THE EPIDEMIOLOGY OF CUCUMBER MOSAIC VIRUS IN
NARROW-LEAFED LUPINS (*LUPINUS ANGUSTIFOLIUS*)
IN SOUTH AUSTRALIA

ANDREW D. W. GEERING
BSc. Agric., Hons. I
(University of Sydney)

Department of Crop Protection
Waite Agricultural Research Institute
The University of Adelaide
South Australia

Thesis submitted to the University of Adelaide in fulfilment
of the requirement for the degree of Doctor of Philosophy

May, 1992
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>Statement</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>Chapter 1 General Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Description of CMV</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>CMV variation and classification of strains</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Processes by which variation arises</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Classification and detection of CMV strains</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Types of natural transmission</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>Aphid transmission</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Seed transmission</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Role of weed and ornamental plants in the ecology of CMV</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Control of CMV</td>
<td></td>
</tr>
<tr>
<td>1.5.1</td>
<td>Eradication or geographical isolation from sources of inoculum</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Control by preventing aphid spread</td>
<td>14</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Plant resistance to virus infection</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Scope of the thesis</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 2 General materials and methods</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>CMV isolate</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Storage of CMV</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Maintenance of the CMV isolate in the glasshouse</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Inoculation and biological indexing</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Serological testing</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Management of field trials</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Seed source</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Plant protection</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Introduction of infected lupin seedlings into field plots</td>
<td>27</td>
</tr>
</tbody>
</table>

Chapter 3 Description of the CMV epidemic in *L. angustifolius* 28

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and methods</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The 1987 field trial</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Design</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Establishment of colonies of A. craccivora in treatment VV</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Surveying for virus infection</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The 1988 field trial</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Design</td>
<td>30</td>
</tr>
</tbody>
</table>
3.2.2.2 Establishment of the oats
3.2.2.3 Initiation of colonies of *R. padi* on the oats in treatment VOA
3.2.2.4 Insecticide treatment of the oats in treatment VO
3.2.2.5 Sampling of the oats for aphids
3.2.2.6 Surveying for virus infection
3.2.3 The 1989 field trial
3.2.3.1 Design
3.2.3.2 Surveying for virus infection
3.2.3.3 Use of trap plants
3.2.3.4 Analysis of the spatial pattern of infected plants

3.3 Results
3.3.1 Comparison of diagnosis by ELISA and by symptoms
3.3.2 Analysis of the temporal development of the epidemic
3.3.2.1 Epidemic development in relation to crop growth
3.3.2.2 Effects of treatments VV and V on development of the 1987 epidemic
3.3.2.3 Effects of treatment VOA, VO and V on development of the 1988 epidemic
3.3.2.4 Epidemic development in the 1989 trial and the use of trap plants to measure infection pressure
3.3.3 Analysis of the spatial development of the epidemics
3.3.3.1 Analysis of the spatial distribution of infected plants in treatment C of the 1987 field trial
3.3.3.2 Analysis of the spatial distribution of infected plants in the 1988 field trial
3.3.3.3 Analysis of the spatial distribution of infected plants in the 1989 field trial
3.4 Discussion

3.4.1 Diagnosis of CMV infection of field plants using symptoms 41
3.4.2 Effect of treatment, 1987 field trial 41
3.4.3 Effect of treatment, 1988 field trial 42
3.4.4 Temporal progress of the epidemics 43
3.4.5 Spatial progress of the epidemics 44

Chapter 4 Vector Studies 46

4.1 Introduction 46

4.2 Materials and Methods
4.2.1 Descriptions of aphid traps 47
4.2.2 Collection, storage and identification of aphids 48
4.2.3 Monitoring of aphid flights 48
4.2.4 Daily flight patterns 48
4.2.5 Aphid colonisation 49
4.2.6 Aphid transmission experiments 49
4.2.7 Correlation between aphid flights and field spread of CMV 50

4.3 Results
4.3.1 Aphid species trapped in the yellow pans and their seasonal flight patterns 50
4.3.2 Daily flight patterns of aphids 52
4.3.3 A comparison of the species composition of the aphid catches from yellow pans and suction traps 53
4.3.4 Aphids trapped in green tile traps in 1989 55
4.3.5 Aphid colonisation of the lupins 55
4.3.6 Aphid transmission of CMV 57
4.3.6 Aphid activity in relation to virus spread 57

4.4 Discussion 58
4.4.1 Seasonal patterns of aphid flights 59
4.4.2 Daily patterns of aphid flights 59
4.4.3 Comparison of aphid trapping methods 61
4.4.4 Aphid colonisation 62
4.4.5 Transmissibility of CMV-BSA by different aphid species 62
4.4.6 Relationship between aphid flights and field spread of CMV 63

Chapter 5 Modelling of epidemic progress 64

5.1 Introduction 64

5.2 Methods 65
5.2.1 Frequently used symbols and their definitions 65
5.2.2 Modelling increases in incidence of infection as a function of numbers of vectors 66
5.2.3 Modelling temporal progress of the epidemic 68
5.2.4 Modelling infection gradients 69
5.2.5 Transformation of y when $y = 0$ or 1 70
5.2.6 General criteria for the selection of the most appropriate model 70

5.3 Results and Discussion 70
5.3.1 Modelling epidemic progress in 1987 as a function of the cumulative number of $M. persicae, R. padi, A. craccivora, D. aucupariae$ and $B. ruminicolens$ 70
5.3.2 Modelling epidemic progress in 1987 as a function of the cumulative number of $R. padi$ 72
5.3.3 Biological interpretation of vector model 4 72
5.3.4 Modelling of the infection gradients observed in 1988 73
5.3.5 Biological interpretation of the gradient models 74

Chapter 6 Seed transmission of CMV and the effect of CMV infection on lupin productivity 76

6.1 Introduction 76

6.2 Materials and methods 76
6.2.1 Seed source 77
6.2.2 Virus source 78
6.2.3 Tests for seed transmission of CMV 78
6.2.3.1 Testing of seed by ELISA 78
6.2.3.2 Assay of germinated seedlings for virus (seedling assay) 78
6.2.4 Screening for seed transmission of CMV in commercial seedlots 79
6.2.5 Field experiments 79
6.2.5.1 1988 experiment: effect of time of infection on rate of seed transmission of CMV 79
6.2.5.2 1989 experiment: relationship between the age of the plant at the time of inoculation and seed weight, dry matter production and rate of transmission of CMV in the seed 80
6.2.6 The distribution of infected seed on the lupin plant 80
6.2.7 Distribution of CMV in the seed 81
6.2.8 Relationship between seed weight and recovery of the virus from the seed 81
6.2.9 Comparison of the growth rate of seedlings infected via seed with those inoculated at the cotyledon stage 81
6.2.10 Survival of CMV through seed transmission 82
6.3 Results
6.3.1 Seed transmission in commercial seedlots
6.3.2 CMV transmission in seed from plants infected during the 1988 field trial
6.3.3 Relationship between plant age at the time of inoculation, symptom severity and seed and dry matter yields
6.3.4 Effect of plant age at the time of inoculation on rate of seed transmission
6.3.5 Distribution of infected seeds on the plant
6.3.6 Distribution of infectivity in seed parts
6.3.7 Effect of CMV infection on seed weight
6.3.8 Rate of growth of seedlings relative to the time of infection
6.3.9 Increase in seedborne CMV through sequential generations

6.4 Discussion

Chapter 7 General discussion

7.1 Sources of inoculum
7.2 Secondary spread by aphids
7.3 Patterns of aphid flights
7.4 Modelling disease progress as a function of vector numbers
7.5 Modelling spatial progression
7.6 Persistence of CMV between lupin generations through seed
transmission

7.7 The mechanism of seed transmission

7.8 Recommendations for control

7.9 Conclusions

Appendices

A 1 Description of the CMV epidemic in *L. angustifolius*

A 1.1 Temporal progress of the epidemic in the 1987 field trial (diagnosis by symptoms) 111

A 1.2 Analysis of variance to test for differences in incidence of infection between treatments VV, V and C of the 1987 field trial

A 1.3 Temporal progress of the epidemic in treatment C of the 1987 field trial (diagnosis by ELISA)

A 1.4 Temporal progress of the epidemic in the 1988 field trial (diagnosis by ELISA)

A 1.5 Spatial pattern of infected plants in the 1988 field trial on September 7

A 1.5.1 Incidence of infection in rows at varying distance from the linear source of inoculum

A 1.5.2 Incidence of infection in columns at varying distance from the edge of the plot

A 1.6 Analyses of variance to test for differences in incidence of infection between treatments, between rows at varying distance from the linear source of inoculum, and between halves of the plot

A 1.6.1 Analysis using data from treatments VOA, VO, V and C 114

A 1.6.2 Analysis using data from treatments VOA, VO and V 114
A 1.6.3 Analysis using data from treatment C
A 1.7 Analyses of variance to test for differences in incidence of infection between treatments and between columns at different distances from the edge of the plot
A 1.7.1 Analysis using data from treatments VOA, VO, V and C
A 1.7.2 Analysis using data from treatment C

A 2 Vector studies
A 2.1 Numbers of aphids trapped in the yellow pans in 1987
A 2.2 Numbers of aphids trapped in the yellow pans in 1988
A 2.3 Numbers of aphids trapped in the yellow pans in 1989
A 2.4 Aphid species trapped in the yellow pans in 1987
A 2.5 Aphid species trapped in the yellow pans in 1988
A 2.6 Aphid species trapped in the yellow pans in 1989
A 2.7 Numbers of aphids collected in the suction traps in 1989
A 2.8 Hourly trap collections of aphids on September 5, 1989
A 2.9 Hourly trap collections of aphids on September 7, 1989
A 2.10 Hourly trap collections of aphids on September 8, 1989
A 2.11 Hourly trap collections of aphids on September 20, 1989
A 2.12 Hourly trap collections of aphids on September 21, 1989
A 2.13 Hourly trap collections of aphids on September 29, 1989
A 2.14 Temperature and wind conditions in September, 1989

A 3 Modelling of the epidemic
A 3.1 Regression analyses to fit the linear forms of the vector models to the epidemic observed in treatment C of the 1987 field trial
A 3.1.1 Vector species - A. craccivora, B. rumexcolens, D. aucupariae, M. persicae and R. padi
A 3.1.1.1 Vector model 1
A 3.1.2 Vector model 2
A 3.1.3 Vector model 3
A 3.1.4 Vector model 4
A 3.1.2.1 Vector species - *R. padi*
A 3.1.2.2 Vector model 1
A 3.1.2.3 Vector model 2
A 3.1.2.4 Vector model 3
A 3.1.2.5 Vector model 4
A 3.2 Regression analyses to compare the epidemic observed in
the 1987 field trial with that predicted by the vector models
A 3.2.1 Vector species - *A. craccivora, B. rumexicolaens, D. aucupariae, M. persicae* and *R. padi*
A 3.2.1.1 Vector model 1
A 3.2.1.2 Vector model 2
A 3.2.1.3 Vector model 3
A 3.2.1.4 Vector model 4
A 3.2.2 Vector species - *R. padi*
A 3.2.2.1 Vector model 1
A 3.2.2.2 Vector model 2
A 3.2.2.3 Vector model 3
A 3.2.2.4 Vector model 4
A 3.3 Regression analyses to fit the linear forms of the gradient models
to the infection gradients observed in the 1988 field trial on
September 7
A 3.3.1 Gradient model 1
A 3.3.1.1 Distinct lines fitted to gradient data from treatments VOA, VO and V
A 3.3.1.2 Parallel lines fitted to gradient data from treatments VOA, VO and V
A 3.3.1.3 One coincident line fitted to gradient data from treatments VOA,
VO and V
A 3.3.2 Gradient model 2
A 3.3.2.1 Distinct lines fitted to gradient data from treatments VOA, VO and V 136
A 3.3.2.2 Parallel lines fitted to gradient data from treatments VOA, VO and V 136
A 3.3.2.3 One coincident line fitted to gradient data from treatments VOA, VO and V 136
A 3.3.3 Gradient model 3
A 3.3.3.1 Distinct lines fitted to gradient data from treatments VOA, VO and V 137
A 3.3.3.2 Parallel lines fitted to gradient data from treatments VOA, VO and V 137
A 3.3.3.3 One coincident line fitted to gradient data from treatments VOA, VO and V 137
A 3.3.4 Gradient model 4
A 3.3.4.1 Distinct lines fitted to gradient data from treatments VOA, VO and V 138
A 3.3.4.2 Parallel lines fitted to gradient data from treatments VOA, VO and V 138
A 3.3.4.3 One coincident line fitted to gradient data from treatments VOA, VO and V 138
A 3.4 Regression analyses to compare the infection gradients observed in the 1988 field trial with those predicted by the models
A 3.4.1 Gradient model 1 139
A 3.4.2 Gradient model 2 139
A 3.4.3 Gradient model 3 139
A 3.4.4 Gradient model 4 139
A 3.5 Residual plots for the linear forms of the vector models fitted to data from the 1987 field trial (vector species - *A. craccivora*, *B. rumexicolens, D. aucupariae, M. persicae* and *R. padi*) 140
A 3.6 Residual plots for the linear forms of the vector models fitted to data from the 1987 field trial (vector species - *R. padi*) 141
A 3.7 Residual plots for the linear forms of the gradient models fitted to data from the 1988 field trial 142
A 4 Seed transmission of CMV and the effect of CMV infection on lupin productivity

A 4.1 Analysis of variance to test for differences between the seedling assay and testing of seed by ELISA to determine seed transmission rates

A 4.2 Effect of age at the time of inoculation on seed and dry matter productivity

A 4.2.1 Seed and dry matter yields

A 4.2.2 Analyses of variance to test for differences in seed yields between treatments

A 4.2.2.1 Analysis using data from treatments 1-5

A 4.2.2.2 Analysis using data from treatments 3-5

A 4.2.3 Analyses of variance to test for differences in dry matter yields between treatments

A 4.2.3.1 Analysis using data from treatments 1-5

A 4.2.3.2 Analysis using data from treatments 3-5

A 4.3 Effect of plant age at the time of inoculation on seed viability (1989 field experiment)

A 4.3.1 Germination rates

A 4.3.2 Analysis of variance to test for differences in germination rates between treatments 2, 3 and 4

A 4.4 Effect of plant age at the time of inoculation on rate of seed transmission of CMV (1989 field experiment)

A 4.4.1 Rates of seed transmission of CMV

A 4.4.2 Analysis of variance to test for differences in rates of seed transmission between treatments 2, 3 and 4

A 4.5 Relationship between seed weight and infection of that seed

A 4.5.1 Weights of infected and uninfected seed

A 4.5.2 Analysis of variance to test for differences in weight between infected and uninfected seeds
Summary

(1) Epidemics of CMV in *L. angustifolius* were experimentally initiated in 1987, 1988 and 1989, to study factors affecting the rate of epidemic progress.

(2) Rapid virus spread occurred during spring, and coincided with the plant growth stages of flowering and pod fill.

(3) Field diagnosis of infection by symptoms and by detection of antigen by DAS ELISA was compared. Incidence of infection at crop maturity was underestimated by about 50 % when symptoms were used for diagnosis, due to the occurrence of symptomless infections.

(4) Lupins, which were either infected through seed or inoculated at the seedling stage, were shown to be important primary sources of inoculum. Clumps of infected plants formed following virus spread by aphids. Infection gradients arising from linear sources of inoculum were steep, with incidence of infection decreasing from 100 % to 20 % in a distance of 2.5 m. (5 plant rows). Secondary infection foci also developed from longer distance dispersal of inoculum.

(5) Yellow pan traps were used to monitor aphid flights during the lupin growing season in 1987, 1988 and 1989. *Myzus persicae*, *Lipaphis erysimi*, *Rhopalosiphum padi*, *Aphis craccivora* and *Brachycaudus rumexicolens* were trapped in largest numbers. For all species, most abundant flights were in the period between late August to October. *R. padi* and *M. persicae* were trapped regularly, though in low numbers, through winter.

(6) In 1989, the yellow pans were compared with suction traps, which were mounted at the height of the lupin canopy, and with green tile traps. The green tiles trapped inefficiently and no comparison could be made with the yellow pans and suction traps. Large numbers of *R. padi* and *M. persicae* were collected in the suction traps and these species were
therefore abundant in the boundary layer of the crop where they could alight on the lupins. Abundant flights of *L. erysimi* were detected using the yellow pans, but this species was rarely trapped in the suction traps. It was therefore considered that *L. erysimi* were not flying in the boundary layer of the lupin crop and were therefore not attempting to alight.

(7) The daily flight patterns of aphids on six days in spring, 1989, were monitored, and corresponding weather conditions also measured. The daily flight patterns of *M. persicae*, *R. padi* and *L. erysimi* were variable and affected by temperature and wind speed. Aphid flight was not detected below 10.6 C for *M. persicae*, 9.7 C for *R. padi* and 12.7 C for *L. erysimi*. High wind speeds reduced, but did not inhibit flight, as some aphids were trapped when wind speed was greater than 10 km/hour. The rapid detection of abundant aphid flights following a change in the weather to conditions that favour flight initiation, suggested that the aphid source was close (within 5 km.) to the field site.

(8) From glasshouse transmission tests, *M. persicae*, *R. padi*, *A. craccivora*, *B. rumexicolens*, *D. aucupariae* and *H. lactucae* were shown to be capable of transmitting a lupin isolate of CMV, but not *L. erysimi*, *Macrosiphum euphorbiae* and *Metopolophium dirhodum*.

(9) Field spread of CMV correlated with aphid flights, assuming a 2 week delay between inoculation and detection of systemic infection. *R. padi* was concluded to be an important vector as (a) virus spread in the 1987 field trial correlated with a flight of aphids composed primarily of *R. padi*, (b) *R. padi* was shown to be abundant in the boundary layer of the crop and was found alighting on the lupins and (c) *R. padi* was shown to be capable of transmitting CMV. There was no effect on epidemic progress of either initiating colonies of *A. craccivora* on introduced sources of inoculum, or initiating colonies of *R. padi* on oats, planted next to introduced sources of inoculum.
(10) Epidemic progress in the 1987 field trial was quantified using previously published models proposed to describe the functional relationship between disease increase and vector numbers. The interpretations of the best fitting model were (a) the growth rate of the epidemic increased as the number of alates entering the crop increased, (b) the probability of virus acquisition by the aphids increased as incidence of infection increased, as might occur during a polycyclic epidemic, and (c) the probability of transmission decreased as the epidemic progressed.

Infection gradients observed in the 1988 field trial were also quantified using previously published models. The interpretations of the better fitting models were that either most or all of the inoculum originated from the linear source of inoculum, and that inoculum was diluted with increasing distance from the source. Infection gradients with the shape observed, are considered to occur during a monocyclic epidemic, or at the beginning of a polycyclic epidemic. The infection gradients were, in fact, observed soon after the first spring flight of aphids.

(11) Commercially traded lupin seed from South Australia, Victoria and New South Wales, was tested for CMV transmission. Transmission rates ranged between 0 and 11.5 %. CMV transmission was found in seeds from the lupin cultivars 'Danja', 'Illyarrie', 'Warrah', 'Wandoo' and 'Yandee'. CMV transmission was detected in 23 of the 51 seedlots tested.

(12) Seed transmission rates were dependent on the age of the plant at the time of inoculation. Highest rates of transmission (between 23 and 25 %) occurred when the plant became infected during vegetative growth. The rate of transmission progressively declined with later inoculations after the beginning of flowering. The probability that a seed became infected decreased the more developed the seed at the time of inoculation. Infectious CMV was recovered from the cotyledons and primordial radicle and plumule, suggesting that seed transmission resulted from infection of the embryonic tissues.
(13) Dry matter productivity was only affected when the plant became infected during vegetative growth. Seed productivity was still affected when the plant became infected during flowering. For lupins infected at the seedling stage, the reduction in seed yield was 99.7 % and the reduction in dry matter yield was 98.6 %. Seedlings that were infected through seed showed no greater tolerance to infection than those seedlings that were inoculated at the cotyledon stage.

(12) Largest numbers of infected seed were produced by plants which were inoculated at the beginning of flowering. Virus spread occurring at the beginning of flowering was shown mathematically to be optimal for virus persistence by seed transmission, as for all but the largest of epidemics, maximum seed transmission levels are predicted to occur when the plants are inoculated at this time. It was also shown that CMV could not persist by transmission in lupin seeds if no secondary spread by aphids occurred.

Seed transmission levels were observed to increase in one generation, even when secondary spread by aphids was small.