CHARACTERISTICS OF TRANSMISSION OF VELVET TOBACCO MOTLE
VIRUS BY THE MIRID, CYNOPELTIS HICOPTIANAE (KONINGS)

Karen Susanne Gibb
B.AgSc(Hons)(Adel.)

Department of Plant Pathology
Waite Agricultural Research Institute
The University of Adelaide
South Australia

Thesis submitted to the University of Adelaide
in fulfilment of the requirements for the
degree of Doctor of Philosophy

September, 1987
Table of Contents

Summary
Statement
Acknowledgements
Abbreviations of commonly used terms

Chapter 1 General Introduction
I Introduction
II VTMoV and its relationship to other viruses
III Crytopeltis nicotianae and Miridae as vectors of plant diseases
IV Mechanisms of plant virus transmission by arthropods
V Objectives of this thesis and an outline of the study

Chapter 2 General Materials and Methods
I Plants
1. Plants for assays
2. Staining the leaf surface of N. clevelandii for probing punctures made by C. nicotianae
II Viruses
1. Virus isolates
2. Purification of VTMoV and VTMoV-K1
3. Nucleic acid extraction
4. Polyacrylamide gel electrophoresis
5. VTMoV detection assay using VTMoV-K1
III Serology
1. Antisera
2. Agar gel double-immunodiffusion tests
IV Manipulation of C. nicotianae
1. Rearing C. nicotianae
2. Stages of C. nicotianae used for experiments
3. Collection of C. nicotianae and fasting before experiments
4. Control experiments
5. Acquisition feeding by C. nicotianae
Chapter 3 Viruses transmitted by C. nicotianae

I Introduction

II Experimental
 1. Transmission tests with C. nicotianae

III Conclusions

Chapter 4 Parameters of the Transmission of VTMov by C. nicotianae

I Introduction

II Experimental
 1. Characteristics of acquisition of VTMov by C. nicotianae
 2. Characteristics of inoculation of VTMov by C. nicotianae
 3. Calculation of the latent period
 4. Retention of infectivity by C. nicotianae
 5. Transmission by moulting and unmoulted C. nicotianae
 6. Testing transmission through a moult when C. nicotianae are denied access to their shed cuticle
 7. Tests to determine whether non-infective C. nicotianae can acquire VTMov from shed cuticles or from plastic cages previously occupied by "infected" C. nicotianae
 8. Transstadial transmission by C. nicotianae after short acquisition periods
 9. Detecting low levels of VTMov on cuticles shed by C. nicotianae
 (a) VTMov detection assay using VTMov-K1
 (b) An assay to detect VTMov on cuticles shed by C. nicotianae

III Conclusions
Chapter 5 Acquisition of VTMoV by Membrane Feeding and Injection

I Introduction

II Experimental
1. Transmission of VTMoV after acquisition of a solution containing virus, through a membrane
2. Transmission of VTMoV after injection into the haemocoele of C. niciotiana
 (a) Injection of C. niciotiana with a solution containing virus
 (b) Injection of C. niciotiana with an increased concentration of virus

III Conclusions

Chapter 6 Retention of VTMoV by C. niciotiana

I Introduction

II Experimental
1. Retention of infectivity by C. niciotiana
2. Characteristics of clearance of antigen as estimated by ELISA
3. Effect of acquisition access period and a post-acquisition inoculation feed on virus accumulation and clearance

III Conclusions

Chapter 7 Location of VTMoV in C. niciotiana

I Introduction

II Experimental
1. Detection of VTMoV in C. niciotiana using an ELISA dot-immunobinding assay
 (a) Detection of VTMoV in haemolymph, faeces, gut and remainder of the nymph
 (b) Attempts to detect VTMoV in salivary glands
 (c) Rate of VTMoV clearance from the gut and haemolymph
2. Distribution of VTMoV in C. niciotiana, and its relationship to transmissibility

III Conclusions
Chapter 8 Contribution of Feces and Saliva to Infectivity

I Introduction
II Experimental
1. The requirement for stylet probing in transmission of VTMoV
2. Presence of infectious VTMoV in the secretions and excretions of C. nicotianae
3. Transmission from infectious sap deposited on the leaf surface
4. Longevity of virus infectivity in the gut
5. Defecation behaviour and implications for observed clearance rates

III Conclusions

Chapter 9 General Discussion

I Characteristics of transmission of VTMoV by C. nicotianae
1. Introduction
2. A summary of results obtained using feeding trials and an attempt to categorise the VTMoV-mirid association using accepted criteria
3. Evidence against propagation of VTMoV in C. nicotianae
4. Location of VTMoV in C. nicotianae and its relationship to transmissibility
5. Viability and retention of virus in faeces and its relationship to transmission

II Possible mechanisms for the transmission of VTMoV by C. nicotianae
1. Noncirculative transmission
2. An ingestion-defecation model of mirid transmission as a possible explanation for retention of infectivity

III Virus-vector associations that are similar to the VTMoV-C. nicotianae association

IV Problems associated with accepted criteria for categorising virus-vector associations

V Concluding remarks

Appendix

References
Summary

Some characteristics of the transmission of velvet tobacco mottle virus (VTMOV) by the mirid, *Clytomyza nicotianae* (amblings) have been determined using feeding experiments. Assay of virus concentration and distribution within the vector have been determined by the enzyme linked immunosorbent assay (ELISA) and the horse-radish peroxidase (HRP) dot-immunobinding assay.

C. nicotianae was not specific for VTMOV, as it also transmitted solanum nodiflorum mottle, sowbane mosaic and southern bean mosaic viruses, but not subterranea clover mottle, lucerne transient streak, tobacco ringspot, galinsoga mosaic, nor nicotiana velutina mosaic viruses. Tomato bushy stunt virus was transmitted to 1/50 test plants.

The acquisition threshold of VTMOV by *C. nicotianae* was shorter than 1 min, with an increase in the rate of transmission for acquisition periods of up to 1000 min. The inoculation threshold was between 1 and 2 h following an acquisition access period of 2 days, and the rate of transmission increased with increasing inoculation time. When the acquisition access period was 1 h, or if mirids were fasted after the 2 day acquisition, the inoculation threshold increased to between 4 and 8 h and between 2 and 4 h respectively. The minimum time from commencement of access to inoculation was 10 h, and any latent period would have been shorter than this.

Following access to VTMOV for 24 h, mirids which were transferred sequentially each day to a separate healthy test plant, transmitted intermittently for up to 10 days. Up to 50% of mirids transmitted after a moult, and this transstadial transmission was not
due to the mirids probing the shed cuticles or exudates of "infective" insects.

Ten percent of non-infective mirids given access to virus through a parafilm membrane transmitted VTMoV. Twenty-three percent of non-infective mirids injected with purified virus transmitted VTMoV. Transmission through a wound or after injection with virus was taken as evidence that VTMoV circulates in the mirid vector.

In experiments to test how long mirids can transmit VTMoV, mirids stopped transmitting the virus between 5 and 9 days after acquisition was completed. VTMoV was detected in nymphs by ELISA up to 8 days after acquisition was completed, however, no antigen was detected in nymphs 9 and 10 days after acquisition. These results indicate that VTMoV does not propagate in C. nicotianae.

Following acquisition by feeding, virus was detected in the gut, haemolymph and faeces of mirids but not in the salivary glands. Infective virus was detected in the faeces of nymphs for 6 days, but was not detected after 7 days. Patterns of defecation, monitored in nymphs fed the insoluble dye nigrosin, showed that it was eliminated intermittently from the gut up to 6 days after ingestion, thus matching the loss of virus infectivity.

Non-infective nymphs inoculated plants on which had been placed 1 μl deposits of infectious plant sap to simulate infective faecal deposits. Thus, nymphs may be able to transmit VTMoV by probing through faeces or other secretions containing VTMoV which have been deposited on the leaf surface.

The acquisition threshold of VTMoV by C. nicotianae is characteristic of a nonpersisitent association, and the inoculation threshold and retention of infectivity for up to 10 days are
characteristic of either a semipersistent or circulative association. Transstadial transmission and inoculation after injection with virus are characteristic of a circulative association.

In general, circulative viruses are detected in the haemolymph and salivary glands of insect vectors (Sylvestre, 1980). Although virus was detected in the haemolymph, it was not detected in the mirids' salivary glands. Thus, the ingestion-salivation mechanism proposed for circulative associations (Harris, 1981b), does not adequately explain transmission of VIMoV by mirids.

Some of the intermittent transmission observed over long inoculation periods may thus be explained by contamination of stylets from faecal deposits (an ingestion-defecation mechanism). It is not known whether mirids do this by ingesting infectious pieces and then regurgitating them during inoculation, or by contaminating the stylets while probini. Moreover, contamination of leaf surfaces by regurgitation is another possible route of infection, and this was yet to be investigated.

The VIMoV-mirid association has characteristics of both a non-circulative and circulative mechanism of transmission and is best explained by the ingestion-egestion (Harris, 1977) and ingestion-defecation models of transmission.