PROPERTIES OF CROSSLINKED PHEMA HYDROGELS

A thesis submitted for the degree of Doctor of Philosophy in the Departments of Physical and Inorganic Chemistry and Chemical Engineering.
The University of Adelaide, May 1991.

Darrell Jonathan Bennett B.Sc.(Hons).
Table of Contents

Summary

Statement
 vii

Acknowledgements
 viii

Abbreviations
 ix

Chapter One
 Introduction
 1

Chapter Two
 Experimental Techniques
 7

 2.1 Sample Sources
 7

 2.2 Sample Preparation
 7

 2.3 Sample Hydration
 9

 2.4 Differential Scanning Calorimetry
 (a) Measurement of Freezing Water
 10

 (b) Glass Transition Temperatures
 10

 2.5 Dynamic Mechanical Measurements
 12

 2.6 Nuclear Magnetic Resonance
 (a) Solution NMR
 13

 (b) Solid State NMR
 14

 2.7 Diffusion Measurements
 17

Chapter Three
 Water Sorption and Desorption
 20

 3.1 Introduction
 20

 3.2 The Kinetics of Diffusion
 20

 3.3 Results
 24

 3.3.1 Sorption at 33 % Relative Humidity
 24

 3.3.2 Sorption at 79 % Relative Humidity
 31

 3.3.3 Sorption at 100 % Relative Humidity
 37

 3.3.4 Sorption in Water
 42

 3.3.5 Variation of D with Sorption Time
 47

 3.3.6 Water in Voids
 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7 Density Measurements</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>53</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>60</td>
</tr>
<tr>
<td>Chapter Four Dynamic Mechanical Testing</td>
<td>61</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Results and Discussion</td>
<td>61</td>
</tr>
<tr>
<td>4.2.1 The Glass Transition Region</td>
<td>61</td>
</tr>
<tr>
<td>(a) PHEMA</td>
<td>61</td>
</tr>
<tr>
<td>(b) HEMA/EGDMA Copolymers</td>
<td>68</td>
</tr>
<tr>
<td>(c) HEMA/TEGDMA Copolymers</td>
<td>72</td>
</tr>
<tr>
<td>(d) HEMA/P400 Copolymers</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2 Theoretical Calculation of log G'</td>
<td>88</td>
</tr>
<tr>
<td>4.2.3 The β Relaxation</td>
<td>90</td>
</tr>
<tr>
<td>4.2.4 Subambient Transitions</td>
<td>92</td>
</tr>
<tr>
<td>4.3 Summary</td>
<td>103</td>
</tr>
<tr>
<td>Chapter Five Differential Scanning Calorimetry</td>
<td>104</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>5.2 Results and Discussion</td>
<td>105</td>
</tr>
<tr>
<td>5.2.1 Variation of Freezing Water with Temperature</td>
<td>105</td>
</tr>
<tr>
<td>5.2.2 Variation of Freezing Water with Time</td>
<td>110</td>
</tr>
<tr>
<td>5.2.3 Variation of Freezing Water with Copolymer Composition</td>
<td>111</td>
</tr>
<tr>
<td>5.2.4 Anomalous Freezing of Water</td>
<td>115</td>
</tr>
<tr>
<td>5.2.5 Glass Transition Temperatures</td>
<td>117</td>
</tr>
<tr>
<td>5.2.6 Specific Heat Measurements</td>
<td>119</td>
</tr>
<tr>
<td>5.3 Summary</td>
<td>119</td>
</tr>
<tr>
<td>Chapter Six Solution NMR</td>
<td>120</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>6.2 Results and Discussion</td>
<td>121</td>
</tr>
</tbody>
</table>
6.2.1(a) PHEMA
 (b) HEMA/EGDMA Copolymers
 (c) HEMA/TEGDMA Copolymers
 (d) HEMA/MMA Copolymers

6.3 Correlation with DSC Results

6.4 Summary

Chapter Seven Solid State NMR

7.1 Introduction

7.2 Results and Discussion
 7.2.1 $T_{1p}(C)$ Dispersions
 7.2.2(a) $T_{1p}(C)$ Times for PHEMA at Varying EWCs
 (b) $T_{1p}(C)$ Times for HEMA/EGDMA Copolymers
 (c) $T_{1p}(C)$ Times for HEMA/EGDMA Copolymers at Varying EWCs
 (d) $T_{1p}(C)$ Times for HEMA/MMA Copolymers at varying EWCs

7.2.5(a) T_{SL} Times for PHEMA at Varying EWCs
 (b) T_{SL} Times for Crosslinked PHEMA
 (c) $T_{1p}(H)$ Times for PHEMA and Crosslinked PHEMA

7.2.6 T_{SL} and $T_{1p}(H)$ Times for PMMA

7.3 Summary

Chapter Eight Conclusion

References
SUMMARY

Poly (2-hydroxy ethyl methacrylate) (PHEMA) and a series of copolymers of PHEMA with various oligo (ethylene glycol) dimethacrylates, with the number of ethylene glycol units varying between one and nine, were prepared. The effect of sorbed water and the degree of crosslinking on the dynamic mechanical properties of these polymers, and the nature and state of water in the polymer was investigated using a variety of techniques. Polymer samples of varying hydration were prepared by conditioning at different relative humidities. The kinetics of sorption and desorption were also studied.

The amounts of freezing and non-freezing water in the polymer samples were determined using differential scanning calorimetry. Some fine structure to the melting endotherm was observed. The size and structure of the endotherm was found to be dependent on a number of factors including the time frozen, the temperature at which the sample was frozen and the immediate past history of the sample. Crosslinking led to a large decrease in the relative amount of freezing water. 1H solution NMR was also used to measure the relative amounts of mobile and bound water at differing temperatures. The decrease in mobile water at 258 K was measured with time and found to decrease in an exponential manner.

Proton enhanced magic angle spinning 13C NMR was used to measure both the 13C relaxation in the rotating frame, $T_{1p}(C)$, and the spin lock cross polarisation time, T_{SL}. $T_{1p}(C)$ values decreased with increasing amounts of sorbed water, especially when the sample Tg fell below the measuring temperature. This was most noticeable for the carbonyl and quaternary carbons. The carbonyl T_{SL} also showed a decrease as sorbed water increased.

Mechanical properties were measured using a free oscillation torsion pendulum. The greatest effect noted being a decrease in the glass transition
temperature, Tg, with increasing water sorption. β,γ and water induced transitions were also noted and found to vary with copolymer type and water content. A number of equations were used in order to try and predict the change in Tg due to sorbed water and crosslinking. These met with varying success.