Search for Ultra High Energy Radiation from Astrophysical Sources

Rishi Meyhandan B.Sc. (Hons)

Thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
(Department of Physics and Mathematical Physics)

January 1994

Awarded 1994
Summary

This thesis presents results of searches made with the Buckland Park and SUGAR data sets for Ultra High Energy γ-ray emission from certain astrophysical objects. The origin of cosmic radiation at Ultra High Energies remains largely unresolved, and investigations into γ-ray emission from such objects may provide an insight to possible origins of cosmic rays.

The first chapter of the thesis briefly reviews the current status of properties of the cosmic ray flux such as the observed spectrum, composition and anisotropy, followed by a discussion of the field of Ultra High Energy γ-ray astronomy including aspects of possible acceleration mechanisms, attenuation in the interstellar medium and the status of observations from other groups.

The initiation and development of Extensive Air Showers, as well as detection of cosmic ray and γ-ray showers in particular the muon content of Ultra High Energy and Extremely High Energy showers is discussed in Chapter 2.

Chapter 3 describes the Buckland Park Extensive Air Shower Array, the various components of the array as well as the techniques used for analysing data. Included in the discussion are the improvements made by the author to the array and data analysis with emphasis on methods for shower front curvature correction to the data and methods for determining the angular resolution of the array. The improvements to the arrays performance made by the author are shown to be consistent with expectation.

A brief discussion of the SUGAR array parameters is made in Chapter 4. The techniques for the analysis of data in searches for Ultra High Energy emission together with the results are presented in Chapter 5. Included is a summary of observations for each object. The final chapter summaries the results presented in this thesis.
Contents

1 Cosmic rays - An Overview
 1.1 Introduction ... 1
 1.2 Spectrum ... 2
 1.3 Composition ... 6
 1.4 Anisotropy .. 9
 1.5 UHE \(\gamma\)-Ray Astronomy 12
 1.5.1 Status of UHE Observations 13
 1.5.2 Possible Acceleration Mechanisms 16
 1.5.3 Photon Cascading in the Microwave Background . 20

2 Extensive Air Showers .. 23
 2.1 Introduction ... 23
 2.2 Nuclear Component 23
 2.3 Muon Component .. 26
 2.3.1 Muon Lateral distribution 27
 2.4 Electromagnetic Component 28
 2.4.1 Approximation A 29
 2.4.2 Electromagnetic lateral distribution 31
 2.5 Neutral Particles ... 33
 2.5.1 UHE Gamma Rays 33
 2.5.2 EHE Gamma Rays 37
3 Buckland Park Extensive Air Shower Array

3.1 Introduction ... 41
 3.1.1 The Detectors 42
3.2 Array Trigger and Recording Event Data 43
3.3 Data Analysis .. 45
 3.3.1 Arrival Directions 46
 3.3.2 Shower parameters 50
3.4 Development & Configuration (1991-1992) 53
 3.4.1 Simulations for Array Triggering 54
3.5 Shower Front Curvature 61
 3.5.1 Measurement of Curvature 61
 3.5.2 Correction for Curvature 62
 3.5.3 Simulated Curvature Correction 65
3.6 Array Characteristics 1992 69
 3.6.1 Zenith & Azimuth Angle Distributions 69
 3.6.2 Right Ascension & Declination Distributions 73
 3.6.3 Goodness of fit Distribution 75
 3.6.4 Triggered Timing detectors Distribution 77
 3.6.5 Shower Size and Age Distributions 78
3.7 Array Directions 1984 – 1989 80
 3.7.1 Zenith Angle Distribution 80
 3.7.2 Azimuth Angle Distribution 80
 3.7.3 Right Ascension & Declination Distribution 84
3.8 Array Characteristics 1990 - 1991 86
3.9 Array Characteristics 1978 – 1982 88
3.10 Angular Resolution 92
 3.10.1 Sub-Array Analysis 1992 94
 3.10.2 Simulated Angular Resolution 95
 3.10.3 Discussion of Results 97
4 Sydney University Giant Air-shower Recorder

4.1 Introduction .. 101
4.2 Array Detectors and Trigger 101

5 Searches for UHE Emission 107

5.1 Introduction .. 107
 5.1.1 Search for a DC Excess 107
 5.1.2 Periodic analysis 109
 5.1.3 Estimation of Flux 110
 5.1.4 Upper limit to DC Flux 111
 5.1.5 Background Estimation by Shuffling 112
 5.1.6 Combining Probabilities 112

5.2 Sources ... 113
 5.2.1 Centaurus A 114
 5.2.2 Scorpius X-1 126
 5.2.3 Vela X-1 ... 132
 5.2.4 2A1822 -371 136
 5.2.5 LMC X-4 ... 143

5.3 Nature of EHE Observations 151

6 Conclusions ... 155

References .. 157

A Direction Fits ... 169

B Phillips 7186 TDC 171

C Search Region .. 173

D Barycentric Corrections 179