asynchronous
messages are transmitted only if the current token rotation time does not exceed the
pre-defined target token rotation time.

The IEEE 802.5 token ring [1] uses a reservation scheme together with a prioritized
access mechanism. It provides eight priorities to accommodate different message
classes, with synchronous messages assigned higher priorities. In this protocol, the
token has a priority field and a reservation priority field. Upon the arrival of the
token, a node is allowed to transmit a message if the priority of the message is equal
to or higher than the token priority; otherwise the node can reserve a future token by
writing its message priority into the token reservation priority if the former is greater
than the latter. This way, the message with the highest priority is always sent first.

A variation of the 802.5 standard is the IBM token ring, which uses a different
prioritized access mechanism. In supporting synchronous traffic, one of the nodes
is assigned as the synchronous bandwidth manager and raises the token priority
periodically so that synchronous messages receive guaranteed bandwidth.

The Fiber Distributed Data Interface (FDDI) is the ANSI standard for an 100
Mbit/s fiber token ring. It uses a timed token rotation protocol which is an extension
to the 802.4 standard. In a FDDI network, synchronous messages receive guaranteed
bandwidth, while asynchronous messages are transmitted only when the current token
rotation rate is faster than the pre-defined target token rotation time.

Although the timed token rotation protocol guarantees that the maximum token
rotation time is at most twice the target token rotation time [32], it is found that
the timed token rotation scheme alone is not sufficient to meet deadlines of urgent

messages. To compensate this, ANSI defines the FDDI-II to be upward compatible

1.3. Related Work 15

with FDDIL Tt adds circuit switching capability to the basic FDDI to better support
urgent synchronous messages. However, the performance in transmitting real-time
asynchronous messages is adversely affected.

Clearly, for the standard token bus /ring protocols, it is a common practice that
synchronous messages are given higher priorities than asynchronous messages. As
a result, these protocols support real-time synchronous messages well. However,
they may produce poor performance in meeting timing requirements of real-time
asynchronous messages, as they do mnot explicitly incorporate timing constraints of
real-time asynchronous messages.

While the standard token ring protocols were being developed, many non-standard
token ring protocols have also been proposed over the last decade. They intend to
support integrated real-time applications such as transmission of packetized voice,
video and data. We now examine some of these protocols.

Goyal and Dias [11] proposed a reservation based prioritized access protocol, which
is an variation of the 802.5 token ring protocol. It aims to increase the ring utilization
of the 802.5 token ring by having early token release. Furthermore, it intends to
improve and delay performance of time-critical packets by allowing high priority nodes
(having time-critical packets) to send special packets to the token holder to reserve a
future token or to pre-empt the token holder if it is transmitting a low priority packet.
Performance evaluation shows that this enhanced protocol has a good responsiveness
and great ability to support time-critical packets.

Huang and Chen [15] designed an integrated token ring protocol accommodating
voice/data services. It uses a cyclic control mechanism with cycle length being
the period of voice packetization time so that voice packets are delivered within

the bounded delay. In their model, there are three access types indicated in the

1.3. Related Work 16

token, namely voice only, voice/expedited data and expedited /normal data. Real-
time asynchronous messages are transmitted if the offered load of voice traffic is not
heavy.

Tsai and Rubin [44] suggested a token scheme supporting delay-constrained priority
messages with a synchronous cycle and a prioritized access arbitriation mechanism.
In their model, at any time each node is allowed to have at most one real-time
connection for synchronous messages, while transmissions of asynchronous messages
are determined by a global contention resolution scheme through the use of token,
which is similar to the one used in the 802.5 standard.

Kang et al [L7] proposed a dual-channel hybrid token ring, which is also a modified
802.5 token ring. It consists of a ring channel and a direct channel. The ring channel
is used for non real-time message transmission, while direct channels are inserted
dynamically to support real-time and interactive communications between node pairs.
Simulation results show that under light traffic load, the delay performance of this
hybrid token ring is almost the same as that of the standard token ring, while under
heavy load, the hybrid token ring has a much improved delay performance over the
standard token ring.

Cherkassky et al [8] proposed a new LAN architecture INSTNET to support real-
time traffic, which is also based on the 802.5 standard. The INSTNET incorporates
a logically separated control channel in addition to the ring channel. Messages are
transmitted over the ring channel according to a a reservation based priority contention
resolution mechanism. Real-time traffic is allowed to pre-empt non real-time traffic
by sending interrupts on the control channel. Simulation results show that the delay

performance of real-time traffic is not affected by the load of non real-time traffic.

1.4. Desirable Properties of Protocols for Real-Time Communications 17

Although varying in details, these non-standard token ring protocols are similar to
the standard token ring protocols in two ways. First, they do not consider individual
message timing constraints explicitly. Furthermore, they give higher priorities to real-
time synchronous messages at the cost of real-time asynchronous messages. As a result,
the support for real-time asynchronous messages is poor.

However, noticeable progress has been made in designing token ring protocols
that address the explicit timing constraints of synchronous messages. Strosnider,
Lehoczky and Sha [23, 37] proposed a deferrable server algorithm to meet the deadlines
of synchronous messages and also, to improve the response time for asynchronous
messages. Strosnider and Marchok [38] applied this algorithm to token ring networks,
which results in a highly responsive and deterministic service, and is an useful
enhancement to the IEEE 802.5 token ring protocol. Shin and Hou [34] investigated
the average performance of various token ring protocols in a real-time environment.
Clearly, this pioneering work has contributed greatly to the state of the art of real-
time communications in token ring networks. However, the problem of meeting timing
requirements of real-time asynchronous messages in token ring networks, to our best

knowledge, has not been fully addressed.

1.4 Desirable Properties of Protocols for Real-
Time Communications

From the preceding discussions, we can conclude that a MAC protocol suitable for
real-time communications must address the explicit timing constraints of individual
messages rather than differentiate messages in terms of their classes. In specific, a

desired real-time MAC protocol should

1.5. Thesis Outline 18

e incorporate message timing requirements, such as laxity or deadline,

e support real-time synchronous messages as well as real-time asynchronous
messages, i.e. to address message timing requirements whether or not they are

known a priori.

e schedule message transmission based on the optimal transmission policy and

minimize overhead incurred.

These desired properties provide a guideline for design and performance evaluation

of real-time MAC protocols.

1.5 Thesis Outline

We have defined the scope of real-time communications, identified its objectives and
discussed advances and limitations of recent work in real-time communications.

The rest of the thesis is organized as follows. In Chapter 2, we first introduce
the network and message models together with their parameters and attributes. We
then define the protocol notations and performance metrics. Finally, we describe the
methodology for analizing the worst case performance of a real-time MAC protocol.

Chapters 3, 4 and 5 study and analyze three different token ring protocols
respectively. In each of the three chapters, we start with a detailed description of the
protocol operation. We then derive the worst case performance ratio of the protocol.
Finally, based on the worst case performance ratio, we discuss the protocol behavior

under different values of network, protocol and message parameters.

1.5. Thesis Outline 19

Using the results obtained from Chapters 3, 4 and 5, Chapter 6 compares the worst
case performance of the three protocols and discusses the underlying implication, which
leads to one of the important conclusions of this work.

Chapter 7 evaluates and compares the average case performance of the three
protocols through simulation. First, we introduce the simulation program and
simulation language used. We then describe the traffic model on which the simulation
experiments are conducted. Finally, we present, compare and discuss various
simulation results.

In the final chapter, we summarize the results, significance and contribution of this
work. We then propose the direction and agenda for future research in the field of

real-time communications.

Chapter 2

System Models

In this chapter, we first introduce the network and message models together with their
parameters and attributes. We then define the protocol notations and performance
metrics. Finally, we describe the methodology for the worst case performance analysis

of a real-time MAC protocol, which lays the foundation for chapters 3, 4 and 5.

2.1 Network Model

In the OSI reference model, the data link layer is subdivided into a Medium Access
Control (MAC) sublayer and a Logic Link Control (LLC) sublayer [41]. A generic
real-time communication layer model is given in Figure 2.1. The primary function
of the MAC protocol, called the global access contention resolution mechanism, is to
provide access control to the shared medium and to schedule the network-wide message

transmission according to the transmission policy used.

20

2.1. Network Model 21

Nods 1 Node 2
Logical Link Gonfrol
wy e
g | A [R SS=SY =y _
o
-
X
£
-
38 Packet
8 Quouss
Medium Access Control ~ [——| | | = e
(MAC)
\ \ |
Global Access Contention Resolution
e — | | —
-] Y
m 13
Lo
O >
£

Transmission Medium
Figure 2.1. Generic Real-Time Communication Layer Model

Each node maintains a packet queue at the MAC layer. Messages from the
LLC layer are segmented into fixed-length packets' before they are admitted to the
corresponding MAC packet queues®. A packet queue can be an unsorted queue such
as a FOFS queue where packets are kept in their arrival order or a prioritized queue
where messages are kept according to a parameter such as access priority, laxity or
deadline.

The focus of this work is primarily on the MAC protocol used for real-time

communications in token ring networks, which is a dominant factor in determining the

1The deadlines of all packets from a message are the same as that of the message. Hence, a
successful message transmission requires all component packets of the message be received before
their deadlines expire; otherwise, the message is considered lost.

2Messages from different LLC connections at a node are buffered in the common packet queue at
the MAC layer.

2.1. Network Model 29

performance of any LANs supporting real-time applications. That is, we are mainly
concerned with transmission of time-constrained messages in token ring networks®.

In a token ring network, nodes are serially connected by a unidirectional point-to
point transmission links which forms a ring. Nodes communicate in the network via
the ring. Figure 2.2 shows a token ring network of n nodes.

Fach station? is connected to the ring via a ring interface which has two operating
modes: listen and transmit. In the listen mode, the ring interface repeats each input
bit to the output. In the transmit mode, the interface breaks the connection between
the input and output and transmit its own data onto the ring. Devices (e.g. terminals,
workstations, printers) are altached to the ring through nodes to communicate with
other devices in the network.

A special control frame called the token circulates around the ring to provide access
opportunities for contending nodes to gain access. Once a node detects a token passing
on the ring, it may capture the token by modifying certain fields in the token. It then
transmits its message by appending the data and adding appropriate control, address
and information fields. At any time, only the node possessing the token has the right
to transmit.

A packet transmitted by a node onto the ring is passed unidirectionally from
one node to the next. One or more nodes may be identified as destinations in the
destination address field of the packet, and such destination nodes copy the packet as
it passes by. The source node (the one that has transmitted the packet onto the ring)
removes the transmitted packet from the ring when it returns. The node then issues

a new token and resumes its listen mode.

3Issues pertaining to higher layer protocols such as routing, flow control and congestion control,
retransmission, reliability and so forth, are the themes for our future research.
4In the following, station and node will be used interchangeablely.

2.2. Network Parameters 23

I:I node

ring interface
Figure 2.2. A Token Ring Network

2.2 Network Parameters

We now define some parameters to model the simple token ring network described in
the last section. Let N(n,w) represent a network of n nodes with a token node-to-node
delay of w. We assume that the ring is of length ! with a medium propagation speed
of p. Hence, the medium propagation delay is [* p. Suppose that the network has a
population of n nodes, evenly spaced on the ring, thus the node-to-node propagation
delay is (I % p)/n. The token node-to-node delay w is the time for the token to travel
between two adjacent nodes. It includes the medium propagation delay 7/n and the
station bit delay 0, which is the delay introduced at a station to monitor, repeat or

modify the token fields. Hence,

w=—+- (2.1)

It follows that the normalized token node-to-node delay w' is

2.3. Message Model and Parameters 24

[Notation l Parameter]

n number of nodes

c ring speed

[ring length

p media propagation speed
0 station bit delay

w token node-to-node delay
W; token walk time

L, packet length

L; token length

Table 2.1. Network Parameters

,_ (U*p)/nt0]c
w = (Tp + L) - (2.2)

where L, and L; is the packet and token length respectively. Finally, the token walk
time W, is the total time needed for the token to complete a full circulation around
the ring when the ring idle. That is, W, is the summation of the token node-to-node

delay w over n links on the ring,

W, = n * w. (2.3)

Table 2.1 is a summary of the notations and interpretations of these parameters.

2.3 Message Model and Parameters

In this section, we introduce parameters and models that characterize a time-
constrained message and message set respectively.
A time constrained message M is associated with the following attributes upon its

arrival.

e arrival time (): the time when the message arrives.

2.3. Message Model and Parameters 25

length (Iyr): the time needed to complete the message transmission.

e position (p): the identification of the node at which the message arrives.

e deadline (d): the latest time when the message transmission must be completed.

destination (p): the identification of the node to which the message is destined.

Thus, a message can be characterized by these five parameters v, Iy, p, d and .
Without loss of generality, we make the following assumptions which are intended to

reduce the complexity of the analytical analysis [34, 37, 39].

o We assume that all messages are waiting in the network when the protocol is

invoked.

e We assume that each message consists of a single packet whose length including
the overhead is normalized to one unit of time®. Hence, the normalized token
node-to-node delay is the same as the token node-to-node delay, i.e. w = w.
We also assume that the token walk time is less than the message transmission

time, i.e.

nw < 1. (2.4)

e We assume that the network operates reliably such that there is no loss of tokens
and messages. Messages are always received correctly, hence no retransmission

is needed.

5For a time constrained message M = (d, p), we tequire that the transmission of message M should
start no later than time d — 1. This is because a message that cannot be received at its destination
by its deadline is regarded as lost. If the transmission of the message cannot start by d — 1 (given
the message length is one), it will not be transmitted but will be dropped.

2.3. Message Model and Parameters 26

e We assume that a sending node releases the token immediately after it completes
a message transmission in order to improve the ring utilization. Hence, the time
incurred for the transmitted message to reach the destination is not part of
the protocol overhead. Therefore, the destination node is of no significance in

dctermining the protocol performance.

With the above assumptions, parameters v, Iy and ¢ can be omitted. As a
result, we can now denote a message M by a simplified notation (d,p), where d is
its deadline and p (1 < p < n) is the identification of the node where the message
is waiting to be sent. This implies that the number of messages sent depends on the
distribution of deadlines and positions of all messages in the network, which is the
essential information needed to implement a network-wide EDF policy.

A message set A(n) is defined as a collection of individual messages denoted by

parameters d and p,

A(W) = {(dl)pl)a (d27p2)7 T (dnapﬂ)}a (25)

where the number of messages 7 is defined as the size of message set A(n). Without
loss of generality, we assume that messages in a set have been sorted according to their
deadlines, i.e. d; < d; if 1 < j.

As the network offered load increases, it will reach a point where a protocol can
no longer control the message transmission in some predefined manner and exhibits
poor performance and instability. Thus, it is important to study the protocol behavior
under these situations. Hence, in this work we assume that the network is fully loaded

with message(s) to be sent at every node, i.e. n > n.

92.4. Protocol Notations and Performance Metrics 27

On the other hand, given n (7 > n) messages residing on different nodes, we
define the eligible message set at time t to be the one containing those messages being
considered for transmission at time t. As at any time only one message from each node
(the head of the message queue) is qualified to compete for transmission, thus only a

maximum of n messages are considered for transmission at any time®

. This implies
that the maximum size of an eligible set is n = n. How to schedule the transmission of
n messages from an eligible set is the responsibility of the MAC protocol, which will
be the focus of this study.

Relaxations of these assumptions are possible. For example, in the case where the
network is not fully loaded (not all the nodes have pending messages), our analysis
would still be valid if w represents the token node-to-node delay between two nearest

active nodes where there are pending messages. In fact, from time to time, we will

extend our analysis results to the case when the network is not fully loaded.

2.4 Protocol Notations and Performance Metrics

A MAC protocol is a set of rules used to schedule message transmissions, i.e. to
determine when a message should be sent. Given a set of time constrained messages, we
wish to determine how many messages can be transmitted before their deadlines expire.
That is, we consider the fraction of messages successfully sent by the protocol as the
most important performance metric. The goal of designing a protocol for transmitting
real-time messages is to maximize the number of messages sent or alternatively to

minimize the number of messages lost.

6Subsequent eligible sets can be obtained by adding a new message to the eligible set after removing
the transmitted message from the set.

24. Protocol Notations and Performance Metrics 28

Let Send(P, N(n,w), A(n), T;, () denote the number of messages sent by a protocol
P for a given message set A(n) in a network N (n,w). T, and { denote the initial
conditions of the network and protocol. T defines the time when the protocol is
invoked and (denotes the node where the token is at time Ts. Unless otherwise
specified, we assume that the protocol starts to operate at time 0 and the token is
being released from node n, moving towards node 1, then node 2 and so on. In this
case, we can omit Ty and ¢ from the argument list of Send.

As discussed in Chapter 1, for a given distribution of message deadlines and
positions, we expect that the number of messages sent by a protocol is determined
not only by the transmission policy employed but also by the overhead incurred.
In this study, we will compare the performance of protocols with an ideal protocol
implementing the optimal scheduling policy without overhead. We call this ideal
protocol the Centralized Earliest Deadline First Protocol (CEDF). Under this protocol,
transmissions of all messages are assumed to be scheduled by a centralized controller
which possesses perfect knowledge about message deadlines without experiencing any
time delay. The controller schedules message transmissions in the EDF order. Clearly,
this protocol is ideal: it implements an optimal scheduling policy with no overhead.
We use it to provide an upper bound on performance of other protocols.

We introduce a metric called performance ratio for the protocol performance

evaluation.

Definition 2.4.1 For a token ring of n nodes with a token node-to-node delay of w,
a protocol P is used to transmit n messages from a message set A(n), the performance

ratio of protocol P, denoted by r(P, N(n,w), A(n)), is defined by

2.4. Protocol Notations and Performance Metrics 29

B Send(P, N(n,w), A(n))
r(P,N(n,w), A(n)) = Send(CEDF, N(n,w), A(n))’

(2.6)

This performance ratio measures the percentage of messages sent by a protocol against
that by the ideal CEDF protocol.

Clearly, given n, message sets of sizc n can have different distributions of deadlines
and positions. As a result, they may have different performance ratios. We define
the lowest value of the performance ratios of all message sets of size n, i.e. the lower

bound of the performance ratio, as the worst case performance ratio.

Definition 2.4.2 For a token ring of n nodes with a token node-to-node delay of w,

if a protocol P is used to transmit n messages, the worst case performance ratio of

protocol P, denoted by R(P,w,n), is defined by

R(P,w,n) = VI%%%(T(P,N(nvw)aA(n)))

mln(Send(P’ N(n, w), A(n)))
VA(n)® Send(CEDF,w, A(n)) "’

where A(n) is any message set of size n.

Tn general, if message size is h (h < n) and the protocol starts at time T, (15 > 0),
then the worst case performance ratio can be written as R(P,w,n, h,T,).

We define that the worst case performance of a protocol occurs when the worst
case performance ratio is reached. The message set which results in the worst case

performance ratio is defined as the worst case message set.

Definition 2.4.3 For a given protocol P and the number of messages n, the worst

case message set is Ayc(n), if the following is satisfied.

9.4. Protocol Notations and Performance Metrics 30

r(P, N(n,w), Aue(n)) = R(P,w,n). (2.8)

We also define that the average case performance of a protocol occurs when
the performance ratio does not reach the minimum. Although the average case
performance indicates the protocol performance under normal situations, the worst
case performance demonstrates how poor the performance of a protocol can be
under the most unfavorable operating conditions. To provide predictable and reliable
performance in a real-time system, it is imperative to investigate the worst case
performance of a protocol.

Before moving on to the next section, we introduce a requirement on message

deadlines, which is observed by all time-constrained message sets under consideration.

Definition 2.4.4 A message set A(n) is feasible if the ideal protocol CEDF can send

all the messages in A(n). That is,

Send(CEDF, N(n,w), A(n)) = n. (2.9)

If a message set is feasible, then the following can be established.

Lemma 2.4.1 A sufficient and necessary condition for a message set A(n) to be

feasible is that the deadline of each message satisfies the following.

d; > i, wherel <¢<n. (2.10)

That is, the deadline of the i-th message will not expire until the completion of its

transmission’.

7 Although the lemma is intuitively true, we still provide a formal proof for the sake of completeness.

92.4. Protocol Notations and Performance Metrics 31

Proof: We prove the sufficient and necessary condition separately.

o To prove d; > 1 is a sufficient condition.
That is, if d; > i, then message set is feasible. We use the induction method.
Let i = 1, we wish to prove that d; > 1 implies that the message set is feasible.
This is straightforward as the transmission of the message is completed before its
deadline expires. Thus, the message is successfully sent. Therefore, the message

set is feasible.

Suppose the lemma holds for i = k — 1, That is, dx—y > k — 1 implies that the
message set is feasible. We wish to show that given dj > k, the message set
is feasible. Clearly, the first & — 1 messages are sent and their transmissions
complete at time k — 1. As messages are sorted in the order of their deadlines
and the CEDF protocol always sends the message with the earliest deadline first,
the k-th message sent by the CEDF protocol is the one with the deadline of dj.
As dj, > k, from time k — 1 there is enough time to transmit the message. Hence,

all k messages are successfully sent. That is, the message set is feasible.

e To prove d; > ¢ is a necessary condition.
That is, if the message set is feasible, then d; > <. Similarly, we use the induction

method. Let 3 = 1, if the message is sent, then its deadline must satisfy dy > 1.

Suppose the lemma holds for the case of ¢ = k —1. We wish to prove that it is
also true for the case i = k. As messages are sorted in the order of their deadlines
and EDF policy is used, the k-th message sent by the CEDF protocol is the one
with the deadline of dy. As the message set having k messages is feasible, all the
k messages are transmitted. The total time needed to transmit k messages is

k, since each message transmission requires one unit time. As the k-th message

2.4. Protocol Notations and Performance Metrics 32

is transmitted, its deadline must not expire before the end of its transmission,

hence, we have di, > k.

This concludes the proof. Q.E.D.

Definition 2.4.5 We define Asps(n) as the smallest feasible set for message size n,
if A'(n) is infeasible, where the deadline of messages in A'(n) are the same as those

in Asps(n) except
d<d;i—1, 1<i<n, (2.11)

where d; and d. are deadlines of messages in Asps(n) and A'(n) respectively.

Obviously, for message sets of size n the smallest feasible set is
Asrs = {1a2)37"')n—1an}' (212)

If a message set is infeasible, then even the CEDF protocol is not able to send all of
the messages in the message set, consequently, no protocol can send all the messages.
In the extreme case, we may have Send(CEDF, N(n,w), A(n)) = Send(P, N(n,w),

A(n)) = 0, resulting in the performance ratio being an indefinite form, 1.e.

r(P,n) & g (2.13)

This makes the calculation of the performance ratio of the protocol meaningless. The
infeasibility of a message set reflects the correlation of message deadlines. Thus, failure

in meeting message deadlines due to this correlation should not be regarded as an index

2.4. Protocol Notations and Performance Metrics 33

to the protocol performance. Therefore, we are only concerned with the performance

ratio of feasible message sets.

Definition 2.4.6 Given that message sets are feasible, (2.6) and (2.7) become

_ Send(P, N(n,w), A(n))

r(P,N(n,w), A(n)) = (2.14)
and
R(P,’LU,TL) = é%%il)(r(P’N(n>w)7A(n)))
_ ﬁgl)(Send(P,N(:,w),A(n))). (2.15)

In general, an infeasible message set can be transformed into a feasible one before
calculating the relevant performance metric of the protocol. The basic idea of the
transformation is as follows. Let I be a subset of an infeasible set A(n) such that

A(n) — I is feasible, then A(n) — I is the required transform of A(n).

In specific, given an infeasible message set where message deadlines are

{d1,ds," - dy}, where d; < i 1 S (2.16)

we can transform it to a feasible set by removing messages whose deadlines do not

satisfy d; > ¢. That is,

d; = min(di), dp >iand 1< kE<mn, (2.17)

where d/ denotes the deadline of the i-th message in the feasible set after the

transformation.

2.5. Methodology for Worst Case Performance Analysis 34

Finally, a protocol is work conserving if it does not remain idle while there is a
message waiting on some node. A non-work conserving protocol may drop all the
messages and never send any. Its (worst case) performance ratio would then simply be
zero. Thus, only the work conserving protocols are of interest in terms of the (worst
case) performance ratio. Therefore, in whatever follows all protocols under study are

work conserving.

2.5 Methodology for Worst Case Performance
Analysis

In this section, we discuss the methodology and identify some common protocol
properties which reveal the quantitative relationship between the performance ratio
and the distribution of message deadlines and positions. These properties, presented
in the form of lemmas or theorems, form a foundation for the worst case performance
analysis of the three protocols, which will be carried out in the next three chapters.
Recall that for a token ring of 7 nodes, the maximum size of an eligible message set
is n, which implies that we only need to be concerned with how the protocol transmits
the n messages. That is, to simplify the analysis, we take a snap shot of the system.
Given a message set of size n, the worst case performance ratio of a protocol is the
lowest performance ratio achieved by the protocol for all message sets of size n. Hence,
the most straightforward way to obtain the worst case performance ratio is to compute
the performance ratio for each of those message sets. For instance, suppose the values
of message deadlines and positions are in the range of [1, D] and [1, n] respectively, the
number of different message sets of size n is D x n. Given a network with a population

of n in the order of hundreds and relatively large message deadlines, the number of

2.5. Methodology for Worst Case Performance Analysis 35

different message sets can be enormous. Clearly, this approach is formidable, if not
impossible.

By definition, the worst case message set yields the worst case performance ratio,
hence an alternative is to identify the worst case message set and then to compute its
performance ratio. This means that we need to establish an ordering among message
sets in terms of the performance ratio. To avoid exhaustive numerical computing as in
the first approach, message sets will not be sorted directly by computing and comparing
their performance ratios. As the performance ratio is determined by the distribution of
message deadlines and positions, it is possible to identify the quantitative relationship
(in terms of the performance ratio) between two message sets by comparing their
deadline and position distributions, so that message sets can be sorted out by their
deadlines and positions respectively. Consequently, the message set having the lowest
index of both orderings is the worst case message set. This approach is adopted in
this study.

We now formally define the partial ordering among message sets.

Definition 2.5.1 Let two message sets be

A(n) = {(dlapl)a (d27p2), . a(dnapn)}

A,(n) = {(dll,p,l)a(d127p,2)) a(d;wp:z)}) (218)
where p;,p; € [L,n],1 < 14,5 <n. We define deadline partial ordering as
A'(n) <p A(n) (2.19)

if for any (i, pi) € A(n) and (d},p}) € A'(n), p; = pi implies dj < di (1 < 4,5 <n).

2.5. Methodology for Worst Case Performance Analysis 36

The symbol <p is read as less than or equal to in terms of deadline. For example,

if there are two message sets,

A(5)

{(2,4),(3,2),(6,5),(4,1), (7,3)},

A,(5) - {(1’ 4)) (3’ 2)’ (3’ 5)) (4’ 1)7 (7’ 3)}7 (2-20)

we have A'(5) <p A(5).
With the above definition, we can define the sensitivity of a protocol to the deadline

distribution of a message set.

Definition 2.5.2 A protocol P is deadline monotonic, if

Send(P, N(n,w), A'(n)) < Send(P, N(n, w), A(n)), (2.21)

whenever A'(n) <p A(n).

This implies that if a protocol is deadline monotonic, then the message set having the
smallest possible deadlines, i.e. the smallest feasible set, has the minimum number of

messages sent.

Lemma 2.5.1 If a protocol is deadline monotonic and used to transmit n messages,

then the smallest feasible set Asps(n) is the worst case message set.

Proof: First, for n messages we have

Asps(n) SD A(n) (2.22)

As the protocol is deadline monotonic, then with Definition (2.5.2), we have

2.5. Methodology for Worst Case Performance Analysis 37

Send(P, N(n,w), Asrs(n)) < Send(P, N(n,w), A(n)), (2.23)

where A(n) is any other message set of size n. This implies that in the worst case the
smallest feasible set Asrs(n) minimizes the number of messages sent. It follows that
it is the worst case set. Q.E.D.

We now define some parameters related to message positions in a network.

Definition 2.5.3 The distance between nodes i and j (i # j) in a network is defined

as

gij = 9 (2.24)

n+(j—1i) otherwise.

.

That is, g ; is the number of links between the two nodes.

Lemma 2.5.2 The mazimum and minimum value of gi;(i # j) isn —1 and 1

respectively.

Proof: We have two cases to consider.
® j>1.

With (2.24), we have g;; = j — i. It follows that

V;;max(j —1) = n—1,

Vi,jmin(j—i) = 1. (225)

2.5. Methodology for Worst Case Performance Analysis 38

o j<1.

In this case we have g;; = n + (j — i), which implies the following.

v, ;max(n + (j — 1)) n — min(i - j))

il

= m &
V;jmin(n+ (j —1)) = n—max(é—j)
= n—(n—1)

- 1. (2.26)

This concludes the proof. Q.E.D.

In a token ring network, the number of links that the token travels before a message
transmission starts is translated into a non-zero overhead, which is the time needed for
the token to reach the next sending node. We define this overhead as the contention

overhead.

Definition 2.5.4 Suppose My, My, -+, M;_\,M;,--- My are k messages sent from
message set A(n), the contention overhead of transmission of M; (1 <1< n), denoted
by c;, is defined as the time clapsed from the instant when the token leaves the node

having message M;_y to the instant when the transmission of message M; starts.

The contention overhead incurred by each message transmission may vary from one to
another depending on the protocol used and message deadline and position distribution
in the network. Clearly, the contention overhead of a message transmission can be
expressed as the product of the token node-to-node delay w and the total distance the

token has traveled from the previous sending node to the current sending node. As

39

2.5. Methodology for Worst Case Performance Analysis

we will see, the contention overhead is one of the factors determining the worst case

performance ratio.

Chapter 3

The Token Passing Protocol

In this chapter, we study a simple token passing (TP) protocol which transmits
messages in the nearest-neighbor-first order [24]. The major disadvantage of this
protocol is that it does not consider individual message deadlines. As a result, its
performance on transmitting time-constrained messages in the worst case may not be
desirable.

We first describe the protocol operation and establish some important properties
of the protocol. Using these properties, we then identify the message deadlines and
positions in the worst case message set to derive the worst case performance ratio.
Finally, we use numerical examples to demonstrate the protocol behaviors under
different values of network and message parameters. The other two protocols will

be presented and analyzed in Chapters 4 and 5 in a similar manner.

40

3.1. Protocol Description 41

3.1 Protocol Description

In the token passing protocol, each node maintains a message queue where messages
are kept in their arrival order, irrespective of their deadlines. Messages that have
missed deadlines will not be sent but removed from the queue.

A free token is circulating around the ring. If a node wishes to send a message,
it captures the token and then sends the first message from the queue. Upon the
completion of the message transmission, the node releases the token to the node

downstream, and the protocol continues this way.

3.2 Protocol Properties

The operation of the protocol indicates that the token passing protocol schedules
the global message transmission in the nearest-neighbor-first order. No mechanism is
included to take care of message deadlines. This implies that whether and when a
message is sent is determined by the its position and its arrival time regardless of its
deadline.

Before proceeding to the worst case analysis, we first outline some properties of

this token passing protocol.
Lemma 3.2.1 The token passing protocol is deadline monotonic.

Proof: First, we wish to show that for a given message set A(n), if there exists a
message set A'(n), such that A'(n) <p A(n), then the number of messages sent from
A'(n) is no more than that from A(n).

In specific, let message sets A(n) and A’(n) be

3.2. Protocol Properties 42

A(n) = {(dlapl): (d27p2), B (diapi)) Tty (dnapn)}a

A'(n) = {(dlapl),(dmpz),'“,(d;’,pi),"',(dn,pn)}, (3.27)

where d} < d; and d; = d;,1 < i,j <mn,j#i. Thus A'(n) <p A(n). We wish to show

Send(TP, N(n,w), A'(n)) < Send(TP, N(n, w), A(n)). (3.28)

Let #; denote the time when the node having message (d;, p;) receives the token. We

have two cases to consider.

o Case 1: message (d;,p;) is lost in A(n)
This implies that from ¢; there is not enough time to send message (d;,7). That

is, d; < t;+1, where 1 is the message transmission time. As d' < d;, consequently,
? ?) g 1 ? y

d; <d; <t;+ 1, (329)

indicating that d' will expire earlier than d;. Hence, (d,) will be lost. The

remaining message transmission sequence stays the same. Thus,

Send(T P, N(n,w), A'(n)) = Send(T'P, N(n,w), A(n)). (3.30)

o Case 2: message (d;,p;) is sent in A(n)
As the node having (d;, 1) receives the token at ¢;, the transmission of the message

can start at ;. Depending on the values of dj and t;, we have the following.

—d;Zti-Fl.

This implies that from time ¢; onwards, there is a time interval of at least

3.2. Protocol Properties 43

one unit of time before d! expires. Hence, it follows that (di,1) will be
sent too. The remaining message transmission sequence remains the same.

Hence,

Send(T P, N(n,w),A'(n)) = Send(T P, N(n,w), A(n)). (3.31)

—dé<ti+1.

This means there is insufficient time to send (d!, p;) from ¢;, thus, (d}, p;) will

)

be lost. If there is no message loss in A(n) after (d;, p;), then the remaining

message transmission sequence remains the same. Thus,

Send(TP, N(n,w),A'(n)) = Send(TP,N(n,w),A(n)) —1. (3.32)

Otherwise, assume (d;,p;) is the first message lost in A(n) after (diy ps),

whose deadline satisfies the following;:

1= dj <t;+1. (3.33)

Let t; and t} be the token arrival times on node p; when transmitting

messages from A(n) and A'(n) respectively. Clearly,

t = ti+14(F—i)w. (3.34)

As (d!,1) is not sent, thus ¢ = ¢; — 1. That is,

tj — t; 4+ 1. (335)

3.2. Protocol Properties 44

With (3.33) and (3.35), we arrive at

di > t; =t +1. (3.36)

Thus, (d;j,p;) is sent. Those messages on nodes between node p; and p;
are sent one time unit earlier and the transmission sequence after node p;

remains the same. Therefore,

Send(T P, N(n,w), A'(n)) = Send(T'P, N(n,w), A(n)). (3.37)

If there does not exist a lost message whose deadline satisfies (3.33), then
those messages lost after ¢; will still be lost. Transmission of each remaining

message can be started one time unit earlier. In this case,

Send(T'P, N(n,w), A'(n)) = Send(TP,N(n,w),A(n))— 1. (3.38)

With (3.30), (3.31), (3.32), (3.37) and (3.38), we have

Send(TP, N(n,w), A'(n)) < Send(T'P, N(n,w), A(n)). (3.39)

In general, for any message set A’(n) such that A'(n) <p A(n), A'(n) can always
be obtained by decreasing the deadlines of some messages in A(n). Assume that only
one message deadline is decreased each time, using a similar argument as above, we
can ensure that when a message deadline is decreased, the number of messages sent is

either reduced or the same. Hence, using the deduction method, we have

3.2. Protocol Properties 45

Send(T'P, N(n,w),A'(n)) < Send(T'P,N(n,w), A(n)), (3.40)

whenever A’'(n) <p A(n). This implies that the token passing protocol is deadline
monotonic according to Definition 2.5.2. Q.E.D.
Another important property of the protocol is related to message positions in the

network.

Definition 3.2.1 For a given message set A(n), let A*(n) be another form of A(n)

where messages are sorted according to their positions. That s,

A*(n) = {(dlapl)’(d2ap2)7'"y(dmpn)}, (341)

where p; < pj, if i < j. As we assume that each node has ezactly one message, thus

A*(TL) = {(dlal)’(d2>2)7'"7(dnan)}- (342)

With this definition, the following lemma can be established.

Lemma 3.2.2 Let two message sets be

A*(n) = {(d1’1)7(d272)""’(di’i)a(dHlai+l)a""(dnan)}a

AI*(n) = {(d,lﬁl)a(d;aQ)"",(dé)i)a(d§+1ai+l)a"'a(d:nn)h (3'43)

where d; = d; forl1<j<mnandj#1,d =dip1, diyy = d; and d; > diy1, 1 <0 < n.

If the token passing protocol is used to transmat these two sets of messages, then

Send(T P, N(n,w), A*(n)) < Send(TP, N(n,w), A"(n)). (3.44)

3.2. Protocol Properties 46

That is, for a given message set A*(n), if the deadlines of two messages on the
neighboring nodes are interchanged so that the token will visit the node with the smaller
deadline message first, then the number of messages sent by the token passing protocol

may increase.

Proof: Assume that the token arrives at node : and node 7 + 1 at time t; and ¢;44
respectively when transmitting messages from A*(n). Similarly, let their counterparts

be ¢! and t},, when transmitting messages from A™(n). It is clear that

t; =1; < tip1. (3.45)

That is, the token arrival times at node ¢ are identical when transmitting messages
from A*(n) and A”*(n). However, the times when the token arrives at node 1 + 1 may
differ, depending on whether or not the message on node i is sent after swapping.

As messages (di,) and (dit1,i + 1) from A*(n) can either be sent or lost, we have

four cases to consider.

e Case 1: both messages (d;,i) and (di41,7 + 1) are sent
We wish to show that from A™(n), (d,i) and (di,,,7 + 1) are also sent. As

message transmission sequences for both sets before t; are the same. We have

t;» =1; < tip1- (346)

As (diy1,1+ 1) in A*(n) is sent, thus,

di+1 2 ti—i—l + 1. (34:7)

3.2. Protocol Properties 47

Combining (3.46) and (3.47), we arrive at

Because d} = dip1 > i+ 1, thus, (dj,?) is sent. As node 7 + 1 is the nearest

neighbor of node % and (d, i) is sent, thus £;,; = tit1. Consequently,

di >diy1 2t +1= t2+1 + 1. (349)

It follows that

d§+1 =di > t;’+1 +1, (3.50)

indicating that (dl,,,7 + 1) is also sent. The remaining messages are the same

in both sets, thus

Send(T P, N(n,w),A*(n)) = Send(T P, N(n,w), A™(n)). (3.51)

e Case 2: both (d;,i) and (diy1,2 + 1) are lost
We wish to show that (d},7) and (d},,,¢+ 1) from A™(n) are also lost. First, as
messages positioned before node i are the same in both sets, thus ¢, = ¢; holds.

Second, as (d;,) is lost, we have

di < ti+1. (3.52)

As d; > diy1, from (3.45) and (3.52), we have

3.2. Protocol Properties 48

diy1 < d; <t;+1= t; + 1. (353)

Thus, it follows that

d =digy <ti+1, (3.54)

which implies that (d.,4) is lost. As node i+ 1 is the nearest neighbor of node ¢
and in both sets the messages on node ¢ are lost, thus, the time when the token

reaches node 7 + 1 is the same, that is ¢, ; = ;1. Consequently,

d;+1:di<ti+l<ti+1+1=tg+1-|-1. (355)

This implies that (d},,,i+ 1) is also lost. Hence,

Send(TP, N(n,w), A*(n)) = Send(TP, N(n,w), A"(n)). (3.56)

o Case 3: (d,i) is sent, but (dij1,i+ 1) is lost

With regard to time ¢; and di11, we have two subcases to consider.

— dig1 2 i+ 1.

That is,

d=diy 2 ti+1=ti+1 ()

Hence, (d%,7) is sent. It follows that #;,; = i1, Moreover, ifd; >t +1,

that s,

3.2. Protocol Properties 49

diyy = di > th +1, (3.58)

then (d'.. .7+ 1) is sent; otherwise, it is lost. Thus, we have
419)

Send(TP, N(n,w), A*(n)) < Send(T P, N(n,w), A™(n)). (3.59)

- di+1 < ti + 1
Because d} = diy1 < ti+1 =1t} +1, (d},i) is lost. Let s denote the number

of messages sent before the token arrives at node 1, we have

d>t+1=s+iw+1. (3.60)

As d; is an integer, thus

d; > [s+iw+1] (3.61)

With the assumption iw < nw < 1, we establish the following:

[s+iw+1] = [s+@+Dw+1]. (3.62)

It follows that

taa=di > [s+iw+1]
— [s+(+Dw+1]

>t + 1 (3.63)

3.2. Protocol Properties 50

Hence, (d},,% + 1) is sent.

The remaining messages in both sets are the same. Therefore,

Send(T P, N(n,w), A*(n)) = Send(T' P, N (n,w), A™(n)). (3.64)

o Case 4: (d;, 1) is lost, but (diya,i+ 1) is sent

This means

d; <t;+1, and (365)

di+1 Z ti+1 + 1. (366)

Because d; > diyq and t; < 341, (3.66) becomes

d; > d¢+1 >t +1 >+ 1, (367)

which contradicts to (3.65). Hence, this case does not exist.

With (3.44), (3.51), (3.56) and (3.59), we have

Send(T'P, N(n,w), A*(n)) < Send(TP,N(n,w), A"(n)). (3.68)

This concludes the proof. Q.E.D.

3.3. Worst Case Performance Analysis 51

3.3 Worst Case Performance Analysis

Lemmas 3.2.1 and 3.2.2 have established the message deadline and position ordering
i1 terms of the worst case performance ratio among the equal-size message sets. Using
these lemmas, we can now identify the worst case message set which yields the worst

case performance ratio for the token passing protocol.

Lemma 3.3.1 Given a token ring of n nodes, if the token passing protocol is used to

transmit n messages, the worst case message set 1s

ch(n) = {(17”‘)7 (2’n - 1)7 B (TL - 172)7 (na 1)} (3'69)

That is, in the worst case messages are positioned in the network in the decreasing

order of their deadlines.

Proof: Lemma 2.4.1 states that message deadlines of any feasible message sets of
size n must satisfy d; > i (1 <i <n). With (2.12), we know that for message sets of
size n, the one having message deadlines of {1,2,...,n — 1,n} is the smallest feasible

set, thus we have

Aue(n) <p A(n), (3.70)

where A(n) is any other message sets of size n.

On the other hand, we see that messages in Ayc(n) given in (3.69) are positioned
in the decreasing order of their deadlines, such that the one with the largest deadline
is always sent first by the token passing protocol. From Lemma 3.2.2, we know that

for a given message set, if the deadlines of two messages on the neighboring nodes are

3.3. Worst Case Performance Analysis 59

interchanged so that the token will visit the node with the smaller deadline message
first, then the number of messages sent by the token passing protocol may increase.
Tt follows that the number of messages sent from A,.(n) is minimized since messages

are positioned such that the largest deadline message is always sent first. Therefore,

Send(T P, N(n,w), Auc(n)) < Send(T P, N(n,w), A(n))- (3.71)

That is, Ay(n) is the message set that yields the worst case performance ratio of the
token passing protocol ~ Q.E.D.
With the worst case message set given in (3.69), it is straightforward to compute

the worst case performance ratio.

Theorem 3.3.1 The worst case performance ratio of the token passing protocol is

0 n<w+1,

R(TP,w, n) = ﬁ (3.72)
|24 :
i;*f— otherwise.

Proof: We first calculate the number of messages sent from Ay.(n) by the token
passing protocol. Let s denote Send(T'P, N(n, w), Awe(n)).

At time 0, the token is released from node n, moving towards node 1 which holds
message (n,1). It takes w units of time for the token to reach node 1. We have two

cases to consider.

e No message is sent

This happens if n < w+ 1. When the token arrives at node 1, the latest time to

3.3. Worst Case Performance Analysis 53

send message (n, 1) has passed. As the deadlines of the rest messages are smaller

than n, all messages have been lost.

e One or more messages are sent.
Suppose s messages are sent. As d; > d; for ¢ < j, and messages are sent in
the latest-deadline-first order, those s sent messages must be (n,1), (n —1,2),
(n —2,3), -+, (n—s+1,s). That is, the i-th sent message is on node ¢. Thus,
the overhead for each message transmission is simply the time for the token to
travel from one node to its nearest neighbor, i.e. the token node-to-node delay
w. As a result, each message transmission takes 1 4 w units of time. As the
message having a deadline of n — s +1 is the last message sent, its deadline must

not expire when the transmission of this message 1s completed. That 1s,

n—s4+1>sx(1+w). (3.73)

Solving (3.73) for s in terms of n and w, we have

S<n+1

S (3.74)

As a total of s messages are sent, s must be the largest integer which satisfies

(3.74). That is,

_ L'n+1
T tw 42

J: (3.75)

As the worst case performance ratio is defined as the fraction of messages sent

from the message set, this leads to (3.72). Q.E.D.

32.3. Worst Case Performance Analysis 54

This theorem implies that the worst case performance ratio is a decreasing function
of parameters n and w.

We now extend Theorem 3.3.1 to more general cases.

Corollary 3.3.1 If the token passing protocol is invoked at time T, to transmat
messages from the worst message set given in (3.69), then its worst case performance

ratio 18

0 n<Ty+w+1,

R(TP,w, n,Ts) = 1« (3.76)
L'n.j:l—Ta
—%— otherwise.

\

This corollary can be easily proved by substituting s x (1 + w) with T, + s X (1+ w)
on the right hand side of (3.73), since the protocol is invoked at time e
Corollary 3.3.1 can be further extended to the case where the size of the message

set is smaller than the number of nodes n.

Corollary 3.3.2 If the token passing protocol is invoked at time Ty to transmil h

(h < n) messages, then its worst case performance ratio is

s

0 h<w+1,
R(TP,w,n,h,T;) = A (3.77)
Lhi‘l—'.l"gJ .
| —=t = otherwise,

Proof: As the token passing protocol is deadline monotonic, with a similar

argument used in the proof of Lemma 3.3.1, the worst case message set for h messages

3.3. Worst Case Performance Analysis 55

18

{(l,pl)’ (2ap2)a Tty (h - 1,ph—1), (h,Ph)}, (378)

where py > pa > -+ > Pp—1 > Ph. As there are n nodes but h messages (h < n), these
messages can reside on any nodes as long as they are distributed in the decreasing
order of deadlines.

Let s (s < h) denote the number of messages sent from A(h). Asin the worst case
the token passing protocol sends messages in the latest-deadline-first order, thus the

s sent messages must be

(h7ph)a (h - 1aph—1)a T (h’ —st 2)ph—s+2)a (h — s+ 1,ph~s+1)» (379)

As at time T, the token is at node n, moving towards node p, where message (h,pn)
resides, evidently the first message transmission incurs an overhead of ¢y p,w where
Gnpy, is the distance from node n and node p;, as defined in Definition 2.24. After
the transmission of message (k, pn) completes, the token moves from node p;, to node
pr_1. Thus, the overhead involved in the second message transmission 18 g p,_, W-
Likewise, the transmission of the s-th message (h —s+1, Ph_s+1) incurs an overhead

of Gh—st2,pn_oy W- Hence, the transmission of s sent messages completes at

T, + (gn,phw + 1) S (ghyph—lw + 1) +-t (gh—s+2,ph—s+1w + 1)
= Ts+ (g'nmhw + Ghpp_ W+ F Ghest2,pp_sp1 w) +s

= T+ (Gnipn + Ghipnes + 77 T Ghst2,pngys)W + 5. (3.80)

3.3. Worst Case Performance Analysis 56

The term (gnp, + Jhpny T F Ghost2,n_spa) iDL (3.80) is the total number of links

that the token has traveled when s messages are sent. Clearly,

8 < Gupn F Ghpnos Tt Ghmstzpn_sys ST (3.81)

That is, to send s messages, the token must travel at least s links since these messages
reside on s different nodes.
As message (h— s+ 1, pr_s11) is the last sent message, its deadline h — s+ 1 should

not expire when its transmission complete. With (3.80), we arrive at

h—s+1l2> T, + (gnvph + Ghpn1 i gh—8+2mh—s+1)w + 8. (3'82)

With (3.81), (3.82) becomes

h—s+1>T,+ sw+s. (3.83)

Solving s in terms of w, h and T, we have

h+1-T,
< —_—
8§ < s (3.84)

As s is the total number of messages sent, s must be the largest integer satisfying

(3.84). Hence,

h+1-="1T;

w42 = (3:85)

This concludes the proof. Q.E.D.

3.4. Numerical Results and Discussions 57

l 1 I 1 1 1 1 Ll L
W=0—~—
W= 0.001 —+—
W= 0.002 -8~
0.8 F W= 0.003 > -4
0.6 =]
M~ i & = o - ™ ®
0.4 r 4
0.2 .
0 1 1] 1 1 1 1 1
2 4 8 16 32 64 128 256 512 1024

n

Figure 3.1. Worst Case Performance Ratio of TP

3.4 Numerical Results and Discussions

From Lemma 3.3.1, we sce that the worst case performance ratio of the token passing
protocol is always less than one. The following factors contribute to the performance

loss.

e The token passing protocol implements the nearest-neighbor-first transmission
policy. In the worst case, it sends messages in the latest-deadline-first order,
which is in contrast to the CEDF protocol that always sends the earliest deadline
message first. This nearest-neighbor-first transmission policy does not consider
individual message deadlines, as a result it has a severe performance impact.
To see this more clearly, we consider the worst case performance ratio given in

(3.72) when the token node-to-node delay w is 0,

3.4.

Numerical Results and Discussions 58

L5

R(TP,w,n) < (3.86)

N | =

o~
~

n

That is, given the same perfect environment where the contention overhead is
assumed to be zero, the token passing protocol can send only half the messages
sent by the CEDF protocol. This is solely due to the non-EDF transmission
policy used by the token passing protocol. Figure 3.1 shows the result. We see
that in the plotted ranges of n and w, the worst case performance ratio is as
low as 0.5. It also shows that the performance of the token passing protocol is
relatively insensitive to parameters w and n, which implies that the dominant
cause for its poor worst case performance is the non-EDF transmission policy

used.

The token passing protocol requires a non-zero contention overhead, which is
equal to the token node-to-node delay. To send a message, it takes at least w
units of time for the token to travel from the current node to the node where the
next sending message resides. This amount of time is the contention overhead,
which is also responsible for degrading the protocol performance. However, we

see that its impact is negligible as compared with that of the transmission policy.

Chapter 4

The Priority-Driven Protocol

In the last chapter, we analyzed a simple token ring protocol which schedules message
transmission using the nearest-neighbor-first policy which does not consider individual
message timing requirements. Because of this, the token passing protocol is not
commonly used for real-time communications. Instead the predominant approach
taken by many proposed standard or non-standard token ring protocols is priority-
driven [1, 8, 11, 17, 40, 44] as discussed in Chapter 1. Under these token ring protocols,
messages are assigned different access priorities based on their service classes. At
any time the message with the highest priority is sent first. Although discriminating
messages based on service classes is adequate in a non real-time environment, these
protocols may perform poorly in supporting real-time message transmission as they
do not explicitly address individual message deadlines.

In this chapter, we propose and study a modified priority-driven (PD) token ring
protocol which explicitly addresses individual message deadlines [24, 47, 49, 51]. It
uses a prioritized access mechanism together with a priority assignment function to
support time-constrained message transmission. Different access priority levels are

used to differentiate messages with different deadlines. We show that when the number

59

4.1. Protocol Description 60

of priority levels is sufficient, the protocol implements the exact EDF transmission
policy; otherwise, it only approximates the EDF policy. Consequently, in the worst

case, the protocol performance may not be desirable.

4.1 Protocol Description

In this protocol, each node implements a priority assignment function which assigns
an access priority to each message based on its deadline upon its arrival. Each node
maintains a prioritized message queue where messages are kept in the decreasing order
of the access priority. Messages whose deadlines have already expired are discarded.
At any time the head of a message queue at a node represents the highest priority
message queued at that node, and thus is considered for transmission before any other
messages in that queue.

The token contains a priority field to facilitate the prioritized access to the ring.
When a free token arrives at a node, the node examines the token priority field and
inserts the highest priority of its pending messages (if any) if this priority is higher
than the one currently indicated in the t;)ken. This enables the token priority field to
represent the highest priority of messages waiting in the system after the token has
completed at least one full circulation around the ring. A node is allowed to capture the
token and transmit its message only when the token returns with the node’s claimed
priority after passing through all other nodes. When the sending node completes the
message transmission, it issues a new token with the token priority field set to the
lowest priority. The protocol continues this way.

As this priority-driven protocol incorporates message deadlines into priorities, it

is expected to perform better than the simple token passing protocol analyzed in the

4.2. Priority Assignment Function 61

last chapter. On the other hand, we can see from the above description that the
contention overhead of this protocol is substantially higher than that of the token
passing protocol. This is because after a message transmission, it takes at least w (at
most (n — 1)w) units of time for the token to reach the node where the message with
the next highest priority resides; it then takes another nw units of time for the token
to return to this node. At that time the node starts transmitting the message. We will
show that this higher contention overhead may degrade the protocol performance such
that the priority-driven protocol performs even worse than the simple token passing

protocol in some situations.

4.2 Priority Assignment Function

As already mentioned, to incorporate message deadlines into this priority-driven
protocol, a priority assignment function is used to map message deadlines to access
priorities. Before introducing a specific priority assignment function, we first identify

the characteristics of deadline-to-priority mapping functions in general.

e Non-decreasing
A message with a smaller deadline should always be assigned a higher priority.
Formally, for two messages M and M’ with deadlines being d and d' respectively,

if d < d', then we have

PT‘iM = f(d) S P’I"iMl = f(d,) (4.87)

e Finite range

In practice, the number of priorities provided by the token is limited by the

4.2. Priority Assignment Function 62

token length. This implies that the priority assignment function must have a

finite range.

e Many-to-one
As the number of message deadlines is theoretically infinite, given a finite priority
range, the priority assignment function must map an infinite number of deadlines
to a finite number of priorities. The impact of the many-to-one property is that
no matter what form the mapping function has, more than one message with
different deadlines may be assigned the same priority. As a result, the one with
a larger deadline may be sent first. Hence, the priority-driven protocol only

approximates the EDF policy.

These properties are common to any mapping functions implementing the EDF

policy. Following is a general form of priority assignment functions.

4,
N

Priy = f(d,q) = ¢ (4.88)

{ m f§]>m,

where ¢ is the length of priority assignment function. We see that f(d,q) defined in
(4.88) is a non-decreasing many-to-one function, which has the properties discussed
above.

Theoretically, it is difficult to decide the optimal length of the priority assignment
function as it depends on network and protocol parameters, and the message deadline
distribution of the applications. However, in Chapter 7 which deals with the average
case performance of the protocol, we will examine the impact of the length of priority

assignment function g on the protocol performance.

4.2. Priority Assignment Function 63

To facilitate our worst case analysis, we now introduce a simple priority assignment
function. Assume that there are m priority levels indexed by 1,2,---,m, where 1 is
the highest priority and m is the lowest. Let integer d be the deadline of message M
and Pripys be the priority of M determined by the priority assignment function, we

have

d d<m,

Priyg = f(d,1) = (4.89)

m d>m.

.

Clearly, this priority assignment function is non-decreasing and many-to-one.
Furthermore, it is a special case of the priority assignment function defined in (4.88)
with ¢ = 1.

It should be pointed out that although many other mapping functions are feasible,
this assignment function is chosen for the purpose of reducing the complexity of the
worst case performance analysis.

Figure 4.1 shows this priority assignment function when the number of priorities
m is 64 and 256 respectively. For the curve of m = 64, we see tha a message with
a deadline smaller than 64 is assigned a distinct priority’. The smaller the deadlines,
the higher the priorities (i.e. the lower numerical value). In this case, when a message
is transmitted, it must have the highest priority, thus the earliest deadline, among
all pending messages at that time. Clearly, the protocol is implementing the EDF

transmission policy exactly.

1Gimilar observations can be made for the curve of m = 256 except that the turning point is now
at n = 256 instead of n = 64.

4.2. Priority Assignment Function 64

1024 L] 1 T 1 T ¥ 1 L)
512 | m = 256 —+—
256 JF S

128 '._J_+"‘ =

1)

64 | P —

Pri = £(d,
w
)
1

16 | /’ 4

2 i 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256 512 1024

d

Figure 4.1. A Priority Assignment Function

On the other hand, messages with deadlines equal to or greater than 64 are assigned
the same priority of 64. These messages are not differentiated for transmission. As a
result, messages with smaller deadlines may have to wait while a message with a larger
deadline is being transmitted. Evidently, in this case the protocol only implements
the EDF policy approximately. Therefore, the EDF policy is observed by the priority-
driven protocol only among different priority levels, but not necessarily within the
same priority level. Consequently, more messages may be lost as compared with the
case where the EDF policy is implemented exactly. The following example illustrates

this point.

Example 4.2.1 Suppose there are two priorities levels are available: Pri 1 and

Pri 2. The priority assignment function is defined as

4.2. Priority Assignment Function 65

d d<?2,
Priy = f(d,1) = (4.90)

2 d>2.

Suppose there are four messages residing on different nodes with deadlines of 2, 3, 4
and 6 respectively. Each message transmission 1s assumed to take 1.1 units of time.
With the priority assignment function defined in (4.90), each message is assigned

the same priority upon its arrival:

PT‘iMl = PT"I:M2 = P’r"llj\/[3 = P’r'i]\/[4 ==

As messages have the same priority, the node that captures the token first will
send its message first. Suppose the node with M, seizes the token first and completes
transmission of My at time 1.1. Then the node with M3 captures the token and the
transmission of Ms completes at time 2.2. At that time the deadline of My has already
ezpired. The remaining message My will also be lost, since a message transmission
from time 2.2 will be completed at time 8.3 by when the deadline of My has already
expired. Thus, in this case, only two messages are sent. Figure 4.2(a) shows the time
diagram for message transmission in this case.

However, if the EDF transmission policy is strictly observed, message transmission
sequence in terms of message deadline should be 2, 3, 4 and 6. The times when the
corresponding message transmission completes are 1.1, 2.2, 3.3, and 4.4. Clearly, all

messages can make their deadlines as illustrated in Figure 4.2(b).

Tt is obvious that the priority assignment function defined in (4.89) maps a deadline

to a priority staticly, i.e. for a given deadline, its corresponding priority is determined

4.2. Priority Assignment Function 66

M4 (d = 6) M3 (d = 4)

I | | I

0 11 2.2 33 t

!

M1 (d=2) lost M2 (d=3) lost

Y

Gy

M1 (d =2) M2 (d = 3) M3 (d = 4) M4 (d = 6)

(b)
Figure 4.2. Time Diagram of Message Transmission

and fixed. However, if priorities are assigned dynamically rather than staticly, then
fewer messages would have been lost. That is, upon a message arrival or a transmission,
all message deadlines are re-ordered in the increasing order and then assigned priorities
in the decreasing order (starting from the highest priority). In the above example, if
priorities are assigned dynamically, then initially the message with a deadline of 2
would be assigned Pri 1 and hence be sent first, followed by messages with Pri 3,
4 and 6 respectively. No messages would be lost. However, it is not difficult to
see that the implementation of such dynamic priority assignment function requires a
centralized controller which has the complete knowledge of explicit deadlines of all
messages waiting in the system. Evidently, it is not possible for each node in a token
ring network, which only knows its own message deadlines, to obtain explicit global
message deadline information in a distributed manner.

It may also be argued that if sufficient priorities are available, then the EDF policy
may be observed. In the above example, if four priority levels are available, then each

message would be assigned a distinct priority. As a result, all messages would be sent

4.3. Worst Case Performance of PDp>p 67

successfully. In the worst case analysis of the protocol, we will examine the impact of
the number of priorities on the protocol performance.

In the following, we wish to derive the worst case performance ratio of the priority-
driven protocol for a set of messages with arbitrary deadlines. Let d and D denote
respectively the earliest and latest deadline of a set of messages. we use PDpsp,

PDp<q and PDycmep to indicate the following.

e PD,.,5p: the priority-driven protocol is used to transmit a set of messages whose

deadlines are smaller than m.

o PD,,<4: the priority-driven protocol is used to transmit a set of messages whose

deadlines are equal to and greater than m.

e PDjcmep: the priority-driven protocol is used to transmit a set of messages

whose deadlines are smaller than, equal to and greater than m.

As the protocol behaves differently in these three cases, we deal with them separately
in order to reduce the complexity of the analysis. However, it will become clear that
PD,.~p and PD,<y are special cases of PDycm<D, thus the worst case performance

analysis of the first two cases will provide some insights and results for the third case.

4.3 Worst Case Performance of PD,,.p

We now analyze the worst case performance of the priority-driven protocol when used
to transmit messages whose deadlines are smaller than the number of priorities. With
the priority assignment function given in (4.89), each message is assigned a distinct

priority level since its deadline is smaller than m.

4.3. Worst Case Performance of PD,,~p 68

In the following, we first present several lemmas which characterize the protocol
properties associated with P Dp»p. With these properties, we then derive the bounds
of the number of messages sent in the worst case and obtain the bounds of the worst
case performance ratios. Using these bounds, we arrive at an estimation of the worst
case performance ratio. Finally, we give a quantitative measurement, of the maximum
error of the estimation.

We begin with the examination of the impact of message deadlines on the number

of messages sent by PDy»p.

Lemma 4.3.1 Given two message sets of size n

A(n) . {(dlvpl)’ (d27p2)> Ty (dn—l,pn—l)a (dmpn)}a

Al(n) = {(dllapl)? (d’2)p2)a T (d;—ppn—l)a (d;“pn)}, (491)

where d; < d; (i <j), di=d; 1<i<n—1)andd, < d’, if the EDF policy is used

to transmit these two message sets, in the worst case,

Send(EDF, N(n,w), A'(n)) > Send(EDF, N(n,w), A(n)). (4.92)

Proof: As messages are sorted in the deadline order and the EDF policy is
implemented, thus (dn,p,) and (d,,p}) must be the last message sent from A(n)
and A’(n) respectively if they are sent. We see that message deadlines in A'(n) are
the same as those in A(n) except for d,. Clearly, the message transmission sequence
remains the same up to (dn—1,Ppn1) for both A(n) and A'(n).

Let t be the time when message transmission of the first n—1 messages is completed.

Tt follows that the message transmission sequence remains the same up to time ¢. Let

4.3. Worst Case Performance of PDpsp

69

r denote the message transmission time plus the contention overhead. There are two

possible cases:

e d, is sent in A(n).

That is, d, >t + 7. Hence

d,>d, >t+r.

Thus, d’, is sent too. We have

Send(EDF, N(n,w), A'(n)) = Send(EDF, N(n,w), A(n)).

e d, is lost in A(n).

This implies d, <t + 7. If d, < d], <t+4 7, then d;, is also lost, thus

Send(EDF, N(n,w), A'(n)) = Send(EDF, N(n,w), A(n));

otherwise, if !, > d,, >t + 7, then d], is sent, hence

Send(EDF, N(n,w), A'(n)) = Send(EDF, N(n,w), A(n)) + 1.

In summary, we have

Send(EDF, N(n,w), A'(n)) > Send(EDF, N(n,w), A(n)).

This concludes the proof. Q.E.D.

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

4.3. Worst Case Performance of PD,,~p 70

Lemma 4.3.2 If the EDF transmission policy is used to transmit n messages, the
message set with a mazimum message deadline of n minimizes the number of messages

sent.

Proof: From Lemma 4.3.1, we know that the smaller the maximum deadline of a
message set, the smaller the number of message sent. For n messages, the deadline of
the last message must satisfy d, > n to ensure the feasibility of the message set. Hence
a message set with d, = n minimizes the number of messages sent. This concludes
the proof. Q.E.D.

We now compute the number of messages sent from a set of n messages with a

maximum deadline of n.

Lemma 4.3.3 If the EDF policy is used to transmit n messages with a mazimum
deadline of d, = n and each transmission takes T (r > 1) units of time (including the

overhead), then the total number of messages sent, denoted by s, ts given by
n
5 = L;J, (4.98)

where |z| is defined as the largest integer which is smaller than z.

Proof: Let these n messages be

A('I’L) = {(dlapl)a (d%PZ),) (dn—lapn—l)a (dn)pn)} (499)

If s # |2], then either s > |2] or s < [}]. In the following, we wish to prove that
neither of them is true.
o s> |2

Without loss of generality, let

4.3. Worst Case Performance of PDp>p 71

s= (2] +i, wherei> L. (4.100)
T
The time ¢ when the transmission of s sent messages completes 1s

i = sXrT

_ (Lg [+i) xT. (4.101)

Let n = |2]7 + &, where 0 < & < 7, hence |2] = 2==. It follows that

& = (n —° +1) XT
T
= n—e+1r (4.102)
Rearranging the above, we arrive at
t—n = 1T—¢€
> 0, asT>cand 7> 1. (4.103)

It follows that ¢ > n, which implies that there must exist a message having a

deadline greater than n. This is impossible as d, = n is the largest deadline and

messages and messages are sent in the EDF order. Hence s > |2] does not hold.
e s < |2

Similarly, let

s = |_§J — 1, where ¢ > 1. (4.104)

4.3. Worst Case Performance of PDp>p 72

Using the same approach, we have

I = 8XT
n .
= (1R xr
T
n—¢ .
= — 1) X
(. i) X T
= n—g€—1IT
< n—e—r, ast > 1
< n-1, as T >1and e >0. (4.105)

That is, the message transmission is completed before time n — 1. This implies
that message (dn,pr) with a deadline of d, = n must have been sent. As the
protocol implements the EDF policy and dy = n is the largest deadline, it must
be the last sent message. It follows that message (dn-1, pn—1) must have be sent

before (dn,py) and its transmission completes at

n—1—-7 < n-—2, as T > 1. (4.106)

That is, transmission of message (dn—1, pn_1) is completed before time n — 2.
Repeat this process for messages (dn—z,Pn—2), (dn—3yPn—3), -+ (da, pa) with the
same argument, it is easy to see that transmission of message (d2,p2) must be
completed before time 2 — 7 < 1. This is impossible because it takes at least 7
units of time to complete the first message transmission since 7 > 1. Hence, the

hypothesis s < |2]| can not be true.

In summary of the above two cases, we must have s = |*]. Q.E.D.

The above lemma can be readily extended to more general cases.

4.3. Worst Case Performance of PDy>p 73

Corollary 4.3.1 Given a network of n nodes and h (h < n) messages with a
mazimum deadline of h, if messages are transmitted in the EDF order starting at
time T, and each transmission takes T (T > 1) units of time (including overhead),

then the total number of messages sent, denoted by s, is given by

Il (4.107)

Proof: This lemma can be easily proved by substituting t = s x 7 with ¢ = Ts+s X7
in (4.101) and (4.105). Q.E.D.
Let us now consider the contention overhead involved in a message transmission

under PD,,~p protocol.

Lemma 4.3.4 Given a token ring of n nodes, under PDy>p messages are sent in
the EDF order and the mazimum and minimum contention overhead of a message

transmission is (2n — 1)w and nw respectively.

Proof: As all message deadlines are smaller than m under PDj,>p, with the
priority assignment function defined in (4.89), messages with different deadlines are
assigned distinct priorities. As PDpsp sends messages in the order of decreasing
priority, thus it sends messages in the EDF order.

Assume that at time 0, the token is released from node 7 moving toward node 7 +1.
Suppose that the highest priority message resides on node j (j # ¢).

With definition (2.5.3), it takes the token g; jw units of time to reach node j (1 #j)
which holds the current highest priority message. It then takes another nw units of

time for the token to pass through the network and return to node j so that it can start

4.3. Worst Case Performance of PDy5p 74

its message transmission. The contention overhead ¢ of a message transmission can
thus be seen as the sum of two components. One is the time ¢ needed for the token
to travel from the last sending node (or the initial token node) to the node having the
current highest priority message. The other is the amount of time ¢, required for the
token to complete a full token circulation to confirm that this is indeed the highest

priority message currently in the network. Formally,

c = c+tece

= g;;w+ nw. (4.108)

From Lemma 2.5.2, the maximum and minimum value of g;,; isn—1 and 0 respectively.
Therefore, the maximum and minimum contention overhead, denoted by ¢per annd Crin

respectively, is obtained as follows.

Cmae = ViV;max(g;;w + nw)
= (n—1w+nw

= (2n—1)w. (4.109)

e, = V,VJ min(gi,jw + nw)
= 0+ nw

= nw. (4.110)

This concludes the proof. Q.E.D.
From Lemma 4.3.4, it seems that if messages are distributed in such a way that

each transmission always incurs a maximum contention overhead of (2n — 1)w, then

4.3. Worst Case Performance of PDy,>p 75

we would have the worst case performance of PD,,p. However, the following example

demonstrates that this is not always true.

Example 4.3.1 Given a network of 10 nodes and the token node-to-node delay w of
0.027. A message set A(n) contains 10 messages whose deadlines are 1, 2, - -+, 9 and
10 respectively. Let us now ezamine if it is possible that each message transmission
incurs a mazimum contention overhead of (2n-1)w, i.e. 0.513 in this case.

If so, the first message to be sent must reside on node 9 and its deadline must

satisfy the following:

b = [@n—1w+1]
= [0.513 +1]
= [1.513]

= J (4.111)

In the above, [z] is defined as the smallest integer which is greater than z. That is,
message (2, 9) is the first sent message. In the following, we show that this is indeed
the case. First, message (1,p1), where py # n —1, has a deadline of 1 and ts on a
node which is visited by the token before node 9, thus message (1,p1) is considered
before message (b1,9). From Lemma 4.3.4, the overhead of a message transmission is
at least nw. Thus, the transmission of message (1,p1) will complete no earlier than
time nw + 1 = 1.59 > 1. This indicates that at that time, the deadline of the message
has expired. Thus, the node does not write the priority of message (1,p1) into the
token. For other messages, their deadlines are larger than by. Hence, message (b1,9)

is the first sent message.

4.3. Worst Case Performance of PDp,»p 76

The transmission of the first message (2, 9) completes at time 1.513 and message
(1,p1) has been lost. Similarly, if the transmission of the second sent message incurs

a contention overhead of 0.53, then the message must reside on node 8 and have a

deadline of

by = [2x(2n+1)w+1)]
— [2x1.513]
— [3.026]

= 4. (4.112)

Let message (4,ps) be on node 8, thus message (3,p3) is on a node other than node 8,
say node 7. We wish to show that message (3, 7) is the second sent message rather
than message (4, 8). Clearly, It takes the token Sw units of time to reach node 7 from
node 9. The node writes its priority into the token. It takes the token another 10w

units of time to return to node 7. That is, at time

t = 1513 + (84 10) x 0.027

= 1.999, (4.113)

the transmission of message (3, 7) starts. It is completed at time 2.999. At that tume,
the deadline of message (3, 7) has not expired yet. So message (3, 7) is the second

sent message which has an overhead of (2n-2)w rather than (2n-1)w.

In the example, we see that message (3, 7) is the message that makes it impossible
for the second sent message to have the contention overhead of (2n — 1)w. For the

transmission of message (3, 7), the maximum contention overhead is (2n — 2)w.

4.3. Worst Case Performance of PDy,>p 7

4.3.1 Lower Bound of R(PDy>p,w,n)

The above example implies that given a n-node token ring, not every message
transmission incurs a contention overhead of (2n — 1)w, but (2n — 1)w is indeed the
maximum possible overhead incurred. We now derive the lower bound of the number

of messages sent by PD,,>p based on this overhead.

Lemma 4.3.5 Given a token ring of n nodes, if PDysp is used to transmit n

messages, the lower bound of the number of messages sent is

7

Sendjow(PDp>p, N(n,w), A(n)) = 1_(|. (4.114)

2n — 1)w + 1

Proof: Lemma 4.3.2 indicates that for n messages, if the EDF policy is employed
to transmit messages, the message set with the maximum message deadline being n
minimizes the number of messages sent.

Lemma 4.3.4 states that (2n—1)w is an upper bound of the contention overhead for
a message transmission under P Dy p, alower bound of Send(PDmsp, N(n,w), A(n))
can be obtained by substituting 7 = (2n — 1)w 4+ 1 in Lemma 4.3.3. Q.E.D.

With this lemma and the definition of the worst case performance ratio, we can

readily obtain the following theorem.

Theorem 4.3.1 The lower bound of the worst case performance ratio of PDp>p 1s

| @miyeri)
Rlow(PDm>D,w7n) — (—2_;}+_1 (4115)

4.3. Worst Case Performance of PDp>p 78

With Corollary 4.3.1, the above theorem can be extended to the case where the

number of messages is less than n and the protocol is invoked at time T, > 0.
Corollary 4.3.2 Gliven a network of n nodes and h (h < n) messages, if PDm>p 15
invoked at time T, to transmit these messages, then the lower bound of the worst case
performance ratio 1is

_h=1y
I-{jn l]w+1-|

Rlow(PDm>D,'w,n, h)Ts) — 7

(4.116)

4.3.2 Upper Bound of R(PDy.p,w,n)

As the upper bound for the message transmission overhead is (2rn — 1)w, hence,
nw,(n + 1w, --,(2n — 2)w are the possible lower bounds. To obtain the upper
bound on the worst case performance ratio, we first derive a lower bound on the

contention overhead for a message transmission.

Lemma 4.3.6 When PD,,>p is used to transmit messages from

A(n) = {(1,p1),(2,p2), -, (n = 1,pn1), (0 Pu) }5 (4.117)

the messages can be positioned in the ring such that the contention overhead for each

message transmission is at least (2n — 2)w.

Proof: Let p; = (b;,n;) be the i-th sent message, where b; is its deadline and n; is
its position. Let ng = n and t; be the time when the :-th message transmission starts.
The lemma is proved if we can show the following statement is true: messages in A(n)

are positioned in such a way that for the i-th sent message p; = (bi,ni), where

4.3. Worst Case Performance of PDp>p 79

b = [tiii+(2n—1Dw+1], (4.118)
N;—1 — 2 S n; S nN;—1 — 1, (4:].19)
tir+@n—2dw+1 < t;<tig+(@2n—1lw+tl. (4.120)

That is, for the message set given in (4.117), the i-th sent message ; has a deadline
of ti_1 + [(2n — 1)w + 1] and resides either on node n;_; — 1 or on node n;_; — 2. The
transmission of message p; completes either at tio1+(2n—1)w+1 or tio1+(2n—2)w+1.
It is clear that the deadline and position of message p; depends on its predecessors
due to the uncertainty that each message transmission incurs an overhead of either
(2n — 1)w or (2n — 2)w.

We prove this by induction. First, we show that u = (b1, no — 1), where

by = [to+(2n—1w+1]
= [@n—Dw+1],
ng = no—1
= n-—1,
tp = to+(@2n—lw+1

= (2n— 1w+ 1. (4.121)

As at time 0 the token is moving from node n to node 1, the time when the token
arrives at node n — 1 for the first time is (n — 1)w. It then takes the token another nw
units of time to return to node n — 1. Thus, the transmission of message (by,n — 1)
starts at time (n—1)w+nw. Message (b, n—1) is sent successfully as there is sufficient

time to complete its transmission before its deadline expires. That is,

4.3. Worst Case Performance of PDp>p 80

(n—1w+nw+1
= (2n—1w+1
< [@2n-1w+1]

= b (4.122)

We need to demonstrate that messages on other nodes are either lost or have lower
priorities than message (b1,n — 1). Assume that a message M’ is on node 7 and has a

deadline of d'. Two cases need to be considered.

o d > b = [(2n — 1)w +1]. In this case, when the token arrives at node 7, the
node writes this message’s priority into the token. However, the priority field in
the token will eventually be modified to a priority of [(2n — 1)w + 1] by node

n — 1. Therefore, M’ is not the first sent message.

o d < b =[(2n—1w+1]. As PDp5p implements the EDF policy, messages
with deadlines of &, such that 1 < d' < by, have higher priorities than message
(by,n — 1), thus they may be considered before message (by,n —1). However, as

d' < b, and both d' and b; are integers, we have

d < b—1
= [@n-Dw+1] -1

= [(2n —1)w]. (4.123)

On the other hand, it takes the token jw units of time to travel from node n
to node j for the first time. Then it takes the token another nw units of time

to return to node j. Hence, the time when node j can start transmitting its

81

4.3. Worst Case Performance of PDy>p

message M’ is

t; = jw + nw.

If message M’ is sent, its transmission completes at time

t;—l—l = jw+nw+1.

With (4.123) and (4.125), we have

&—(#+1) = [(2n—1w] - ([Gw+nrwtl).

From Lemma 2.5.2, we know that 0 <7 <n—1. It follows that

d —(ti+1)
< [(2n—1)w] —(n—1Lw—nw—1
= [@2n—Dw]—(2n-1w-1
< @2n—Dw+1-(2n-1w-1

= 0.

(4.124)

(4.125)

(4.126)

(4.127)

Note that the algebric inequality [(2n — 1)w] < (2n — 1)w + 1 is used in the

derivation of the above formula. Therefore, we have d' < t; + 1, which implies

that the deadline of M’ would expire before the transmission of M’ completes.

Hence, even though M’ has a higher priority than message (b1,n — 1), there is

4.3. Worst Case Performance of PDp~p 82

not enough time to send M’. Thus, node j does not write its message priority

into the token and message M’ will be eventually lost.

Therefore, none of other messages can be sent before message (by,n — 1), which
implies that (b1,n — 1) is the first sent message. Its transmission completes at time
ti=2n—1Nw+1=1+ (2n — 1)w + 1. Hence, Lemma holds for = = 1.

Suppose the lemma holds up to 7 = k — 1. We now prove the lemma is true for
i = k. Specifically, we wish to show that message px resides either on node ng_q1 — 1
or on node ny_; — 2 and that its deadline is by = [tg—1 + (2n — D)w + 1.

As the minimum contention overhead for a message transmission is nw, thus for a
message whose deadline d is greater than t_y but smaller than by, it is considered for

transmission before by only if

by > d > by = [te1 +nw + 1. (4.128)

That is, a message whose deadline d is smaller than b and positioned before by is
allowed to compete for transmission against b only if its deadline d would not expire
before its transmission completes; otherwise, there is not sufficient time to complete
the message transmission. Hence, it is lost after tx_; and before the transmission of

by, is completed. The number of messages with deadlines satisfying (4.128) is

0<by—bpin = [te—1+ (20 —Dw+1] — [tp +nw + 1]
< [(thor + (20 = Dw +1) = (e + 7w + 1)]
= [(n— 1]
< [nw]

= 1, as 0 < nw < 1. (4.129)

4.3. Worst Case Performance of PD,,>p 83

Because messages in (4.117) have distinct deadlines, the above formula indicates that
there may be either zero or one message competing for transmission against by. We

deal with these two cases separately.

® by, — byin = 0. In this case, every message with a deadline smaller than by has
been lost after {x_;. If we let uy = (bg,nk—1 — 1), then the transmission of pg

completes at t = tx—1 + (2n — 1)w + 1. Hence the lemma holds in this case.

o by — by, = 1. In this case, there is only one message with a deadline of d

(d < by) that has not expired by time tx_1. Hence, we have

d < b
< by —1
= [thar+(2n—1w+1] -1

— [te_1 + (20— Dwl. (4.130)

Tf the message with a deadline of d is on node n;_1 — 1 and the message with
a deadline of by is on node ny_; — 2, then there is not enough time to send

(d,nk—1 — 1). This is because

trea+(2n—1w+1
> [tg—1 + (2n — Lw]

= d, (4.131)

which implies that the deadline d of message (d,nx-1 — 1) would expire before

its transmission completes. On the other hand, message y; is sent regardless it

4.3. Worst Case Performance of PDy>p 84

is on node nj_; — 1 or on node ng_1 — 2 because

toot + (20— Dw +1
< Ttpes+ (20— Dw +1]
= bg.

tr—1 + (2n —2)w +1
< [tg-r + (2n — 2)w + 1]
< [teer+(2n— 1w +1]

= by (4.132)

That is, message ux whose deadline is by is either on node ng_y — 1 or on node
ny_1 — 2. Its transmission completes at either ¢t = tx—1 + (2n —2)w + 1 or

ti = tg_1 + (2n — 1)w + 1 as required by the lemma.

This concludes the proof. Q.E.D.
From the above lemma we see that when PD,,sp is used to transmit n messages
with deadlines of d; =4 (i = 1,2,--+,n — 1,n), each transmission incurs an overhead

of either (2n — 1)w or (2n — 2)w. Hence, the following lemma can be established.

Lemma 4.3.7 Given a token ring of n nodes, if PDp>p is used to transmit n
messages, in the worst case the lower bound of the contention overhead of a message

transmission is (2n — 2)w.

Proof: Lemma 4.3.4 and Example 4.2.1 have demonstrated that, given a token
ring of n nodes, if PD,,>p is used to transmit n messages, the possible lower bounds
for the contention overhead are (2n — 2)w, (2n — 3)w, - - - and nw respectively. On the

other hand, Lemma 4.3.6 show that under PD,,5p, there exists a message set such

4.3. Worst Case Performance of PDy,>p 85

that each message transmission incurs an contention overhead of either (2n — 1)w or
(2n — 2)w. As we are concerned with the worst case performance ratio, we choose

(2n — 2)w as the lower bound. This concludes the proof for the lemma. Q.E.D.

Lemma 4.3.8 Given a token ring of n nodes, if PDpsp is used to transmit n

messages, in the worst case the upper bound of the number of messages sent is

n
2n — 2)w + 1

Sendy,(PDp>p, N(n,w), A(n)) = |_(1 (4.133)

Proof: Using (2n—2)w as the lower bound of the contention overhead, with Lemma
4.3.3, we concludes the proof. Q.E.D.

The upper bound of the worst case performance ratio can now be obtained.

Theorem 4.3.2 An upper bound of the worst case performance ratio of PDp>p is

Ruy(PDpsp,w,n) = E‘z"—“”ij (4.134)

n

Similar to Corollary 4.3.2, the upper bound of the worst case performance ratio

can be extended to more general cases.

Corollary 4.3.3 Given a network of n nodes and h (h < n) messages, if PDm>p is

invoked at time Ty, then the upper bound of the worst case performance ratio is

Rup(PDmsp,w,n, b, Ty) = LEnim ;L}“‘“J (4.135)

4.3. Worst Case Performance of PDy,»p 86

4.3.3 An Estimation of R(PDsp,w,n)

Based on the lower and upper bounds of the worst case performance ratio, we propose

to use the following to estimate the worst case performance ratio R(PDym>p,w,n).

Rest(PDm>D’ w, n)

RloW(PDm>Da w, n) + Rup (PDm>Da w, ’I’L)
2

T

l— (2n—§b)w+1 J + ‘-{2%"‘2]10-{—1 J
2n '

(4.136)

We now derive the maximum error for the estimation proposed above. For the

convenience of our discussion, we let

n

7= L("_Zn — 1w + 1J'

(4.137)

It follows that

i <o+1 4138
(2n —1)w +1 T 2 (4.138)

We start with deriving the difference between the upper and lower bounds of the

number of messages sent by PD,,>p in the worst case.

Lemma 4.3.9 For given n and w, the difference between the lower and upper bound

of the number of messages sent by PDy,»p is either 1 or 0. That s,

4.3. Worst Case Performance of PDp,>p

Senduy(PDp>p, N(n,w), A(n))

Proof:

n—(o+1

o ffw< -(_i—i_a+1)(2n—2)’

oc+1<

2n—2)w-+1

87

n
(2n——2)w—|—1'

Sendjow(PDm>p, N(n,w), A(n))
n—{(o+1
1 W S Giee-2)°

(4.139)

0 otherwise.

We deal with the two cases separately.

then by solving for o + 1, we have

(4.140)

Multiplying 1 = %m%m to the right half of (4.138), we obtain

n

(2n —2)w +1

oc+1 >

n

2n—1)w+1 &

(2n — 2)w +1
(2n - 2)w+1

n

Rearranging (4.141), we arrive af

n

<o+1+

(2n —2)w +1 8

@n—mw+lx(y_@n—mw+1)

(2n—w+1
= (4.141)

w

(2n — 2)w + 1

n
@n—2w+l @n-Dw+l

(4.142)

Forn>0andw>0,wehave0<mgnand0<m—_%m<w. It

follows that

n

w

0< . .
Gn—2w+l @n-Dw+1 " (4.143)

4.3. Worst Case Performance of PDysp 88

As nw < 1, we arrive at

0< = x 2 <1 (4.144)
(2n—-2w+1" (2n—-1w+1 '
Hence, (4.142) becomes
n
m <o+2. (4.145)
From (4.140) and (4.145), we have
a+1§(2—n_—;‘m<a+2. (4.146)

With the definition of the floor function | |, the above inequality implies

n

o=] (4.147)
Rearranging the above, we have
n
L(2n—2)w+1J —o=1 (4.148)
Replacing o by (4.137) in the above, we arrive at
L(.‘zn—g)wﬂJ - L(Qn—;b)w+1j =1 (1)

With (4.114) and (4.133), we have

4.3. Worst Case Performance of PDr>p 89
Send.,(PDmsp, N(n, w), A(n)) Sendiow(PDm>p, N(n,w), A(n))
n n
L(2n - 2w+ 1'I B I‘(Zn —lw+ 1‘|
1. (4.150)
o Ifw> ﬁ%, then we have
+1 > ——— (4.151)
7 2n—2w+1° '
However, (4.137) leads to
n
7 I'(2?1',— l)w-l—l‘l
n
< Nomat e
- L(21@ —2)w + 1J
n
@n—u+l (4.152)
From (4.151) and (4.152), we have
< : <o+1 4.153)
S Gn w1 ' (4
With the definition of the floor function | |, the above inequality implies
o= ——| 4.154
S r2n—2w + 17 t153)

With (4.137) and (4.154), we have

4.3. Worst Case Performance of PDp,»p 90

n

I‘(‘Zn —2)w + Zl." B L(Qn — 1w+ 1"

= 0. (4.155)

Sendu,(PDmsp, N(n,w), A(n)) — Sendiow(PDmsp, N(n,w), A(n))

I'(Zn - 2f)'w + JJ N L(2?1. —Dw + 1J

= 0. (4.156)

In summary of the above two cases, the lemma is proved. Q.E.D.

Theorem 4.3.3 The difference between the lower bound and upper bound of the worst

case performance ratio of PDp~p 15

Rup(PDm>D, w, n) - Rlow(PD‘m>D7 w, n)

1 n—!a+1!
PR < -3’

= (4.157)
0 otherwise,

where o is defined in ({.137).

Proof:

Rup(PDm>D, w, n) — Rlow(PDm>D, w, ?’I,)

1

[[21:-;)w+1 J - l—(2ﬂ—l]w+]J
n n

L(Zn—g)w+1-l - |—{2n—?}1u+]-l
n

4.3. Worst Case Performance of PDp>p 91

l n—(o+1)
n (a'+1)(2n—2)’
0 otherwise.

This concludes the proof of the lemma. Q.E.D.
This theorem indicates that the maximum difference between the bounds of the

performance ratio of PDp.sp 18 %, which is a decreasing function of n.

Theorem 4.3.4 The mazimum error of the estimation of the worst case performance

ratio of PDy>p 18

Rest(PDm>Da w, n) - Rlow(PDm>D, w, n)

(= i n—!o+1!
m — (o+1)(2n—2)?
= ! (4.159)
L 0 otherwise.

Proof: With Ry, and Regt given in Theorem 4.3.1 and (4.136), we have

Rest(PDnDD, w n) - Rlow(PDm>Da w, n)

I-(2n 1)w+1-| = L{2n—).]w-| lJ l-(2:¢1-~”1FL)1JJ+1-|
2n n

I—(Zﬂ—g)w+1J I—[Zn ‘l)m+|-|

2n
f 1 n—(o+1})
om < (e+1)(2n—2)°
= 1 (4.160)
0 otherwise.

This concludes the proof. Q.E.D.

4.3. Worst Case Performance of PDp>»p 92

4.3.4 Numerical Results and Discussions

We have obtained the worst case performance ratio of the priority-driven protocol when
used to transmit messages whose deadlines are smaller than the number of priorities.
Theorem 4.3.1 implies that with a sufficient number of priorities, this priority-driven
protocol is able to implement the exact EDF policy and that the contention overhead is
the only factor degrading the protocol performance. Figure 4.3 shows the result. If the
token node-to-node delay w is 0, then R(PDm>D,w,n) = 1 implying that if working
in the ideal environment and having a sufficient number of priorities, the protocol can
send all messages, achieving a worst case performance ratio of 1. If the token node-
to-node delay w is non-zero, the worst case performance ratio is less than 1. This
performance loss is due to the contention overhead, i.e. the time taken for the token
to circulate around the ring to locate the highest priority message. Furthermore, we
see that the worst case performance ratio is a decreasing function of the token node-
to-node delay w.

As the worst case performance ratio obtained is an estimation, we have derived the
maximum error of the estimation. In practice, parameter n is normally in the order of
100, the error bound given in (4.160) is thus very small. Figure 4.4 shows the curves
of Rup, Rigw and Regt vs. n. We see that the difference between R,, and R, is
invisible in most cases as the maximum difference between Rjy, and Rup is 1/n. This
implies that the bounds of the worst case performance ratio obtained are very tight.

Consequently, the estimation which is the medium value of the bounds is acceptable.

4.3. Worst Case Performance of PD,,sp

N ' r |
‘{%\ W=0—~
NN W=0.001 -
\ W= 0.002 &
RN W= 0.003 »—
\\'._‘b \\‘\
A\
N
B E\“ T |
\ .
N o, M
: T
i . = R -
. s i H
2 e -
" hi o T H-.
o el ©
_ .*
e
|
0 250 500 . o
n

Figure 4.3. Worst Case Performance Ratio of PDn>p

0 250 500 750 1000

n

Figure 4.4. Comparison of Rjoy, Rup and R

93

4.4. Worst Case Performance of PDpm<4 94

4.4 Worst Case Performance of PD,,<q

In this section, we analyze the worst case performance of the priority-driven protocol
when used to transmit messages whose deadlines are equal to and greater than the
number of priorities m.

With the priority assignment function defined in (4.89), messages having deadlines
equal to and greater than m are assigned the same priority m regardless of their
actual deadlines. As PDy<q sends messages in the priority order, it is conceivable
that messages with larger deadlines are sent before those having smaller deadlines
(since they are of the same priority). As a result, PDp<q4 may not observe the EDF

policy.
Lemma 4.4.1 PDp,<q 15 deadline monotonic.

Proof: The proof of this lemma is similar to that of Lemma 3.2.1, except that
under PD,,<4, the contention overhead is nw units of time more than that of the
token passing protocol. Hence, replacing the term #; +1 with t; + nw + 1 in the proof
of Lemma 3.2.1, we can have this lemma proved. Q.E.D.

Let A(n) be a message set where message deadlines are equal to and greater than m,
we define its subsets Y and Z to consist of these two types of messages respectively.

Formally, we have

A(n) = YUZ, where
Y = {(dhpl))(d%p?)a"'>(djapj)}7 di:ma 1SZS] <n,
4 = {(dl,pl),(dz,]b),'",(dn—j,Pn—j)}, d; >m, 1<:<n—y.

(4.161)

4.4. Worst Case Performance of PDy,<q 95

We now identify the message deadlines in the worst case message set.

Lemma 4.4.2 Given a token ring of n nodes, if PDp<a is used to transmit messages

from A(n) given in (4.161), message deadlines in the worst case message set are

Ape = YU Zye, where
Yye = {di|di=m}, 1<i<m,

Zwe = {dildi=m+1i}, 1<i<n-—m. (4.162)

That is, subset Y. consists of m messages that have identical deadlines of m, and
subset Z has n — m messages whose deadlines are m + 1,m +2,---,n —1 and n

respectively.

Proof: First, we show that for messages sets defined in (4.161), Awe(n) = YucU Zye

given in (4.162) is the smallest feasible set.

e To prove that the CEDF protocol can send all the messages from Yy, U Zy.

— As CEDF protocol always sends the earliest deadline message first, messages
from Y,,, are sent before those from Z,.. It takes the CEDF protocol one
unit time to send a message, thus the transmission of m messages from Y,
requires m units of time. It follows that all messages from Yy are sent as

their deadlines m would not expire by time m.

— It follows that the transmission of messages from Z,, starts at time m.
The transmission of the first message from Z,. completes at time m + 1,
by which time its deadline would not expire, hence it is sent. Similar, it
is easy to sec that the i-th message from Zy, is sent at time m + . Thus,

the transmission of the (n — m)-th message, which is the last message from

4.4. Worst Case Performance of PDy<q 96

Zowe, completes at time m + (n —m) = n. Hence, all messages from Z,,. are

also sent under the CEDF protocol.
Therefore, the CEDF protocol can send all the messages from Y, U Z,..

e To prove that the CEDF protocol can not send all the messages from Y,c U Zy.
if any message deadline is reduced.
As we are dealing with the case of PDp<g, thus no message deadlines are smaller

than m. Hence, no message deadlines in Y can be reduced.

— Suppose the deadline of the i-th message from Zy. is reduced from m 41t to
m. Thus there are now m + 1 messages have deadlines of m. It is obvious
that under the CEDF protocol the transmission of m + 1 messages requires
m + 1 units of time, but the message deadline m would expire by time m.

Therefore, only m messages are sent and one message is lost,.

— Suppose the deadline of the i-th message in Zy is reduced from m 4+ ¢ to
m + j, where j < i. Under the CEDF protocol, the transmission of m
messages from Y,,, completes at time m. Hence, the transmission of the
i-th message from Z,,. completes at time m + 1, by which time its deadline

m + j would expire. Consequently the message is lost.

The above demonstrates that if any message deadline in Yy, U Zy, is reduced
even the CEDF protocol can not send all messages, i.e. the new message set is

not feasible.

In summary of the above, with Definition 2.12 the message set given in (4.4.2) is the
smallest feasible set. Furthermore, as PDp<q 18 deadline monotonic, with Lemma 2.5.1

the message set given in (4.4.2) is the worst case set. Q.E.D.

4.4. Worst Case Performance of PDny<q 97

We now examine how messages given in (4.162) are sent by PDp<q in the worst

case.

Lemma 4.4.3 Given a token ring of n nodes, if PDp<a is used to transmit messages
from the worst case message set given in (4.162), it sends messages in the latest-
deadline-first order and each message transmission incurs a contention overhead of

(n+ Dw.

Proof: As all messages are assigned the same priority m under PDp<a, they are
sent in the order in which the token is captured.

As PD,,<q is deadline monotonic, thus it behaves the same as the token passing
protocol but with a different contention overhead. Replacing z +1 with 2 +nw+11in
the proof of Lemma 3.2.2 where z is &, ¢}, 141 or 1,4, We conclude that given a message
set, if the deadlines of two messages on the neighboring nodes are interchanged so that
the token visits the node with the smaller deadline message first, then the number of
messages sent by PDpy<q may increase. As a result, in the worst case PDp<q always
sends the latest deadline message first.

For each message transmission, it takes w units of time for the token to move from
the current sending node to the next node where the priority of the message is written
into the token priority field. After another nw units of time, i.e. when the token
completes a full circulation, the message is sent. Hence, the overhead for a message
transmission is (n + 1)w. Q.E.D.

With the worst case message set and the contention overhead given in
Lemmas 4.162 and 4.4.3 respectively, it is straightforward to compute the number

of messages sent in the worst case.

4.4. Worst Case Performance of PDy<q 98

Lemma 4.4.4 For the worst case message set given in (4.162), let Sy and Sz be the

number of messages sent from subsets Yy, and Zuy. respectively, we have

0 m < (n—m+1)((n+ 1w+ 1)),
Sy = (4.163)
Lm—(”"(:ri&:ﬁl}'"ﬂl_l otherwise.
Sy = min(n—m, l—t L)) (4.164)
2, = min(n—m, CFES))
Send(PDp<a, N(n,w), A(n))
= Sy+5z
min(n — m, L(—Tﬁﬁj) m < (n—m+1)((n+ 1w +1),
= (4.165)
Lmj otherwise.
Proof: Lemma 4.4.3 states that in the worst case PD,,<q4 sends messages in the

latest-deadline-first order, hence messages in 7 are sent before those in Y because

message deadlines in the former are greater than those in the latter.

o Message transmission from Z
As messages in Z are sent in the latest-deadline-first order with a contention

overhead of (n + 1)w, with Theorem 3.3.1 the maximum number of messages

sent from Z is I_(n fl")'; —5, which can be obtained by replacing w with (n + 1)w

in (3.74) in the proof of Theorem 3.3.1, On the other hand, the total number of

messages in Z is n — m. Hence, we have

4.4. Worst Case Performance of PDp<d 99

57 = min(n —m, ntl (4.166)

n+1lw+2

e Message transmission from Y’
Clearly, if any messages are sent from Y, all messages in Z must have been sent.
This is because message deadlines in Z are larger than those in Y and PDy<4

sends messages in the latest-deadline-first order. Thus, we have
SZ =n-—-—-m. (4.167)

Transmission of messages from Z complete at Sz X ((n + 1)w + 1).

— No messages from Y are sent if

m < Szx((n+Dw+1)+((n+1w+1)

= (n—m+1)((n+Dw+1). (4.168)

This is because by the time the transmission of messages from Z completes,
the message deadlines m in Y would expire. Hence, all the messages in Y

are lost, implying Sy = 0.

— Otherwise, all n — m messages from Z are sent. The transmission of

messages from Y starts at

T, = Szx((n+1w+1)

= (n—m)x((n+w+1). (4.169)

4.4.

Worst Case Performance of PD <4 100

As all messages in Y have the same deadlines, sending them in the latest-
deadline-first order is equivalent to sending them in the EDF order. With

Corollary 4.3.1, we have

m — T,
(n-i-l)w-%-lJ
m—(n—m)x((n-l—l)w-}-l)J

(n+1w+1 '

Sy = |

= | (4.170)

In summary, Send(PDm<d, N(n,w), A(n) have two possible values.

¢ Only messages from Z are sent

Send(PDpy<q, N(n,w), A(n)

= Sz+ Sy

n+1
(n+ 1w+ 2

n+1
(n+ 1w+ 2

= min(n —m, |

1)+0

1). (4.171)

= min(n —m,|

e All messages from Z are sent, followed by some from Y’

Send(PDm<q, N(n,w), A(n)

= Sz+ 5y

m—(n—m)><((n-|—1)w—|—1)J
(n+ w41

(n—m)><((n-l—1)w-l—1)—|—m—(n~m)><((n—l—l)w-{-l)J
(n+ w41

| (4.172)

= (n-m)+

= |

l'(n—i—l)w—l—l

This concludes the proof. Q.E.D.

4.4. Worst Case Performance of PDy,<q \ '-_’ll()l

4.4.1 Worst Case Performance Ratio R(PDy<q,w,n)

From Lemma 4.4.4, the following is straightforward.

Theorem 4.4.1 The worst case performance ratio of PDp<q 18

R(PDp<d,w, n)

”‘i“(n_m‘hﬁm“ m < (n—m+1)((n + Hw+1),
| (4.173)

otherwise.

L n

4.4.2 Numerical Results and Discussions

We have derived the the worst case performance ratio of the priority-driven protocol
when used to transmit messages whose deadlines are equal to and greater than the
number of priorities m. Theorem 4.4.1 indicates that the worst case performance ratio

of PDp<q is less than 1. The following aspects contribute to the performance loss.

e Under PD,,<4, messages with different deadlines are assigned the same priority
due to insufficient number of priorities. Our analysis has shown that in the worst
case messages are sent in the latest-deadline-first order, which may lead to a low
worst case performance ratio. To demonstrate this, we consider the worst case

performance ratio given in Theorem 4.4.1 when w =0,

[rm'n(n—m,[ﬁz'—lj)

R(PDm<dq,w,n) = < (4.174)

m<n—m+1,

3|3

otherwise.

4.4. Worst Case Performance of PD <4 102

Furthermore, if

1
m<n—m-+1 and n—m>|_n;_ {5 (4.175)
then (4.174) becomes
(1
——-—-L_i_J m < ”—;—1,
R(PDde,w,n) = A (4176)
| o otherwise.
If n is sufficiently large such that % ~ 0, then we have
b ome<st,
R(PDde,w,n) ~ (4.177)
2 otherwise.

This implies that if the contention overhead of each message transmission is zero,
the limiting value of the worst case performance is determined by the number of

message deadlines n and the number of priorities m.

— If m < 21, then PDp<q can send only half of the messages sent by the
CEDF protocol. This is because in this case PD,,<q4 sends messages in the

latest-deadline-first order since messages with distinct deadlines have the

same priority. This is solely due to insufficient number of priorities.

— Otherwise, the worst case performance ratio is 2, which is an increasing
function of m. Figure 4.5 demonstrates the effect of m on the worst case

performance ratio. We observe that for a given m, as n increases the worst

4.4. Worst Case Performance of PD,<q 103

w=20
1 ﬂl " r\ L T T
'\\. \I". '~,‘ m= g8 —&—
\ m= 16
\ m = 32 -8
0 N 8 i \ \'\ ‘.'. m = 64 - -
il -'.I '-.‘ i_.. m = l 2 8 [—
\) X X
0.6 | % % l
3 \ \

44 e e ————
0.4 i
0.2 4

O 1 1 1 1 1 1
8 16 32 64 128 256 512 1024
n

Figure 4.5. Effect of the Number of Priorities

case performance ratio decreases and eventually approaches 0.5. Hence,
the number of priorities is one of the dominant factors that determines the

worst case performance of PDp<q4.

e The contention overhead is also responsible for degrading the performance of
PD,cq. Figure 4.6 shows the result. We see that the worst case performance
ratio is a decreasing function of the token node-to-node delay w. We also notice
that when n > m = 64 the performance ratio is always less than 0.5 for w > 0.

This is due to both the transmission policy and the contention overhead incurred.

In summary, if the number of message deadlines is large and the number of priorities

available (determined by the number of bits used for the priority field in the token) is

small, then the worst case performance of PDn,<q is poor.

4.5. Worst Case Performance of PDjcm<D 104

m = 64
W= 0 —%—
W= 0.001 -+~
W= 0.002 &~
0. W = 0.003 % 1
0. 4
24 ——
e R
0- E e N e B e E -]
— = S
% N T
0 e L= T)
0.2 i e -3
0 A : 1
0 250 500 750 1000
n

Figure 4.6. Worst Case Performance ratio of PDp<q
4.5 Worst Case Performance of PDg.p,<p

In this section, we study the worst case performance of the priority-driven protocol
when used to transmit messages whose deadlines are smaller than, equal to and greater
than the number of priorities m.

To facilitate our analysis, we group the messages into three subsets according to
their deadlines. We then derive the worst case performance ratio for each subset using
the results obtained for PD,,»p and PD,,<q4. Finally, the worst case performance ratio
of PDycmep is computed by summing up the worst case performance of each subset.

For given n and m, let A(n) be a message set of size n and its message deadlines
are smaller than, equal to and greater than m. Let A¥(n) be a subset of A(n), which
has k (0 < k < m) messages with deadlines smaller than m. Consequently, all message

sets {A(n)} of size n can be seen as a union of subsets A*(n) with k ranging from 0

4.5. Worst Case Performance of PDyj<m<pD 105

to m — 1. That is

{A()} = {A°n)}U{AYR)}U--U{A™I(m)). (4.178)

Using a notation similar to that defined in (4.161), we have

AF(n) = X*uYFuZh, where
Xt = {(d1,p1),(d2,p2), 5 (ks pr)}s di <m, 1 <0<k,
Y* = {(d1,p1),(d2,p2)," ", (dj>ps)}s di =, 1 <2<,
7% = {(d1,p1),(d2,p2)s s (dnekejs Pak—j)}s di >m, 1 <i<n—k—j.

(4.179)

That is, messages are grouped into three subsets X k Y* and Z*, in which message
deadlines are smaller than, equal to and greater than m respectively?. With
Definition 2.6 given in Chapter 2, for w, n, m and k, the worst case performance

ratio of PDycm<p 18

k
R(P Diceos N(my o) = g (Em2E Dcn N), Ale)

YAk(n) n

),(4.180)

where AF(n) is any message set of size n, which has k message whose deadlines are
smaller than m. It follows that for given w, n and m, the worst case performance ratio

of PDycmep i

21t is obvious that when n = k both Y* and Z* are empty, hence PDgcm<p is equivalent to
PDy>p. When k =0, X* is empty, thus PDg<m<p 18 equivalent to PDy<q.

4.5. Worst Case Performance of PDj<m<pD 106

_ . Send(PDp<n, N(n,w), A¥(n))
R(PDd<m<D7w7n) L ng}ql,%n)(n

)

e rr%cn(R(PDd<m<D,N(n,w),n,k)). (4.181)

Therefore, to derive the worst case performance ratio of R(PDy<m<p,w,n), we first

derive the bounds for the performance ratio of R(PDacm<p,w,n, k).

4.5.1 Properties of PD,<y

To facilitate the worst case analysis, we first outline some properties of PDg<m<D

when used to transmit messages from A*(n).

Lemma 4.5.1 When PDicm<p is used to transmit messages from A*(n) defined in

(4.179), in the worst case

o messages in XF are transmitted first, followed by those from ZF and Y*

respectively, and

e messages in X* are sent in the EDF order and those in Y* and Z* are sent in

the latest-deadline-first order.

Proof: As message deadlines in X* are smaller than m while those in Y* and Z*
are equal to and greater than m respectively, with the priority assignment function
defined in (4.89), messages in X" are assigned priorities from 1 to m—1 and those in ¥’
and Z are assigned the priority of m. As PDycm<p always sends the highest-priority
message first, thus messages in X k¥ are sent before those from Y* and Z*.

As all message deadlines in X* are smaller than m, from Lemma 4.3.4 messages

in X* are sent in the EDF order. As message deadlines in Y* and Z are equal to and

4.5. Worst Case Performance of PDg<m<D 107

greater than m, it follows from Lemma 4.4.3 that they are sent in the latest-deadline-
first order. Q.E.D.

We now identify message deadlines in the worst case message set.

Lemma 4.5.2 When PDycmep 18 used to transmit messages from A¥(n) defined in

(4.179), message deadlines in the worst case message set are

where

we?

Xk = {d|di>ianddj =k}, 1<i1<k—1andj=k,

Yulfc = {di|di:m}, 1§z§m—k,

ZF = {dldi=m+1}, 1<i<n-—m. (4.182)
Proof: For message sets consisting of k messages, it follows from Lemma 4.3.2 that

the one with a maximum deadline of k¥ minimizes the number of messages sent. Hence,
Xk given in (4.182) is the worst case set.

Given that there are k messages whose deadlines are smaller than m and the
largest deadline of these k messages is k, Lemma 4.4.2 implies that for the other n — k
messages whose deadlines are equal to and greater than m, there must be m — k
messages with deadlines equal to m, which is indicated by Y}, in (4.182). The number

of the remaining messages is

(n—k)—(m—k)=n—m, (4.183)

and their deadlines are d; = m+i (1 <4 < n—m), which is denoted by Z¥_in (4.182).

This concludes the proof. Q.E.D.

4.5. Worst Case Performance of PDy<m<pD 108

4.5.2 Performance bounds for A*(n)

To facilitate the description, we denote Sendjow(PDicm<n,N(n,w),U) and
Sendyy(PDicm<p, N(n,w),U) as the lower and upper bound of the number of

messages sent from message set U respectively, where U is X kY% or ZF . Clearly,

we?

Sendlow(PDd<m<D ’ N(”a w)a Aﬁ;c(n))
= Sendpou(PDacmen, N(n,w), XE VY U ZE)
= Sendiow(PDacmen, N(n,w), XE) + Sendipw(PDicm<n, N(n,w), Y,i) +

Sendjow(PDycmen, N(n,w), ZF,), (4.184)

Send,,(PDy<cm<p, N(n,w), A% (n))
= Sendyy(PDycmen, N(n,w), XE, UYE U ZE)
= Sendyy(PDicmen, N(n,w), X5) + Senduy(PDacmen, N(n,w), Y,) +

7 T we

Senduy(PDacmen, N(n,w), ZF,). (4.185)

To derive the bounds for the number of messages sent from A% (n) in the worst
case, we need to compute the bounds of the number of message sent from X Lo,

wce? we

and Z% respectively.

Performance Bounds of Subset X{fm

Lemma 4.5.3 Given a token ring of n nodes, in the worst case the bounds of the

number of messages sent from X% are given by

4.5. Worst Case Performance of PDj<m<D 109

k
diow(PDacmen, N(n,w), X5) = ; 4.18
Sen l (d<m<D (n w) wc) L(zn _ 1)w + 1.J (6)
Senduy(PDacmen, N(n,w), Xg,) = | i]. (4.187)
up ? ? 7 we (2n _ 2)w + 1
Proof: From Lemma 4.5.1, we know that messages in X¥_ are sent in the EDF

order. With Lemmas 4.3.4 and 4.3.7, in the worst case each message transmission from
XE _incurs a maximum and minimum contention overhead of (2n — 1)w and (2n —2)w

respectively. Thus with Lemma 4.3.3, the lemma is proved. Q.E.D.

Performance Bounds of Subset Z{f,c

Let TV denote the time when the transmission of the first message from set U starts,

where U is Y, or ZF_. Furthermore, let T,, and Y

low

denote the upper and lower
bound of TV respectively. It is apparent that TV is one of the factors determining the
number of messages sent from U.

As messages from Z*, are sent before those in Y}, in the worst case, we consider

subset Z*_first and derive the bounds for TZ. Consequently, the bounds of the number

of messages sent from Z%_ can be determined.

Lemma 4.5.4 The bounds of TZ are

Te = L f)w (@ =D+ 1)+ (a4 Do, (4.188)
1] = g ’;)w (20— D+ 1) + (20 = Dw. (4.189)

4.5. Worst Case Performance of PDgcm<D 110

Proof: For the lower bound T2, the right sides of (4.189) consists of the following

three items.

o First, I-_(#)WHJ ((2n — 2)w + 1) is the lower bound of the time when the last
message transmission from X, completes. It is the product of the lower bound
of the number of messages sent from X¥_ and the minimum time needed for

a message transmission including contention overhead. With Lemmas 4.3.7

and 4.5.3, it is I—m—fWHJ ((2n — 2)w +1).

e Second, w is the minimum time needed for the token to reach the node having
the first message from ZF_. As all messages in ZF, have the same priority of m,

this first node is also the first sending node.

e Third, nw is the time taken for the token to complete a full circulation after the

first node in ZF_ writes its message priority into the token.

Hence, the lower bound of the time when the first message transmission from Zk.

starts is obtained by summing up the above three items, i.e.

k
L(2n —2)w+1

1((2n = Dw +1) +w + nw, (4.190)

which leads to (4.189).

For the upper bound of TZ, Lmj(@n — 1)w + 1) is the upper bound of the
time when the transmission of messages from X*_completes. (n—1)w is the maximum
time needed for the token to reach the first node in Z%_. nw is the time needed for the
token to complete a full rotation before the node can start its message transmission.

Therefore, we have

4.5. Worst Case Performance of PDg<m<D 111

k

I‘(2n 2w 1_|((2n —Dw+1)+ (n — 1w + nw, (4.191)

which yields (4.5.4). This concludes the proof. Q.E.D.

Using the bounds of T?, we now compute the bounds of the number of messages

sent from ZF_ in the worst case.

Lemma 4.5.5 Given a token ring of n nodes, in the worst case the bounds of the

number of messages sent from ZE_ are given by

Sendio(PDicm<n, N(n,w), Zzlf)c)

0 n < Té + 1,
= i (4.192)
min(n — m, |_n+1(+n(11|_)1u)}$; Ty 1) otherwise.
Sendy,(PDicm<n, N(n,w), Z*)
' 0 n<TZ, +1,
= 9 (4.193)
min(n — m, LE%Z——W%MJ) otherwise.

.

where T,ﬁ, and TZ, are given in Lemma 4.5.4.

Proof: We only prove for the upper bound. The lower bound can be obtained with
a similar approach.

From Lemma 4.5.4, we see that the first message transmission from Z% starts

wce

at time T/Z,. From Lemmas 4.5.1 and 4.5.2, messages in Z¥, are transmitted in the

4.5. Worst Case Performance of PDgjcm<D 112

latest-deadline-first order and the first message sent from ZF, has a deadline of n. We

have two cases to consider.

o If n < T, +1, there is not enough time from time T, to send the first message

from Z*

we?

which has a deadline of n. Consequently, no other messages in ZF

are sent as deadlines of all other messages in Z¥_ are smaller than m.

e Otherwise, the message with a deadline of n is sent. From Lemma 4.4.3, each
subsequent message transmission from Z%_ takes (n 4+ 1)w + 1 units of time and
messages are sent in the latest-deadline-first order, which is the same as the
token passing protocol. Note that after the first message is transmitted from
Zk

we?

there are n — m — 1 remaining messages, of which the maximum deadline
is n — 1. With Corollary 3.3.2, the number of messages sent from the remaining

. k. .
n —m — 1 messages in 2, is

n_1)+1_(1—1l§w+1)
(n+ 1w+ 2

min(n —m — 1, L(

D (4.194)

where (T, + 1) is the time when the transmission of the first message in VAR

completes. Hence, the total number of messages sent from Z%, is

Sendow(PDa<cm<n, N(n,w), Zzlzc;c)
(n_l)‘*‘l_(Tl%w-l'l)J)
(n + l)w + 2
(n—1)+1—(Tsz+1)J)
(n+ 1w +2
l"“’_l)_ (4.195)

= 1l+min(n—m-—1,]

= min(n —m, |1+

n+1+m+Dw-—T7Z
(n+ 1w +2

= min(n —m, |

4.5. Worst Case Performance of PDgcpm<D 113

Note that the algebraic equality C' 4+ min(A4, B) = min(A + C, B 4 C) is used in

the derivation of the above formula.

This concludes the proof of the lemma. Q.E.D.

Performance Bounds of Subset Ych

We now derive the performance bounds associated with subset Y%

Lemma 4.5.6 If any message(s) from Y is sent, the bounds of TY are

Tiw = Tigw+(n—m)((n+w+1), (4.196)
TY = T2+ (n—m)((n+1)w+1). (4.197)

Proof: We only prove for the upper bound. The lower bound can be obtained in
a similar way.
If any message(s) from Y%, is sent, all n—m messages from Z* must have been sent.

This is because messages in Y* have smaller deadlines than those in ZF¥_, and with

we?d
Lemma 4.4.3, messages in ZF_ are sent before those in Y%, in the latest-deadline-first
order.

As pointed out in the proof of Lemma 4.5.5, the upper bound of the time when

the first message transmission from Z¥ completes is

ne 7z
ty = TZ+1. (4.198)

4.5. Worst Case Performance of PDi<m<p 114

There are n — m — 1 messages remaining from Z% . With Lemma 4.4.3, each message

transmission from Z¥_ incurs a contention overhead of (n + 1)w. Thus, it requires

ta = (n—m—=1((n+w+1) (4.199)

units of time to transmit the remaining messages. Then, it takes another

ts = (n+ 1w (4.200)

units of time for the token to reach the first node in Y% and to complete a full
circulation round the ring before it can start its message transmission. With (4.198),
(4.199) and (4.200), the upper bound of the time when the first message transmission

from Y,® starts at

Ti; = ti+t+13
Z
= Tup-l—l-I—(n—m—1)((n+1)w+1)-|—(n+1)w

= TZ + (n—m)((n+1w+1). (4.201)

This concludes the proof. Q.E.D.

Now the number of messages sent from Y,* in the worst case can be determined.

Lemma 4.5.7 Given a token ring of n nodes, in the worst case the bounds of the

number of messages sent from Y.* are given by

4.5. Worst Case Performance of PDj<m<D 115

Sendiow(PDacm<n, N(n,w),Y.E)

0 m < Ty, +1,
= 4 (4.202)

Lm+(n+1)w—T1}/ _I

T 1))ywit otherwise,

Sendy,(PDa<m<n, N(n,w) Y*)

) T we
4

0 m <Y, +1,
=1 (4.203)
L%&J otherwise.

where Ty, and TY, are given in Lemma 4.5.6.

Proof: Again we only prove for the upper bound. As the first message transmission
from Y} starts at T}, it is clear that if m < TY, + 1, then there is not enough time
to send any message from Y since its message deadlines m would expire before the
message transmission completes; if m > T}y, + 1, then the first message transmission
from Y* completes at T}, + 1. With Lemma 4.4.3, we know that each subsequent
message transmission from Y,*, takes (n 4 1)w 4 1 units of time. Furthermore, the
latest time when the message transmission must stop is m, as all message deadlines
in Y* are equal to m. Thus, with Corollary 4.3.1, the upper bound of the number of

message sent from Y/ is

m— (TY +1)

up

(n+1w+1

m— (T, +1)
J - U T (n+1)w+lJ
m+ (n+ 1w —TF
mrDwil (4:204)

14|

=

This concludes the proof. Q.E.D.

4.5. Worst Case Performance of PDj<m<p 116

Performance Bounds of A*(n) = Xt UY} U VAR

Combining the results from Lemmas 4.5.3, 4.5.5 and 4.5.7, we obtain the bounds for

the total number of messages sent from AF = Xk UV} U ZF as follows.

Lemma 4.5.8 Given a token ring of n nodes, the bounds of the total number of

messages sent from AX (n) are given by

Sendlow(PDd<m<D) N(’I’L, 'Ll)), Af’uc(n))

I—(2n-—f)w+1-| n < T,li + 1,

T n w— Z
= % I.(sz)T+I-| + min(n —m, | HiHnt T,y) n> Ti, +1 and (4.205)

(n+1)w+2
m < Té +1,
m+(n+1)w-TZ .
\ L(Zn—f)w{—lj + | ((n+1))w+1 2 | otherwise,
Sendyp(PDacm<n, N(n,w), A% (n))
Nyt n <17, +1,

— : n+1-+(n w—T7
= ltom) +min(n —m, (PEEEGE]) 2 TF, +1 and (4:206)

m < T}O/w +1
m+(n+1 w—TZQuL .
; |—(2n—§)w+l.‘ + [= (n+1;w+1'] otherwise.

where qu), TZ,, TY and T, are given in Lemmas 4.5.4 and 4.5.6 respectively.

up low

Proof: We only prove for the upper bound. The lower bound can be derived in a

similar way.

4.5. Worst Case Performance of PDgcm<D 117

Combining the cases discussed in the proofs of Lemmas 4.5.3, 4.5.5 and 4.5.7, we

have the following.

e Only messages from X% are sent®

This is the case when n < TZ, + 1. With Lemmas 4.5.3, the number of message

sent is L@Tz&mj

Only messages from X*_and Z¥_ are sent
The fact that no messages from Y are sent implies that both conditions
n>TZ +1and m < TY, + 1 are satisfied. A summation of (4.187) and

(4.193) yields the result for this case.

Messages from X*_ Y and ZF_ are sent
As PDycmep sends messages in the latest-deadline-first order and messages in
Y have smaller deadlines than those in Zk hence, the fact that messages from

Y are sent implies that all the n —m messages from ZE_must be sent. Adding

the number of messages sent from each subset, we arrive at

Sendup(PDd<m<D7 N(n7 ’UJ), Aﬁ)c(n))

- k m+ (n+ Dw — Ty,
= e e PO T e et

(4.207)

Replacing T}¥,, with (4.196) in the above, we have

low

3When we say that messages in a subset are sent, we do not necessarily imply that all of them are

sent.

4.5. Worst Case Performance of PDjcp<pD 118

Sendup(PDd<m<D) N(n? ’LU), Aﬁ;c(n))

- l‘(2n—llc)w+1J s
Lm +(n+Dw—-TZ,— (n—m)((n+1)w+ l)J
(n+lw+1
k
l'(2':‘:. — Lw + 1J +
|_(n —m)(n+ Dw+1)+m+ M+ Dw—-T7,—(n—m)((n+ 1w+ 1)J
(n+1w+1
k m+ (n+)w —TZ,

|‘(2n — 1w + 1‘| +1 (n+w+1) (4.208)

This concludes the proof. Q.E.D.
Now the bounds of the worst case performance ratio of A*¥(n) can be derived.

Theorem 4.5.1 Given a token ring of n nodes and for w, n, m and k, the bounds of

the worst case performance ratio of PDycm<p are given by

Rlow(P-Dd<m<D7 N(n’ ’UJ), n, k)

iz n< T2 41,

n

P . - n+l+(:l+'|.)w—-')",_‘:£,
—] loahuerltming n'l—zn—mw"“ n>TZ 41 and (4209)

m<T5;+1,

k m+(n+l)w—Tz
|-(2n—1)w+1J+[- (n+1jw+l ‘-‘PJ
L n

otherwise,

4.5. Worst Case Performance of PDj«<m<D

119

Rup(PDd<m<Da N(n7 ’LU), n, k)

=i

mn

= ! LQTL_TQCWJ +min(n—m,| (ntijws2

n14(nd1)w—’f‘lz ’

n < Tl§w+17

1)

n

b mt(nt1)w—T7
I'(z”“g}l"-HJ‘I-I- (n+l)w+llan

n

n>TZ, +1 and
m<Tl§w+1,

otherwise.

(4.210)

Similar to the case of PD,,>p, we use the medium value of the performance bounds

as an estimation of the worst case performance ratio. That is,

Rest(PDd<m<D’ N(’I’L, w)a n, k)

Rlow(PDd<m<D7 N(’I’L, w)a n, k) i Rup(PDd<m<D7 N(n,w), n, k)

2

1

(4.211)

where Riow(PDacm<n, N(n,w),n,k) and Ryp(PDicm<n, N(n,w),n, k) are given in

Theorem 4.5.1. It follows that for given w, n and m, the worst case performance

ratio of PDycm<p can be obtained by numerically exhausting & (0 < k < m —1) as

indicated in (4.181).

4.5.3 Numerical Results and Discussions

We have derived the worst case performance ratio of the priority-driven protocol when

used to transmit messages whose deadlines are smaller, equal to and greater than

the number of priorities m. Theorem 4.5.1 and (4.211) show that the worst case

4.5. Worst Case Performance of PDj<m<D 120

performance ratio of PDycm<p is a function of n, w, m and k. We now examine the

effect of these parameters on the worst case performance ratio.

e We have shown that under PDgycm<p messages whose deadlines are greater
than m are sent in the latest-deadline-first order. This has taken place because
those messages are assigned the same priority due to the insufficient number of
priorities. To see this more clearly, we consider the worst case performance ratio

given in (4.211) when the node-to-node delay w is zero®.

R(PDd<m<D,N(na ’LU), , k)
(

k n<T? 41,

min(n—m,| 2E1=E
— { Fk4min(n’L 1) n>T% +1 and (4.212)
m<TY +1.
| - otherwise.

Figure 4.7 shows the impact of the number of priorities m on the worst case
performance ratio. We observe that for any given n the larger the number of
priorities, the higher the worst case performance ratio. This is can be explained
as follows. When n is smaller than m all messages are assigned distinct priorities
and messages are sent in the priority order, hence the EDF policy is implemented
exactly. Thus, the worst case performance ratio is m/n, implying that for a
given n the larger the m, the higher the worst case performance ratio. When
n increases to be greater than m, the worst case performance ratio drops to

0.5. This is because in this case messages whose deadlines are greater than m

4Note that in this case 7% = TZ, = T2, T¥ = T¥, = T&; and R(PDg¢m<p, N(n,w),n, k) =

up) Tow

Rest(PDd<m<D;N(n: ’Ll)), n, k') = Riow (PDd<m<D3 N(n, w)a n, k) = RUP(PDd<m<D3 N(n’ w), n, k)

4.5. Worst Case Performance of PDy<m<pD 121

W=20
ill & + o T
_ '\\ m= 16 -—
A\ . m = 64 -+—
: N m= 128 -&
0.8 \ i m = 256 —»—
\ .= 512 -2
% Tw
0.6 S) i
x| = @ .\?5."‘ i ™ = =
0.4 f J
0.2 b
0 1 1 1
0 250 500 750 1000
n

Figure 4.7. Effect of the Number of Priorities

are assigned the same priority regardless of their actual deadlines. As a result,

messages are sent in the latest-deadline-first order in the worst case.

e Figure 4.8 shows the effect of parameter k on the protocol performance. We
observe that for given w, n and m, increasing k does not result in monotonic
increase in the worst case performance ratio. This is because a smaller k£ causes
more messages to be sent in the latest-deadline-first order with a contention
overhead of (n + 1)w, while a larger k enables more messages to be sent in the
EDF order, but with a larger contention overhead of at least (2n — 2)w. As a
result, its impact on the worst performance ratio is a trade-off of the transmission

policy used and the contention overhead incurred.

e Theorem 4.5.1 also indicates that the worst case performance ratio 1s a decreasing

function of w. Figures 4.9 shows that for w > 0 even when the number of

4.5, Worst Case Performance of PDycm<D

il . . : : ’
T o= " - n =172 »—
: R = 128 o=
m = 256 -2
0.8h m = 1024 -x— 1
e e |
e
0.6 B _ g 2
----- - L i . _____»__EI,,_‘.-»E--------Ey—------El
N (T -
0.4 f—— ¥ “ . - TV PRI) B e
0.2 | |
0 L 1 1 L 1
0 10 20 30 40 50 60
k
Figure 4.8. Effect of Parameter k
m = 64
1 , : .
W=0 —-—
W = 0.001 ——
0.8 W= 0.003 > -
A
0.6 B
, i)
i ‘ - s
0.4 LSS B e, e i
% - S e
g Eb-» . 2zl
. CE -
—— | [T N
0.2 F ey
0 - . ,
0 250 500 750 1000
n

Figure 4.9. Worst Case Performance of PDg<m<D

122

4.6.

Enhancements and Modifications 123

priorities is sufficient, i.e. n < m, the worst case performance ratio is still less
than 1. This is solely due to the contention overhead. Furthermore, if the
number of priorities is not sufficient, i.e. n > m, the worst case performance
ratio of the protocol drops below 0.5. This is caused by both the contention

overhead incurred and the insufficient number of priorities used.

4.6 FEnhancements and Modifications

In this section, we propose and discuss several modifications to enhance the previously

described priority-driven protocol in order to make it more flexible and adaptive in

handling urgent messages.

e Suppose At time, if the token holder has a message with deadline d and length [,

such that ¢+ = d, then the message should be sent immediately; otherwise, the
message will eventually be lost since it takes at least another token circulation
before the message transmission can start. By then it is too late for the message
to make its deadline. This modification can be further extended so that a node
sends a message immediately upon capturing the token if the deadline of this

message is smaller than a pre-defined threshold.

Upon capturing the token, a node sends a message immediately if the message
has the highest priority. This is because the protocol does not allow a node to
overwrite the token priority field with its message priority if the two are the
same. This implies if a node writes a message priority, which is the highest, to
the token priority field, the token will return with this priority and the node will
send the message. To improve efficiency, the protocol should allow a node to

send a message of the highest priority immediately upon the token arrival.

4.6. Enhancements and Modifications 124

Chapter 7 will investigate the average case performance of the priority-driven

protocol that has incorporated the above modifications.

Chapter 5

The Window Protocol

In the preceding chapters, we have shown that the worst case performance ratio
of the simple token passing protocol and the modified priority-driven protocol can
be less than 0.5. Two factors are responsible for their poor performance, namely
the transmission policy employeed and the contention overhead incurred. We have
demonstrated that the impact of the transmission policy is dominant in determining
the protocol performance. Hence, the key for a protocol to achieve high performance
ratio is to implement the exact EDF policy.

In this chapter, we propose and analyze for the first time a new window (WD)
protocol for token ring networks, which implements an exact network-wide EDF
transmission policy [24, 47, 48, 50]. We first describe in detail the proposed protocol,
together with the window setting, token format and data structure at each node. We
then derive the worst case performance ratio and discuss the results. In the third part
of this chapter, we propose and examine various encoding schemes for realization of
the protocol. Finally, we propose and discuss a number of possible enhancements,

aiming to make the proposed window protocol more flexible, adaptable and eflicient.

125

5.1. Basic Concepts 126

5.1 Basic Concepts

As mentioned in Chapter 1, there exist several window protocols designed for
CSMA /CD networks. In those protocols, each node maintains a data structure called
window, which is a pair of numbers defining an interval on the axis of a message
parameter, such as laxity or deadline. Each node continually monitors the channel
state and keeps the window information updated. When a node senses the channel
idle, it transmits its waiting message if the laxity or deadline of the message falls in the
current window. If a collision occurs, all transmitting nodes abort the transmission and
the current window is divided into two or more windows which are stored in a stack.
Subsequently, the top of the stack is popped to become the new window in which the
above procedure repeats until a successful message transmission takes place.

It is clear that in those models, at any time only one window is used to regulate
message transmission. This is because in a CSMA/CD network a node obtains the
system state information by monitoring the channel state, consequently the search for
the earliest deadline message is performed in a binary split manner which is slow and
inefficient. In a token ring network, the token circulates around the ring, which makes
it possible to convey the global message deadline information to a certain extent, so
that the search can be conducted more efficiently. Hence, we propose a novel multiple
window based token ring protocol. It differs from the existing window protocols for
CSMA/CD networks in the window setting and the window splitting, in the search
for the earliest deadline message and in an additional token.

The basic idea of our window protocol is as follows. The message deadline axis
is partitioned into multiple windows. While the token is circulating around the ring

for the first time, information about the number of messages in the first non-empty

5.2, Data Structures 127

window (i.e. the one contains the earliest deadline message) is collected. After the
first token circulation, if the first non-empty window contains only one message, then
this message has the earliest deadline and will be sent; otherwise, that window is
further split into many smaller windows and the protocol recursively uses the token
to locate the earliest deadline message. This way, when a message transmission takes
place, the message involved is always the earliest deadline message amongst those
currently waiting in the network. Therefore, this window protocol implements the

EDF transmission policy.

5.2 Data Structures

Before describing the new window protocol, we first introduce the various data
structures associated with the protocol. They are the window setting, token format,

and data structure at a node.

5.2.1 Window Setting

In our model, the interval [t,00) on the message deadline axis is partitioned into s
windows: Wy, Wy, ..., W, where t is the current time. Each window defines a half

closed interval on the message deadline axis:

W; = [L;,U;) and U =Ly, forl<i<s-—1. (5.213)

Let a (> 1) denote the size of windows Wy, Ws,---,W,_;. There are two special
windows W; and W, whose sizes differ from «. The size of W; is é and its lower

bound is always set to the current time which enables any newly arrived messages to

5.2. Data Structures 128

w_1 W2 o W_i = W_(s-1) W_s
| 1 I | I I |

t t+38 t+d + o t+d+(G(-Da t+d+i t+3+(s-3)a t+d+(s-2a

|

Figure 5.1. Initial Window Boundaries

be considered for transmission immediately. The size of W, is unbounded because its
upper bound is always set to be co to accommodate messages with arbitrarily long
deadlines. For convenience, in the following we call the upper bound of W; and W,_4
the window lower bound and window upper bound respectively.

The exact size of each window changes from time to time, depending on the stage
of the protocol operation. In general, window boundaries at time ¢ can be expressed

in terms of ¢, s, a and § as follows:

W, = [t,t-}-(S)
W, = [t+6t+é+a)

Wi = [t+6+a,t+6+20a)

W, = [t+6+(0—2)at+6+ (- 1))

Weey = [t+6+(s—3)a,t+6+ (s—2)a)

W, = [t+68+ (s —2)a,o0). (5.214)

Figure 5.1 shows these non-overlapping windows partitioning the interval [t,o00).
Assume that the protocol is invoked at time 0, then the initial window lower and

upper bound is § and § + (s — 2)a respectively.

5.2. Data Structures 129

We say that a message M is in window Wj at time t if its deadline falls in the

interval defined by the boundaries of W, at time ¢, i.e.

Ly <d < Uy. (5.215)

Suppose messages M; and M;, with deadlines d; and d;, are in windows Wy, and W
respectively. With window boundaries defined in (5.214), if M; has a smaller deadline
than M;, then W3 must be in front of Wj. That is, if d; < d;, then we must have h < k.
Therefore, at any time the earliest deadline message must be in the first non-empty

window. There are two possible cases.

e The earliest deadline message under search is unique.
In this case, the earliest deadline message is located only if the number of

messages in the first non-empty window is one.

o There exists a deadline tie in the first non-empty window.
That is, more than one message in the first non-empty window have identical
deadlines. As a result there are more than one earliest deadline message. In this
case, the earliest deadline messages are located (i.e. the deadline tie is detected)

if the size of the first non-empty window becomes one.

It is apparent that in either case we only need to be concerned with the message
information in the first non-empty window in order to locate the earliest deadline
message. This leads to a simple and unique way to search for the earliest deadline

message in the new window protocol.

5.2. Data Structures 130

Send Enable Split Window Previous Window Window Counter Current Window
(SE) (SW) (PW) (WC) cw)

Figure 5.2. Proposed Token Access (AC) Field

5.2.2 Token Format

To implement the EDF transmission policy, we need to know the deadline information
about all messages in the network. As the token is the only means to deliver
information, we propose the token Access Control (AC) field to contain several
information fields to facilitate the protocol operation. They are Send Enable (SE),
Split Window (SW), Previous Window (PW), Window Counter (WC) and Current
Window (CW) as shown in Figure 5.2.

We now explain the meanings of these fields. Their usages will be detailed in the

next section where the protocol is presented and described.

e SE is a binary flag. A token with SE set indicates that the earliest deadline
message has been located and that the node with the message should capture

the token and transmit the message.

o SW is also a binary flag. It signals whether window boundaries have been
changed since the last token circulation. SW = 0 implies that window
boundaries retain their initial values; otherwise, current windows are derived

from the previous window, indicated by PW, as we shall see next.

e PWis an integer in the range from 0 to s, where s is the number of windows.
In an initial token, this field is set to 0. When flag SW is set, it implies that the

previous window indexed by PW (i.e. Wpw) has been split for further search.

5.2, Data Structures 131

Each node uses this information as well as its knowledge of the previous window

boundaries to derive the new window boundaries.

e WC(is also an integer. It counts the number of messages in the first non-empty
window. No message counters for other windows are required because we only
need to know the number of messages in the first non-empty window which
contains the earliest deadline message. For example, if there are two messages in
window W3 and one message in window W, then we only need to know that the
message counter for the first non-empty window (Ws) is equal to 2 (i.e. WC = 2)

in order to locate the earliest deadline message.

e CWis another integer in the range from 0 to s. If CWis zero, it indicates that no
message has been registered yet. A non-zero CWis the index of the current first
non-empty window. This information is used by nodes to determine whether
they should register their messages. If a node has a message in a window with
a higher index than CW, then this message is not a potential earliest deadline
message; otherwise, the node registers its message as a potential earliest deadline
message. In the above example, only the fact that the W3 is the current first
non-empty window (i.e. CW = 3) is needed to eventually locate the earliest

deadline message.

In summary, the token conveys three types of information: whether the earliest
deadline message has been located (SE), whether the window boundaries have been
changed (SW, PW), and the message deadline information (WC, CW). They are

essential to the protocol operation. Initially, all token fields are set to 0.

5.3. Protocol Description 132

5.2.3 Data Structures on a Node

To support the protocol operation, each node maintains a message queue where
messages are kept in the increasing order of their deadlines. Messages with identical
deadlines are placed according to the arrival order. Hence, at any time the first message
in a node’s message queue has the earliest deadline among all pending messages on
that node, thus is considered for transmission first. A message is discarded when its
deadline has expired.

Initially, all nodes are notified of the values of system parameters s, o and 6.
Using these parameters, each node derives and stores the values of the initial window

boundaries as shown in (5.214).

5.3 Protocol Description

In this section, we describe the operation of the new window protocol, which is divided
into two parts: one for the monitor node and the other for non-monitor nodes.

The monitor node is a special node, which is the controller in the process of
searching for the earliest deadline message. Initially, it is selected by the management
function. After each message transmission, the sending node becomes the new monitor
node.

The monitor node is responsible for
e collecting the global message deadline information,
¢ informing nodes if any window has been split for the current search,

e notifying nodes when the earliest deadline message has been located.

5.3. Protocol Description 133

As will become clear later, the use of the token is the key for the monitor node to
carry out the above tasks successfully. The monitor node is allowed to modify all the
AC fields in the token.

A non-monitor node! differs from the monitor node by its local role in the search
for the earliest deadline message. That is, a non-monitor node is only responsible
for notifying the monitor node of its message deadline information if it is relevant
to the search for the current earliest deadline message, but does not participate in
the decision making as whether the earliest deadline message has been located or the
window needs to be split. At any time, a non-monitor node has only partial knowledge
of the deadline information about messages residing on other nodes?. Upon receiving
the token, a non-monitor node examines the information fields in the token and is
allowed to modify only three fields in the token: PW, WC and CW.

Next, we describe in detail the operations performed by the monitor and a non-

monitor node respectively.

5.3.1 Monitor Node

We define the protocol operation by a state machine transition diagram as shown in
Figure 5.3. It consists of three states: Search, Split & Search and Send Enable. The

condition for the protocol operation to be in a particular state is listed as follows:

e Search: initial search for the earliest deadline message and the initial window

boundaries are used,

IThe monitor node can be viewed as a pair of concentrated virtual nodes, one is the monitor
node and the other the non-monitor node. Initially, it is assumed that the token is moving from the
monitor virtual node to the non-monitor virtual node.

2Specifically, only those upstream nodes.

5.3. Protocol Description 134

State 1: Search State 2: Send Enable State 3; Split and Search
(1) WG =1
power_up n = (32q)
WC=0 SE<-1,8W<-0,PW<-0
SE <0, SW<-0, PW<-0, |=
WC <-0,CW<-0
WC=1 WGC> 1 &size of W we=1
(124) 2l (32b)
SE<-1 SE<-1,SW<-0,PW<-0
WC > 1 &size of W_we=1 (33)
(12b) oy >
< WC > 1 &sizo of W_we>1
PW<-CW,WC<-0,
after sending a msg CW<-0
e o (21)
SE <-0, SW <-0, PW<-0,
WG <-0,CW<-0

WC>1&sizeof W wes 1

PW<- CW,SW<-1,
WC<-0,CW<-0

(13)

y

Figure 5.3. Protocol State Machine Transition Diagram

e Split & Search: continued search for the earliest deadline message and window

boundaries have been changed, and
o Send Enable: the earliest deadline message is located.

In a state transition diagram, a transition from one state to another occurs if
certain condition is satisfied. In Figure 5.3, writings above and below each transition
line show respectively the token content seen (i.e. the condition) and the operations
performed by the monitor node.

We now describe in detail the transitions associated with each state.

e State 1: Search

The protocol operation first enters Search state when the network is powered up.

5.3. Protocol Description 135

The protocol operation remains in this state if the monitor node receives the
token back and finds WC = 0. This implies that currently the ring is idle
and there are no messages waiting. The monitor node simply passes the token

without any change. This is labeled by transition 11.

If WC = 1, the monitor node knows that the earliest deadline message has been
located in window C'W and the search should now be terminated. The monitor
node sets flag SE to notify the prospective node to capture the token and send

the earliest deadline message. Transition 12a shows this case.

If WC > 1 and the size of Wow is 1, the monitor node recognizes that there
exists an unresolvable deadline tie in window C'W. It sets flag SE to 1 to notify

a node having one of these messages to send the message upon the token arrival.

This is indicated by transition 12b.

If WC > 1 and the size of Wow is larger than 1, the monitor node detects that
there are more than one message in the first non-empty window Wew and the
search for the earliest deadline message should continue. It sets flag SW to 1
and copies CW to PW to inform other nodes that the potential earliest deadline
message is in window PW, which must now be split. Fields WC and CW are
reset to 0 for collecting message information regarding to the new windows. The
monitor node also computes the new window boundaries and updates its copy

of the current window information®. This case is indicated by transition 13.

e State 3: Send Enable

Denoted by a dashed line, transition 21 is an indirect transition which may

3The procedure for computing the new window operations will be given in the next section when
the procedure for non-monitor nodes are given and discussed.

5.3. Protocol Description 136

involve two different nodes. This is the case that after the completion of a
message transmission, the sending node becomes the new monitor node and

releases an initial token with all fields reset to 0.

e State 2: Split & Search
When the monitor node receives the token back, similar to transitions 12a, 12b

and 13, there are three possible transitions from this state. They are denoted by

transitions 32a, 32b and 33.

If WC = 1, the monitor node recognizes the earliest deadline message has been
located in Wgow. It carries out all operations as described for transition 12a,
and in addition it turns off flag SW and resets PW to 0 to indicate no change in

window boundaries. This case is shown as transition 32a.

if WC > 1 and the size of Wew is 1, the monitor node detects that there exists a
deadline tie in Weow. It carries out all operations as described for transitions 12b
and in addition it resets flag SW and PW to 0 to indicate no change in window

boundaries. This case is denoted by Transition 32b.

If WC > 1 and the size of Wow is larger than 1, the monitor node knows
that there are more than one message in the first non-empty window Wew. It
performs all operations as indicated in transition 13 except setting SWto 1, since

in this state SW must have already been 1. This is indicated by transition 33.

Table 5.1 summaries the token and window operations performed by the monitor
node as described above. Rows 1 — 4 correspond to the transitions associated with
Search state and Rows 5 — 7 are for the transitions originating from Split & Search
state. Row 8 represents the case that a sending node becomes the new monitor node

when it completes its message transmission.

5.3. Protocol Description 137
Row Token Content Size of Interpretation Operations
SE|SW|PWIWC|CW Wew
1 0 0 0 0 0 - no msg waiting no change
= in token
2 0 0 0 1 X 1 msg in Wew SE:=1
3 0 0 0 >1 X deadline tie SE:=1
in Wew
4 0 0 0 >1 X >1 > 1 msg in Wew || split Wew,
SW:=1,
PW :=CW,
wcC =0,
CW =0
5 0 1 X 1 X X 1 msg in Wow SE:=1,
SW:=0,
PW =0
6 0 1 x [>1] x 1 deadline tie SE:=1,
in Wow SW:=0,
PW =0
7 0 1 X >1 X >1 > 1 msg in Wew || split Wew,
PW :=CW,
wcC =0,
CW:=0
8 - — = - - - a non-monitor reset all token
node becomes fields to 0
the new monitor
after sending
a message

Table 5.1. Monitor Node Operations (Explanatory Scheme)

Note that in whatever follows, for PW or CW, symbol ‘x’ represents a positive

integer in the range from 1 to s, where s is the number of windows. Symbol ‘-’ means

that the value is of no significance in determining the subsequent operations.

5.3.2 Non-Monitor Nodes

We now describe the procedures associated with a non-monitor node upon the token

arrival. Table 5.2 shows the following information:

e the possible token content seen by a non-monitor node,

5.3. Protocol Description

138

Row Token Content Interpretation Operations
SE[SW|I’W|WC|CW
1 1 0 0 1 X Send Enable, ifk=CW,
ED msg in Wew wWC :=0,CW :=0,
send msg,
become new monitor
2 1 0 0 >1| x Send Enable, it k=CW,
deadline tie in Wew || WC := 0, CW := 0,
send msg,
become new monitor
3 0 0 0 0 0 Search, wWC:=1,CW =k
no msg so far
4 0 0 0 >1| x Search, if k< CW,
> 1 msg in Weow WC:.=1,CW:=k
5 0 0 0 >1 X Search, if k =CW,
> 1 msg in Wew WC:=WC + 1
6 0 0 0 >1] x Search, if k > CW,
> 1 msg in Wow no change in token
7 0 1 X 0 0 Split & Search, split Wpw + Row 3
no msg in Wow
8 0 1 x | 21| x Split & Search, split Wpw + Row 4
> 1 msg in Wew
9 0 1 X >1| x Split & Search, split Wpw + Row 5
> 1 msg in Weow
10 0 1 x | >1] x Split & Search, split Wpw + Row 6
> 1 msgin Wew

Table 5.2. Non-Monitor Node Operations (Explanatory Model)

e the interpretation with regard to the current state of the protocol operation and

message deadline information about upstream nodes, and

e the token and window operations performed by the node before it releases the

token.

Upon the arrival of the token at a non-monitor node, if a node has no messages

waiting, it only updates the window boundaries if necessary and passes the token

without any change; otherwise, the node computes k£ such that the first message in its

message queue is in Wj. That is,

5.3. Protocol Description 139

L < d < Uy, (5.216)

where d is the deadline of this message, and L and Uy are defined in (5.214). The
node then takes different actions depending on the values of the token fields and k.

In the following, we divide the description into three parts with regard to the value of

SE and SW.

e SE =1 (cf. Row 1 — 2 in Table 5.2)
Once the node sees SE set, WC > 1 and CW > 0, it knows that the protocol

operation is now in Send Enable state. Counter WC may have different values.

Case 1: WC =1 (¢f. Row 1)
The node knows that the carliest deadline message has been located
in Wew.

Case 2: WC > 1 (¢f. Row 2)

The node realizes that there exists a deadline tie in Wow.

In both cases, if the node does not have a message that is in Wew, it simply
passes the token without any change; otherwise, the node resets fields WC and
CW to 0. This is to inform the downstream nodes that this is a data frame
as the combination of SE = 1, PW =0, W(C' = 0 and CW = 0 is not valid
for a free token. The node then sends out the message immediately. After the
completion of the message transmission, the node becomes the new monitor node

and releases the token with all fields reset to 0.

¢ SE = 0 and SW = 0 (cf. Row 3 — 6 in Table 5.2)

When the node sees that SEis 0, it knows that the search for the earliest deadline

5.3. Protocol Description 140

message continues and that the initial window boundaries are used. There are

four cases to consider regarding to different values of WC, CW and k.

Case 1: WC =0 (¢f. Row 3)
This indicates that no message has been registered by upstream nodes yet.
The node simply writes the window number k in C'W field and sets counter

WC to 1 to indicate that there is now a message in Wew.

Case 2: WC > 0 and k < CW (cf. Row 4)
This means that the node has a message with a deadline smaller than the
one denoted on the token, thus its message is the potential earliest deadline

message. Hence, it overwrites CW with k and resets counter WC'to 1.

Case 3: WC > 0 and k = CW (cf. Row 5)
This means that upstream nodes have message(s) in Wew and that the

node also has a message in Wow. Thus, it simply increments counter WC

by 1.

Case 4: WC > 0 and k > CW (cf. Row 6)
The node knows that its message is not the potential earliest deadline
message, as there are other messages having smaller deadlines. The node

simply passes the token without any change.

e SE =0 and SW = 1 (cf. Row 7 — 10 in Table 5.2)
As flag SW is set, the node recognizes that the previous window indexed by
PW has been split and that the window boundaries have changed since the last
token visit. In the following, we only describe how a node derives the new window

boundaries and how to compute the window index k for its message given the

5.3. Protocol Description 141

newly computed window boundaries. Operations on the token fields are exactly

the same as those described for Rows 3 — 6, thus are omitted.

— The node first computes the sizes of the new windows. Figure 5.4 shows
the splitting of window PW, for PW =1,2 < PW < s—1and PW = s

respectively. We consider these three cases separately.

Case 1: the split window is the first window, i.e. PW = 1.

The previous Wi is now split into s — 1 smaller equal-sized windows

1 Ws,...,W/_, and their sizes are derived as

«

6,: I:
o l_s—l

1. (5.217)

The new window boundaries are

o= ¢ +(G-1o, 1<i<s—1
U = t'+id, 1<i<s—1
L' = t'+(s—1)d

U = oo, (5.218)

where t' is the current time.

Case 2: the split window is neither the first nor the last window, i.e.
2<PW <s—1.
In this case, previous windows Wy, Wy, ..., Wpw_; are now merged to
become new window W]. This is to accommodate dynamic arrivals

so that any newly arrived messages with deadlines smaller than that

5.3. Protocol Description 142
W_(PW)
w_1 wW_2 Wi W_(s~1) W_s
| 1 | A -
|t —— — -
I —_—
| e
| wW’_1 wW’_2 W’_i == _ XV’_(s—l) W’ s
J] | =) s
¢
(a)
W_(PW)
w_1 w_2 W_i W_(s—1) W_s
| | | A
t ;
~
~
/
—~ ~
w_1 w_2" Wi W (s-1) W_s
L L ! L e .
t’
(b)
W_(PW)
W_1 wW_2 Wi W_(s-1) W_s
' ! ' — Lo
¢ e
/
i /
/
w1l w2 _— wW_i W_(s-1) / W_s

(c)

Figure 5.4. Splitting of Window Wpw

5.3. Protocol Description 143

intended by the current search can still be considered for transmission.

The size of the new window W/ becomes

§ = 6§+ (PW —2)a, (5.219)

where t’is the current time. The previous window Wpw is split into

s — 2 equal-sized windows Wj, Wi, ..., W/_, whose sizes are

o
o = fq 2] (5.220)

The new window boundaries become

o = it

U = t'+¢

L' = 4+8+(0-2), 2<i<s—1

U = t'+8+@GE-1d, 2<i<s—1

L' = t+8+(s—2)

U = oo, (5.221)

where t' is the current time.

Case 3: the split window is the last window, i.e. PW = s.

As the upper bound of window W, is oo, thus, we need to choose

4

a fraction of W, for splitting. Let ¢ denote its size*. The previous

windows Wi, Ws, ..., W,_, are now merged to become the new first

4In practice, its value can be set differently according to the message deadline characteristic. The
default value can be set to multiples of a.

5.3. Protocol Description 144

window W/{. Hence, the size of the new first window Wj is

8 = 64+ (s—2)a. (5.222)

Part of the previous W, is now split into s — 2 equal-sized windows

Wi, Ws,...,W,_, whose sizes are

' @
o = ‘-.s = 2]. (5.223)
The new window boundaries are

ik = i
U, = t'+¢
L' = +8+(:-2), 2<i1<s—1
Ul = t'+8+(GE-1)0, 2<i<s—1
L' = '+84(s-2)d
U = oo, (5.224)

where t’ is the current time.

— With newly computed window boundaries, the node locates window W

which contains the first message in node’s message queue. That is,

L, <d<U, (5.225)

where d is the deadline of the first message.

5.4. Worst Case Performance Analysis 145

— The node then takes different actions according to the value of k and the
token fields. The operations are exactly the same as those described for

Rows 3 — 6 in Table 5.2.

This concludes the description of the new window protocol. Note that the protocol
described is not intended to be implemented directly and is in need of refinement in two
ways. Firstly, an encoding scheme of the token AC field is needed to efficiently realize
the protocol. Secondly, a variety of performance enhancements can be incorporated
to make the protocol more flexible, adaptive and efficient. We will discuss these two

issues in detail in Sections 5.7 and 5.8.

5.4 Worst Case Performance Analysis

In this section, we examine the worst case performance of the new window protocol.

Lemma 5.4.1 Suppose messages M; and M;, having deadlines of d; and d;, are
in windows Wy, and Wj respectively. With the window setting given in (5.214) in

section 5.2.1, we must have

<k, if di<d, (5.226)

Proof: As M; is in W}, we have

Ly < d; < Uh, (5.227)

5.4. Worst Case Performance Analysis 146

where L, and U, denote the lower and upper bound of Wj. There are two cases to

consider.

o [, <d;<dj<Uy

In this case, M; is also in window Wj. Thus, h = k.

o [, <d;<U,<dj

In this case, M; is in one of the windows with higher index than k. Hence, A < k.

In summary, we have b < k. The concludes the proof. Q.E.D.

Lemma 5.4.2 The proposed window protocol implements the EDIF transmission
policy. That is, at time t if a message M is transmitted, it must be the earliest deadline

message waiting at that time.

Proof: Lemma 5.4.1 implies that the earliest deadline message must be in the
window with the smallest index, i.e. the first non-empty window. The operations
given in Tables 5.1 and 5.2 ensure that the earliest deadline message is found only if
the number of messages in the first non-empty window is one or the size of the first
non-empty window is one. Hence, if a node is allowed to send a message, it must be

the earliest deadline message. Q.E.D.

Lemma 5.4.3 If the window protocol is used to transmit n messages, the message set

with a mazimum message deadline of n minimizes the number of messages sent.

Proof: Lemma 4.3.2 states that if the EDF policy is employed to transmit n
messages, the message set with a maximum message deadline of n minimizes the

number of messages sent in the worst case. As the new window protocol implements

the EDF policy, we have the lemma proved. Q.E.D.

5.4. Worst Case Performance Analysis 147

We now examine the maximum contention overhead involved in locating the earliest
deadline message in the window protocol. Recall that the upper bound of the last
window W, is always set to co. If all messages are in the last window, then according
to the protocol part of the last window is split again and again until at least one
message is found not in the last window. As long as message deadlines are bounded, it
is straightforward to calculate the number of splittings required. Hence, without loss
of generality we assume that the actual window upper bound, i.e. the upper bound of
W,_1, is chosen such that it is greater than the largest message deadline. This way,

no splitting occurs in the last window.

Lemma 5.4.4 Given a token ring of n nodes, the mazimum contention overhead c

incurred in locating the earliest deadline message in the window protocol is

Cmaz = |log, Alnw + w, (5.228)

where s is the number of windows and A is the initial value of the actual window upper

bound (i.e. the upper bound of the initial window W,_y).

Proof: According to the protocol, if there are messages waiting in the network,
then there are two cases to consider when the token returns to the monitor node after

one complete circulation.

e Only one message is found in the first non-empty window, implying that it is the
earliest deadline message. In this case, it takes nw units of time for the token to
complete one full circulation and 7w (1 <7 < n) units of time for the token to
reach the node having the earliest deadline message. Hence, the total overhead

is nw + 1w < 2nw.

5.4, Worst Case Performance Analysis 148

e Two or more messages are found in the first non-empty window. In this case,
the first non-empty window is further split into many smaller windows and
the protocol continues recursively. Evidently, if the first non-empty window
contains two messages having identical deadlines, then the search for the earliest
deadline message involves a deadline tie. Consequently, it needs [log, A] token
circulations, thus [log, A]nw units of time to reduce the window size to 1 to
solve the deadline tie. After the earliest deadline message is located, it takes
another w units of time for the token to reach the next node downstream to
inform the node to send its message®. Therefore, the total contention overhead

for a message transmission is [log, Alnw + w.

Clearly, [log, Alnw +w > 2nw since A > s for & > 1. Thus, in the worst case all
messages have the same deadlines and each message transmission incurs a maximum
overhead of [log, A]lnw 4 w. This concludes the proof. Q.E.D.

The worst case message set can now be identified.

Lemma 5.4.5 Given a token ring of n nodes, if the window protocol is used to

transmit n messages, the worst case set is

ch(n) = {(na 1)’ (’I’L, 2)7 B) (n? (U 1), (n7 n)} (5229)

Proof: Asthe number of messages deadlines is n, there must be at least one message

with a deadline of n; otherwise, the message set is infeasible. On the other hand, it

5As all message have the same deadlines, the node capturing the token next is the next sending
node.

5.4. Worst Case Performance Analysis 149

follows from Lemma 5.4.3 that in the worst case the maximum deadline of messages
must be n. Furthermore, Lemma 5.4.4 states that when there exists a deadline tie,
the message transmission incurs a maximum overhead. Thus we conclude that in the
worst case message set all messages have the same deadlines of n so that every search
involves a deadline tie. As a result, each message transmission incurs a maximum
overhead. Q.E.D.

With Lemmas 5.4.4 and 5.4.5, the number of messages sent from message set A,.(n)

can be determined.

Lemma 5.4.6 Given a token ring of n nodes, if the window protocol is used to send

n messages, then in the worst case the number of messages sent is

n
N Auwe = . .
Send(W.D, N(n,w), Aue(n)) L(flogs Aln+Tw s 7 (5.230)
Proof: With Lemma 5.4.5, we know that when the window protocol is used

to transmit n messages, all messages in the worst case message set have the same
deadlines. Hence, any time the search for the earliest deadline message involves a
deadline tie.

Lemma 5.4.4 shows that for a token ring of n nodes, the maximum overhead in
detecting a deadline tie is [log, A]nw. Then, it takes another w units of time for
the token to travel from the monitor node to its nearest neighbor, which is the node
having the earliest deadline message. Hence, the total time needed for a message
transmission is ([log, Aln + 1)w + 1, where 1 is the message transmission time. As
the window protocol implements the EDF policy and the maximum message deadline

is n, it follows from Lemma 4.3.3 that the number of messages sent from (5.229) is

L(ﬂOgs A]7:1+1)w+1j . Q.E.D.

5.5. Numerical Results and Discussions 150

With the above lemma, the following can be readily established.

Theorem 5.4.1 The worst case performance ratio of the window protocol is given by

i

R(WD,w,n) = | o, ATyt (5.231)

n

5.5 Numerical Results and Discussions

As the window protocol implements the exact EDF transmission policy, the contention
overhead is the only cause for the performance degradation. We can see this more
clearly when w approaches to zero.

lim R(WD,w,n) = 1. (5.232)

w—0

That is, if working in an ideal environment where w = 0, the window protocol can
send all the messages as a result of implementing the EDF policy.

Figures 5.5 shows the protocol performance when the number of windows is 64. We
observe that when w = 0, the protocol obtains a performance ratio of 1 for any given n.
This implies that the window protocol would have the same behavior as the CEDF
protocol if the contention overhead is assumed to be zero. On the other hand, the
protocol performance degrades significantly as w and/or n increases. This is because
in the worst case the contention overhead of the window protocol is ([log, Aln + 1)w.

Theorem 5.4.1 also indicates that the worst case performance ratio is a function

of s and n. Figures 5.6 shows the impact of s and n on the protocol performance.

5.6. Major Advantages of the Window Protocol 151

5 = 64
1% . y ' o
W= 0 —-o—
W\ W= 0.001 —+—
Y W= 0.002 &
0.8 O W = 0.003 - 1
|‘:l ~1-\
0.6 \ S J
X e
" a e
g
0.4 x 3] 3 _
~¢ ey R b= 1
» 2
w e,
.

2 b x T il
0 H= — e

0 L L i

0 250 500 750 1000
n

Figure 5.5. Worst Case Performance Ratio of WD

Clearly, for a given n the larger the number of windows, the higher the sent ratio®.
Likewise, for a given s the larger the n, the lower the sent ratio. This is because when
w > 0, the contention overhead incurred in a message transmission is an increasing
function of [Log(s,A)]. Obviously, increasing s results in a smaller overhead, hence a
higher sent ratio. On the other hand, increasing n gives rise to a larger overhead, and

thus a smaller sent ratio.

5.6 Major Advantages of the Window Protocol

We now summarize the major advantages of the proposed window protocol.

6We also note that increasing s may not result in any increase in sent ratio, this is due to the
property of function [].

5.6. Major Advantages of the Window Protocol 152

w = 0.0005
l L] T Ll] T T T
/‘ n = 100 &—
S’ n = 500 —+-
el n = 900 -e
0.8 - - A s -
/ 1
A i -
O 6 B 12} £} . L B8 a _
~
¥ e
0.4 & N
1/“
‘__.
0.2 o
0 ! L . 1 1 i 1 1
2 4 8 16 32 64 128 256 512 1024
S

Figure 5.6. Effect of Number of Windows

e The protocol implements the network-wide EDF transmission policy. That is,

at any time if a message is sent, it is the earliest deadline message.

e The use of multiple windows offers faster convergence in locating the earliest
deadline message as compared with the existing window protocols designed for
CSMA /CD networks. In those protocols, whenever a collision occurs the window
upper bound is moved in a binary manner. The protocols continue in this way
until either a message transmission is successful or the window size becomes
one. This inefficient strategy of the window operation is due to the nature
of CSMA/CD networks where nodes are not able to obtain sufficient deadline
information about messages residing on other nodes. Therefore, contention can
only be detected upon a collision, but the actual message deadlines involved

are not known. The new window protocol takes the advantage of the token

5.6. Major Advantages of the Window Protocol 153

M1M2

A

1) (2) (4) (5) (3)

| | 1
° 1 10

(a) Binary Search in the Window Protocols for CSMA/CD Networks

Y

M1M2
W1 W2 w3 W 4 WS We w7 W8
I (] 1 4 1 I 1 I
T T g) 1 1 -
0 8 16 24 32 40 48 56

(b) Multiple Window Search in the New Window Protocol for Token Ring Networks
Figure 5.7. Time Diagram for Message Transmission

circulating around the ring and benefits from the multiple window structure, so
that the monitor node is able to gain useful knowledge of the global message
deadline information. As a result, the search for the earliest deadline message
is more efficient. Consequently, the new window protocol offers much faster
convergence in locating the earliest deadline message. Figure 5.7 demonstrates
this by a simple example. Suppose two messages have deadlines of 47 and 48
respectively. With an initial window size of 56, the binary search in the existing
window protocols starts with window [0,56] and needs to move the window upper
bound at least 5 times before M; can be sent successfully. By contrast, in the
new window protocol (with 8 windows), after one token circulation, the monitor
node finds that M; is the only message in Ws. Hence, only one token rotation
is needed to locate the earliest deadline message. Evidently, the search for the

desired message in the new window protocol is significantly faster.

5.7. Protocol Realization 154

5.7 Protocol Realization

In this section, we discuss how to efficiently realize the previously described window
protocol. We start with the direct realization of the protocol and show how the
information fields on the token can be reduced. This leads to an optimal encoding
scheme using a minimum 5-bit AC field, while the full functionality of the protocol
is correctly preserved. We then derive a general formula identifying the quantitative
relationship between the number of windows obtainable and the number of bits needed,

using the optimal encoding scheme. Finally, we give an alternative encoding scheme

using an 8-bit AC field which conforms to the IEEE 802.5 standard.

5.7.1 Direct Realization

In the window protocol described in Section 5.3, one bit is needed for binary flags SE
and SW respectively. Fields PW and CW are of equal length and are in the range
from 0 to s (the number of windows), hence the number of bits needed for each of
them is [log, s]. Finally, [log, n] bits are required for counter WC, where n is the
number of nodes. This is because in the most unfavorable case where each node has
a message waiting and all these messages are in the same window, counter WC has
to record these n messages. The IEEE 802.5 token ring network needs to support up
to 500 nodes, which requires 9 bits for counter WC. Summing up the above, the total

number of bits needed in the token AC field is

2+ 2+ [logg s] + 9. (5.233)

5.7. Protocol Realization 155

This means that at least 13 bits (since s > 2) are needed for the token AC field if the

window protocol is implemented directly.

5.7.2 Optimal Realization

In this section, we show how to use a minimum length AC field to implement the
previously described window protocol with its full functionality preserved.
Before we present the encoding scheme, we first discuss some possible reduction

in information needed for locating the earliest deadline message and examine ways in

which the length of the AC field may be minimized.

e Recall in Table 5.2, when a non-monitor node finds that there is at least one
message in Wow (¢f. Rows 5 and 9 in Table 5.2) and its own message is in
the same window, it increments counter WC' by 1. This way, after one token
circulation the monitor node has an accurate account of the number of messages
in the first non-empty window Wew. However, as the earliest deadline message
is located only if one message is found in the first non-empty window (when no
deadline tie exists), we only need to know whether one or more than one’
message is in Weow. This implies that counter WC' can now be simplified to
a binary flag. Together with field CW, three cases reflecting the number of

messages in the first non-empty window can be encoded:

WC =0 and CW = 0: no message is found in the network so far.

WC =0 and CW > 0: one message is in the first non-empty window so far.

WC =1 and CW > 0: more than one message are in the first non-empty

window so far.

“The exact number is not relevant to the current search of the earliest deadline message.

5.7. Protocol Realization 156

Note that with this compound encoding, only one bit is needed for counter
WC, which is a significant reduction from [log, n] bits required by the direct

realization.

e When a non-monitor node sees SW =1 (¢f. Rows 7-10 in Table 5.2), it knows
that one of the previous windows has been split since the last token visit. The
index of the split window is denoted by PW (> 0). Clearly, we can use field

PW alone to indicate whether any previous window has been split.

PW = 0: initial window boundaries are used.

PW > 0: previous window Wpw has been split.

e We also notice that when a unique earliest deadline message is found or a deadline
tie is recognized (cf. Row 1 — 2 in Table 5.1), the monitor node sets flag SE to 1
and resets field PW to 0. This implies that when a non-monitor node receives
the token with flag SE set, PW must be 0. if flag SE is off, then PW must
be positive. Hence, it is feasible not to use flag SE in the token at all. This
is done by introducing another local binary flag at each node, so that the node
having the earliest deadline message is able to determine whether it is allowed

to transmit its message upon the arrival of the token if PWis 0.

Each node now has a binary flag called Message Registered (MR) which is set
to 0 initially. When the system is in Search state, a node checks whether it
should register its message in the token as previously described. Only if the
node overwrites CW on the token with its own message window index, the node
sets flag MR to 1. When the token arrives at a node with PW > 0 (window

boundaries have been changed), the node resets flag MR if it is on. It then

5.7. Protocol Realization 157

carries out the procedure described in Table 5.2 to see whether it should register
its message in relation to the new window boundaries. If the token arrives with
PW = 0 and its flag MR is on, the node knows that the protocol operation is
now in Send Enable state. It compares its message window index with CW in
the token. If they are the same, then the node resets MR and sends its message;
otherwise, the node simply resets flag MR and passes the token without any

change.

The operations on flag MR described above ensures the following:

— flag MR on a node is set only if the node overwrites C'W with its own

message window index;

— flag MR on a node is reset before any other operations when the node sees

PW > 0

— when the monitor node starts Send Enable, flags MR on all nodes between

the node having the earliest deadline message and the monitor node are off;

— when the monitor node starts Send FEnable, the node with the earliest

deadline message is the last node having flag MR set;

— after a non-monitor node becomes the monitor node and enters Search state,

no node has flag MR set.

The above properties of the operations on flag MR guarantee that these local
flags are reset once a new search starts. Clearly, the test for a node to check if
the system is in Send Fnable state is PW = 0 and MR = 1. As a result, the
condition that a node is allowed to send a message is PW = 0, MR = 1 and

k=CW.

5.7. Protocol Realization 158

Row || Token Content || Size of Interpretation Operations
PW | WC | CW || Wew
[1 " 0 | 0 [0 ” - “ no msg waiting || no change in token fields |
2 0 0 X - 1 msg in Wow no change in token fields
3 0 1 X 1 deadline tie in Wow || no change in token fields
4 0 1 X >1 > 1 msg in Wew split Wow, PW := CW,
WC :=0,CW =0
X 0 b'd - 1 msg in Wew PW =0
6 X 1 X 1 deadline tie in Wow || PW :=10
7 X 1 X >1 > 1 msg in Wew split Wow, PW = CW,
WC :.=0,CW =0
8 0 - | >0 - a non-monitor node reset all token fields
becomes the monitor | to 0
after sending the msg

Table 5.3. Encoding for Monitor Node Operations (Optimal Scheme)

It should be pointed out that when using nodal flags MR to replace the explicit
binary flag SE on the token, idle nodes or nodes that have not registered their
messages during the previous token circulation(s) are not aware of the transition
of the system state from Search to Send Enable as their flags MR are off in both
cases. Thus the condition specified above is always evaluated false. Nevertheless,

the protocol operation remains correct.

The optimal encoding schemes incorporating the changes described above are given
in Tables 5.3 and 5.4, for the monitor node and non-monitor nodes respectively. We
see that the token AC field is now reduced to include only three information fields.
In Table 5.4, fields SE and SW no longer appear explicitly on the token, instead their
values shown are computed from the three token fields and the additional node-based
flag MR as discussed above. Note that for MR, symbol ‘x’ means that its value (either
on or off) has no significance in determining the node’s operations. For PW and CW,

symbol ‘x’ denotes a positive integer in the range from 0 to s.

5.7. Protocol Realization 159
Row || Token Content || Nodal || Computed Interpretation Operations
PW[WC |CW | MR |[SE| SW
1 0 0 X 1 1 0 Send FEnable, reset MR,
ED msg if k=CW,
in Wow WC :=0,CW =0,
send msg,
become new monitor
2 0 1 X 1 1 0 Send Enable, reset MR,
deadline tie if k=CW,
in WCW W = 0, CW = 0,
send msg,
become new monitor
3 0 0 0 0 0 0 Search, no msg CW =k, set MR
4 0 0 ble 0 0 0 Search, if k< CW,
1 msg in Wow CW :=k,set MR
5 0 0 X 0 0 0 Search, if k=CW,
1 msg in Wow wWC =1
6 0 0 X 0 0 0 Search, if k>CW,
1 msg in Wew no change in token
7 0 1 b’e 0 0 0 Search, ifk<CW,
> 1msgin Wew || WC :=0,CW =k,
set MR
8 0 1 X 0 0 0 Search, it k=CW,
> 1 msg in Wew || no change in token
9 0 1 X 0 0 0 Search, ifk>CW,
> 1 msg in Wow || no change in token
10 X 0 0 X 0 1 Split & Search, reset MR +
no msg split Wpw + Row 3
11 X 1 X X 0 1 Split & Search, reset MR +
1 msg in Wew split Wpw + Row 4
12 X 1 X X 0 1 Split & Search, reset MR +
1 msg in Wew split Wpw + Row 5
13 X 1 bic X 0 1 Split & Search, reset MR +
1 msg in Wew split Wpw + Row 6
14 X 1 X X 0 1 Split & Search, reset MR +
> 1 msg in Wew || split Wpw + Row 7
15 X 1 X b 0 1 Split & Search, reset MR -+
> 1 msg in Wew || split Wpw + Row 8
16 X 1 X 53 0 1 Split & Search, reset MR +
> 1 msg in Wew || split Wpw 4+ Row 9

Table 5.4. Encoding for Non-Monitor Node Operations (Optimal Scheme)

5.7. Protocol Realization 160

Evidently, the above encoding scheme replaces the explicit flags SE and SW on
the token with a compound encoding. Furthermore, each possible value of a field 1s
fully utilized. As a result, the explicit information needed on the token is minimized,
while the protocol functionality is fully reserved. Therefore, this encoding scheme is

optimal.

Token Length

Under the above optimal encoding scheme, we now derive a general formula to identify
the relationship between the number of bits b needed in the token AC field and the
number of windows s implemented.

One bit is needed for counter WC field. To implement s windows, [log, s| bits are

needed for PW and CW respectively. Thus, in total we have

b=1+2x [log, s]. (5.234)

Suppose we have multiple windows (s > 2), then a minimum of 5 bits are needed to
realize the protocol.
On the other hand, for a given b-bit long token AC field, it follows that the minimum

number of windows that can be implemented is®

s = 20-1/2, (5.235)

Evidently, the number of windows which can be realized by the optimal encoding

method increases ezponentially to the length of the token AC field. Consequently,

8]n the following formula, we assume that b is an odd number. If b is an even number, the result
should be rounded to the nearest integer.

5.7. Protocol Realization 161

8D = Start Delimiter (1 octet)
sD AG ED AC = Access Gontrol (1 octet)
ED = End Delimiter (1 octet)

(s) Token Format

PPP = Prlority bits (3 blts)
T = Token bit (1 bit)
M = Monitor bit (1 bit)
PPP T M RRR RRR = Ressrvation bits (3 bits)

(b) Token Access Control Field

Figure 5.8. IEEE 802.5 Token Format

a small increase in the number of bits results in a large increase in the number of
windows, which in turn reduces the contention overhead and thus improves the protocol

performance.

5.7.3 Practical Realization

We have given an optimal encoding scheme which requires a 5-bit token AC field to
realize the protocol,

In practice, the encoding scheme is constrained by the actual token length, hence
we now consider realizing the protocol using an 8-bit token AC field which conforms to
the IEEE 802.5 standard. Figure 5.8 depicts the token format used in an 802.5 token
ring network.

We see that the AC field contains three priority bits, three reservation bits and two
binary flag bits. The priority and reservation bits are protocol related, hence they not
relevant to the window protocol. The Token bit which distinguishes a data frame from
the free token and the Monitor bit which prevents a packet from endlessly circulating

around the ring are replaced by the compound encoding in our encoding scheme.

5.8. Enhancements and Modifications 162

Hence, we have a total of 8 bits which can be used to realize the previously described
window protocol. One method is to use the optimal encoding scheme described above.
That is, 3 bits are allocated to fields PW and CW respectively, and 1 bit is used for
counter WC, which gives a total of 7 bits.

This leaves us one spare bit, which can be used in different ways. In the following,
we give one such scheme. Let this spare bit to be used for flag SE. That is, we let
Send Enable to be explicitly indicated on the token rather than to be computed from
the values of PW, CW, WC and local flag MR. As a result, there is no need for nodal
flag MR.

Tables 5.5 and 5.6 give the detailed encoding for operations performed by the
monitor node and non-monitor nodes respectively. Note that ‘x’ denotes a positive

integer in the range from 1 to s.

5.8 Enhancements and Modifications

In this section, we propose various possible enhancements and modifications which can
be incorporated into the previously described window protocol. We then examine and
discuss their feasibility, utility, advantages and disadvantages in terms of making the
proposed window protocol more adaptive, flexible and efficient. These modifications
aim to preserve in principle the EDF transmission policy, while minimizing the

overhead to achieve the best possible protocol performance.

5.8.1 Urgent Pre-emption

The basic version of the proposed window protocol may not be flexible enough in

handling urgent messages which have very tight deadlines. The following simple

5.8. Enhancements and Modifications 163
Row Token Content Size of Interpretation Operations
SE PWwW WC | CW Wew
1 bit | 3 bits | 1 bit | 3 bit
il 0 0 0 0 - no msg waiting no change in
- token fields
2 0 0 0 X - 1 msg in Wew SE =1
3 0 0 1 X 1 deadline tie in Weow || SE =1
4 0 0 1 X >1 > 1 msg in Wow split Wew,
PW = CW,
CW =0,
WC:=0
5 0 X 0 X - 1 msg in Wow SE =1,
PW =0
6 0 X 1 X 1 deadline tie in Wow || SE =1,
PW =0
7 0 X 1 b >1 > 1 msg in Wow split Wew,
PW .=CW,
CW :=0,
wC =0
8 1 - - - = a non-monitor node reset all
becomes the monitor | token fields
after sending a msg to 0

Table 5.5. Encoding for Monitor Node Operations (Practical Scheme)

example demonstrates the possibility. Suppose a node receives the token at time ¢

and has a message with a deadline of d = t + l5s, where [js is the message transmission

time plus the overhead. Obviously, if the node registers this message on the token,

it takes at least another token circulation before the node can start the transmission,

by which time it would be too late for the message to make its deadline. Thus, a

straightforward modification is to allow a node having a message with a deadline of d,

such that d = t + [y, to send out the message immediately even if flag SE = 0.

This example shows a very extreme case. In practice, the condition can be relaxed to

d < t+ lpy + threshold. The value of the threshold can be chosen small enough so

that the EDF policy can be well approximated.

5.8. Enhancements and Modifications 164
Row Token Content Interpretation Operations
SE PW | WC | CW
1 bit | 3 bits | 1 bits | 3 bit
1 1 0 0 X Send Enable, if k=CW,
ED msg in Wew wC :=0,CW =0,
send msg,
become new monitor
2 1 0 1 X Send Enable, if k=CW,
deadline tie in Wew || WC := 0, CW := 0,
send msg,
become new monitor
3 0 0 0 0 Search, no msg CW .=k
4 0 0 0 X Search, if k< CW,
1 msg in Wew CW .=k
5 0 0 0 X Search, if k=CW,
1 msg in Wew wWC:=1
6 0 0 0 b Search, ifk>CwW,
1 msg in Wew no change in token
7 0 0 1 X Search, if k< CW,
> 1 msg in Wow CWi=kWC=0
8 0 0 1 X Search, if k=CW,
> 1 msg in Wew no change in token
9 0 0 1 ble Search, if k> CW,
> 1 msg in Wow no change in token
10 0 X 0 0 Split & Search, split Wpw + Row 3
no msg
11 0 X 0 X Split & Search, split Wpw + Row 4
1 msg in Wew
12 0 X 0 X Split & Search, split Wpw + Row 5
1 msg in Wew
13 0 X 0 X Split & Search, split Wpw + Row 6
1 msg in Wew
14 0 X 1 X Split & Search, split Wpw + Row 7
> 1 msg in Wow
15 0 ble 1 X Split & Search, split Wpw + Row 8
> 1 msg in Wew
16 0 X ll X Split & Search, split Wpw + Row 9
> 1 msg in Wow

Table 5.6. Encoding for Non-Monitor Node Operations (Practical Scheme)

5.8. Enhancements and Modifications 165

An alternative approach is to allow a node to send a message immediately if the
message is in the first window Wj. Recall that the upper bound of this window
changes during the search. After a window is split, Wi may be formed by merging
all the previous windows up to the first non-empty windows. Thus, if a node has a
message in this new first window after the window split, it must be a newly arrived
message with a deadline smaller than the one that is intended by the current search.
Thus this modification dynamically takes care of newly arrived urgent messages. If the
probability of two or more message arrivals during a token circulation is very low, then
the EDF policy is mostly observed. To maximize the adherence to the EDF policy,
a small initial size of the first window should be used. This modification also implies
that a node is allowed to pre-empt the token with flag SE set on the way from the
monitor node to a node having the previously located the earliest deadline message.

Clearly, the above urgent pre-emption schemes allow urgent messages to be sent
sooner. Under the previously described protocol, a non-monitor node becomes the
monitor node after it transmits a message. However, in the case where the token
with SE set is pre-empted on the way to a non-monitor node, when the pre-empting
node becomes the monitor node after its transmission, it resets the token fields and the
search for the previously located the earliest deadline message starts again. Obviously,
it is wasteful to do so. The solution is that after the pre-empting node completes the
message transmission, it issues the token identical to the one it received and does
not become the monitor node. This way, the non-monitor node having the earliest
deadline message can still send its message upon the token arrival. Consequently, the

overhead involved is minimized.

5.8. Enhancements and Modifications 166

5.8.2 Faster Deadline Tie Handling

Recall when a deadline tie is recognized, the monitor node sets flag SE to 1. Then the
first node having such a message captures the token and sends the message first. It
then releases the token with all fields reset to 0 and the window boundaries are reset
to their initial values. However, reseting the token fields also means discarding the
information of the deadline tie. In the worst case where remaining messages involved
in the tie are still the earliest deadline messages®, it requires further token circulations
and window splittings to locate the remaining earliest deadline messages that involved
in the tie. Clearly, this process continues until the message set involved in the tie
is reduced to the last one (no more deadline tie). It is obviously wasteful to do so
and this inefficiency is most pronounced when the number of messages involved in a
deadline tie is large.

The way to overcome the above problem is to modify the protocol so that the first
sending node does not reset the token fields, but releases the same token (i.e. SE =1,
WC =1 and CW > 0). The purpose of this is to let other messages involved in the
deadline tie be transmitted one after another once the tie is detected. This way, when
the first sending node receives the token back with SE = 1, it knows that all messages
involved in the tie have been transmitted. It then issues a token with all fields reset
to 0 and the initial window boundaries are resumed.

Clearly, the above modification observes the EDF policy when there are no new
arrivals or newly arrived messages have larger deadlines than those involved in the
deadline tie. If a node, having a newly arrived message with a smaller deadline,

captures the token before the second node involved in the deadline tie, to preserve the

91f there are no new message arrivals or if all newly arrived message have deadlines greater than
those involved in the tie.

5.8. Enhancements and Modifications 167

EDF policy, the protocol should allow this node to send the newly arrived message

immediately. This is similar to the urgent pre-emption as discussed before.

5.8.3 Faster Resolution

It is obvious that when there are messages having deadlines very close to the earliest
deadline message (the extreme case would be a deadline tie as discussed above), many
window splits may be needed to reduce the window size to very small. This is especially
true when the initial window size is large and the number of windows is small. For
any messages with identical deadlines or close deadlines, in practice it is perhaps

not beneficial to further differentiate them®©°.

Hence, if the protocol can predict or

estimate in advance and stop further splitting windows, then the overhead can be

reduced significantly. Indeed, in the following we examine three such modifications.
One solution is to terminate the search once the monitor node detects that there

is enough time to send all messages in the first non-empty window. Specifically, the

monitor checks to see if the following holds:

Low >t+1tx* lM, (5236)

where i is the number of messages in Wow ! and [j is the message transmission time
plus the overhead. The reason that Lew, the lower bound of Weow, is used in (5.236)
rather than the actual message deadline is that the monitor node only knows the
number of messages in Wow, but not the exact message deadlines involved. However,

if a message is in Wgw, its deadline must be at least equal to the lower bound of

10Unless to differentiate them on the basis of their service classes.
17n this case counter WC needs to count more than one message.

5.8. Enhancements and Modifications 168

Wew, but less than the upper bound of Wew. If all messages in the first non-empty
window can make their deadlines, then it does not matter in which order they are
sent. To understand this better, consider the case where the current time ¢ is 4, and
Low and Ucw is 16 and 32 respectively. Suppose four messages, with deadlines of 22,
25, 27 and 30 respectively, are found in Wew. Hence, each of them is the potential
earliest deadline message as far as nodes are concerned currently. The monitor node
checks if 16 > 4 + 4 * 1 holds. As it is true in this case, the monitor node sets SE
to 1, terminating the search. Note that this estimation is conservative as the actual
message deadlines can be much larger than the lower bound of Wgw. For example,
in the same scenario, if the current time is 15, the test of (5.236) would be evaluated
false, though in fact all these four messages can still make their deadlines.

A less conservative solution is not to be concerned with the number of messages in
the window, but only the window size. That is, when the monitor node detects the
size of Wew is less than a threshold, WC > 0 and CW > 0, it terminates the search
and sets SE to 1. A node having a message in Wgw and capturing the token first sends
its message. If the threshold is set to 1, then this solution is equivalent to resolving a
tie in the previously described window protocol. When the threshold is chosen to be
greater than 1, it becomes an imprecise solution and the degree of imprecision depends
on the value of the threshold, W(and CW. Although the alteration of the order in
which messages are sent may result in different messages to be lost, the performance
of the protocol may be improved as a result of considerably reduced overhead.

Another approach is that when the number of messages in the first non-empty
window is less than a threshold, the monitor node sets flag SE. This approach also

reduces the overhead, though it may also violate the EDF policy, the degree of which

5.8. Enhancements and Modifications 169

depends on the window size o and the value of counter WC'. In practice, a small value

of the threshold may produce significant improvement in performance ratio.

5.8.4 Choice of Threshold

We see all the modifications proposed and discussed above aim to offer fast response
time to urgent messages and to reduce the overhead incurred in the search for
the earliest deadline message. They exhibit a good trade-off between the level of
implementing the optimal EDF transmission policy and the overhead incurred in the
implementation.

Although it is difficult to determine analytically the optimal values of thresholds
involved in these schemes as they are subject to network load, message arrival pattern,
and message deadline and position distributions. In practice, a threshold can use either
a fixed pre-defined value or a heuristic value assigned dynamically according to the

load and message characteristics.

5.8.5 Possible Realization

These modifications are also simple to be implemented, each of which requires only
one or two additional entries in Tables 5.3, 5.4, 5.5 and 5.6.

The only complication of some of these modifications is the need for additional bits
for counter WC to record the exact number of messages (may be more than one) in the
first non-empty window. Thus, more bits and more encoding are needed to incorporate

the modifications. In practice, a realistic figure may be chosen as a compromise.

Chapter 6

Worst Case Performance Comparison

In this chapter, we use the results obtained from the previous three chapters to compare
the worst case performance of the three token ring protocols [24]. We first outline the
comparison method, and then present and discuss the results. Finally, we examine the
implication and applicability of the comparison results. This investigation provides
a guideline for the design of distributed scheduling algorithms and communication

protocols.

6.1 Comparison Method

Our objective is to identify the conditions (in terms of network parameters) under
which one protocol may perform better than the others. Specifically, we wish to
partition the parameter space into several regions, in each of which one protocol
outperforms the others.

First, we compare the worst case performance of the three protocols on a pair-wise
basis. As for each protocol, the worst case performance ratio is a function of network

parameters n and w, thus each pair-wise comparison is made by first equating the worst

170

6.1. Comparison Method 171

case performance ratios of the two chosen protocols. We then solve w in terms of n.
However, due to the nature of | | function contained in the worst case performance
ratios, there may be multiple values of w that satisfy the equation. Therefore, for a
given n, we define wpn and wyas to be the minimum and the maximum value of w

that satisfy the equation. Thus, wyin and wme, are functions of n, i.e.

Winin = fmin(n)7

Wmaz = fmaw(n)- (6237)

The above equations can be presented as two curves on the n-w plain. We call the
area between the two curves the equal-performing band, as the two protocols perform
the same in this area.

To further clarify the concept of the equal-performing band and its usage, let us
consider comparing the token passing protocol with the priority-driven protocol. First,

we set up the following equation:

R(TP,w,n) = R(PD,w,n), (6.238)

where R(TP,w,n) is given in (3.3.1), while R(PD,w,n) is given in (4.136), (4.4.1)
and (4.3.1) respectively for different m. We then numerically solve (6.238) to obtain
Wynin = fmin(n) and Wmee = fmaz(n). The two corresponding curves are depicted in
Figure 6.1(a). The area between the two curves is the equal-performing band. Clearly,

the equal-performing band partitions the parameter space into three parts:

e the band itself in which R(TP,w,n) = R(PD,w,n), indicating that two

protocols perform the same;

6.1. Comparison Method 172

e the lower left part (below the curve of fnin(n))) in which R(T'P,w,n) <
R(PD,w,n), suggesting that the priority-driven protocol performs better than

the token passing protocol;

e the upper right part (above the curve of finez(n)) in which R(TP,w,n) >
R(PD,w,n), implying that the token passing protocol outperforms the priority-

driven protocol.

Other two pairs of protocols are compared in the same manner and their equal
performing bands are shown in Figures 6.1(b) and (c) respectively. The relevant
protocol parameters used for Figure 6.1 are m = 16 for the priority-driven protocol
and s = 16 for the window protocol.

When we compare the three protocols, the three pair-wise equal-performing bands
are used. However, superimposing all of them together may not produce a graphical
presentation which is clear and easy to understand. Hence, to simplify the comparison
without lossing the essence of the problem, we reduce an equal-performing band
to an equal-performing curve as follows: for a given equal-performing band, i.e.
Winin = fmin(n) and Wmae = fmes(n), its corresponding equal-performing curve is
obtained as follows:

_ Fnin(®) + Fan(n)

w = f(n) :

(6.239)

That is, for each n we choose the medium value of Wi, and W, In the following,

we use the equal-performing curves to compare the three protocols.

6.1. Comparison Method 173

(a) TP va. PD (m = 16)

0.08 T T T T T T
W _min ——
W_max -+—
0.06 .
= 0.04 4
0.02 7
(1] + + * + +
64 128 256 512 1024

(b) PD vs. WD (m = 16 & s = 16)
0.08 - T T - : :

256 512 1024

(c) TP vs. WD (s = 16)

0.08 ; ; : ; o .
W_min ——
W_max -+

0.06 | :

i6 32 64 128 256 512 1024

Figure 6.1. Pair-Wise Equal Performing Bands

6.2. Pair-Wise Comparisons 174

6.2 Pair-Wise Comparisons

The equal-performing curves are depicted in Figure 6.2.

e Token passing protocol versus priority-driven protocol
From Figure 6.2(a), we observe that the priority-driven protocol performs better
than the token passing protocol when both n and w are small. This is because
the token passing protocol does not observe the EDF policy, while the priority-
driven protocol implements the exact EDF policy when the number of message
deadlines is smaller than the number of priorities. Consequently, the priority-
driven protocol produces better performance for small » and w. On the other
hand, as the contention overhead of the priority driven protocol and the token
passing protocol is in the order of nw and w respectively, the impact of increasing
n or/and w on the performance of the priority-driven protocol is greater than
that on the token passing protocol. Hence, the token passing protocol eventually

outperforms the priority-driven protocol as n or/and w increases.

¢ Priority-driven protocol versus window protocol
The equal-performing curve is shown in Figure 6.2(b). Recall that when the
pumber of message deadlines n is smaller than the number of priorities m, both
the priority-driven and the window protocols implement the EDF policy. Hence,
in this case the performance of the two protocols is determined entirely by their
contention overheads, which are functions of parameters n, w, m and s. If the
contention overhead of the priority-driven protocol is smaller, then it outperforms
the window protocol; otherwise, the window protocol yields better performance.
As n becomes greater than m, the performance of the priority-driven protocol

deteriorates as it no longer implements the exact EDF policy. Nevertheless,

6.2. Pair-Wise Comparisons

Figure

175

(a) TP vs. PD (m = 16)
T T L] T T T
TP = PD ——
- i 4 4+
64 128 256 512 1024
n
(b) PD vs. WD (m = 16 & s = 16)

PD = WD ——

16 32 64 128 256 512 1024
n
(c) TP vs. WD (s = 16)
TP = WD ——
i 1 1 il .—‘H:_"‘-d—._;
16 32 64 128 256 512 1024
n
6.2. Pair-Wise Equal Performing Curves

6.3. Comparison of Three Protocols 176

because of the large contention overhead, the window protocol outperforms the

priority-driven protocol only when w is sufficiently small.

e Token passing protocol versus window protocol
The result is shown in Figure 6.2(c). We see that the window protocol exhibits
its performance advantage when both n and w are small. This is because the
token passing protocol does not consider message deadlines, while the window
protocol always implements the EDF policy with a small contention overhead
when n and w are small. As n and/or w increase, the window protocol suffers
from a rapid growth in its contention overhead. As a result, the benefit of an
accurate implementation of the EDF policy is nullified by the increase in its
contention overhead, making it incapable of competing with the token passing

protocol for large n and w.

6.3 Comparison of Three Protocols

To compare the three protocols, we superimpose the above three pair-wise equal-
performing curves and the result is shown in Figure 6.3.

We see that the three curves corss each other resulting in a small triangle area near
n = 16 and w = 0.03, in which the three protocols have the same performance. As our
goal of the comparison is to partition the parameter space into several disjoint regions,
thus to simplify the presentation we choose a point inside the triangle to replace the
triangle. Figure 6.4(a) shows the result.

We see that the three curves partition the parameter space into six different regions,
labeled as I,11,--- and VI respectively. Each region represents an area where the

performance of one protocol is the same or better than another. For example, in

6.3. Comparison of Three Protocols 177

m= 16 & s = 16

0 - O 6 L] T T T T
TP = PD ——
PD = WD -+
0. TP = WD -&-— 4
0. i
2 0 b
.‘.-L
0. \ il
™
0 n T 1l
) TrE, Sk
“*H.. ;e
“Bieii, ”_”“-t-._._‘%
. 4 i --l?-- ':ul""'_“:::ﬂj-"'?’-‘-‘-ﬁm--— b
64 128 256 512 1024
n

Figure 6.3. Comparison of Three Protocols

Region I, we have R(PD,w,n) > R(WD,w,n) and R(WD,w,n) > R(TP,w,n),
implying that the performance of the priority-driven protocol performs either the same
or better than the window protocol, and that the window protocol performs either
the same or better than the token passing protocol. Table 6.1 lists the performance
relationship for each region.

These six regions can be further grouped into three domains, such that one
protocol achieves the best performance in one domain as shown in Figure 6.6(b).
For instance, the domain labeled with “WD” covers regions V and VI, indicating that
the window protocol is either the same or better than both the token passing and
the priority-driven protocol. The three disjoint domains cover the entire parameter
space, implying that no protocol can always dominate the others, and each protocol

has its own applicable area in the parameter space defined by the network attributes

6.3. Comparison of Three Protocols

(a) Six Regions of Parameter Space (m = 16 & s = 16)

0.08 T---====---=m;eeseeecseceiecesieeessss s
—®— TP=PD |
—{O—— PD=WD
0.06
—_—,————— -
o TP=WD |!
2 0.04 | 5
0.02 + \
00 —m—m—m & 8
8 64 128 256 512 1024
n
(b) The Domains of Three Protocols (m = 16 & s = 16)
0.08._ ...

0.06

T

2 0.04 -

0.02

Token
Passing

> i
Tty

16 32 64 128 256 512 1024

Figure 6.4. Comparison of Three Protocols

178

6.3. Comparison of Three Protocols 179

Region Performance Relationship
I R(PD,w,n) > R(WD,w,n) and R(WD,w,n) > R(TP,w,n)
11 R(PD,w,n) > R(TP,w,n) and R(TP,w,n) > R(WD,w,n)
1 R(TP,w,n) > R(PD,w,n) and R(PD,w,n) > R(WP,w,n)
v R(TP,w,n) > R(WD,w,n) and R(WD,w,n) > R(PD,w,n)
V R(WD,w,n) > R(TP,w,n) and R(TP,w,n) > R(PD,w,n)
VI R(WD,w,n) > R(PD,w,n) and R(PD,w,n) > R(TP,w,n)

Table 6.1. Performance Relationship in Six Regions

and application parameters. This indicates that the performance of a communication
protocol is a trade-off between the optimality of the transmission policy employed and
the contention overhead involved.

Although the comparison results presented and discussed above are generated with
m = 16 and s = 16, many other comparison results have also been obtained under
different values of protocol parameters. The general conclusion is that although the
shape and the size of each domain differs from that in Figure 6.4, similar observations
can be made. Figure 6.5 shows comparison result for m = 32 and s = 32.

The above observations and discussions have implied that in designing a real-time
communication protocol, one should carefully assess the trade-off of implementing
the optimal scheduling policy and minimizing the implementation overhead to satisfy
the design objective. Furthermore, in determining a communication protocol for a
particular network, it is important to conduct the worst case performance analysis
of each candidate protocol and compare their performance in the parameter ranges
associated with the network and applications. The desired protocol should be the one

which yields the best performance within the projected parameter ranges.

6.3. Comparison of Three Protocols 180

0.06

2 0.04

0.02 +

(a) Six Regions of Parameter Space (m =32 & s = 32)

T B :
—®—— TP=PD
——— PD=WD
——&—— TP=WD
~ T
= &8 A —a—0%

0.06 -

% 0.04

0.02

256 512 1024

(b) The Domains of Three Protocols (m = 32 & s = 32)

Token
Passing

Window !
R S S e == S S

8 16 32 64 128 256 512 1024

Figure 6.5. Comparison of Three Protocols

6.4. Applicability of Results 181

6.4 Applicability of Results

Our study would have little contribution in practice if the parameter values considered
are not within the range supported by the current token ring networks in terms
of parameters n and w. We validate this in relation to the IEEE 802.5 token ring
standard.

The 802.5 token ring can operate at a speed c of 1, 4 or 16 Mbit/s. It can support
a maximum number n of 500 stations. The bus propagation delay p is 5 ps/km. The
token length L; is 24 bits. From Chapter 2, the normalized token node-to-node delay

w' is

L p)/n ;
= | (Lf)i IS;}C/C (6.240)

Where 6 is the station bit delay, [is the ring length, L, and L, are the packet length
and the token length respectively.

Table 6.2 lists the w’ values for different combinations of system parameters. The
ring length [is 1 km and the station bit delay § is 4 bits. Although the 802.5 standard
permits a maximum token holding time of 10 ms for message transmission by a token
holder, in the following we use an average packet length of 1024 bits in order to derive
the maximum possible value of w’. Hence, for ring speeds 1, 4 and 16 Mbit/s, the
corresponding message transmission times are 1.024, 0.256 and 0.2256 ms respectively.
Furthermore, we assume that each station only transmits one such frame whenever it
holds the token.

In Table 6.2, we see that w’ ranges from 0.00382 to 0.0119. The dotted line boxes

in Figure 6.5(a) and (b) illustrate the ranges prescribed by the values of n and w. It

6.4. Applicability of Results

Ring speed | # of nodes | Normalized node-to-node delay

(¢) (n) (w')

1 5 0.00477
4 5 0.00763
16 3 0.0119
1 500 0.00382
4 500 0.00385
16 500 0.00396

182

Table 6.2. Range of Normalized Token Node-to-Node Delay

is obvious that given the current token ring networks no protocol among the three can
always outperform the others. Hence, for a given environment one should carefully
select a protocol in order to achieve the best possible performance. Specifically, when
w and n are small, the priority-driven protocol should be used; otherwise, the window
protocol should be used unless (n,w) is in the upper-right corner in which the token

passing protocol is the best choice.

6.4. Applicability of Results 183

(a) m=16&s=16

0.07 i
0.06 :
0.05 Tokgn
Passing
2 0.04
0.03 —+
0.02
0.01 T /| o . e T !
\.HH_“.—-‘-_. E
0 L TR d
64 128 256 512 1024
n
b) m=32&s=32
0.08 T T TR R TR e Rt e s Sy v s e s e a e ‘
0.06 +
Token
Passing
2 0.04
0.02
0 T
8 16 32 64 128 256 512 1024

Figure 6.6. Parameter Range of Current Token Ring Networks

Chapter 7

Average Case Performance Comparison

The worst case performance of the three protocols analyzed in the previous chapters
has deterministically established a lower bound of the performance ratio for each
protocol. However, this performance ratio is pessimistic and characterizes only the
protocol behavior under the worst case scenario. This chapter deals with the average
case performance of the three protocols by means of simulation. The average case
perfbrmance reflects the protocol performance under normal operational environments.
Therefore, it forms an integral part of the performance evaluation of a protocol.

Our goal is to investigate the performance of each protocol in supporting real-
time heterogeneous traffic under various network loads, traffic mix, and network and
protocol parameters [47]. First, we introduce the simulation model and simulation
language used. We then describe the traffic model on which the simulation experiments

are conducted. Finally, we present, compare and discuss various simulation results.

184

7.1. Simulation Program 185

7.1 Simulation Program

We have developed a discrete-event simulation program written in SIMSCRIPT IL5.
SIMSCRIPT I1.5 is a discrete event-driven simulation language and was selected in

view of the following advantages:
e programming flexibility and portability,

modularity and structured programming,

e built-in data collection and analysis,

real-time event scheduling capacities, and

e on-line debugging.

Figure 7.1 is a simplified flow chart of the simulation program. At the beginning
of the simulation, network, protocol, message and simulation parameters are read
in. Then the initialization routine is called to activate all processes and to initialize
all parameters used in the simulation. The simulation is initiated by the creation
of message generators which schedule subsequent message arrivals according to the
specified arrival distribution. The control then enters the token ring emulation
program. At the end of each simulation run, various statistics are collected and written
to an output file.

The simulation program can be divided into eight major modules defined as
either processes or routines in SIMSCRIPT. The functionalities of these processes

and routines are described as follows.

o Routine read_data reads in network, protocol, message and simulation parameters

specified by users. They include the simulation time, number of simulation

7.1. Simulation Program

Start simulation

Input parameters

¥
Initialize

—

Y

Message Generation
Packetization
Queueing

\

186

Token ring
emulation
program

Display run status

A

Collect statistics

Emulate a Protocol (TP,PD or WD)

check i No
————————————— simulation =
@ completed
3
& Yes
§_ Y
g Update statistics file
End simulation

Figure 7.1. Simulation Program Flow Chart

7.1.

Simulation Program 187

runs for a given set of parameter values, debugging level, number of nodes, ring
length and propagation delay, system offered load, message length, position and

deadline distributions, message arrival rate, etc.

Routine initialization activates all the processes, creates all the permanent
entities and initializes all the system variables used in the simulation. This
routine is first called at the time when simulation starts and is called repeatedly
at the end of ecah simulation run to reset the system variables and reactivate

processes.

Process msg_generator is responsible for generating messages throughout the
simulation. The process schedules the next message generation according to the
given message inter-arrival time distribution and assigns each message an arrival
time, a message class, a deadline and a length. In our model, each node has a

message generator which generates five classes of messages.

Process ring_mgr is responsible for managing the ring states and co-ordinating
the activities of all the nodes in the network. They include passing token from
one node to the next, removing messages whose deadlines have expired, calling

designated routines to update statistics, etc.

Routine access_control is called whenever a node sees a token. It checks whether
the node should capture the token and send a message, or only modify the token

fields, or simply let the token pass by without any change.

Routine msg_trans is entered whenever a message transmission takes place. It

updates various ring, message and node variables.

7.2. Traffic Model and Parameters 188

o Routine update_states updates relevant statistics, e.g. number of messages sent,

ring utilization, etc. whenever a successful message transmission has taken place.

o Process get_results awakes at the end of each simulation run to record statistics.
The overall results for the runs are displayed or saved in the output files. This
process is first called at the end of the warm-up period to reset the statistical

variables and then at the end of each simulation run.

7.2 Traffic Model and Parameters

To cvaluate and compare the average case performance of the three protocols, we have
chosen a traffic model based on a local area network operating in a typical real-time
manufacturing environment [60].

The profile of this traffic model is given in Table 7.1. Traffic generated by sources
includes voice, data and various control messages. Each message class is assumed to
have an independent Poisson arrival process. In our model, messages are packetized
before they are transmitted. Packets of length 240, 1024 and 8192 bits are used for
different messages classes. The reason to use short and long packets is to maximize
the ring efficiency for lengthy data transfer and to minimize the loss for short and
urgent messages. Message deadlines range from 0.9 msec' for short alarm messages to
50 msec for lengthy file transfer messages.

Note that the packet length shown in Table 7.1 includes both payload and an
overhead of 13 bytes as in the IEEE 802.5 standard. A packet with a smaller

information field is padded with zeros, so that there are no partial packets. Figure 7.2

IThis is a relative deadline which indicates that the message needs to be received within 0.9 ms
from its arrival at a node.

7.2. Traffic Model and Parameters 189

Class Traffic Msg Length | Pkt Length | # of | % of | Deadline
Id Type (bits) (bits) Pkts | Traffic | (msec)
1 File Transfer 16000 - 32000 8192 2-4 0.27 50
2 File Transaction 1600 1024 2 5 20
3 Telephone 2000 1024 2 37 15
4 Sensor 240 240 1 57 5
5 Alarm 240 240 1 0.73 0.9

Table 7.1. Traflic Profile

shows the token AC field used for each protocol. Although it is different for each
protocol, in the simulation a token length of 3 bytes is assumed for all protocols.

With the above five traflic classes, we define the network offered load as

n 5

p=00 i x 1, (7.241)

=1 7=1

where n is the total number of nodes in the network, A; ; is the arrival rate of message
class j on node 7, and 1/y; represents the transmission time of message class j. In the
simulation, it is assumed that the arrival rate of class j message is the same for each

node, that is,
M= Agj = wewlD Ay fi (7.242)

Nodes are uniformly distributed along a 1-km long ring which operates at a speed
of 1, 4 and 16 Mbit/s. We assume 4 bits latency delay at each node and a medium

propagation delay of 5 us/km.

7.3. Performance Metrics 190

T = Token bit (1 bit)
T M reserved M = Monitor Bit (1 bit)

(a) Token AC Field for Token Passing Protocol

T = Token bit (1 bit)

M = Monitor Bit (1 bit)
PPPPFPP T M P = Priority Bits ie bits)

(b) Token AC Field for Priority Driven Protocol

ga, SF?nd_Enat\:;lwe {J bit){3 bits)
= Frevious ndow its
SE PW WG cW WC = Window Counter (1 bit)
CW = Current Window (3 bits)

(c) Token AC Field for Window Protocol

Figure 7.2. Token Access Control Field Format

7.3 Performance Metrics

As in the worst case performance analysis, the performance metric to be used is the
sent ratio which is defined as the percentage of messages successfully meeting their

deadlines.

e For a class 7 messages, the sent ratio is defined as

- sent(i)
 lost(i) + sent(i)’

() §i=1,2,07%,5, (7.243)

where sent(7) and lost(z) denote respectively the number of class ¢ sent and lost
messages. Note that for a messages consisting of multiple packets, unless all

packets make their deadlines, the message is considered lost.

e To give an indication of the overall protocol performance for m message classes,

we define the average sent ratio as

7.4. Simulation Results 191

5 »
2 t
#(ud) i 2, sent(z)

2 (sent(s) + lost(1))

(7.244)

Using these metrics to measure the protocol performance, simulation results for

the three protocols can now be analyzed.

7.4 Simulation Results

Message characteristics are summarized in Table 7.1. In each simulation run, statistics
are reset after the transient phase and then collected after an additional 50,000 average
message arrivals. Multiple runs of simulations are conducted to ensure that the
maximum range (diameter) of 95% confidence intervals are kept within 10%.

In the following sections, we discuss simulation results obtained under various
network, protocol and load parameters for the three protocols. Although we examine
the sent ratios of all message classes, our discussions may focus more on the the sent
ratio of class 5 messages, which indicates how well a protocol handle urgent messages.
The simulation results are presented using tables and/or graphs whenever appropriate.
This is to facilitate our discussion, as tables give accurate numerical numbers while

graphs show the change in protocol performance more clearly.

7.4.1 Effect of Offered Load

Results in Tables 7.2(a)-(e) show the impact of the load change on the protocol
performance for a 50-node ring operating at a speed of 1 Mbit/s. Each table compares
the sent ratio of a particular message class for the three protocols under various offered

loads.

7.4. Simulation Results

—

(a): Class 1 Message Sent Ratio |

| Offered Load ” Token Passing | Priority-Driven] Window Based ‘

0.50
1.00
1.50
2.00

0.992
0.924
0.821

0.754

0.991
0.910
0.781
0.695

0.934
0.664
0.611
0.588

(b): Class 2 Message Sent Ratio]

| Offered Load | Token Passing ‘ Priority-Driven | Window Based |

0.50
1.00
1.50
2.00

0.996
0.966
0.881

0.803

0.995
0.955
0.841
0.750

0.996
0.927
0.801
0.722

(c): Class 3 Message Sent Ratio |

rOffered Load “ Token Passing | Priority-Driven | Window Based l

0.50
1.00
1.50
2.00

0.992
0.946
0.833
0.749

0.992
0.936
0.807
0.726

0.997
0.925
0.798
0.723

l

(d): Class 4 Message Sent Ratio |

| Offered Load | Token Passing | Priority-Driven

Window Based]

0.50
1.00
1.50
2.00

0.983
0.907
0.770

0.695

0.986
0.921
0.825
0.776

0.992
0.959
0.882
0.823

(e): Class 5 Message Sent Ratio |

[Offered Load | Token Passing

Priority-Driven | Window Based |

0.50
1.00
1.50
2.00

0.888
0.685
0.558
0.540

0.927
0.817
0.760
0.726

0.945
0.868
0.831
0.801

Table 7.2. Effect of Offered Load

192

7.4. Simulation Results 193

We see that for all protocols and message classes, the message sent ratios decrease
as load increases, however the degree of the reduction varies for different protocols and
message classes.

When the network is lightly loaded, each protocol achieves very high sent ratios for
all message classes and the performance difference between one protocol and another
is minimal. This is because under the light load there are few messages in the network
and almost all of them are successfully transmitted. Hence, the effect of transmission
policy is not obvious. On the other hand, we see that for each protocol message
class 5 has the lowest sent ratio as compared with other message classes. This is
because message class 5 has the most urgent deadlines which may not be met even
under light load.

When the offered load increases from light to heavy, and eventually to sustained
overload, all protocols have degraded performance. This is because as load increases,
there are more messages competing for transmission. However, the load change affects
each protocol and message class differently. In particular, message classes 1 and 5 are
of interest to the following discussion.

When under sustained overload, the token passing protocol has a relatively high
sent ratios for message class 1-4 while its sent ratio of message class 5 is as low
as 0.540. This is in a sharp contrast with the picture of the window protocol. The
latter maintains a high sent ratio of 0.801 for message class 5, though the sent ratio of
its class 1 messages is 0.588 which is much lower than that of of token passing protocol.
This can be explained as follows: although class 5 messages have the most stringent
deadlines while class 1 messages have the largest deadlines, they are not differentiated
by the token passing protocol. That is, in the token passing protocol messages are sent

in the order of the token circulation regardless of their deadlines, while in the window

7.4. Simulation Results 194

protocol class 1 messages are not considered by the protocol if other class messages
with smaller deadlines are waiting for transmissions. For the priority-driven protocol,
its performance ranks between that of the token passing and the window protocols,
due to the fact that it only implements the EDF policy approximately.

Figure 7.3(a) shows that the sent ratio of class 5 messages under the window
protocol is substantially higher than those of the token passing and priority-driven
protocols. The effect of different transmission policies can be readily seen. On the
other hand, in Figure 7.3(b) we notice that the window protocol only outperforms the
other two protocols marginally in terms of the average sent ratio. This implies that the
token passing protocol may achieve a similar average sent ratio as any other protocols
implementing the EDF transmission policy. However, the difference lies in whether
or not a protocol can differentiate messages with regard to their deadlines, which is
precisely the consequence of the transmission policy employed by a protocol. Figure
7.3(a) has revealed that token passing protocol yields a substantially low sent ratio for
message class 5 which represents short, urgent and critical messages. In practice, a high
loss ratio of these messages may impose severe penalty on the system performance,
hence may not be acceptable to a real-time system which requires very high success
rate in delivering critical control messages. Thus, in a network of mixed traffic the
average message sent ratio alone is not sufficient as a performance index and it is
imperative to grant the transmission right to urgent messages to ensure good quality
service for this message class. Therefore, a good real-time communication protocol
should maximize both the average message sent ratio and the sent ratio of urgent
messages. In this respect, the proposed window protocol achieves better performance

and quality of service than both the token passing and priority-driven protocols.

7.4, Simulation Results 195

(a) Sent Ratio of Message Class 5

1w T
TP ——
PD -+
B L S WD -8B
0.8 C B +®
o
o}
S 0.6 f \\R |
I e
4
IB]
5 0.4} J
o .
0.2 1
O 1 1 i
0 0.5 1 1.5 2
Offered Load
(b) Average Message Sent Ratio
1 v —— T
oy P ——
R) - A
0.8 TRl
\H‘_‘:I‘
o
- 0.6 - -
I
14
2
5 0.4 .
& .
0.2 r "
0] [} 1
0 0.5 1 1.5 2

Offered Load

Figure 7.3. Effect of Offered Load

7.4. Simulation Results 196

7.4.2 Effect of Ring Speed

Another important aspect of performance evaluation is to examine the protocol
performance when operating at different ring speeds. With the advent of the
optical fiber technology and its falling price, optical fiber will become the dominant
transmission medium for future high-speed LANs/MANs. Hence, it is important to
examine the suitability of the protocol for future high-speed networks.

Tables 7.3(a)-(e) show sent ratios of individual message classes for the three
protocols. The ring has a population of 50 and an offered load of 1.25.

We see that the increase in ring speed results in substantial increase in the sent
ratios for all message classes. This is because the increase in the ring speed is translated
into reduction not only in message transmission time, but also in the delay introduced
at each node when the node relays the token or a message. This eventually leads to
a smaller contention overhead for each message transmission, and hence higher sent
ratios.

We observe that as the ring gets faster, the sent ratio of each message class increases
in general due to the reduction in message transmission time and contention overhead.
However, the absolute values of the sent ratios vary from one protocol to another.

It is obvious that when the ring speed reaches 16 Mbit/s the token passing protocol
achieves high sent ratios for message classes 1-4, but its sent ratio of message class 5 is
still as low as 0.731. In contrast, the window protocol obtains very high message sent
ratios for all message classes except for class 1 messages which have largest deadlines.
This is because although the reduction in message transmission time and contention
overhead brings in increase in the sent ratios for the token passing protocol, the

penalty of not implementing the EDF policy is still a dominant factor. The impact

7.4. Simulation Results

f

(a): Class 1 Message Sent Ratio

|

[Ring Speed ” Token Passing | Priority-Driven l Window Based \

1
4
16
100

0.873
0.934
0.934
0.934

0.861
0.893
0.799
0.799

0.620
0.673
0.699
0.999

|

(b): Class 2 Message Sent Ratio

]

| Ring Speed | Token Passing | Priority-Driven | Window Based |

1
4
16

0.928
0.930
0.933

0.917
0.904
0.909

0.856
0.880
0.907

(c): Class 3 Message Sent Ratio

| Ring Speed ” Token Passing | Priority-Driven | Window BasedJ

1
4
16

0.892
0.905
0.926

0.875
0.882
0.908

0.856
0.876
0.904

[

(d): Class 4 Message Sent Ratio

)

] Ring Speed | Token Passing | Priority-Driven | Window Based [

1
4
16

0.836
0.864
0.921

0.817
0.871
0.968

0.920
0.926
0.979

l

(e): Class 5 Message Sent Ratio

I Ring Speed ” Token Passing] Priority-Driven | Window Based |

|
4
16

0.597
0.607
0.731

0.611
0.735
0.852

0.851
0.920
0.976

Table 7.3. Effect of Ring Speed

197

7.4. Simulation Results 198

of transmission policy is most pronounced in its low sent ratio of class 5 messages,
which have the most urgent deadlines. On the other hand, apart from the reduced
message transmission time the window protocol has the advantage of implementing
the exact EDF policy under which class 5 messages are always privileged and class 1
messages discriminated against. Furthermore, the increase in ring speed brings down
the contention overhead to a higher extent in the window protocol than that in the
token passing protocol. Hence, the window protocol performs much better than the
token passing protocol in terms of supporting transmission of urgent messages. Finally,
the priority-driven protocol also has much improved performance in terms of the sent
ratio of message class 5. Although its performance is better than that of the token
passing protocol, it is still much lower than that of the window protocol. This is
because the priority-driven protocol only implements the EDF policy approximately
and the reduction in the contention overhead is not as much as that in the window
protocol.

Figure 7.4 shows the effect of high speeds on the sent ratio of message class 5 for
each protocol. We see that when the ring operates at 100 Mbit/s, the window protocol
achieves a sent ratio as high as 0.980 while the token passing protocol still has a
low sent ratio of 0.766. The priority-driven protocol comes very close to that of the
window protocol. This demonstrates that although increasing the ring speed improves
the protocol performance, within a certain speed range the fundamental factor in
determining the protocol performance in supporting urgent message transmission is
the transmission policy used. However, when the ring speed increases further all three
protocols are able to achieve a sent ratio of 1. This is because under very high speeds,
the reduction in message transmission time and contention overhead as a result of

speed increases overshadows the impact of transmission policy.

7.4. Simulation Results 199

(b) High Speed Token Rings

1 | !_____::_____:'._.._._.___.I:._,_.'_;8‘-_,-1;-_-_va-/,.-"|< T T i
- TP ——
-~ PD —+—
s WD e
0.8 -// J
o
- 0.6 .
I
44
IE)
S 0.4 '
g .
0.2 o
0 1 1 A1 1
100 300 500 700 900 1100

Ring Speed (Mbit/s)

Figure 7.4. Effect of Ring Speed

7.4.3 Effect of Ring Population

In the worst case performance analysis, we see that the ring population (i.e. the number
of nodes in the ring) is an important factor affecting the protocol performance. In this
section, we examine the impact of the increase in the ring population on the protocol
performance. Figures 7.5(a) and (b) compare the sent ratio of message class 5 for each
protocol when the offered loads are 0.75 and 1.5 respectively. The ring operates at a
speed of 4 Mbit/s. We see in both figures that the window protocol performs the best
and is least sensitive to the increase of the number of nodes, while the token passing
protocol is most sensitive to the change. It is also clear that under lighter load the
change in ring population affects the protocol performance to a lesser extent. Hence,

in the following we concentrate our discussion on the case where the offered load is 1.5.

7.4. Simulation Results 200

The results are shown in Tables 7.4(a)—(e). We observe that the common trend is
that the sent ratio of each message class decreases as the network population increases.
This is because the increase in the number of nodes yields an increased token walk
time, which leads to a larger contention overhead of message transmission. However,
this increase may not be uniform across each protocol as the contention overhead
incurred in each protocol is different.

For the token passing protocol, the contention overhead of a message transmission
is the delay between the nodes where two consecutive message transmissions take place.
The larger the number of nodes, the higher contention overhead it may incur. We see
that this increase in contention overhead causes the sent ratio of class 5 messages to
drop close to 20%. However, the sent ratios of message classes 1-3 are less sensitive
to the increase in the ring population as they have much larger deadlines than class 5
messages.

The picture for the window protocol is quite different. Increasing the number of
nodes has yielded only a moderate drop in the sent ratio of message class 5. This is
because for the window protocol the contention overhead of a message transmission
is a function of the ring population. Hence, the increase in ring population translates
into an increase in the contention overhead and consequently a higher message loss.
However, message class 5 still has relatively high sent ratio. This can be explained
by the fact that the window protocol implements the EDF policy which always give
privileges to messages with smaller deadlines.

The performance of the priority-driven protocol is similar to that of the window
protocol except that the sent ratio of message class 5 is much lower. This is because

the priority-driven protocol only approximates the EDF transmission policy.

7.4. Simulation Results

201

(a) Offered Load = 0.75
1 = 4§ -'—'—'—':;‘m‘;;'-""'-':-'-'-'-'“'-'“'"-"-'-"'m‘—'-'~'-':::'.':.':'.'.'_'_';'_""I!_‘ 5
B ¥ S =t |
o) T T PD
0 WD e
3 0.8 0
—
&)
o
o
® 0.6 =
5]
Q
=
4
© 0.4} ~
o
-
IS
m
iB) 0.2 F -
&
[0}
%)
0 1 1 1 1
16 32 64 128 256
Ring Population
(b) Offered Load = 1.5
1 | - :3 T T T T T
< ‘H'“”" Devesia S TP ——
n + i L. |
0 - sl | ‘@ .
2 0.8 [R
’6‘ ‘\a\i
0] ‘\\“\\6
g 0o —. 1
Q
=
W
© 0.4} -
o
-
i)
o
4
) 0.2 r ol
!
]
0
0 1 L 1 L 1 1
2 4 8 16 32 64 128 256

Ring Population

Figure 7.5. Effect of Ring Population

7.4. Simulation Results

(a): Class 1 Message Sent Ratio

|

| Number of Nodes ” Token Passing ! Priority-Driven | Window Based \

4
16
64

256

0.924
0.923
0.922
0.903

0.708
0.678
0.644
0.611

0.657
0.647
0.635
0.605

(b): Class 2 Message Sent Ratio

| Number of Nodes ” Token Passing | Priority-Driven | Window Based |

4
16
64

256

0.875
0.864
0.855
0.846

0.835
0.809
0.776
0.711

0.841
0.829
0.754
0.657

I

(c): Class 3 Message Sent Ratio

I Number of Nodes ” Token Passing \ Priority-Driven ‘ Window Based]

4 0.867 0.835 0.836

16 0.841 0.806 0.823

64 0.837 0.762 0.778

256 0.833 0.728 0.716
| (d): Class 4 Message Sent Ratio |
| Number of Nodes ‘ Token Passing l Priority-Driven] Window Based |

4 0.834 0.914 0.946

16 0.799 0.906 0.925

64 0.789 0.863 0.909

256 0.732 0.756 0.897

|

(e): Class 5 Message Sent Ratio

| Number of Nodes || Token Passing | Priority-Driven | Window Based |

4
16
64

256

0.741
0.654
0.572
0.552

0.915
0.884
0.839
0.782

0.964
0.925
0.911
0.899

Table 7.4. Effect of Ring Population

202

7.4. Simulation Results 203

7.4.4 Effect of Protocol Parameters

In the preceding sections, we have examined the impact of three system parameters,
namely the offered load, the ring speed and the ring population, on the protocol
performance. From the worst case performance analysis, we know that the protocol
performance is also affected by parameters associated with a particular protocol. For
example, in the priority-driven protocol, message sent ratios may vary considerably
for different number of priorities or priority assignment functions. For the window
protocol, we have also predicted that the initial window size and the initial window
lower bound could affect the protocol performance. In this section, we examine the
impact of these protocol parameters on the protocol performance. This investigation
should give us insights into whether or not protocol parameters need to be fine-turned

in order to achieve the best possible performance.

7.4.4.1 Effect of Number of Priorities

Figures 7.6(a) and (b) show message sent ratios of the priority-driven protocol. The
ring has 30 nodes, operates at 4 Mbit/s and has an offered load of 1.0 and 1.25
respectively.

It is obvious that the increase in the number of priorities affects the sent ratio of
each message class differently. In both figures we observe that when the number of
priorities increases, there is a significant increase of sent ratio for class 5 messages,
while the sent ratio of class 1 message drops sharply. This is because when there
are fewer priorities, more class 5 messages are assigned same priorities as other class
messages though the former have smaller deadlines. Consequently, messages with

larger deadlines such as class 1 messages may be transmitted before class 5 messages.

7.4. Simulation Results

Sent Ratio

Sent Ratio

(a) Offered Load = 1.0

.6 =
4k "
2F 2
0 i 1 L 1 L 1
8 16 32 64 128 256 512 1024
Number of Priorities
(b) Offered Load = 1.25
1 ¥ T T L} T T
S Y R SRR OB NERPREOM, (1| (- L . Y W e
W e Class 2 —+—
S = e --_.m_.._......._...._..pg..c.la-s.s.rs.snvﬂnu-- Bi1l
Class 4 —»— 7
awkxxx\\ Class 5 -&—
9-_
‘H‘"‘O~ N
.6 - =
4 F B
2 .
0 1 1 1 L 1 1
8 16 32 64 128 256 512 1024

Number of Priorities

Figure 7.6. Effect of Number of Priorities

204

7.4. Simulation Results 205

On the other hand, increasing the number of priorities results in greater accuracy in
implementing EDF policy, hence more class 5 messages are distinguished from other
class messages and meet their deadlines successfully. As a result, their sent ratios
increase while sent ratios of message class 1 drops significantly.

We notice that when the number of priorities increases to 512, the sent ratio of
message 5 reaches as high as 0.970 and 0.921 respectively, however further increasing
the number of priorities to 1024 does not result in much improvement in sent ratios for
all message classes. This demonstrates that when operating with a sufficiently large
number of priorities, the priority-driven protocol can achieve a reasonable performance

under certain load condition in supporting real-time message transmission.

7.4.4.2 Effect of Length of Priority Assignment Function

Although various forms of priority assignment functions are feasible provided they are
non-decreasing and many-to-one, the form defined in (4.88) is the most common one
whose argument is the length of the mapping function. In the following, we examine
the impact of this length.

Figures 7.7(a) and (b) show the results. The ring has a population of 30, operates
at a speed of 4 Mbit/s and employs 16 priority levels. We see that changing the length
of the priority assignment function does not cause a monotonic increase of sent ratios.
In both figures, we observe that the sent ratios of message classes 1 and 5 are most
affected by the increase in the length. More specifically, the curve corresponding to
the sent ratio of message class 5 goes from low to high and then from high to low,
reaching the highest when the length is near 1000. On the other hand, the sent ratio
of class 1 messages takes the reverse trend, dropping to its minimum when the length

is near 1000. This demonstrates that for a given network configuration and message

7.4. Simulation Results 206

(a) Offered Load = 1.0

1 Y I S I Y o e T
L’““ "‘"'-\rcl" o — -_""'--.__‘Cl?‘;?l’z
[& 8 2 —+—
— lass™3 &
0.8 177 Class 4 "~ 7
e Class 5 -»— 1
e
= 0.6 .
i)
©
o
i)
& 0.4} -
- R
0.2 F i
0 i . 1 Pl | " al M M o | " i i
1 10 100 1000 10000 100000
Length of Priority Assignment Function
(b) Offered Load = 1.25
l T T Ll | v T L | ¥ T
0.
2 0
i .
G
&,
i)
& 0.4 .
e .
0.2 r J
0 i " al P | i L i al

1 10 100 1000 10000 100000

Length of Priority Assignment Function

Figure 7.7. Effect of Length of Priority Assignment Function

7.4. Simulation Results 207

deadline distribution, there exists an “optimal” length with which the protocol can
achieve the highest sent ratio for urgent messages. This is because when the length is
too small or too large, many class 5 messages are assigned the same priorities as other
class messages. Consequently, critical messages can not be distinguished in terms of

transmission, which gives rise to lower sent ratios of class 5 messages.

7.4.4.3 Effect of Initial Window Size

Recall that in the window protocol described in Chapter 5, parameter « is the
initial size of windows Wy, Wa, ..., Ws_o, W,_;. All subsequent sizes of these windows
are partly derived from this initial value which may affect the rate of the search for
the earliest deadline message and the protocol performance. Figures 7.8(a) and (b)
show the impact of o on message sent ratios when the offered load is 1.0 and 1.25
respectively. The ring has a population of 30 and operates at 4 Mbit/s. The number
of windows used is 32.

In both figures, we observe that message sent ratios are not very sensitive to «
except that of class 5 messages in Figure 7.8(a). We see that as « increases to 1000,
the sent ratio of class 5 messages has a significant improvement, however when «
increases further the trend is now reversed. We notice that the sent ratio of class 5
messages is decreasing while other messages classes have the improved performance.
Clearly, there exists an “optimum” value of a (around 1000 in this case) with which
the sent ratio of class 5 messages reaches its maximum.

We now investigate why the protocol displays such behavior as described above.
Recall that after transmitting the earliest deadline message, the window is set to the
initial size o before being used to locate the next message. Hence, one may prefer to

use a smaller initial window size to reduce the number of window partitions in order

7.4. Simulation Results 208

(a) Offered Load = 1.0
il t-_::'—:._&_ o e e e :.',',‘.._‘._"."_':i,‘

Class 3 -8~
223

-
0.8 | /,,.,_-ff T Glass 4

Class 5 —*—

Sent Ratio

1000 10000 100000

0 PO R |
10 100

Initial Window Size

(b) Offered Load = 1.25

I SRS T e e T s e vt

Class 1 —+—
e -@lass—g—r—
ClaSS 3 -8
“ol Class 4 -~
Class 5 -a-——

Sent Ratio

0 " PR | N PR |] 2 P TR
10 100 1000 10000 100000

Initial Window Size

Figure 7.8. Effect of Initial Window Size

7.4. Simulation Results 209

to speed up the search for the earliest deadline message, however this is not always the
case. For example, when all messages are in the last window, a smaller window size
would result in more (partial) partitions of the last window and slower convergence
rate. This explains why an optimum value of o exists. However, we also noticed that
in a relatively wide range the network performance stays very close to the optimum.
This indicates that it is not difficult to select an « value which yields a good and stable

protocol performance under various load conditions.

7.4.4.4 Effect of Initial Window Lower Bound

In Section 5.8, we see that in the enhanced window protocol a node is allowed to send a
message immediately if the message deadline is smaller than the window lower bound.
Therefore, the window lower bound reflects how the enhanced window protocol deals
with urgent messages. Consequently, the choice of its initial value § determines the
trade-off between the degree of the approximation of the EDF policy and the reduction
in the contention overhead.

Figures 7.9(a) and (b) display message sent ratios when the offered load is 1.0 and
1.25 respectively. The ring has 30 nodes and operates at 4 Mbit/s. The number of
windows used is 32 and the initial window size is 100.

It is obvious that for each message class, there exists an “optimum” value of § which
maximizes its sent ratio. In both figures, the sent ratio of message class 5 reaches its
maximum when § increases to near 1000 and then drops sharply when ¢ increases
further. On the other hand, the sent ratio of class 1 messages increases monotonically
as & increases. This is because when § is too small only few urgent messages are
transmitted immediately upon the token arrival, as a result the contention overhead

may be high which leads to a slightly low message class 5 sent ratio. When § is too

7.4. Simulation Results 210

(a) Offered Load

l ‘ ==L _-5 ..__._'...'..55. —T. _g_--—-- i t ___-"
0.8 ¢ — \%
Class 5 —»=~]
o
= 0.6 .
I
o
is)
8 0.4 .
o .
0.2 J
0 A A PRI | A 2 IS i al " i B
10 100 1000 10000 100000
Initial Window Lower Bound
(b) Offered Load = 1.25
ol BRI Rasss Tt A,
> iix Blarranennsass (s mmmnsn _4“___,“,:-\--4&—- T
0.8
s .
—H 0.6
I
4
=
o 0.4 .
0.2 i
O i i PERE I W R | 1 i L " i
10 100 1000 10000 100000

Initial Window Lower Bound

Figure 7.9. Effect of Initial Window Lower Bound

7.5. Discussions 211

| Message Sent Ratios]
|) || Class 1 \ Class 2 | Class 3 \ Class 4 | Class 5 |

10 0.921 0.991 0.992 0.995 0.994
100 0.917 0.992 0.992 0.997 0.996
1000 0.933 0.996 0.996 0.999 0.999
10000 0.997 0.999 0.999 1.000 0.991

100000 || 1.000 0.999 0.999 1.000 0.966

Table 7.5. Effect of Initial Window Lower Bound

large, the majority of messages are sent in the token rotation order rather than in the
EDF order, In this case, messages with larger deadlines may take the advantage at
the cost of urgent messages, which leads to a low message class 5 sent ratio.

Table 7.5 shows the results for the same configuration except now the ring speed
is 16 Mbit/s. We see that the higher speed greatly reduces the impact of ¢ on the
protocol performance. This suggests that when operating in high-speed environment,

the choice of § is not as critical as in a low-speed environment.

7.5 Discussions

In this chapter, we have evaluated the average case performance of the three protocols
through simulation. The experiments have given us insights into the protocol behavior
under various network and protocol parameters, message characteristics and load
conditions. We noted that the average case performance of a protocol was more
complex and less predicatable than its counterpart in the worst case scenario.

The simulation results shown and discussed have demonstrated quantitatively how
each protocol performs in terms of message sent ratios. We conclude that for a real-
time system required to maximize the sent ratio of critical and urgent messages, the

proposed window protocol is the best choice. The priority-driven protocol may also be

7.5. Discussions 212

acceptable provided the number of priorities is sufficient and the length of the priority
assignment function is adequate. The simple token passing protocol is not suitable for
supporting real-time urgent message transmission, but can achieve comparable average

message sent ratio.

Finally, it is important to note that when the ring gets faster, the difference in the

performance of the three protocols is reduced.

Chapter 8

Conclusions and Recommendations for

Future Research

In this final chapter, we summarize the results obtained from this research, outline its
significance and contribution and propose future research direction and agenda in the

field of real-time communications.

8.1 Summary of Results

This thesis has addressed some important issues involved in real-time communications
in token ring networks. We began our study by defining the problem of real-
time communications. We identified that the most important objective of real-time
message transmission was to meet individual message deadlines. We observed that
the predominant approach taken by many existing token ring protocols for real-
time communications was priority-driven in which real-time synchronous messages
are given higher priorities at the cost of real-time asynchronous messages. As a result,
most of these protocols could handle real-time synchronous messages well, but their

performance in supporting real-time asynchronous messages might be poor. Thus,

213

8.1. Summary of Results 214

we argued that a protocol suitable for real-time message transmission must address
the individual message deadlines explicitly. From the centralized scheduling theory
we knew that the EDF policy was optimal, however we noted that implementing the
EDF policy in a distributed system, such as a token ring network, not only may incur
a non-negligible overhead, but also may be approximate. Hence, we concluded that
in designing a distributed scheduling algorithm such as a communication protocol,
issues in both achieving ‘optimal’ (e.g. EDF) scheduling policy and minimizing the
scheduling overhead must be addressed.

In Chapter 2, we first introduced the network and message models together
with their parameters and attributes. We then defined the protocol notations and
performance metrics. Finally, we described the methodology to analyze the worst case
performance of MAC protocols for real-time communications.

In Chapters 3, 4 and 5, we studied in detail three token ring protocols implementing
variations of the EDF transmission policy respectively. First, we described a simple
token passing protocol which sent messages in the nearest-neighbor-first order. As a
result, this simple token passing protocol does not adhere to the EDF policy.

Next, we proposed a modified priority-driven protocol in an attempt to incorporate
message deadlines. In this protocol, each message was assigned a priority based on its
deadline and the highest priority message was always sent first. We observed that this
protocol would approximate the EDF policy when the number of priorities was less
than the number of deadlines.

We analyzed the worst case performance of the token passing and the priority-
driven protocols for real-time message transmission. The analytical results
demonstrated that the worst case performance of the two protocols was poor.

Specifically, given a message set the two protocols could send only half of the messages

8.1. Summary of Results 215

even if the contention overhead was assumed to be zero. This implied that the
dominant factor in deciding the protocol performance in supporting real-time message
transmission was whether or not the transmission policy used considered the individual
message deadlines explicitly. Thus, we concluded that it was imperative to design a
token ring protocol which could implement the exact EDF policy.

As a result, in Chapter 5 we proposed a novel window token ring protocol which
could implement the exact network-wide EDF policy. In our approach, the message
deadline axis was divided into a number of non-overlapping windows. Once the earliest
deadline message was located in the first non-empty window, the message was sent.
This new window protocol for token ring networks differed significantly from the
previously proposed window protocols for CSMA/CD networks in that it employed
multiple windows and that the search for the earliest deadline message converged much
faster. The worst case performance analysis of the new window protocol demonstrated
that if the contention overhead is assumed to be 0, this protocol could achieve a
performance ratio of 1. Thus, the contention overhead was the only factor degrading
its performance.

In Chapter 6, we compared the worst case performance of the three protocols in the
dimension prescribed by the number of nodes and the normalized token node-to-node
delay, hoping to provide a guideline for selecting the best protocol for given operating
parameters. We noted that no protocol always outperformed the others for the entire
parameter ranges considered and that each protocol had its own applicable region
where its performance was the best. These observations implied that the performance
of a distributed scheduling algorithm or a communication protocol was determined
not only by the transmission policy employed, but also by the contention overhead

incurred when implementing such a policy. As a result, there might not exist a

8.2. Significance and Contribution 216

communication protocol for real-time message transmission which would be optimal
for all operating environment. Hence, in designing a distributed scheduling algorithm,
such as a communication protocol, one should seck a balance in achieving an optimal
scheduling policy and minimizing the scheduling overhead.

In Chapter 7, we studied the average case performance of the three protocols
through simulation. From the simulation results, we observed that the new window
protocol was predominantly superior to the other two under the cases studied. The
token passing protocol, as a result of not considering message deadlines, had the
lowest sent ratio, while the priority-driven protocol obtained a sent ratio in between
as it approximated the EDF policy in some cases. This meant that under the current
technologies the window protocol was the best choice in terms of the average case
performance. Furthermore, we also noted that when the ring gets faster, the difference
in the performance of the three protocols is reduced. It implied that under very
high speeds the benefit of implementing the EDF policy by the window protocol was
overshadowed by its relatively high contention overhead and that using the simple

token ring protocol might be sufficient.

8.2 Significance and Contribution

This research has provided a systematic investigation of real-time communications in
token ring networks. The work has advanced the state of the art of research in the
distributed scheduling and real-time communications in two distinct respects. Firstly,
we addressed and revealed the fundamental difference between distributed real-time
scheduling and centralized real-time scheduling. Secondly, we proposed and studied

three token ring protocols implementing variations of EDF transmission policy to

8.2. Significance and Contribution 217

support real-time communications. In particular, the new window protocol offers
much needed integration in supporting both real-time synchronous and asynchronous
messages by considering individual message deadlines explicitly. Furthermore, we
carried out performance evaluation and comparison of the three protocols and showed
how to select the best protocol for given operating parameters. The following outlines

the major contributions made by this research.

e Tor the first time, we have addressed in depth the issue that a distributed
scheduling environment is fundamentally different from a centralized scheduling
system and revealed the importance of seeking a balance in implementing the

“optimal” scheduling algorithm and minimizing the scheduling overhead.

e We have proposed a modified priority-driven token ring protocol which can be
easily incorporated to the existing 802.5 token ring standard to support real-
time communications. We have shown that with a sufficient number of priorities,
this modified priority-driven protocol can achieve a reasonable performance in

transmitting real-time messages.

e We have proposed a new window protocol which is the first of its kind for the
token ring network. It takes a novel approach using multiple non-overlapping
windows offering fast convergence to the earliest deadline message. This new
window protocol provides a much needed integrated approach for supporting
real-time message transmission. We have also devised an effective coding
scheme which can realize the proposed protocol with a token of limited length.
Simulation results have demonstrated that this protocol achieves an excellent

performance under current network technologies.

8.3. Recommendations for Future Research 218

e Much of the research in real-time communications uses simulation to evaluate
the protocol performance. While simulation is an effective tool, it does not
provide insight into protocol performance under the most unfavorable operating
conditions, which is crucial for a real-time system. This research studied not
only the average protocol performance by simulations, but also the worst case
performance which provides a lower bound to the performance ratio. The results
can be readily used to predict the worst case protocol performance once the
various parameters are given, and hence can serve as a guide to the protocol

selection.

e This research has also developed a simple but effective methodology to analyze
the worst case performance of protocols. The importance of this methodology
is that it can be effectively applied to the worst case analysis of general
communication protocols. Therefore, it is a valuable tool which can be used

for future research in this field.

8.3 Recommendations for Future Research

Currently, we are studying one extension of this work, which is an adaptive token ring
protocol combining the advantages of the token passing, priority-driven and window
protocols. This is because if the size of all windows is 1, then the window protocol
is equivalent to the priority-driven protocol and if the size of the first window is
larger than the maximum message deadline, then the window protocol is equivalent
to the token passing protocol. The transition between the window protocol and the
other two protocols can be easily achieved by adding two control functions to the

window protocol, namely traffic monitor and configuration monitor. Whenever the

8.3. Recommendations for Future Research 219

traffic monitor detects the offered load reaches a certain threshold or the network
configuration changes, the network enters the corresponding protocol operation mode
by changing the protocol parameters. Such an adaptive protocol should give the best
possible performance according to the offered load and network configuration.
Although our study concentrated on real-time communications in token ring
networks, the methodology developed in this study can be extended to many other
network environments. Currently, there is great interest in using high-speed networks,
such as FDDI, DQDB and ATM networks, to support real-time applications. We
now briefly discuss the issues to be addressed when using these network for real-time

applications.

e FDDI is an ANSI standard for 100 Mbits/s optical fiber token ring based on a
timed token access method. FDDI supports both synchronous and asynchronous
messages. The key to supporting transmission of real-time synchronous messages
is the synchronous capacity allocation scheme, which determines how long a node
is allowed to transmit its synchronous messages every time it captures the token.
However, how to deal with asynchronous real-time messages in FDDI networks

is still an open question and is a very important research issue.

e DQDB is the IEEE 802.6 MAN subnetwork standard. It consists of two
counter-flow point-to-point unidirectional optical fiber buses and is based on the
distributed queue concept with prioritized access. DQDB differs from FDDI in its
distributed control of message transmission and information collection. However,
like FDDI, it provides guaranteed bandwidth for real-time synchronous messages,
but real-time asynchronous messages are still disadvantaged. In addition,

due to the unfairness evidenced in DQDB under heavy load, some real-time

8.3. Recommendations for Future Research 220

asynchronous messages may suffer from positional discrimination. Hence, DQDB

alone may not be adequate to provide timely delivery of real-time messages.

e ATM has been specified as the transfer mode for the future B-ISDN. It uses
fixed-size cell and is envisaged to provide both telecommunication and LAN
type services. The Generic Flow control (GFC) protocol is intended to regulate
multiple terminals within the Customer Premises Network (CPN) accessing the
B-ISDN network through the User Network Interface (UNI). If the CPN is
required to support real-time applications, the GFC protocol must have the
ability to ensure the timely delivery of these real-time messages. So far, this

aspect has not been addressed in the design of the GFC protocol.

One impact of high speed networking is that the message transmission time will
be greatly reduced, whereas the relative contention overhead incurred will increase
dramatically. Therefore, while the goals in designing real-time communication
protocols remain the same, the philosophy and approach to solving the problem may
be totally different. This will impose a new challenge, dimension and direction for

future research in real-time communications.

Appendix A

Publications and Presentations

P. Potter, M. Zukerman, L. Wedding and L. Yao, “A Multi-Service Generic
Flow Control Protocol”, Proc. The 1993 IEEE International Conference on

Commaunications (ICC’93), Geneva, Switzerland, May 1993.

Zukerman, L. Yao and P. Potter, “DQDB Performance Under Sustained Overload

with BWB and MRO”, Computer Communications, Vol 16, No 1, January 1993.

7. L. Budrikis, G. Mercankosk, M. Blasikievicz, M. Zukerman, L. Yao, and P. Potter,
“Access Protocol for a Shared Medium”, Australian Teletraffic Research Journal,

Vol 26, No 2, November 1992.

L. Yao, W. Zhao and C.C. Lim, “An Efficient Window Protocol for Real-time
Communications in Token Ring Networks”, Proc. The 2nd International Computer
Conference, Data and Knowledge Engineering: Theory and Applications, Hong Kong,

December 1992.

221

2272

C.C. Lim, L. Yao and W. Zhao, “Transmitting Time-Dependent Multimedia Data in
FDDI Networks”, Proc. SPIE’s International Symposium, OF/FIBERS’92, Boston,

September 1992.

P. Potter, M. Zukerman, L. Wedding and L. Yao, “A Proposed Generic Flow
Control Protocol”, Proc. Australian Broadband Switching and Services Symposium’91,

Melbourne, July 1992.

7. L. Budrikis, G. Mercankosk, M. Blasikievicz, M. Zukerman, L. Yao, and P. Potter,
“A Generic Flow Control Protocol for B-ISDN”, Proc. The IEEE 11th International

Conference on Computer Communications (INFOCOM’92), Florence, Italy, May 1992.

M. Zukerman, L. Yao and P. Potter, “Performance under Sustained Overload of
DQDB with Bandwidth Balancing and Multiple Requests Outstanding”, Proc. The

5th IEEE Workshop on MANs, Taormina, Italy, May 1992.

P. Potter, L. Yao and M. Zukerman, “A Revised Generic Flow Control Protocol for
B-ISDN”, Australian Contribution to CCITT Study Group XVIIL, Working Party 8,

Melbourne, Australia, December 1991.

P. Potter, L. Yao and L. Wedding, “Simulation Results of the Proposed GFC
Protocol,” Australian Contribution to CCITT Study Group XVIII, Working Party 8§,

Melbourne, Australia, December 1991.

223

M. Zukerman, L. Yao and P. Potter, “Performance of DQDB under Sustained
Overload with Bandwidth Balancing and Multiple Requests Outstanding”, Proc. The

6th Australian Teletraffic Research Seminar, Wollongong, Australia, November 1991.

M. Zukerman, L. Yao and P. Potter, “A Generic Flow Control Protocol for B-ISDN”,
Proc. Australian Broadband Switching and Service Symposium’91, Sydney, Australia,

July 1991.

M. Zukerman, L. Yao and P. Potter, “A Generic Flow Control Protocol for B-ISDN”,
Australian Contribution to CCITT Study Group XVIII, Working Party 8, Geneva,

Switzerland, June 1991.

C.C. Lim, L. Yao and W. Zhao, “A Comparative Study of Three Token Ring
Protocols for Real-Time Communications”, Proc. The 11th International Conference

on Distributed Computing Systems, Arlington, Texas, May 1991.

L. Yao and W. Zhao, “Performance of an Extended IEEE 802.5 Protocol”, Proc. The
IEEE 10th International Conference on Computer Communications (INFOCOM’91),

Miami, April 1991.

L. Yao and W. Zhao, “Token Ring Protocols for Transmission of Time Constrained
Messages”, Proc. The 5th Australian Fast Packet Switching Workshop, Melbourne,

Australia, July 1990.

224

L. Yao and W. Zhao, “Implementing the Minimum-Laxity-First Transmission Policy
in a Real-Time Token Ring Network”, Proc. The 4th Australian Teletraffic Research

Seminar, Bond University, Australia, December 1989.

Bibliography

[1]

[4]

[5]

[6]

IEEE Standard 802.5-1989, Token Ring Access Method and Physical Layer

Specifications, 1989.

ANSI/IEEE Standard 802.4-1985(ISO/DIS 8802-4), Token-Passing Bus Access

Method and Physical Layer Specification, 1985.

D. W. Andrews and G. D. Schulz, “A Token Ring Architecture for Local-Area

Networks: an update”, Proc. COMPCON F82, 1982.

K. Arvind, K. Ramamritham and J. A. Stankovic, “A Local Area Network
Architecture for Communication in Distributed Real-Time Systems”, The Journal

of Real-Time Systems, 3(2), May 1991.

S. Bakry, B. El-Redaisy and M. Al-Turaigi, “Computer Simulation of a Packet
Switching Computer Network”, Computer Communications, Vol 11, No 3, June

1988.

G. Carlow, “Architecture of the Space Shuttle Primary Avionics Software

System”, Tutorial, Hard Real-Time Systems, IEEE Press, 1988.

[7] W. Y. Cheng and J. Liu. “Performance of ARQ Schemes in Token Ring Network”,

IEEE Transactions on Computers, 37, July 1988.

225

BIBLIOGRAPHY 226

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

V. Cherkassky, H. Lari-Najafi and N. Lawrie, “Performance of a New LAN for

Real-Time Traffic”, Computer Communications, Vol 13, No 5, June 1990.

S. Casale, V. Catania, A. Faro and N. Parchenkov, “Design and Performance
Evaluation of an Optical Fibre LAN with Double Token Rings”, Computer

Communications, Vol 12, No 3, June 1989

E. G. Economou, D. J. Mouzakis and G. Philokyprou, “Skipnet: A Two Channel

Token Access Scheme”, Computer Communications, Vol 12, No 5, October 1989

A. Goyal and D. Dias, “Performance of Priority Protocols on High Speed Token
Ring Networks”, Data Communication Systems and Their Performance, Elsevier

Science Publishers B. V (North-Holland), IFIP, 1988.

D. T. Green and D. T. Marlow, “SAFENET — A LAN for Navy Mission Critical
Systems”, Proc. The 14th Conference on Local Computer Networks, Minneapolis,

Minnesota, October 1989.

J. Hong, X. Tan, and D. Towsley, “A Performance Analysis of Minimum Laxity
and Earliest Deadline Scheduling in Real-Time System”, IEFEE Transactions on

Computers, 38(12):1736-1744, December 1989.

D. Towsley and G. Venkatesh, “Window Random Access Protocols for Local

Computer Networks”, IEEE Transactions on Computers, Vol C-31, No 8, 1982.

J. H. Huang, C. W. Chen and M. C. Lee, “A Distributed, Fair and Efficient
Protocol for Integrated Voice/Data Services on Token Ring Networks”, Proc.

International Conference on Commaunications, ICC’91, June 1991.

BIBLIOGRAPHY 227

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

E. D. Jensen, C. D. Locke, and H. Tokuda, “A Time-Driven Scheduling Model
for Real-Time Operating Systems”, Proc. IEEE Real-Time Systems Symposium,

December 1985.

C. S. Kang, E. K. Park and J. H. Herzog, “Hybrid Token Ring: A Load Sharing

Local Area Network,” Computer Communications, Vol 14, No 9, November 1991

H. Kasahara and S. Narita, “Parallel Processing of Robot-Arm Control

Computation on a Multimicroprocessor System”, Tutorial, Hard Real-Time

Systems, IEEE Press, 1988.

B. G. Kim and D. Towsley, “Dynamic Flow Control Protocols for Packet-
Switching Multiplexers Serving Multipacket Messages”, IEEE Transaction on

Commaunications, Vol COM-34, Nov 4, 1986.

C. M. Krishna and Y. H. Lee, “Special Issue on Real-Time Systems”, IEEE

Computer, 24(5), May 1991.

J. F. Kurose, M. Schwartz and Y. Yemini, “Multiple-Access Protocols and Time-

Constrained Communications”, Computing Serveys, Vol 16, No 1, March 1984.

J. F. Kurose, M. Schwartz and T. Yemini, “Controlling Window Protocols for
Time-Constrained Communications in Multiple Access Environment”, Proc. The

8th IEEE Data Communication Synposiums, 1983.

J. P. Lehoczky and L. Sha, “Performance of Real-Time Bus Scheduling
Algorithms”, ACM Performance Fvaluation Review, special issue, Vol 14, No 1,

May 1986.

BIBLIOGRAPHY 228

[24]

[26]

[27]

[28]

[29]

[30]

[31]

C. C. Lim, L. Yao and W. Zhao, “A Comparative study of Three Token
Ring Protocols for Real-Time Communications”, Proc. The 11th International

Conference on Distributed Computing Systems, Arlington, Texas, May 1991.

C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in

Hard Real-Time Environment”, Journal of ACM, Vol 20(1), 1973.

N. Malcolm, W. Zhao and C. J. Barter, “Guarantee Protocols for Communication
in Distributed Real-Time Systems”, Proc. IEEE INFOCOM ’90, San Francisco,

June 1990.

N. Malcolm and W. Zhao, “Version Selection Schemes for Hard Real-Time
Communications”, Proc. The 12th IEEE Real-Time Systems Symposium, San

Antonio, December 1991.

D. Marinescu, “A Protocol for Multiple Access Communication with Real-Time

Delivery”, Proc. IEFEFE INFOCOM’90, San Francisco, June 1990.

A. K. Mok and M. L. Dertouzos, “Multiprocessor Scheduling in a Hard Real-Time

Environment”, Proceeding, The 7th Texas Conference on Computer Systems,

November 1978.

J. K. Y. Ng and J. W. S. Liu, “Performance of Local Area Network Protocols
for Hard Real-Time Applications”, Proc. The 11th International Conference on

Distributed Computing Systems, Arlington, Texas, May 1991.

J. Schoefller, “Distributed Computer Systems for Industrial Process Control”,

Tutorial, Hard Real-Time Systems, IEEE Press, 1988.

BIBLIOGRAPHY 229

[32]

[33]

[35]

[36]

37]

[38]

[39]

[40]

K. C. Sevcik and M. J. Johnson, “Cycle Time Properties of the FDDI Token Ring

Protocol”, IEEE Transactions on Software Engineering, March 1987.

K. G. Shin, “Special Issue on Real-Rime Systems”, IEEE Transactions on

Computers, 36(8), 1987.

K. G. Shin and C. J. Hou, “Analysis of Three Contention Protocols in Distributed
Real-Time Systems”, Proc. The 11th IEEE Real-Time Systems Symposium,

Florida, December 1990.

J. A. Stankovic, “Misconceptions about Real-Time Computing: A Serious

Problem for Next Generation Systems”, IEEE Computer, 21(10), October 1988.

J. A. Stankovic and K. Ramamritham, Editors, Tutorial, Hard Real-Time

Systems, IEEE Press, 1988.

J. K. Strosnider, T. Marchok, and J. Lehoczky, “Advanced Real-Time Scheduling
Using the IEEE 802.5 Token Ring”, Proc. IEEE Real-Time Systems Symposium,

December 1988.

J. K. Stronsnider, T. Marchok, “Deterministic IEEE 802.5 Token Ring

Scheduling”, The Journal of Real-Time Systems, Vol 1, Nov 2, September 1989.

T. Suda and T. T.Bradley, “Packetized Voice/Data Intergrated Transmission on a
Token Ring Local Area Network”, IEEE Transaction on Communications, 37(3),

March 1989.

B. Tangney and D. O’Mahony, Local Area Networks and Their Applications,

Prentice-Hall International, 1st edition, 1988.

BIBLIOGRAPHY 230

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. S. Tanenbaum, Computer Networks, Prentice-Hall International, 2nd edition,

1988.

H. Tokuda, C. W. Mercer, Y. Ishikawa, and T. E. Marchok, “Priority
Inversions in Real-time Communication”, Proc. The 10th IEEE Real-Time

Systems Symposium, Santa Monica, California, December 1989.

D. Towsley and G. Venkatesh, ”Window Random Access Protocols for Local

Computer Networks”, IEEE Transactions on Computers, Vol C-31, No 8, 1982.

7. Tsai and I. Rubin, “Performance of Token Schemes Supporting Delay-

Constrained Priority Traffic Streams”, IEEE Transactions on Communications,

38(11): 1194-2003, November 1990.

A. Valenzano, C. Demartini, L. Ciminiera, “MAP and TOP communications:

Standards and Applications”, Addison-Wesley Publication, 1992.

J. W. Wong and P. M. Gopal, “Analysis of a Token Ring Protocol for Voice

Transmission”, Computer Networks and ISDN System, 8(4), August 1984.

L. Yao, W. Zhao and C. C. Lim, “Perforamnce of Three Token Ring Protocols for
Real-Time Communications”, To appear in Proc. 1994 International Conference

on Communication Technology, Shanghai, China, June 1994.

L. Yao, W. Zhao and C. C. Lim, “An Efficient Window Protocol
for Real-time Communications in Token Ring Networks”, Proc. The 2nd
International Computer Conference, Data and Knowledge FEngineering: Theory

and Applications , Hong Kong, December 1992.

BIBLIOGRAPHY 231

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. Yao and W. Zhao, “Performance of an Extended IEEE 802.5
Protocol,” Proceedings, The IEEE 10th International Conference on Computer

Communications (INFOCOM’91), Miami, April 1991.

L. Yao and W. Zhao, “Token Ring Protocols for Transmission of Time Constrained
Messages Proceedings, The 5th Australian Fast Packet Switching Workshop,

Melbourne, July 1990.

L. Yao and W. Zhao, “Implementing the Minimum-Laxity-First Transmission
Policy in a Real-Time Token Ring Network,” Proceedings, “The 4th Australian

Teletraffic Research Seminar”, Bond University, December 1989.

J. Zhang and E. Coyle, “The Transient Performance Analysis of Voice/Data
Integrated Networks”, Proc. IEEE International Conference on Computer

Communications, June 1990.

W. Zhao and J. A. Stankovic, “Performance Analysis of FCFS and Improved
FCFS Scheduling Algorithms for Dynamic Real-Time Computer Systems”, Proc.

the 10th Real-Time Systems Symposium, Santa Monica, California, December

1989.

W. Zhao, K. Ramamritham and J. A. Stankovic, “Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems”, IEEE Transactions on Software

Engineering, Vol SE-13, No 5, May 1987.

W. Zhao and K. Ramamritham, “Virtual Time CSMA Protocols for Hard Real-
Time Communications”, IEEE Transactions on Software Engineering, Vol SE-13,

No 8, August 1987.

BIBLIOGRAPHY 232

[56]

[57]

[60]

W. Zhao, K. Ramamritham and J. A. Stankovic, “Preemptive Scheduling under
Time and Resource Constraints”, IEEE Transactions on Computers, Vol C-36,

No. 8, 1987.

W. Zhao, C. Barter and N. Malcolm, “Virtual Time CSMA Protocols with
Two Version Message Model for Real-Time Communications”, Proc. 1989 IEEE

International Conference on Networks, Singapore, July 1989.

W. Zhao, J. A. Stankovic and K. Ramamritham, “A Window Protocol for
Transmission of Time Constrained Messages”, IEEE Transactions on Computers,

Vol 39, No 9, September 1990.

W. Zhao, “Special Issue on Real-Time Operating Systems”, ACM Operating

Systems Review, 23(3), 1989.

T. Znati, “A Minimum-Laxity-First Window Protocol for Transmission of Real-
Time Traffic”, Proc. 10th Annual IEEE International Pheoniz Conference on

Computers and Communications, Pheonix, March 1991.

