STUDIES ON THE 5-AMINOLEVULINATE SYNTHASE GENE

AND ITS REGULATION

Deborah Jane Maguire B.Sc. Hons. (Australian National University)

A thesis submitted for the degree of
Doctor of Philosophy in the University of Adelaide

Department of Biochemistry
Adelaide University

March 1987
CHAPTER ONE
GENERAL INTRODUCTION

1.1 INTRODUCTION
1.2 THE HEME BIOSYNTHETIC PATHWAY
1.3 STRUCTURE, PROPERTIES AND LOCALIZATION OF ALV-S
1.4 CONTROL OF HEPATIC ALV-S AND HEME BIOSYNTHESIS
 A) Mechanisms for negative feedback regulation of hepatic ALV-S by heme
 B) Mechanisms for drug induction of hepatic ALV-S
1.5 ERYTHROID HEME BIOSYNTHESIS
1.6 THE PORPHYRIA DISEASES
1.7 AIMS OF THIS THESIS

CHAPTER TWO
MATERIALS AND METHODS

2.1 MATERIALS
 2.1.1 Chemicals and reagents
 2.1.2 Enzymes
 2.1.3 Buffers
 2.1.4 Radiochemicals
 2.1.5 Cloning vectors
 2.1.6 Bacterial strains
 2.1.7 Bacterial growth media
 2.1.8 Miscellaneous
2.2 METHODS

2.2.1 GENERAL RECOMBINANT DNA METHODS

1. Preparation of plasmid or M13 replicative form DNA
 A) Alkaline lysis procedure
 B) Gentle lysis-caesium chloride gradient procedure
2. Preparation of pBR322, pUC and M13 cloning vectors
3. Ligation reactions
4. Transformation of E.coli MC1061
 with pUC or pBR322 recombinants
5. Transformation of E.coli JM101 with M13 recombinants
6. Preparation of M13 single-stranded DNA
 A) Small-scale preparation of DNA for sequencing
 B) Large-scale preparation of single-stranded DNA
 from M13 recombinants
7. Complementarity testing of single-stranded M13
 recombinants
8. Dideoxy chain termination DNA sequencing procedures
 A) Standard method
 B) Sequencing with dITP

2.2.2 METHODS USED FOR ISOLATION AND CHARACTERIZATION OF
ALV-S GENOMIC CLONES
1. Screening of a chicken genomic library in λ Charon 4A
 by plaque hybridization
2. Preparation of 32P-labelled DNA probes by
 nick translation
3. Preparation of DNA from λ recombinants
4. Southern blot hybridization analysis
2.2.3 METHODS USED FOR ISOLATION OF NUCLEI AND
TRANSSCRIPTION RUN-ON ASSAYS

1. Treatment of animals 47
2. Preparation of rat liver nuclei 47
3. Transcription run-on assays 48
4. Preparation of $^{32}\text{P}RNA$ 49
5. Recombinant DNA used in transcription run-on assays 49
6. Hybridization of $^{32}\text{P}RNA$ to immobilized DNA 50
7. Autoradiography and densitometric quantitation 51

2.2.4 MISCELLANEOUS METHODS

1. Measurement of TCA-precipitable radioactivity 52
2. Preparation of subcellular fractions and assays 52
 for ALV-S activity and protein

CHAPTER THREE
ISOLATION AND CHARACTERIZATION OF THE CHICKEN ALV-S GENE

3.1 INTRODUCTION 54

3.2 RESULTS 55

3.2.1 Isolation and characterization of chicken ALV-S 55
 genomic clones

3.2.2 Southern blot hybridization analysis of the 56
 genomic clones

3.2.3 Southern blot hybridization analysis of total chicken 57
 genomic DNA

3.3 DISCUSSION 58
CHAPTER FOUR

SEQUENCE ANALYSIS OF THE CHICKEN ALV-S GENE

4.1 INTRODUCTION 61

4.2 RESULTS 62

4.2.1 Preparation of M13 subclones of λ calA-S 1 and sequence analysis of a 5.2 kb region of the chicken ALV-S gene 62

4.2.2 The structure of the chicken ALV-S gene 63

4.2.3 The G+C content of the chicken ALV-S gene 64

4.2.4 The 5' flanking region of the chicken ALV-S gene 65

4.3 DISCUSSION 67

A) The structure of the chicken ALV-S gene 67

B) Potential regulatory elements in the 5' end of the ALV-S gene 68

C) Potential heme control elements in the 5' flanking regions of the chicken ALV-S gene. 71

CHAPTER FIVE

TRANSCRIPTIONAL REGULATION OF THE ALV-S GENE IN RAT LIVER

5.1 INTRODUCTION 75

5.2 RESULTS 78

5.2.1 The time course and α-amanitin sensitivity of $[^{32}P]$RNA synthesis in isolated nuclei 78

5.2.2 Quantitative hybridization of specific $[^{32}P]$RNA transcripts 79

5.2.3 Induction of ALV-S and cytochrome P450 transcription by AIA 80

5.2.4 Repression of ALV-S and cytochrome P450 transcription by heme or its precursor ALV 81
5.2.5 The effect of heme on translocation of ALV-S

5.2.6 The effects of Sarkosyl, heparin, hemin and ALV on transcriptional elongation in vitro

A) The effects of ALV and hemin on transcriptional elongation in vitro

B) The effects of Sarkosyl and heparin on in vitro transcription

5.2.7 The relationship between ALV-S enzyme and mRNA levels and the relative transcription rate of the ALV-S gene

5.3 DISCUSSION

A) Transcriptional control of ALV-S synthesis

B) Post-transcriptional control of ALV-S synthesis

C) Heme control of ALV-S translocation

D) Transcriptional regulation of the cytochrome P450 gene

E) Coordinate control of ALV-S and cytochrome P450 synthesis by heme

CHAPTER SIX

CONCLUDING DISCUSSION

BIBLIOGRAPHY

PUBLICATIONS
SUMMARY

5-Aminolevulinate synthase (ALV-S) is the first enzyme of the heme biosynthetic pathway. This thesis is concerned with control of hepatic ALV-S synthesis by negative feedback regulation by heme. Briefly, the chicken ALV-S gene has been isolated and characterised, and transcription run-on experiments in isolated rat liver nuclei have demonstrated that control of ALV-S synthesis in liver is exerted primarily at the level of transcription initiation.

1. A full-length cDNA clone (p105B1) for chick embryo liver 5-aminolevulinate synthase (ALV-S) was used as a hybridization probe to isolate 13 clones from a chicken genomic library. These clones were characterized by restriction enzyme analysis and Southern blot hybridization with p105B1. The clones overlapped, spanning a contiguous region of 40 kb of genomic DNA. One clone (designated λ cALA-S 1) which hybridized to DNA from both the 5' and 3' ends of p105B1 was chosen for further analysis.

2. Total chicken genomic DNA and λ cALA-S 1 were each digested with several different restriction enzymes and analysed by Southern blot hybridization with p105B1, at high and low stringency. Identical hybridization patterns were observed, indicating that λ cALA-S 1 contains the entire ALV-S gene. Also, this result provides strong evidence that ALV-S is coded for by a single gene, and that no other related sequences are present in the chicken genome.

3. Sequences hybridizing to p105B1 were contained within two BamHI restriction fragments of 4.3 kb and 5.6 kb. These were cloned from λ cALA-S 1 into pUC19. DNA prepared from each of these subclones was used to generate a library of random overlapping clones in M13, and restriction fragments overlapping the 5' end of the gene and the internal BamHI site were also subcloned into M13 for sequencing. The sequence of a 5.2 kb region of DNA including the 4.3 kb BamHI fragment is presented in this thesis. This sequence extends 995 bp upstream of the mRNA transcription start site.

4. The gene spans 6.9 kb and is divided into 10 exons (156-280 bp), split by 9 introns (91-1100 bp). The exon-intron boundaries all conform to the GT-AG rule and the consensus sequences for eukaryotic splice junctions. Sequences with homology to the branch-point sequences implicated in the splicing mechanism are also present.

5. The ALV-S promoter contains many elements which have been shown to be important in the control of eukaryotic gene transcription. Two TATA boxes are present, at positions -30 and -71 relative to the transcription start site (+1) and CAAT boxes are located approximately 70 bp upstream of each TATA box.

Several features common to many eukaryotic housekeeping genes are also found. Five GC hexanucleotide boxes are present within 110 bp of the transcription start site. The promoter region has a high G+C content, averaging 62% G+C in a 1.5 kb region extending from 995 bp upstream of the transcription start site into the first intron. This high G+C content is also associated with clustered CpG dinucleotides.
An unusual tandemly repeated element is present at position -160 relative to the transcription start site (+1). The 10 bp sequence CCCC(T/C)CATGG is reiterated 3 times in tandem and the sequence CCCCTCA also occurs twice, within a 50 bp segment of DNA. Another tandemly repeated element occurs at position -97. The 6 bp sequence CACGCC is repeated twice with a one nucleotide overlap and sequences similar to this occur in the yeast and bacterial ALV-S genes.

6. The transcriptional regulation of the rat ALV-S gene by heme and porphyrinogenic drugs was examined by transcription run-on experiments using nuclei isolated from the livers of normal rats and from animals treated with heme or its precursor ALV, or with the porphyrinogenic drug 2-allyl-2-isopropylacetamide (AIA), or with both. Treatment of normal animals with heme or ALV reduced ALV-S transcription to undetectable levels. Administration of AIA for 4 h increased ALV-S transcription 10 fold, and heme or ALV treatment completely prevented this induction. An unexpected finding was that transcription of a drug-inducible cytochrome P450 gene was also repressed by heme. Control experiments showed that the effects of heme and drugs were specific, since transcription of the serum albumin gene was unaffected. Heme and ALV had no effect on elongation of the ALV-S or cytochrome P450 transcripts in vitro, suggesting that administration of heme or drugs alters the rate of transcription initiation. The relative levels of ALV-S mRNA and enzyme activity correlated closely with the transcription rate of the ALV-S gene, and it is therefore likely that the major control of hepatic ALV-S synthesis is at the level of transcription initiation.