TOWARDS CLONING Yd_2, A BARLEY RESISTANCE GENE TO BARLEY YELLOW DWARF VIRUS

Thesis submitted for the degree of
Doctor of Philosophy

by

Brendon James King (B.Ag.Sc. Hons; M.Appl.Sci)

Department of Plant Science,
Adelaide University

March, 2001
TABLE OF CONTENTS

Summary i
Statement iv
Acknowledgments v

Chapter 1: Introduction and Literature Review

1.1 Introduction 1

1.2 General features of barley yellow dwarf virus (BYDV)
 1.2.1 BYDV, a suite of viruses 2
 1.2.2 BYDV transmission and vector relationships 2
 1.2.3 Host range and symptomatology of BYDV 4
 1.2.4 Anatomical and cytological effects of BYDV on hosts 5
 1.2.5 Physiological effects of BYDV on hosts 6
 1.2.6 Distribution and economic importance 7
 1.2.7 Control of BYDV damage 9

1.3 Pathogen resistance in plants 10
 1.3.1 Induced resistance 11
 1.3.2 The genetics of plant pathogen resistance 12
 1.3.3 Molecular characterisation of pathogen resistance genes in plants 12
 1.3.4 Resistance genes and defense signal transduction 14
 1.3.5 Other mechanisms of disease resistance 16
 1.3.6 Engineering of disease resistance 17

1.4 Sources of host plant resistance to BYDV 18
 1.4.1 Resistance in Barley 18
 1.4.2 Resistance in Oats 19
 1.4.3 Resistance in Wheat 20
 1.4.4 Resistance in Rye and Triticale 20
 1.4.5 Resistance in Rice 21
 1.4.6 Resistance in other Poaceae 21

1.5 Yd$_2$, a resistance gene to BYDV 21
 1.5.1 The discovery and characterisation of Yd$_2$ 22
 1.5.2 The nature and expression of Yd$_2$-mediated BYDV resistance 22
 1.5.3 The use of Yd$_2$ in breeding 24

1.6 Linkage mapping in the cereals 24
 1.6.1 Developments in marker technology 24
 1.6.2 Methods for identifying mappable DNA polymorphisms closely linked to genes of interest 26
 1.6.3 Mapping populations used for linkage analysis 27
 1.6.4 Comparative mapping in the cereals 28
1.7 Methods for the isolation of plant genes
 1.7.1 Genetic mapping and map-based cloning
 1.7.2 PCR approach based on conserved domains of resistance genes
 1.7.3 Transposons/T-DNAs
 1.7.4 Protein-protein interaction cloning
 1.7.5 Genomics/bioinformatics

Chapter 2 General Materials and Methods

2.1 Materials

2.2 Methods
 2.2.1 Plant growth conditions
 2.2.2 Growth of bacteria
 2.2.3 Transformation of E. coli with plasmids by electroporation
 2.2.4 Mini-preparation of plasmid DNA
 2.2.5 Large scale preparations of plasmid DNA
 2.2.6 Phenol:chloroform extraction and ethanol precipitation of DNA
 2.2.7 Agarose gel electrophoresis
 2.2.8 Polyacrylamide (sequencing) gel electrophoresis
 2.2.9 Cereal genomic DNA preparation
 2.2.10 DNA restriction, electrophoresis and Southern transfer
 2.2.11 Preparation of 32P-labelled RFLP probes
 2.2.12 Hybridisation and autoradiography
 2.2.13 Total plant RNA isolation
 2.2.14 Northern blot hybridisation
 2.2.15 Purification of DNA clone inserts

Chapter 3 Development of a Viruliferous Aphid Management Strategy and a Quantitative Resistance Assay

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Plant Lines
 3.2.2 Viruliferous aphid management strategy
 3.2.3 Barley BYDV resistance assays
 3.2.4 BYDV resistance assay field trial
 3.2.5 BYDV dot blot hybridisation analysis
 3.2.6 PCR amplification of the cleaved amplified polymorphic sequence (CAPS) for the Ylp locus and the co-dominant YLM marker, both closely linked to the Yd2 gene
 3.2.7 Total nucleic acid Maxiprep of oat material infected with BYDV-PAV adel
3.3 Results
3.3.1 Production of viruliferous aphids
3.3.2 BYDV resistance assays on Yd2-plus/Yd2-minus cultivars
3.3.3 Field trial results
3.3.4 BYDV resistance assays on the F2 progeny from the cross of Atlas × Atlas
3.3.5 The relationship between increased BYDV viral load and radioactive counts as measured by a phosphorimager
3.3.6 Quantitative difference in BYDV viral titre between Shannon and Proctor in root and shoot tissue
3.3.7 Quantitative differences in BYDV viral titre between a range of Yd2 and non-Yd2 cultivars in root tissue
3.3.8 Quantitative differences in BYDV viral titre between F2 individuals of the cross Atlas × Atlas68

3.4 Discussion
3.4.1 The design of a viruliferous aphid management strategy
3.4.2 Resistance assay screening
3.4.3 A quantitative resistance assay

Chapter 4 Genetic Mapping of the Yd2 Region of Barley Chromosome 3

4.1 Introduction

4.2 Materials and Methods
4.2.1 Acknowledgments
4.2.2 Plant lines and genetic materials
4.2.3 RFLP probes
4.2.4 Using Near Isogenic Lines (NILs) to identify RFLPs linked to Yd2
4.2.5 Segregation analysis
4.2.6 BYDV resistance assays
4.2.7 Wheat-barley disomic and ditelosomic addition line analysis
4.2.8 The identification of F3 progeny homozygous for a recombination event between the two loci YLM and Xm9g952

Results 4.3
4.3.1 The detection of Yd2-associated polymorphisms using three sets of nearly isogenic lines
4.3.2 Addition line analysis
4.3.3 Segregation analysis
4.3.4 Detection of Yd2-associated polymorphisms between WI2875 (Yd2-minus) and Franklin (Yd2-plus)
4.3.5 The construction of a group of individuals homozygous for a recombinant event between the two loci YLM and Xm9g952
4.4 Discussion
4.4.1 The value of Yd1 linked RFLP markers in barley breeding
4.4.2 Completion of RFLP mapping of the Yd1 region of Chromosome 3 of barley and implications for future mapping and isolation of the Yd1 resistance gene

Chapter 5 Physical Mapping of the Yd1 Region of Barley Chromosome 3

5.1 Introduction

5.2 Materials and Methods
5.2.1 Acknowledgments
5.2.2 Plant materials
5.2.3 DNA probes
5.2.4 Isolation of high molecular weight DNA
5.2.4.1 Leaf material
5.2.4.2 Protoplasts
5.2.4.3 Nuclei agarose plugs and microbeads
5.2.5 Restriction enzyme digestion of HMW DNA
5.2.6 Pulsed field gel electrophoresis (PFGE) separation, transfer and hybridisation

5.3 Results
5.3.1 Isolation and restriction enzyme digestion of high molecular weight DNA
5.3.2 Identification of probes suitable for physical mapping of the Yd1 region
5.3.3 PFGE DNA restriction fragment sizes generated by different restriction enzymes as detected by DNA probes genetically close to the Yd1 locus
5.3.4 The physical linkage of genetically close markers

5.4 Discussion
5.4.1 Requirements for physical mapping
5.4.2 The relationship of genetic to physical distance in the Yd1 region and implications for the isolation of Yd1

Chapter 6 The Identification and Characterisation of Large Insert Genomic Clones from the Region of Rice Syntenous with the Yd1 Region of Barley Chromosome 3

6.1 Introduction

6.2 Materials and Methods
6.2.1 Acknowledgments
6.2.2 YAC filter screening
6.2.3 Growth of YAC clones
6.2.4 Extraction of total genomic DNA from YAC clones for dot-blot analysis
6.2.5 High molecular weight DNA preparation from YAC clones
6.2.6 Restriction enzyme digestion of HMW YAC clone DNA
6.2.7 PFGE separation, transfer and hybridisation of YAC clones and restricted HMW DNA
6.2.8 Purification of Y2733 template
6.2.9 PCR amplification of YAC ends
6.2.10 Determination of the suitability of YAC-end probes for mapping in barley

6.3 Results
6.3.1 Identification of YACs from the region of rice syntenous with the Yd2 region of barley
6.3.2 PFGE size analysis of rice YAC clones
6.3.3 Restriction enzyme mapping of the YAC clones Y2733 and Y2763
6.3.4 Amplification of end probes from rice YAC clones for mapping in barley

6.4 Discussion
6.4.1 The level of gene order colinearity between the Yd2 region of barley and the corresponding region of the rice genome
6.4.2 The relationship between physical and genetic distance in the region of rice syntenous with the Yd2 region of barley
6.4.3 The possibility of a gene orthologous to Yd2 on a rice-YAC from the region of rice syntenous with the Yd2 region of barley Chromosome 3
6.4.4 Future directions for the use of rice as a subgenomic cloning vehicle

Chapter 7 The Identification and Characterisation of Large Insert Barley Genomic Clones from the Yd2 Region of Barley Chromosome 3

7.1 Introduction

7.2 Materials and Methods
7.2.1 Acknowledgments
7.2.2 Purification of DNA probe template
7.2.3 Screening a barley BAC library
7.2.4 Growth of BAC clones
7.2.5 Mini-preparation of BAC plasmid DNA
7.2.6 Dot-blot analysis of BAC clones
7.2.7 Confirmation that barley BAC clones are linked to the Yd2 locus
7.2.8 Screening BAC clones from the Yd2 region with markers closely linked to Yd2
7.2.9 Pulsed field gel electrophoresis
7.2.10 Southern fingerprint analysis of BAC clones
7.2.11 Preparation of 32P-labelled total BAC DNA probes
7.2.12 Northern analysis of infected and noninfected resistant and susceptible barley cultivars, with BAC clones from the Yd2 region as total genomic DNA radiolabelled probes
7.3 Results
7.3.1 The identification of BAC clones that hybridise to the DNA probes BCD134, YLM and Ylp
7.3.2 Confirmation that the BAC clones strongly hybridising to the three DNA probes are linked to Yd2
7.3.3 Size of the BAC clones from the Yd2 region
7.3.4 Southern fingerprint analysis of BAC clones linked to Yd2
7.3.5 Southern hybridisation of Yd2 linked DNA probes to barley BAC clones from the Yd2 region for barley Chromosome 3
7.3.6 Northern analysis of infected and noninfected resistant and susceptible cultivars using BAC clones from the Yd2 region as probes

7.4 Discussion
7.4.1 The identification of large insert genomic clones from the Yd2 region of barley Chromosome 3
7.4.2 Implications for the construction of a contig encompassing the Yd2 region
7.4.3 The possibility of a Yd2 homologue on the partial contig of the BAC clones encompassing the Ylp and Xbcd134 loci from the Yd2 region of barley Chromosome 3
7.4.4 Future directions for the map based cloning of Yd2 in barley and the identification of a candidate gene/s

Chapter 8 A PCR approach to Resistant Gene Analogue Amplification from the Yd2 Region of Barley Chromosome 3 and the Syntenous Region of Rice

8.1 Introduction

8.2 Materials and Methods
8.2.1 Acknowledgments
8.2.2 Purification of the YAC template Y2733
8.2.3 The use of DNA extracted from Near Isogenic Lines (NILs) to identify polymorphisms linked to Yd2 amplified by RGA primers
8.2.4 The use of susceptible (Yd2- minus) and resistant (Yd2- plus) DNA bulks to identify polymorphisms linked to Yd2 amplified by RGA primers
8.2.5 PCR amplification of RGAs from DNA template of the rice YAC Y2733, the barley NILs, and the susceptible and resistant barley pooled DNA bulks
8.2.7 DNA sequencing and sequence analysis
8.2.8 Southern analysis
8.2.9 Pulsed field gel electrophoresis
8.2.10 Northern analysis of infected and noninfected resistant and susceptible barley cultivars with DNA probes amplified by RGA primers
8.3 Results

8.3.1 PCR amplification of products from the DNA template of rice YAC Y2733, using primers shown in the literature to amplify conserved domains of resistance genes

8.3.2 Sequence analysis of products amplified using the primer combination S2/A3 from DNA template of the rice YAC Y2733

8.3.3 Southern analysis of the rice clones obtained from Y2733

8.3.4 Physical mapping of rice clones on Y2733

8.3.5 Northern analysis of infected and noninfected resistant and susceptible barley cultivars using DNA probes amplified by primers designed to amplify RGAs

8.3.6 The resolution of PCR products amplified from genomic barley DNA

8.3.7 Polymorphisms detected between the DNA of barley NILs and bulked pools of Yd_2-minus and Yd_2-plus DNA

8.3.8 Cloning and sequence analysis of amplified products polymorphic between barley NILs and bulk pools of resistant and susceptible barley DNA

8.3.9 Southern analysis of barley PCR products amplified from barley genomic DNA

8.3.10 PFGE analysis of barley cloned PCR products amplified from barley genomic DNA

8.3.11 Northern analysis of infected and noninfected Yd_2-minus and Yd_2-plus barley cultivars using barley clones amplified from barley genomic DNA

8.4 Discussion

8.4.1 The identification of markers linked to Yd_2 using PCR primers designed to amplify RGAs from genomic barley template and a rice YAC syntenous with the Yd_2 region in barley

8.4.2 Are the products amplified from the rice YAC and barley genomic template RGAs?

8.4.3 Are the products amplified from the rice YAC and barley genomic templates candidates for the Yd_2 resistance gene?

Chapter 9 General Conclusions

9.1 Prospects for the map-based isolation of the Yd_2 gene from barley

9.2 Cloning a Yd_2 orthologue from rice

9.3 Cloning Yd_2 by homology to characterised plant disease resistance genes

9.4 Structure and function of the Yd_2 gene

9.5 Other genes involved in BYDV resistance in cereals

Literature Cited
Summary

The Yd_2 gene in barley provides protection against barley yellow dwarf luteovirus (BYDV), the most economically devastating virus of cereals worldwide. The aim of this thesis was to investigate strategies to enable the Yd_2 gene to be cloned. These strategies included a map-based approach to cloning Yd_2 in barley, a syntenous map-based approach to cloning a Yd_2 orthologue in rice and the use of PCR primers designed to amplify conserved regions of resistance genes in an attempt to amplify a candidate Yd_2 gene.

Essential for cloning Yd_2 was the development of a resistance assay system to reliably characterise Yd_2 genotypes. Aphids reared on 3-week old oat plants grown at 22°C days and 18°C nights were highly viruliferous resulting in 100% infection rates for barley cultivars tested. Infected Yd_2 and non-Yd_2 barley cultivars were able to be reliably distinguished as early as 4 weeks post infection based on symptom expression. F2 progeny homozygous-positive for Yd_2 were resistant and distinguishable from other F2 progeny. Cultivars heterozygous and homozygous-minus for Yd_2 were susceptible and unable to be distinguished from each other. Resistance assays were required to be performed on the F3 progeny of these F2 individuals to distinguish between homozygous and heterozygous susceptible F2 individuals.

A quantitative dot-blot assay relating to viral titre levels in infected plants was developed to quickly distinguish between resistant and susceptible genotypes of different Yd_2 sources. Significant differences between viral titre in both shoot and root material were evident between non-Yd_2 and Yd_2 genotypes, with the differences being even more pronounced in the root material. The dot-blot assay was able to effectively distinguish between resistant and susceptible individuals 5 days post infection from a range of barley cultivars differing in Yd_2 status. This assay was unable to distinguish between homozygous and heterozygous susceptible individuals. Therefore, dot-blot analysis was performed on the F3 progeny of F2 individuals to identify homozygous susceptible and heterozygous susceptible F2 individuals. In combination with the qualitative resistance screening assay this quantitative assay was used to help genotype individuals for Yd_2 in our mapping populations.
To undertake map-based cloning in barley, genetic linkage maps of the \(Yd_2 \) region were constructed using 106 F\(_2\) individuals of the Proctor (\(Yd_2-\)minus) × Shannon (\(Yd_2-\)plus) cross and 572 F\(_2\) individuals of the Atlas (\(Yd_2-\)minus) × Atlas68 (\(Yd_2-\)plus) cross. These maps contain 29 molecular markers, the \(Yd_2 \) gene and the centromere. Twelve of these markers are within 1cM of \(Yd_2 \). From the Atlas × Atlas68 cross, 18 F\(_2\) individuals were carrying a recombination event within a genetic interval of 1.6cM between two \(Yd_2 \) flanking loci \(YLM \) and \(Xmgw952 \). F\(_3\) progeny derived from these F\(_2\) individuals which were homozygous for the recombinant chromosome were identified and characterised for use in bulked segregant analysis and fine scale mapping of the \(Yd_2 \) region.

Pulsed field gel electrophoresis (PFGE) was used to establish the relationship between genetic and physical distance in the region of \(Yd_2 \). Physical mapping of the \(Yd_2 \) region revealed a physical linkage between the two loci \(Xbcd134 \) and \(Ylp \). Because these loci are separated by 0.5cM on the Proctor × Shannon genetic map, a relationship of physical to genetic distance around this immediate area could be calculated as 1cM being less than to 360kb. This relationship suggested that there was a good chance of identifying a single genomic clone with our co-segregating marker Ylp which may also contain the \(Yd_2 \) gene.

A rice yeast artificial chromosome (YAC) library established by the Japanese Rice Genome Project was utilised as a tool for cloning the \(Yd_2 \) gene. Two YACs from an area of rice Chromosome 1 syntenous with the \(Yd_2 \) region of barley Chromosome 3 were identified. A physical linkage of 9kb between two loci \(XrYlp \) and \(Xrc122 \), syntenous with the loci \(Ylp \) and \(Xc122 \) which co-segregate with the \(Yd_2 \) gene in barley was established in rice. The YAC contig of this area of the rice genome however, was not continuous. Other molecular markers in close genetic proximity to \(Yd_2 \) with the exception of \(Xwg889 \) from both our barley maps could not be placed on the rice YAC clones identified as syntenous with \(Yd_2 \) region of barley. With the possibilities of mircosynteny breakdown, a favourable relationship between genetic and physical distance in the region of barley \(Yd_2 \) and the development of a publicly available large genomic insert barley library, a syntenous map-based approach in rice was not continued.
Barley bacterial artificial chromosome (BAC) filters were obtained, screened and a number of barley BACs from the Yd_2 region were identified. Two BACs were identified as encompassing the Ylp locus which co-segregates with Yd_2, 5 BACs were identified as encompassing the $Xbcd134$ loci, a loci 0.5cM proximal to Yd_2 and 4 BACs identified as encompassing the YLM loci, 0.7cM distal of Yd_2. A partial contig over the Yd_2 gene was established with BACs positive for the Ylp locus showing a small overlap with 4 of the 5 BACs positive for the locus $Xbcd134$. No physical linkage was identified between the BACs positive for YLM and Ylp, and it was concluded that YLM may be to distal to Yd_2 to begin a chromosome walk from this side. All other markers identified within 2cM of Yd_2 on the genetic maps were absent from these clones. Based on this physical information it was concluded that a number of chromosome walks using end-clones from the BACs positive for Ylp and distal to $Xbcd134$ may complete a contig spanning the Yd_2 region.

Concurrent with the map-based approaches in barley and rice, a strategy aimed at cloning Yd_2 using PCR primers shown to amplify conserved areas of resistance genes was undertaken. In order to amplify possible Yd_2 candidates, primers were targeted to the template of a rice YAC identified from the syntenous region of rice Chromosome 1, at barley Near Isogenic Lines (NILs) and also to resistant and susceptible bulks derived from critical recombinants identified from the Atlas x Atlas68 mapping population. While an number of the products amplified were identified as closely linked genetically or physically to Yd_2, sequence information of these products showed no identity to resistant gene analogues. However, a number of the products cloned from rice showed low identity matches to genes or transcripts which could be considered potential candidates for Yd_2. Northern analysis using these clones as probes however, detected no mRNA in infected or noninfected barley cultivars.