HOST-BACTERIA RELATIONSHIPS AT THE SECRETORY SURFACES
OF THE LUNG

J. McA. Cooper, M.B.B.S. (Adelaide)

Department of Microbiology and Immunology,
The University of Adelaide,
Adelaide,
South Australia.

A thesis submitted for the degree of Doctor of Philosophy.
March, 1982
CONTENTS

Title
Summary
Statement
Acknowledgments

CHAPTER 1 HOST DEFENCES TO PULMONARY INFECTION
 1.1 Non-specific pulmonary defenses
 1.2 Humoral immunity in the lung
 1.3 Local immunity
 1.4 Control of local immunity
 1.5 Function of IgA
 1.6 Broncho-alveolar cells
 1.7 Macrophage activation
 1.8 Role of antibody in phagocytosis
 1.9 Activation of alveolar macrophages

CHAPTER 2 RESISTANCE TO BACTERIAL PNEUMONIA
 2.1 Pneumonia due to gram-negative bacteria
 2.2 Klebsiella pneumoniae
 2.3 Resistance to bacterial pneumonia
 2.4 Local immunity to pneumonia
 2.5 Active immunity to bacterial pneumonia
 2.6 Non-specific immunity to K. pneumoniae
 2.7 Interactions of pulmonary defenses
 2.8 Aims

CHAPTER 3 MATERIALS AND METHODS
 3.1 Bacterial strains
 3.2 Culture media for bacteria
 3.3 Animals
 3.4 Collection of serum
 3.5 Collection of intestinal secretions
 3.6 Collection of pulmonary secretions
 3.7 Collection of pulmonary cells
3.8 Collection of peritoneal exudate cells
3.9 Techniques for immunisation or infection
3.9a Intranasal inoculation
3.9b Intranasal passage of K. pneumoniae
3.9c Oral immunisation
3.9d Aerosol exposure
3.10 Preparation of vaccines
3.10a Heat-killed organisms
3.10b Glutaraldehyde-killed organisms
3.10c Alcohol-killed organisms
3.10d Ultra-violet irradiation
3.11 Quantitation of antibody
3.11a Passive haemagglutination
3.11b Haemolytic assay
3.11c Bacterial agglutination
3.11d Quantitative precipitin test
3.11e Enzyme linked immuno-absorbent assay
3.12 Immunodiffusion
3.12a Single radial immunodiffusion (Mancini)
3.12b Double radial immunodiffusion (Ouchterlony)
3.13 Purification of antibody
3.13a Protein-A chromatography
3.13b Sephadex G200 chromatography
3.13c Purification of Secretory IgA
3.14 Preparation of Fc fragments of rabbit immunoglobulin
3.15 Clearance of bacteria
3.16 Determination of 50% lethal or protective doses
3.17 Activation of macrophages
3.18 Assay of hydrogen peroxide production
3.19 In vitro killing assay
3.20 Adherence of bacteria to macrophages
3.21 Antigen preparations of klebsiella
3.21a Ultrasonic disruption of bacteria
3.21b X-Press technique
3.21c Membrane proteins
3.21d Polysaccharide and lipopolysaccharide
3.22 Protein and carbohydrate determination

CHAPTER 4 THE ROLE OF ANTIBODY IN THE RECOGNITION AND DESTRUCTION OF
BACTERIA BY ACTIVATED MACROPHAGES 62
A.1 Development of in vitro assay 66
A.2 Requirement for antibody for the destruction of salmonellae 69
A.3 Destruction of salmonellae by activated macrophages 70
A.4 H$_2$O$_2$ production by activated macrophages 71
A.5 Destruction of Listeria monocytogenes 73
A.6 Binding of bacteria to macrophages 75
A.7 Inhibition of binding with Fc fragments 76
A.8 Effect of sugars on the binding of listeria to macrophages 77
A.9 Effect of Ca$^{++}$ and Mg$^{++}$ depletion on attachment of listeria 78
A.10 Conclusions 79

CHAPTER 5 HUMORAL IMMUNITY TO PULMONARY INFECTION WITH KLEBSIELLA
PNEUMONIAE 80
5.1 Model of murine klebsiella infection 83
5.2 Infection with Klebsiella pneumoniae type 1 84
5.3 Preliminary protection experiments 85
5.4 Protection by antibody pools from UV-serum 87
5.5 Protection by anti-sera to heat labile and heat stable antigens 91
5.6 Passive hemagglutination assays using extracts of Kpn1 93
5.7 Development of ELISA detecting antibody to klebsiella antigens 93
5.8 Activity of absorbed sera 95
5.9 Nature of the heat-labile antigen 96
5.10 Membrane preparations of klebsiella 97
5.11 Conclusions 99
CHAPTER 6 LOCAL IMMUNITY IN THE LUNG

6.1 Clearance of bacterial aerosols from the lung
6.2 Role of antibody in promoting clearance
6.3 Fc receptors on alveolar macrophages
6.4 Production of intestinal IgA antibody to Kpnl
6.5 Local immunisation of the lung
6.6 Antibody levels in serum and pulmonary secretions
6.7 Passive protection by IgA
6.8 Role of IgA in the lung

CHAPTER 7 DISCUSSION

7.1 Role of antigen in the conventional animal
7.2 Requirement of antibody by activated macrophages
7.3 Role of humoral factors in resistance to K. pneumoniae
7.4 Antigens of K. pneumoniae
7.5 Conclusions

REFERENCES
SUMMARY

The development of immunity in the mouse to intra-nasal infection with *Klebsiella pneumoniae* was investigated with regard to cellular and humoral aspects of immunity. Particular attention was paid to the possible role of local, humoral immunity in resistance to this organism.

Experiments were designed to investigate the role of antibody in the expression of cellular immunity due to the importance of the alveolar macrophage in the lung. Studies on the killing of *Salmonella typhimurium* and *Listeria monocytogenes* by normal and activated peritoneal macrophages revealed that antibody was required for the destruction of *Salmonella* but not *Listeria* by macrophages, irrespective of the degree of activation. The requirement of antibody for killing of *Salmonella* was related to the inability of this organism to bind to macrophages in the absence of antiserum. *Listeria* bound to macrophages in the total absence of serum. The binding of *Listeria* was dependent on the presence of Mg\(^{++}\) and Ca\(^{++}\) ions, while the antibody dependent binding of *Salmonella* was not. Thus the binding of *Listeria* was not due to the presence of cytophilic antibody. Acquired cellular immunity therefore does not change the requirement of antibody for macrophages in the destruction of certain organisms.

Humoral immunity was shown to protect mice to intra-nasal challenge with *Klebsiella pneumoniae*. Immunity could be produced by actively immunising mice intra-venously with vaccines or by passive
transfer of antiserum with the infecting dose of organisms. Both IgG and IgM derived from serum were shown to be effective in protection. Differences were observed between the protection mediated by these classes of antibody dependent on the nature of immunising vaccine used to raise the anti-serum. While antibody directed against capsular polysaccharide efficiently protected mice, a second non-capsular antigen that was heat-labile was also able to induce the production of protective antibodies. Antibodies to this antigen appeared in the IgG class and not the IgM class. The antigen was present in other strains of Klebsiella.

As humoral immunity was shown to be critical in resistance to this organism, and as cellular activation could not alter the requirement for antibody, it was decided to investigate the possible contribution of local humoral factors. Local immunisation of the respiratory tract produced immunity in the absence of high titres of serum antibody. Antibody could be detected in pulmonary secretions. Antibody in both IgA and IgG classes was detected and shown to be protective when passively transferred. While serum antibodies could promote the clearance of an avirulent organism from the lung following aerosol exposure, sIgA had no such effect. Fc receptors for IgG were detected on alveolar macrophages but no receptor for IgA was found. Protection mediated by IgA was probably not dependent on alveolar macrophage function. The possible contribution of polymorphonuclear leukocytes was investigated. IgA was not able to promote killing by these cells.
The protection mediated by IgA in the lung does not appear to rely on cellular events in the lower respiratory tract, the site of pathology in infection with Klebsiella. It is proposed that IgA functions solely in the upper respiratory tract in preventing temporary colonisation from occurring and inhibiting the spread of infection to the lower airways. A similar function for IgA and local immunity can be envisaged in human disease where colonisation of the upper respiratory tract by Klebsiella or other gram-negative bacteria appears to be the initiating event in nosocomially acquired infections.