STRATEGIES FOR THE CONTROL OF THE
FOLIAR DISEASES OF OATS
IN SOUTH AUSTRALIA

A thesis submitted in fulfilment of the requirements
for the Degree of Doctor of Philosophy at the
University of Adelaide

by

Andrew R. Barr, B.Ag.Sc. (Adelaide)

DEPARTMENT OF PLANT SCIENCE
WAITE AGRICULTURAL RESEARCH INSTITUTE
UNIVERSITY OF ADELAIDE, SOUTH AUSTRALIA

August, 1994
TABLE OF CONTENTS

ABSTRACT

STATEMENT

DEDICATION

ACKNOWLEDGMENTS

CHAPTER 1

General Introduction

CHAPTER 2

2.1

Prospects for control of stem rust (*Puccinia graminis* f. sp. *avenae*)

2.1.1

Introduction

2.1.2

Conventional approaches using major genes for resistance

2.1.3

Non-conventional approaches

2.1.3.1

Partial resistance

2.1.3.2

Fungicides

2.1.3.3

Mixtures/multilines

2.1.3.3.1

The effect of mixture complexity

2.1.3.3.2

Pathogen evolution

2.1.3.3.3

Partitioning mixture effects

2.1.3.3.4

Level of resistance required

2.1.3.3.5

Use of single defect components

2.2

Prospects for control of septoria leaf blotch (*Leptosphaeria avenaria*)

2.2.1

Introduction

2.2.2

Conventional approaches

2.2.2.1

Resistance

2.2.2.2

Tolerance

2.2.3

Non-conventional approaches

2.2.3.1

Fungicides

2.2.3.2

Mixtures/multilines
CHAPTER 3 Materials and methods - General procedures
3.1 Choice of host-pathogen system for studies involving variety mixtures
3.2 Sites used for field experiments
3.3 Fungicides
3.4 Genotypes
3.5 Composition of mixtures
3.6 Choice of plot size and shape for disease severity experiments
3.7 Measurement of disease severity
3.8 Statistical analysis of disease severity measurements

CHAPTER 4 Fungicides for the control of the foliar diseases of oats
4.1 Fungicides for the control of stem rust, (Puccinia graminis f. sp. avenae)
4.2 Fungicides for the control of septoria (Leptosphaeria avenaria)
4.3 Fungicides for the control of leaf rust (Puccinia coronata)
4.4 Stem rust management - predicting epidemics, yield loss and fungicide response

CHAPTER 5 Resistance to septoria leaf blotch, Leptosphaeria avenaria

CHAPTER 6 The effect of mixture complexity on disease development

CHAPTER 7 Partitioning the "mixture effect" into disease-related and non-disease related components
7.1 General introduction
7.2 The split plot approach
7.3 The guard areas approach
7.4 The fungicide rates approach
7.5 General discussion

CHAPTER 8 General Discussion
8.1 Effectiveness of variety mixtures in reducing disease severity
8.2 The relationship between field performance of variety mixtures and that predicted from models.
8.3 Prospects for integrated disease management programs
8.4 Further research

APPENDICES Appendix 1 GW BASIC programme for the calculation of Area Under Disease Progress Curves.
Appendix 2 GW BASIC programme for the calculation of crop loss in disease mixtures for different pathogen types.

BIBLIOGRAPHY

GLOSSARY

ABBREVIATIONS
ABSTRACT

Three strategies for the control of stem rust (*Puccinia graminis* f. sp. *avenae*) and septoria leaf blotch (*Leptosphaeria avenaria*) in oats were examined.

Eleven fungicides were tested for their efficacy against stem rust, septoria and leaf rust (*Puccinia coronata*). Propiconazole, was effective rates of 62.5 - 125 g a.i. ha\(^{-1}\). In contrast, chlorothalonil and prochloraz were active on septoria but not rusts. A relatively new fungicide, tebuconazole, was as effective as propiconazole against stem rust in 1993. Responses in grain yield of 146%, 61% and 79% were measured for susceptible varieties infected with oat stem rust compared to responses of 29% and 14% for Echidna oats infected with septoria. Data from the fungicide experiments was used to develop a crop loss model for stem rust.

Little research on resistance to septoria has been published in Australia. Experiments conducted in 1986 and 1988 characterised over 200 lines selected by Australian oat breeding programs. Genotypes developed in N.S.W and Tasmania were the most resistant while those from W.A. were most susceptible with Victoria and S.A. intermediate. This was related to the gene pool used in each state, the relative priority placed on foliar disease resistance, the breeding methodology and the developmental pattern of varieties developed. Moderately resistant lines included MA4470, MA5005, MA3831, Blackbutt, AY1, Barmah and AX3. Resistance rating was generally higher in later maturing genotypes but resistant lines were found from all maturity groups. Resistance was not related to plant height. Later experiments detected a high level of resistance in five lines from the Quaker oat program for South America. Hence, the parental material, from both locally adapted and exotic origins, is available to initiate breeding high yielding, semi-dwarf lines with resistance for the septoria prone high rainfall districts of South Australia.

Experiments with variety mixtures were conducted with three pathosystems. The severity of disease in mixtures was decreased by increasing the complexity, or number of components, to less than either the arithmetic or geometric mean of the components grown as pure lines. Simple models predicted these findings as disease severity was
usually equal to or less than the geometric mean. The mixture effect was not influenced by the dispersal mechanism or degree of racial specialisation of the pathogen.

Fifteen experiments were conducted to test four experimental systems to partition the mixture effect into disease-related and other, mainly interplant competition, contributions. The preferred system included two pure lines and their binary mixture grown at a diseased site with a range from sub-optimal to super-optimal rates of fungicide applied to ensure a wide range of disease severities. A theoretical interpretation of the results from such experiments was presented.

Positive mixture effects were often recorded for observed disease severity but this was rarely reflected in final grain yield. Inter-genotypic competition was a powerful determinant of the mixture effect on yield compared to plant disease, although most experiments were not exposed to severe disease.

Strategies for the control of stem rust and septoria in South Australia were discussed based on the experimental results, model outcomes and the literature. It was concluded that well-supported breeding programs seeking multigenic resistance to stem and leaf rust combined with resistance to septoria offered the greatest prospects for long term control of the foliar diseases of oats. Fungicides could be recommended in severe epidemics on high value crops such as naked oats or export hay with variety mixtures possibly having a role in hay production.