Effects of Wastewater Effluent on Macrobenthic Infaunal Communities at Christies Beach, South Australia

Maylene G K Loo
Department of Environmental Biology
The University of Adelaide

Thesis submitted for the degree of
Doctor of Philosophy

August 2001
Table of Contents

Declaration .. xiii
Abstract .. xiv
Acknowledgements ... xvi

Preface ... 1
 The rationale ... 1
 The aims .. 2
 The thesis layout ... 3

Chapter 1 Introduction .. 4
 Sources of marine pollution .. 4
 Effects of wastewater effluent .. 5
 Studies assessing the effects of wastewater effluent ... 7
 Environmental assessment of the effects of wastewater effluent 8
 Benthic communities in the assessment of the effects of wastewater effluent 11
 Advantages ... 11
 Measurement ... 12
 The problem at Christies Beach ... 13
 Objectives ... 15

Chapter 2 The Environment of Gulf St Vincent .. 16
 Physical environment of Gulf St Vincent ... 16
 Tidal motions and circulation ... 16
 Hydrology .. 18
 Biotic environment of Gulf St Vincent ... 18
 The Christies Beach Wastewater Treatment Plant and its environs 21
 Other sources of discharge into the study area .. 21
 Meta-data .. 22
 Temperature and rainfall .. 22
 Water quality .. 24
 Nutrients ... 24
 Heavy Metals .. 27
 Microbiological agents .. 29
 Collected data .. 30
 Sediment grain size ... 30
 Sedimentary organic carbon content .. 31
 Implications .. 33
Chapter 3 The Sampling Protocol

Sampling programme ... 34
Sampling sites and sampling design 34
Sample size ... 37
Field sampling ... 38
Laboratory processing ... 39
Samples used .. 40

Chapter 4 The Impact .. 42

Introduction ... 42

Analysis .. 48
Null hypotheses and model responses 50
Patterns of community structure ... 52
Measures of community stress ... 54
Abundance/Biomass Comparisons (ABC) 54
Neutral model analysis.. 54
Log-normal plots ... 55
Community descriptors .. 55
Characterising communities ... 56
Similarity Percentages (SIMPER) .. 56
Proportions of major taxa ... 56
Correlating measured environmental variables 57

Results ... 57
Spatial patterns of community structure 57
Temporal patterns of community structure 60
Outfall site ... 62
Control site ... 64
Measures of community stress .. 65
Abundance/Biomass Comparisons .. 65
Neutral model analysis ... 71
Log-normal plots ... 71
Community descriptors .. 73
Characterising communities ... 79
Overall SIMPER ... 79
SIMPER at outfall site .. 81
SIMPER at control site .. 83
Proportions of major taxa ... 84
Correlating measured environmental variables 87

Discussion and implications ... 88
Community structure .. 88
Measures of community stress .. 89
Abundance/Biomass Comparisons .. 89
Neutral model analysis ... 89
Log-normal plots ... 90
Community descriptors .. 91
Characteristics of communities ... 92
Correlation of measured environmental variables 96
Appendix II Sediment Size Analysis .. 157
Introduction... 157
Field method .. 159
Laboratory method .. 159
Data analysis ... 152
Results .. 163
Discussion .. 165
Transformation ... 166
Taxa removal .. 168
Taxonomic resolution ... 169

Appendix IV Detailed ANOVA for community descriptors 170

Appendix V Feeding and reproductive biology of major taxa and their responses to organic enrichment 171
Abstract

The effects of an outfall discharging secondarily treated wastewater effluent into the southeast region of Gulf St Vincent, South Australia, were evaluated. The environmental assessment involved the sampling of macrobenthic infaunal communities, which were then analysed by a variety of methods ranging from multivariate (classification and ordination) to univariate (number of species, abundance, diversity and evenness) and distributional/graphical (log normal and ABC comparison) techniques.

The multivariate analyses of community structure indicated that the Christies Beach Wastewater Treatment Plant effluent outfall had induced changes to the macrobenthic infaunal communities. Whereas there were significant spatial and temporal variations at both the outfall and control sites, differences between the compositions of the macrobenthic infaunal communities at the outfall site and the control site were still evident. Furthermore, the expected gradient response with increasing distance from the outfall was also observed. Differences were consistent with an increased organic and nutrient loading on the benthos resulting from discharge from the Christies Beach Wastewater Treatment Plant.

In measuring community stress, the Abundance-Biomass Comparisons (ABC) showed intermediate to moderately disturbed conditions for stations in close proximity to the outfall. These stations appeared to have communities increasingly dominated numerically by very small opportunistic species (especially spionid polychaetes). Similarly, the neutral model analysis indicated disturbed conditions with reduced diversity for stations close to the outfall. Although plots of abundance of individuals among taxa (log-normal plots) showed that both the outfall and control sites had uneven distribution of abundance groups, interpreted as being indicative of the effects of moderate organic enrichment, the outfall site had more abundance groups, suggesting the possibility of higher organic enrichment at the outfall site. Furthermore, indicator abundance groups at the outfall site had taxa such as capitellid polychaetes, which were responsive to organic enrichment while taxa that characterised the control site (e.g. gammaridean amphipods) were more pollution sensitive. The changes in the various community descriptors (e.g. abundance and diversity) along a gradient of organic enrichment were generally observed to follow models such as the Pearson-Rosenberg model.
The results of this research were also compared with work on other macrobenthic communities in Gulf St Vincent, to address the problem of a single control site. In addition, a more detailed analysis of the infauna data, addressed temporal (inter-annual differences) and spatial variability (resolution of the gradient response) at the outfall site. These detailed analyses showed that the single control site (Meana) was typical of shallow water gulf sites along the metropolitan coast and therefore an appropriate basis for the comparisons in this study. The comparison within the outfall site in terms of spatial resolution of the gradient response and inter-annual variability indicated that regardless of the variability, the macrobenthic infaunal communities appeared to change with increasing distance from the discharge point.

Benthic respirometry was used to quantify the rate of total sediment oxygen consumption at the outfall site and at two control sites. The results showed that the mean rate at the southern control site was lower than the outfall site and the northern control site. However, there were no differences between the northern control site and the outfall site. These differences in rates were probably due to the supply of organic carbon to the sediment from the effluent discharged at the outfall site and a stormwater drain at the northern control site, while there were no such discharges in the immediate vicinity of the southern control site.

Overall, the results of this study supported the hypothesis that the Christies Beach effluent outfall has induced significant and persistent changes to the structure of the macrobenthic infaunal communities, which increased in severity in relation to the proximity to the outfall. Furthermore, the temporal patterns of community structure indicated that, over and above the seasonal variations, communities at the outfall site were still different from communities at the control site and appeared to relate primarily to distance from the discharge point. These differences were consistent with the environmental effects one would expect from an effluent discharge.