THE PATHOGENESIS OF
POST-MENOPAUSAL OSTEOPAenia
USING THE OOPHORECTOMISED RAT MODEL

Natalie Ann Sims B.Sc.(Hons)
July 1994

Submitted for the degree of
Doctor of Philosophy

in

The University of Adelaide
(Faculty of Science)
ABSTRACT

After the menopause in the human female, bone turnover is increased and bone density is reduced leading to increased fracture risk. The mechanisms by which oestrogen deficiency causes this bone loss remains unclear.

The mature oophorectomised rat is a well-recognised model of post-menopausal bone loss, and has been used in this thesis to study the effects of oestradiol on bone cells in vivo.

The immediate effects of oophorectomy (oestrogen-deficiency) were determined by the measurement of biochemical and histomorphometric markers of bone formation, resorption and trabecular bone morphology from time of operation until 21 days post-operation. From this study a model of oestrogen-deficiency bone loss is proposed whereby the immediate increase in bone resorption results in increased activation frequency of bone turnover units, thus increasing the risk of trabecular perforation. Increased bone formation is delayed in oestrogen deficiency, such that the balance of bone turnover is maintained at the cellular level, however due to trabecular perforation, not all resorbed pits continue through to the formation stage, since bone formation requires a surface to build on.

A study of similar design was carried out to determine the effects of oestradiol on bone loss in oophorectomised rats. Oestrogen treatment of oophorectomised rats from the time of operation delayed trabecular bone loss by inhibiting both formation and resorption. Data from this thesis support a model of a direct inhibitory oestrogen action on both osteoclasts and proliferating osteoblasts as reported in vitro. These direct inhibitory effects of oestradiol appear to suppress the direct stimulatory action of oestrogen on mature osteoblast reported in vitro, and immediately following oestradiol treatment in this study.

The effects of salmon calcitonin and PTH-Pt(107-139) were also assessed in vivo using similar methods. The effects of these hormones on bone cell activity and trabecular bone loss in oophorectomised rats has been compared to the effects of oestradiol.
TABLE OF CONTENTS

CHAPTER ONE

THE EFFECTS OF OESTRADIOL AND CALCITONIN ON BONE TURNOVER AND CALCIUM HOMEOSTASIS

1.1 The Role Of Oestadiol in Bone Maintenance and Calcium Homeostasis 1
 1.1.1 Bone Loss in Oestrogen Deficiency 1
 The Post-Menopausal Woman 1
 1.1.2 The Effect of Menopause on Bone Turnover 2
 1.1.3 Changes in Calcium Metabolism After the Menopause 6
 1.1.4 Treatment of Postmenopausal Bone Loss with Oestrogen 8
 1.1.5 The Oophorectomised Rat - A Model of Postmenopausal Bone Loss 10
 1.1.6 Changes in Calcium Metabolism in the Oophorectomised Rat 12
 1.1.7 The Effect of Oestrogen Treatment in Oophorectomised Rats 15
 1.1.8 The Effects of Oestrogen In Vitro 18
 1.1.9 The Role of Local Factors in Oestrogen Action on Bone 21
 1.1.9.1 Interleukin 1 21
 1.1.9.2 Interleukin 6 22
 1.1.9.3 Transforming Growth Factor β 23
1.2 The Effects of Calcitonin and PTHP(107-139) on Bone Metabolism
 1.2.1 The Effect of Calcitonin In Vitro
 1.2.1.1 The Effect of Calcitonin on the Osteoclast
 1.2.1.2 The Effect of Calcitonin on the Osteoblast
 1.2.2 Calcitonin Treatment of Post-Menopausal Women
 1.2.3 Calcitonin Treatment in the Intact Rat
 1.2.4 Calcitonin Treatment in the Oophorectomised Rat
 1.2.5 The Effect of Parathyroid Hormone-related Peptide (107-139) on Bone

1.3 Hypotheses and Aims
 1.3.1 The Effects of Oestrogen Deficiency and Oestradiol Treatment on Bone Turnover and Calcium Homeostasis
 1.3.2 The Effects of Calcitonin and PTHP(107-139) Bone Turnover and Calcium Homeostasis

CHAPTER TWO

MATERIALS AND METHODS

2.1 Animals
2.2 Diet
2.3 Interpretation of Biochemical Markers of Bone Turnover
2.4 Serum and Urine Analyses
2.5 Biochemical Calculations
2.6 Blood and Urine Sampling Protocol
2.7 Oophorectomy and Sham Operations
2.8 24 h Urinary Calcium Excretion as a Measurement of Obligatory Calcium Excretion
2.8.1 The Effect of a Low Calcium Diet on 24 h Urinary Calcium 45
2.8.2 Duration of Food Withholding Before Dietary Influences are Removed from Urine Specimens 46

2.9 Histomorphometric Techniques 51
2.9.1 Bone Processing - Glycol Methyl Methacrylate and K Plast Resin 51
2.9.2 Use of the Quantimet 520 Image Analysis System to Determine Trabecular Bone Morphology 53
2.9.3 Detection of Bone Mineralisation Using Fluorochrome Labels 57
2.9.4 Measurement of Bone Surface Osteoid and Osteoclast Surface 60

2.10 Statistical Methods 62

CHAPTER THREE

TEMPORAL RELATIONSHIP BETWEEN BONE RESORPTION AND FORMATION FOLLOWING OOPHORECTOMY

3.1 Protocol 65
3.2 Results 68
3.3 Discussion 84
3.3.1 Serum Oestradiol Levels in Sham Operated and Oophorectomised Rats 84
3.3.2 Effect of Operative Stress on Bone Turnover 84
3.3.3 The Time Course of Increased Bone Turnover and Bone Loss after Oophorectomy 86
3.3.4 Effect of Oophorectomy on Calcium and Phosphate Metabolism 91
CHAPTER FOUR

IMMEDIATE EFFECTS OF OESTRADIOL TREATMENT ON BONE TURNOVER IN THE OOPHORECTOMISED RAT

4.1 Clearance of Injected 17ß-Oestradiol From the
Circulation
4.1.1 Introduction 93
4.1.2 Protocol 94
4.1.3 Results 94

4.2 Immediate Effects of Oestradiol Treatment on Bone Turnover
in the Oophorectomised Rat 96
4.2.1 Protocol 96
4.2.2 Results 98
4.2.3 Discussion 111
 4.2.3.1 Oestradiol Treatment Prevents Bone Loss by Preventing Loss of Whole Trabeculae 111
 4.2.3.2 Inhibition of increased Bone Turnover and Bone Loss in Oophorectomised Rats by Oestradiol Treatment 115
 4.2.3.3 Effect of Oestradiol Treatment on Calcium and Phosphate Homeostasis 120

CHAPTER FIVE

THE EFFECT OF SALMON CALCITONIN ON BONE TURNOVER IN SHAM-
OPERATED AND OOPHORECTOMISED RATS

5.1 Introduction to Salmon Calcitonin Treatment 122
5.2 Protocol

5.2.1 Effect of Salmon Calcitonin in Sham Operated and Oophorectomised Rats

5.2.2 Dose Response to Salmon Calcitonin in Oophorectomised Rats

5.2.3 Analyses Performed

5.3 Results

5.3.1 Effect of Salmon Calcitonin on Bone Turnover in Sham Operated Rats

5.3.2 Effect of Salmon Calcitonin on Bone Turnover in Oophorectomised Rats

5.3.3 The Effect of Salmon Calcitonin on Serum Calcium, Phosphate and Albumin in Sham Operated and Oophorectomised Rats

5.3.4 Dose Related Effects of Salmon Calcitonin in Oophorectomised Rats

5.4 Discussion - Salmon Calcitonin in Sham Operated and Oophorectomised Rats

5.4.1 Effect of Calcitonin Treatment on Bone Turnover in Sham Operated and Oophorectomised Rats

5.4.2 Effect of Calcitonin Treatment on Serum Calcium and Phosphate in Sham-Operated and Oophorectomised Rats

5.5 Discussion - Dose Response Curve of Calcitonin in Oophorectomised Rats

5.5.1 Dose Response Effect of Calcitonin on Serum Calcium, Parathyroid Hormone, Phosphate and Albumin

5.5.2 Dose Response Effect of Salmon Calcitonin on Bone Turnover in Oophorectomised Rats
CHAPTER SIX

PRELIMINARY STUDY OF PTHrP (107-139) TREATMENT OF OOPHORECTOMISED RATS

6.1 Introduction 159
6.2 Protocol 159
6.3 Results 180
6.4 Discussion 164

CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

7.1 The Mechanism of Trabecular Bone Loss in Oestrogen Deficiency 169
7.2 A Model of Oestrogen Action on Bone 171
7.3 A Model of Calcitonin Effect on Bone - Comparison with Oestradiol 176
7.4 A Model of PTHrP(107-139) Effect on Bone - Comparison with Oestradiol 177

REFERENCES 178