THE ROLE OF WEAR PARTICLES IN PROSTHESIS LOOSENING

Donald William Howie
M.B., B.S., F.R.A.C.S.

A thesis submitted for the Degree of Doctor of Philosophy in the University of Adelaide

Department of Pathology
The University of Adelaide
May, 1987
TABLE OF CONTENTS

SUMMARY vii

DECLARATION ix

ACKNOWLEDGEMENTS x

LIST OF ABBREVIATIONS xi

CHAPTER ONE : INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction 1

1.2 Historical review of hip arthroplasty 4

1.3 The capsule and bone-implant interface around stable prostheses 8
 1.3.1 The capsule 8
 1.3.2 The bone-implant interface 8
 1.3.3 The cement-prosthesis interface 11

1.4 The effects of wear particles on periprosthetic tissues and their relationship to loosening 12
 1.4.1 Identification of wear particles in the periprosthetic tissues 13
 1.4.2 Wear particles from articulating surfaces 15
 1.4.3 Abrasion particles from the bone-prosthesis interface 19

1.5 Other factors determining the appearance of the periprosthetic tissues and the stability of the bone-implant interface 22
 1.5.1 Bone preparation and insertion techniques 22
1.5.2 The effect of implant materials
1.5.2.1 Metals and corrosion
1.5.2.2 Sensitivity to metals and other materials
1.5.2.3 Acrylic polymers
1.5.2.4 Non-acrylic polymers
1.5.2.5 Aluminium oxide ceramic
1.5.3 The effect of weight bearing and implant design on the tissues at the bone-implant interface
1.5.4 The effect of infection on the periprosthetic tissues
1.6 Causes of wear of the articulating surfaces of joint prostheses
1.7 The effects of wear particles on cells and tissues
1.7.1 In vitro effects of wear products
1.7.2 In vivo studies of the biocompatibility of particles
1.7.2.1 Metals
1.7.2.2 Polymers
1.7.2.3 Aluminium oxide ceramic
1.7.3 In vivo studies of wear particle carcinogenesis
1.8 Summary of current situation

CHAPTER TWO : THE PATHOLOGICAL FINDINGS IN THE TISSUES AROUND FAILED HIP ARTHROPLASTIES
2.1 Aims
2.2 Introduction
CHAPTER THREE : THE SYNOVIAL RESPONSE TO INTRA-ARTICULAR COBALT-CHROME WEAR PARTICLES IN RATS

3.1 Aims

3.2 Introduction

3.3 Materials and methods
 3.3.1 Preparation of cobalt-chrome particles
 3.3.2 Technique of injection and sacrifice of animals
 3.3.3 Tissue processing for histopathology
 3.3.4 Microbiology techniques to exclude infection

3.4 Results
 3.4.1 Histopathology of rat knees
 3.4.2 Post-mortem findings
 3.4.3 Microbiology culture results

3.5 Discussion

3.6 Conclusions
CHAPTER FOUR : THE LONG TERM EFFECTS OF INTRA-ARTICULAR INJECTION OF COBALT-CHROME WEAR PARTICLES IN RATS

4.1 Aim
4.2 Introduction
4.3 Materials and methods
 4.3.1 Injection and sacrifice of animals
 4.3.2 Histopathology grading
4.4 Results
 4.4.1 Histopathology of rat knees
 4.4.2 Particle and macrophage scores
 4.4.3 Death of animals, post-mortem findings, and microbiology results
4.5 Discussion
4.6 Conclusions

CHAPTER FIVE : A COMPARISON OF THE SYNOVIAL RESPONSE TO ALUMINIUM OXIDE CERAMIC AND COBALT-CHROME ALLOY WEAR PARTICLES IN RATS

5.1 Aims
5.2 Introduction
5.3 Materials and methods
 5.3.1 Preparation of cobalt-chrome particles
 5.3.2 Preparation of aluminium oxide particles
 5.3.3 Preliminary study
 5.3.4 Technique of injection and sacrifice of animals
 5.3.5 Statistical methods
5.4 Results
 5.4.1 Histopathology of rat knees
 5.4.2 Particle scores
 5.4.3 Macrophage scores
 5.4.4 Particle and macrophage correlations
 5.4.5 Post-mortem and microbiology results
5.5 Discussion
5.6 Conclusions

CHAPTER SIX : THE SYNOVIAL TISSUE RESPONSE TO INTRA-ARTICULAR
INJECTION IN RATS OF POLYETHYLENE WEAR PARTICLES PREPARED
IN A JOINT SIMULATOR
 6.1 Aim
 6.2 Introduction
 6.3 Materials and methods
 6.3.1 Preparation of polyethylene particles
 6.3.2 Injection and sacrifice of rats
 6.4 Results
 6.4.1 Histopathology of rat knees
 6.4.2 Post-mortem and microbiology results
 6.5 Discussion
 6.6 Conclusions

CHAPTER SEVEN : ULTRASTRUCTURAL EXAMINATION OF THE
CELLULAR RESPONSE TO WEAR PARTICLES IN RATS
 7.1 Aims
 7.2 Introduction
7.3 Materials and methods
 7.3.1 Tissue processing for electron microscopy examination
 7.3.2 TEM and EDX microanalysis
7.4 Results
 7.4.1 Cobalt-chrome particles
 7.4.2 Aluminium oxide particles
 7.4.3 Polyethylene particles
7.5 Discussion
7.6 Conclusions

CHAPTER EIGHT : A RAT MODEL OF BONE RESORPTION AT THE BONE-CEMENT INTERFACE IN THE PRESENCE OF POLYETHYLENE WEAR PARTICLES
 8.1 Aim
 8.2 Introduction
 8.3 Materials and methods
 8.3.1 Technique of cement plug insertion
 8.3.2 Polyethylene particle injection
 8.3.3 Processing of tissue for histopathology
 8.4 Results
 8.5 Discussion
 8.6 Conclusions

CHAPTER NINE : CONCLUSIONS
 9.1 Conclusions and summary
 9.2 Directions for future study

CHAPTER TEN : BIBLIOGRAPHY
Loosening of total joint prostheses is often associated with the accumulation of prosthesis wear particles in the surrounding tissues, a macrophage and multinucleate giant cell (MNGC) response, and bone resorption. The studies described in this thesis were undertaken to determine the effects of wear particles, released from the articulating surfaces of prostheses, on cells and tissues, and to investigate the role of wear particles in bone resorption and prosthesis loosening. The investigation was divided into four main sections:

1. Initial studies were performed to determine the type and size of wear particles, and the associated cellular response in human tissues around uninfected total hip arthroplasties. The periprosthetic tissues were examined by light microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) microanalysis. The type of cellular response seemed to be related to the number, type, and size of wear particles. A macrophage and MNGC response was common in the presence of large numbers of wear particles. The accumulation of macrophages, which contained large numbers of cytolysosomes, was seen in the presence of particles. Lymphocyte aggregates occasionally were seen in association with metal particles. Polymorphonuclear leucocytes (PMN) were sparse.

2. To determine the effect of wear particles on tissues, an animal model was developed using the intra-articular injection of particles. Light microscopy and TEM examination demonstrated that wear particles similar in size to those seen in human periprosthetic tissues produced a similar tissue response in the rat knee. Cobalt-chrome alloy particles
induced a predominant macrophage infiltrate, necrosis of macrophages, and a transient lymphocytic infiltrate. Aluminium oxide particles and small polyethylene particles also induced a macrophage infiltrate, but little necrosis or lymphocytic infiltrate. Large particles of polyethylene produced aggregation of macrophages and an MNGC infiltrate.

3. Further studies, using a semi-quantitative method of assessment of the tissue response to particles, demonstrated that the number of particles and the extent of the associated macrophage infiltrate changed very little from two weeks to one year following the injection of particles. Further, a greater macrophage infiltrate was seen following injection of a high dose suspension of cobalt-chrome alloy particles compared with a low dose suspension, and a significantly greater macrophage response was seen to cobalt-chrome alloy than to aluminium oxide particles. Thus, the tissue response to particles is related to the persistence of particles in the tissues, the type and amount of particulate material, and, possibly, the degree of cell necrosis induced by particles.

4. The relationship between the tissue response to wear particles and bone resorption was studied using an animal model which involved the injection of wear particles into a rat knee joint adjacent to an acrylic cement plug inserted into the distal femur. In the absence of infection or mechanical causes for loosening, the formation of a connective tissue layer and bone resorption between the cement plug and bone occurred following multiple injections of polyethylene particles.

The results of these investigations indicate that prosthesis wear particles are responsible for a macrophage and MNGC response in the periprosthetic tissues and play a major role in bone resorption and loosening of prostheses.