The root lesion nematode, *Pratylenchus neglectus*, in field crops in South Australia

Sharyn Patricia Taylor

B.Sc. (Hons) University of Adelaide

Thesis submitted for the Degree of Doctor of Philosophy

The University of Adelaide
(Faculty of Agricultural and Natural Resource Sciences)
Department of Applied and Molecular Ecology

December 2000
Table of Contents

THE ROOT LESION NEMATODE, PRATYLENCHUS NEGLECTUS, IN FIELD CROPS IN SOUTH AUSTRALIA

TABLE OF CONTENTS ii
SUMMARY vii
DECLARATION x
PUBLICATIONS ARISING FROM THIS THESIS xi
ACKNOWLEDGMENTS xii
ABBREVIATIONS USED xiv

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 4

2.0 INTRODUCTION 4
2.1 PRATYLENCHUS NEGLECTUS AND P. THORNEI 4
2.2 LIFE CYCLE 4
2.3 SYMPTOMS 5
2.4 INTERACTIONS WITH OTHER PATHOGENS 6
2.5 HOST RANGE AND GEOGRAPHIC DISTRIBUTION 7
2.6 ECONOMIC IMPORTANCE 9
2.6.1 Pratylenchus thornei 10
2.6.2 Pratylenchus neglectus 11
2.7 EFFECTS OF EDAPHIC FACTORS ON NEMATODE DENSITY AND YIELD LOSS 11
2.7.1 Tillage 12
2.7.2 Nutrition 12
2.7.3 Water availability 13
2.8 MEASURING YIELD LOSS 13
2.9 POPULATION DYNAMICS 15
2.9.1 Evaluation of population dynamics 15
2.9.2 Resistance 15
2.9.3 Tolerance 20
2.10 VIRULENCE, AGGRESSIVENESS AND PATHOGENICITY 21
2.11 POPULATION VARIABILITY 21
2.11.1 Morphology 22
2.11.2 Host range studies 22
2.11.3 Molecular techniques 23
2.12 DISTRIBUTION, SAMPLING AND EXTRACTION 24
2.12.1 Sampling 24
2.12.2 Field experiments: design and sampling patterns 25
2.12.3 Horizontal distribution 26
2.12.4 Vertical distribution 27
2.12.5 Extraction and storage 28
2.13 IMPORTANCE OF THIS RESEARCH 29
CHAPTER 4

EFFICIENCY OF EXTRACTION AND SEPARATION OF PRATYLENCHUS NEGLECTUS FROM PLANT ROOTS AND SOIL

4.0 INTRODUCTION

4.1 MATERIALS AND METHODS

4.1.1 Elimination of live and soil contamination from samples

4.1.2 Data analysis

4.1.3 Separation efficiency of nematodes using a modified Whitehead tray method

4.2 Recovery of P. neglectus from stored soil

4.2.1 Data analysis

4.3 Experiment 1

4.3.1 Data analysis

4.3.2 Experiment 2

4.3.3 Data analysis

4.4 Comparison of two methods for extraction of P. neglectus from wheat roots

4.4.1 Data analysis

4.5 Efficiency of separation of P. neglectus from different crops

4.5.1 Pratylenchus neglectus inoculum and plant establishment

4.5.2 Experimental design and assessment

4.5.3 Data analysis
4.2 RESULTS
4.2.1 Elimination of fibre and soil contamination from samples 48
4.2.2 Separation efficiency of nematodes using a modified Whitehead tray method 49
4.2.3 Recovery of P. neglectus from stored soil 50
4.2.3.1 Experiment 1 50
4.2.3.2 Experiment 2 52
4.2.4 Comparison of two methods for extraction of P. neglectus from wheat roots 55
4.2.5 Efficiency of separation of P. neglectus from different crops 57
4.2.5.1 Harvest time (16 weeks) 57
4.2.5.2 Harvest time (216 weeks) 59
4.3 DISCUSSION
4.3.1 Extraction of P. neglectus from soil 63
4.3.2 Extraction of P. neglectus from root samples 65

CHAPTER 5 SPATIAL DISTRIBUTION OF, AND SAMPLING FOR, PROTYLENCHUS
NEGLECTUS AND P. THORNES IN SOUTH AUSTRALIA 68

5.0 INTRODUCTION
5.1 MATERIALS AND METHODS
5.1.1 Horizontal distribution - plant row effects 69
5.1.1.1 Data analysis 70
5.1.2 Vertical distribution 70
5.1.2.1 Data analysis 71
5.1.3 Comparison of sampling methods 70
5.1.3.1 Data analysis 71
5.2 RESULTS
5.2.1 Horizontal distribution - plant row effects 73
5.2.2 Vertical distribution 74
5.2.3 Comparison of sampling methods 78
5.3 DISCUSSION 83

CHAPTER 6 POPULATION DYNAMICS OF PROTYLENCHUS NEGLECTUS IN WHEAT
IN A POTTED STUDY 86

6.0 INTRODUCTION
6.1 MATERIALS AND METHODS
6.1.1 Protylelchnus neglectus inoculum 87
6.1.2 Experimental design and assessment 88
6.1.3 Data analysis 88
6.2 RESULTS
6.2.1 Protylelchnus neglectus inoculum 89
6.2.2 Nematode densities and multiplication rates 89
6.2.3 Plant dry matter responses 95
6.2.4 Regression analysis 97
6.2.5 Rainfall, soil temperature and air temperature 100
6.3 DISCUSSION 102
CHAPTER 7 RESISTANCE OF CEREAL, PULSE, OILSEED AND PASTURE VARIETIES TO \textit{PRatylenchus neglectus} \textit{in} FIELD EXPERIMENTS

7.0 INTRODUCTION
7.1 MATERIALS AND METHODS
 7.1.1 Field trial establishment
 7.1.2 Experimental design
 7.1.3 \textit{Pratylenchus neglectus} and plant assessment
 7.1.4 Statistical analyses
 7.1.4.1 Field trials at Sandilands and Paskeville
 7.1.4.2 Field trial at Condada

8.2 RESULTS
 7.2.1 Sandilands, 1996
 7.2.1.1 Rainfall
 7.2.1.2 Initial density, final density and multiplication rate of \textit{P. neglectus}
 7.2.1.3 \textit{Pratylenchus neglectus} density in canola plots
 7.2.2 Paskeville, 1997
 7.2.2.1 Rainfall
 7.2.2.2 Initial density, final density and multiplication rate of \textit{P. neglectus}
 7.2.3 Comparison between varieties using final density or multiplication rate
 7.2.4 Combined field trial results for Sandilands and Paskeville
 7.2.5 Condada cereal variety trial, 1996

7.3 DISCUSSION

CHAPTER 8 POPULATION DYNAMICS OF, AND YIELD LOSS CAUSED BY, \textit{PRatylenchus neglectus} AND \textit{P. thornei} \textit{in} FIELD EXPERIMENTS

8.0 INTRODUCTION
8.1 MATERIALS AND METHODS
 8.1.1 Field sites
 8.1.1.1 Aldicarb rate trial
 8.1.1.2 Variety trials
 8.1.1.3 Rotation trials
 8.1.2 \textit{Pratylenchus} and plant assessment
 8.1.3 Statistical analyses

8.2 RESULTS
 8.2.1 Aldicarb rate trial
 8.2.2 Variety trials
 8.2.2.1 Sandilands variety trial, 1996
 8.2.2.2 Paskeville variety trial, 1997
 8.2.2.3 Condada variety trial, 1996
 8.2.3 Rotation trials
 8.2.3.1 Mungura rotation trial, 1996 and 1997
 8.2.3.2 Condada rotation trial, 1996 and 1997

8.3 DISCUSSION
 8.3.1 Use of aldicarb to measure yield loss
 8.3.2 Comparison between aldicarb and regression analyses to calculate yield loss
 8.3.3 Comparisons between variety tolerance and resistance to \textit{P. neglectus} and \textit{P. thornei}
 8.3.4 Modelling yield loss
 8.3.5 Determining relationships between initial or final nematode density and yield
 8.3.6 Population dynamics of \textit{P. neglectus} and \textit{P. thornei} in field trials

v
CHAPTER 9 VARIATION WITHIN AND BETWEEN AUSTRALIAN POPULATIONS OF PRATYLENECHUS NEGLECTUS AND P. THOR/EE 198

9.0 INTRODUCTION 198
9.1 COLLECTION AND MAINTENANCE OF PRATYLENECHUS POPULATIONS 199
 9.1.1 Materials and methods 199
 9.1.1.1 Populations 199
 9.1.1.2 Cloud lines 199
9.2 IDENTIFICATION OF DIFFERENCES WITHIN AND BETWEEN PRATYLENECHUS POPULATIONS USING ALLOZYME ELECTROPHORESIS 200
 9.2.1 Materials and methods 200
 9.2.1.1 Experiment 1 200
 9.2.1.2 Experiment 2 200
 9.2.2 Results 201
 9.2.2.1 Experiment 1 201
 9.2.2.2 Experiment 2 201
9.3 DIFFERENTIAL REPRODUCTION OF PRATYLENECHUS POPULATIONS IN CEREALS 201
 9.3.1 Materials and methods 201
 9.3.1.1 Experiment 1 201
 9.3.1.2 Experiment 2 201
 9.3.1.3 Experiment 3 202
 9.3.2 Results 208
 9.3.2.1 Experiment 1 208
 9.3.2.2 Experiment 2 208
 9.3.2.3 Experiment 3 208
9.4 DISCUSSION 216
 9.4.1 Allozyme electrophoresis 216
 9.4.2 Comparison between reproductive fitness of nematode populations 217
9.5 CONCLUSIONS 226

CHAPTER 10 GENERAL CONCLUSIONS AND DISCUSSION 222

10.1 SAMPLING AND EXTRACTION 222
10.2 DETERMINING RESISTANCE RATINGS IN FIELD EXPERIMENTS 224
10.3 RESISTANCE WITHIN FIELD CROPS TO P. NEGLECTUS 227
10.4 DETERMINING TOLERANCE AND YIELD LOSS 228
10.5 POPULATION DYNAMICS AND MODELLING YIELD LOSS - P. NEGLECTUS AND P. THOR/EE 230
10.6 VARIABILITY OF P. NEGLECTUS AND P. THOR/EE 231
10.7 CONCLUSIONS - THE IMPORTANCE OF P. NEGLECTUS IN SOUTH AUSTRALIA 232

APPENDICES 234

APPENDIX 1 SPECIFICATIONS FOR TAILEM BEND SAND 234
APPENDIX 2 SPECIFICATIONS FOR UC SOIL MIX 235
APPENDIX 3 BUFFER SOLUTIONS FOR ALLOZYME ELECTROPHORESIS STUDIES 236
APPENDIX 4 RECIPES FOR BUFFER FOR ALLOZYME ELECTROPHORESIS STUDIES 237
APPENDIX 5 YIELD RESULTS (SANOHIANES, CHAPTER 7) 238
APPENDIX 6 YIELD RESULTS (PASKEVILLE, CHAPTER 7) 239
APPENDIX 7 ECONOMIC FIGURES FOR CEREALS 240

REFERENCES 241
Summary

The root lesion nematodes *Pratylenchus neglectus* and *P. thornei* are common in agricultural fields in southern Australia. Prior to commencing this study, yield loss caused by *P. neglectus* in field crops was poorly defined. The major aims of this study were to evaluate sampling procedures, assess the extent and magnitude of yield loss caused by *P. neglectus*, assess the population dynamics of *P. neglectus* in cereals, determine whether resistance occurs in field crops and assess whether variation occurs between geographically isolated populations of *P. neglectus*. Research was also conducted on the closely related species, *P. thornei*, including population dynamics, variation between populations and the effects of this species on yield of cereals.

To evaluate sampling procedures for *P. neglectus*, the reliability and efficiency of sampling and extraction methods from plants and soil were assessed. For the extraction of *P. neglectus* from plant roots, the efficiency of staining and rinsing methods were compared, with the staining technique proving to be more labour intensive compared with rinsing. This was a significant disadvantage when processing large numbers of plants and rinsing was therefore considered a more efficient alternative. Differences were observed, however, in the rate of extraction of *P. neglectus* from roots of 6 and 16 week old wheat, chickpea, canola, faba bean and medics plants. These differences were attributed to continued multiplication of *P. neglectus* within samples in the rinsing chamber. Extraction methods were therefore affected by the suitability of different crop species to serve as hosts.

Because of the difficulty in comparing densities of *P. neglectus* both within and between crop species from plant roots, assessment of density of *P. neglectus* from field plots was undertaken from soil samples (containing root material) using the Whitehead Tray method. The investigation of limitations using this system showed sampling in soil with low moisture (< 2%) significantly reduced the number of *P. neglectus* recovered. This reduction was attributed to mechanical damage to anhydrobiotic *P. neglectus* in dry soil. Samples obtained from an undisturbed core in moist soil resulted in 39% greater recovery.
of nematodes when compared with sampling using an earth auger in dry soil. In shallow, sandy loam soils in South Australia, the majority of P. neglectus were found between 0 - 10 cm, probably related to root distribution in these soils.

To gain understanding of the population dynamics of P. neglectus, experiments were undertaken in large pots and in field trials. For the pot study, a susceptible host (Maize with corn stunt virus) was sown into infested soil (produced by the addition of infected carrot callus culture and infected wheat roots). While this experiment showed a reduction in the shoot and root dry weights of this host, inadequate differentiation was achieved between the initial densities of P. neglectus established in this experiment. As a result, no clear relationship was observed between plant growth and nematode density or nematode multiplication. In contrast, a range of initial densities of both P. neglectus and P. thornei were established in field experiments. At both sites, a linear relationship was observed between yield and initial nematode density for an intolerant cereal over-sown across these plots. In addition, an exponential relationship was observed between initial density and multiplication rate (P/P0).

Yield loss caused by P. neglectus was also shown in field sites both by correlation of P. neglectus density with yield and by comparison between aldicarb (Temik 15G) treated and untreated plots. The addition of high rates of aldicarb (12 kg a.i./ha) did not produce a phytotoxic response although some stimulatory effect on plant growth may have occurred at low rates (< 1.5 kg a.i./ha). Using either regression analysis of initial density of P. neglectus with yield or treatment of plots with aldicarb, yield responses of up to 27% were demonstrated for intolerant cereals.

Over 80 varieties from 12 crop and pasture species were evaluated for resistance to P. neglectus at field sites. Evaluation of P. neglectus from soil after harvest was assumed to relate closely to resistance (where resistance is defined as the ability to reduce or inhibit multiplication of nematodes). Variation observed in final densities and multiplication rates of P. neglectus at different field sites were attributed both to site and seasonal conditions and also possibly variation between populations of P. neglectus. This was supported by genetic differences between nine P. neglectus and four P. thornei
populations, examined in allozyme studies and phenotypic differences assessed by the rate reproduction of nematodes in cereals in growth room tests.

The results reported in this study demonstrate that *P. neglectus* is a significant pathogen in agricultural cropping regions of South Australia. The broad host range of *P. neglectus* within field crops was confirmed, but resistant and/or tolerant crops and varieties were identified which can be used within cereal cropping rotations to reduce the economic impact of this species.