Role of circulating adrenaline in the pathogenesis of hypertension

Lina Terese Jablonskis
BSc (Hons)

Thesis submitted for the degree of Doctor of Philosophy in the Department of Physiology, Faculty of Science, The University of Adelaide, July 1994

Awarded 1995
TABLE OF CONTENTS

SUMMARY ... vii

DECLARATION ... ix

PUBLICATIONS AND ABSTRACTS x

ACKNOWLEDGEMENTS ... xi

ABBREVIATIONS USED IN THE TEXT xii

CHAPTER 1 INTRODUCTION

1.1 Catecholamines and stress ... 1

1.2 Stress and hypertension ... 3
 1.2.1 Stress induced hypertension in rats 4

1.3 Plasma catecholamines in hypertension
 1.3.1 Plasma catecholamines as a marker of sympathetic activity 5
 1.3.2 Essential hypertension ... 6
 1.3.3 Animal models of inherited hypertension 7

1.4 Possible mechanisms elevating catecholamines in hypertension
 1.4.1 Increased sympathoadrenal outflow 12
 1.4.2 Increased adrenal catecholamine content 13
 1.4.3 Hyperresponsiveness to stress 14

1.5 Receptor types and physiological actions of adrenaline
 1.5.1 Presynaptic receptors ... 15
 1.5.2 Postsynaptic receptors .. 16
 1.5.3 Effects of adrenaline on blood pressure 17
 1.5.4 Metabolic effects of adrenaline 17
1.6 Effects of abnormally elevated plasma adrenaline
 1.6.1 Chronic adrenaline infusion in rat models 18
 1.6.2 Adrenaline infusion in humans 20
 1.6.3 Pheochromocytoma .. 21

1.7 Effects of adrenaline deficiency
 1.7.1 Adrenalectomy ... 21
 1.7.2 Adrenaline deficiency in humans 22

1.8 Overall objective ... 23
 1.8.1 Approaches .. 24
 1.8.2 Outline of thesis ... 25

CHAPTER 2 METHODOLOGY

2.1 Experimental animals .. 26

2.2 Arterial catheterisation procedures 26
 2.2.1 Preparation of catheters 27
 2.2.2 Cannulation procedure 27
 2.2.3 Blood pressure measurements and blood sampling 28

2.3 Drug administration
 2.3.1 Intravenous .. 29
 2.3.2 Intra-arterial ... 29

2.4 Autonomic blockade and in vivo pressor responsiveness 29

2.5 Tail cuff blood pressure measurements 30

2.6 Activity measurements ... 31

2.7 Blood perfused mesenteric preparation 31

2.8 Adrenaline infusion ... 31
2.9 Bilateral adrenomedullectomy .. 32
2.10 Catechol-O-methyl tranferase radioenzymic catecholamine assay 32
 2.10.1 Isolation of catechol-O-methyl tranferase enzyme 32
 2.10.2 Preparation of samples and standards 33
 2.10.2.i Plasma .. 33
 2.10.2.ii Tissues ... 33
 2.10.3 Assay procedure .. 34
2.11 Chemicals list .. 35

CHAPTER 3 COMPARISON OF CARDIOVASCULAR PARAMETERS IN NORMOTENSIVE AND HYPERTENSIVE RATS

3.1 Aim .. 42
3.2 Methods ... 43
3.3 Results .. 43
 3.3.1 Young rats .. 43
 3.3.2 Old rats .. 44
 3.3.3 Effects of autonomic blockade 44
 3.3.4 Correlation coefficients 45
3.4 Discussion ... 50
 3.4.1 Effects of ganglion and vasopressin blockade 52
3.5 Summary ... 54
CHAPTER 4 COMPARISON OF CARDIOVASCULAR PARAMETERS IN HYPERTENSIVE AND HYPERACTIVE RATS

4.1 Aim ... 56

4.2 Methods .. 56

4.3 Results .. 57

4.4 Discussion .. 58

4.5 Summary .. 61

CHAPTER 5 MODIFICATION OF CIRCULATING ADRENAINE LEVELS

5.1 Aim ... 62

5.2 Methods
 5.2.1 Adrenaline infusion studies
 5.2.1.i Preliminary study .. 63
 5.2.1.ii Depot implantation 63
 5.2.1.iii Minipump infusion 63
 5.2.1.iv Adrenaline infusion in WKY, SD and SHRSP 63

 5.2.2 Bilateral adrenaledullectomy in SHR and SHRSP 64

 5.2.3 Acute drug administration 64

5.3 Results
 5.3.1 Preliminary study
 5.3.1.i Depot implantation 65
 5.3.1.ii Minipump infusion 65
 5.3.1.iii Subsequent adrenaline infusion studies 65

 5.3.2 Effects of adrenaledullectomy 66

 5.3.3 Effects of acute drug administration 67
5.4 Discussion ... 72
5.5 Summary .. 76

CHAPTER 6 EFFECTS OF MODIFYING BLOOD PRESSURE IN WKY AND SHRSP

6.1 Aim .. 78

6.2 Methods
6.2.1 L-NAME in WKY
6.2.1.i Experiment 1: Adult WKY study 79
6.2.1.ii Experiment 2: Chronic study in young WKY 79
6.2.2 Experiment 3: Hydralazine in SHRSP 80

6.3 Results
6.3.1 L-NAME in WKY
6.3.1.i Experiment 1: Adult WKY study 80
6.3.1.ii Experiment 2: Chronic study in young WKY 81
6.3.2 Experiment 3: Hydralazine in SHRSP 82
6.3.3 Correlation coefficients 83

6.4 Discussion ... 93
6.5 Summary .. 97

CHAPTER 7 CONCLUSIONS

7.1 Summary of experimental observations 98

7.2 Influence of plasma adrenaline on total peripheral resistance 99

7.3 Association of plasma adrenaline with metabolic abnormalities in hypertension. 100
7.4 Proposed role of circulating adrenaline in the pathogenesis of hypertension 102

APPENDICES ... 104

REFERENCES ... 106

PUBLISHED MANUSCRIPTS ... 123
SUMMARY

As adrenaline (AD) contributes to the high blood pressure levels associated with acute stress much attention has focused on a possible role of chronic elevations of circulating AD in the pathogenesis of hypertension. In this thesis, the relationship between circulating AD and blood pressure has been examined.

Aortic catheters were implanted in spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) and genetically related (Wistar Kyoto (WKY)) and unrelated (Black-hooded Wistar (BHW) and Sprague Dawley (SD)) normotensive rats, to determine mean arterial pressure (MAP) and plasma catecholamine levels in a conscious and unrestrained state.

At 5-7 weeks of age, MAP was already elevated in the hypertensive strains compared with WKY or SD rats. Plasma AD was higher (76%) in SHR and lower in SD compared to WKY. In adult rats (7-9 months of age), MAP was higher in the hypertensive strains than in WKY. Circulating AD levels were 3-4 times higher in the hypertensive rats but did not differ between normotensive strains.

Plasma catecholamine levels were also measured in WKY hyperactive (WK-HA) and WKY hypertensive (WK-HT) strains to determine if plasma AD is related to the hyperactivity trait of SHR. Catecholamine levels did not differ between strains, indicating that the elevation of plasma AD in the hypertensive rats is not attributable to their hyperactivity.

The relationship between blood pressure and plasma AD was examined by modifying AD levels in normotensive and hypertensive rat strains. Chronic minipump AD infusion did not effect MAP in WKY, even though plasma AD levels were elevated 12 fold. Ten weeks after adrenalmedullectomy in SHRSP, plasma AD was reduced by 34% and MAP was slightly higher in these rats.

These results imply that circulating AD is not a determinant of resting blood pressure. The possibility that elevated AD levels may be a consequence of hypertension was addressed by chronically altering blood pressure levels in WKY and SHRSP. WKY were
made hypertensive by administration of a nitric oxide synthesis inhibitor (L-NAME). Blood pressure was lowered in SHRSP by chronic administration of hydralazine.

Chronic L-NAME treatment in WKY, significantly elevated MAP. This hypertension was accompanied by a significant increase in circulating AD levels. Conversely, chronic hydralazine treatment in SHRSP, significantly lowered MAP and plasma AD concentrations.

These results suggest that the elevation of circulating AD in hypertensive rats is a consequence rather than a cause of their hypertension.