The Cloning and Functional Characterisation of Murine Phosphatidylinositol 3-kinase gamma

By

Sumone Chakravarti B.Sc (Hons)

Department of Molecular Biosciences
Discipline of Microbiology & Immunology
Adelaide University, Australia

A thesis submitted to Adelaide University in fulfilment of the requirements for the degree of Doctor of Philosophy

August 2001
ABSTRACT

The family of PI3-kinases are an important group of lipid kinases involved in cellular signalling. All members of the family are responsible for phosphorylating the 3-hydroxyl groups of inositol phospholipids. Their structural conformation and substrate specificity separates members into three distinct classes, these being the Class I, II and III PI3-kinases. The Class I family is the best-characterised of all the members and can be further subdivided into 2 groups, the Class IA and Class IB PI3-kinases. The Class IA PI3-kinases are activated through the downstream recruitment of protein tyrosine kinases. In contrast, the Class IB PI3-kinases are dependent on heterotrimeric G proteins for their activation. This study focuses on the only known member of the Class IB PI3-kinases, PI3kγ.

The chemokine gene superfamily is a group of chemotactic cytokines originally identified on their ability to directly recruit distinct and overlapping subsets of leukocytes, and therefore has a critical role in the maintenance, activation and regulation of the immune system. To date, all chemokine receptors are G protein-coupled receptors. Activation of chemotactic receptors results in a transient increase in the level of 3-phosphorylated phospholipids, products of the PI3kinase family. More recently, this increase has been attributed to PI3kγ.

The present study addresses the role of PI3kγ in lymphocyte migration in vitro and in vivo, in response to chemotactic factors. A novel isoform of PI3kγ, MmPI3kγ1111, was isolated from a murine macrophage cDNA library. Comparison of the sequence of MmPI3kγ1111 with the previously cloned human and porcine
orthologues demonstrated above 90% identity. Consistent with the human and porcine PI3ks, MmPI3kγ1111 possesses all four conserved domains common to the Class IB subfamily. Uniquely, MmPI3kγ1111 contained an additional 11 amino acids in the catalytic domain. During the latter stages of this study a murine orthologue of PI3kγ, MmPI3kγ1100, was independently cloned. MmPI3kγ1100 did not contain the additional 11 amino acids found in MmPI3kγ1111.

MmPI3kγ1111 was over-expressed in HEK 293 cells and examined for lipid and protein kinase activity. Consistent with MmPI3kγ1100, MmPI3kγ1111 produced PI 3 P \textit{in vitro}, hence lipid kinase activity. MmPI3kγ1111 also demonstrated autophosphorylation, a characteristic common to all known Class IB PI3-kinases. Furthermore, phosphorylation of MmPI3kγ1111 downregulated the ability of MmPI3kγ1111 to act as a lipid kinase.

Mutation of the lysine residue (position 833) critical for the activation of all Class I PI3-kinases resulted in a loss of both the lipid and protein kinase activities of MmPI3kγ1111. The catalytically-inactive form of MmPI3kγ1111 was stably transfected into a B lymphocyte cell line (B300.19) expressing the CCR6 chemokine receptor. B300.19-huCCR6 cells expressing the catalytically-inactive form of MmPI3kγ1111, MmPI3kγKR, demonstrated a marked decrease in the ability to migrate towards huMIP-3α, the ligand for huCCR6, in an \textit{in vitro} chemotaxis assay. Subcutaneous air pouches were used to examine the role of MmPI3kγ1111 in \textit{in vivo} B lymphocyte migration. However, in contrast to the \textit{in vitro} data obtained, the \textit{in vivo} model did not provide clear support for a role for MmPI3kγ1111 in lymphocyte
migration. The biological significance of these data, and future research directions are addressed in this thesis.
ABSTRACT

DECLARATION OF ORIGINALITY

ACKNOWLEDGMENTS

LIST OF ABBREVIATIONS

CHAPTER 1: INTRODUCTION

1.1 History of the Phosphatidylinositol 3-kinase family 1
1.1.2 The Phosphatidylinositol 3-kinase Family 1
1.1.3 Class I Phosphatidylinositol 3-kinases 3
1.1.4 Class IA Phosphatidylinositol 3-kinases 3
1.1.4.1 Structure of the Class IA Regulatory Subunits 3
1.1.4.2 Structure of the Class IA Catalytic Subunits 8
1.1.4.3 Activity and Regulation of the Class IA Phosphatidylinositol 3-kinases 9
1.1.4.3.1 Activation by Translocation 10
1.1.4.3.2 Interactions with Protein Tyrosine Kinases 10
1.1.4.3.3 Protein Phosphorylation 12
1.1.5 History of the Class IB Phosphatidylinositol 3-kinases 13
1.1.5.1 The Class IB Catalytic subunit- PI3Kγ 15
1.1.5.2 Activity and Regulation of Class IB Phosphatidylinositol 3-kinases 16
1.1.6 Cellular Role of PI3-kinases and their Lipid Products 20
1.1.6.1 Chemical Inhibitors 20
1.1.6.2 Dominant-negative Over-Expression 21
1.1.6.3 Gene Knockout Animal Models 22
1.1.6.4 Cellular Role of Phosphatidylinositol 3-kinase Lipid Products 24
1.1.6.5 Phosphatidylinositol 3 Phosphate 24
1.1.6.6 Phosphatidylinositol 3,4 bisphosphate
1.1.6.7 Phosphatidylinositol 3,4,5 Trisphosphate
1.1.7 Summary of the phosphatidylinositol 3-kinases
1.2 The Chemokine Gene Superfamily
1.2.1 Structure and Function of members of the Chemokine Superfamily
1.2.1.1 Chemokines involved in myeloid cell trafficking and function.
1.2.1.2 Chemokines involved in lymphoid cell trafficking and function.
1.2.2 Chemotactic Factor Receptors
1.2.3 The Chemokine Receptors
1.2.4 Chemotactic Factor Receptor Signalling
1.2.5 Chemotactic factor signalling and PI3κγ activation
1.3 Rationale, Hypothesis and Aims

CHAPTER 2: REAGENTS AND TECHNIQUES

2.1 Molecular techniques
2.1.1 Bacterial strains, growth media and buffers
2.1.2 Preparation of Competent Cells
2.1.3 Preparation of Phenol
2.1.4 Phenol/Chloroform extraction
2.1.5 Agarose Gel Electrophoresis
2.1.6 Bacterial Transformation
2.1.7 Mini-Preparation (small scale) of Plasmid DNA
2.1.8 Medium - Scale Preparation of Plasmid DNA
2.1.9 Restriction Endonuclease Digestion
2.1.10 Dephosphorylation of vector DNA
2.1.11 DNA Ligations
2.1.12 BRESA-Clean™
2.1.13 Mutagenesis
2.1.13.1 Primer design
2.1.13.2 Mutagenesis Reaction
2.1.14 cDNA Library Screening
2.1.14.1 Preparation of Host cells
2.1.14.2 Library Plating
2.1.14.3 Plaque Lifts
2.1.14.4 DNA Denaturation and Fixing
2.1.14.5 Radiolabelling DNA probes
2.1.14.6 Hybridisation
2.1.15 RNA Isolation
2.1.16 Generation of First Strand cDNA - Reverse Transcription
2.1.17 PCR - Taq Polymerase Based Amplification
2.1.18 PCR - Amplification using PFU polymerase
2.1.19 DNA Sequencing - Dye Terminator Sequencing
2.1.20 Primer design
2.1.21 Primers
2.1.22 DNA Constructs
2.1.23 Molecular weight markers
2.1.24 Molecular Analysis Programs
2.2 In vitro/cellular techniques

2.2.1 Agonists

2.2.2 Maintenance of cell lines

2.2.3 Cryopreservation of cell lines

2.2.4 Thawing of cryopreserved cells

2.2.5 Transient Transfection of Adherent Cell Lines - FuGENE 6

2.2.6 Electroporation of B300.19 B Lymphocytes

2.2.7 One Colour Labelling for Flow Cytometry

2.2.8 One Colour Flow Cytometry

2.2.9 Protein Precipitation

2.2.10 SDS-PAGE and Protein Transfer

2.2.11 Western Analysis

2.2.12 Lipid Kinase Assay

2.2.12.1 Preparation of Samples

2.2.12.2 Preparation of Lipid Substrates

2.2.12.3 Enzyme Reaction

2.2.12.4 Lipid Extraction

2.2.12.5 Thin Layer Chromatography

2.2.13 Protein Kinase Assay

2.2.13.1 Preparation of Samples

2.2.13.2 Enzyme Reaction

2.2.14 Chemotaxis

2.2.15 Calcium Mobilisation Assay

2.2.16 Protein A Chromatography
2.3 In vivo techniques
2.3.1 Animals and Animal Care Procedures
2.3.2 Generation of Air Pouches
2.3.3 Intravenous injection of cultured cells
2.3.4 Statistical analysis

CHAPTER 3: THE CLONING OF MURINE PHOSPHATIDYLINOSITOL 3-KINASE GAMMA
3.1 Introduction
3.2 Isolation of putative clones
3.3 Sequence analysis of putative clones
3.4 Construction of the MmPI3Kγ open-reading frame
3.5 Discussion

CHAPTER 4: IN VITRO CHARACTERISATION OF MmPI3kγ1111
4.1 Introduction
4.2 In vivo expression of MmPI3kγ1111
4.3 Generation of polyclonal antibodies specific for PI3kγ
4.4 Over-expression of MmPI3kγ
4.5 Lipid kinase activity MmPI3kγ1111
4.6 Protein kinase activity of MmPI3kγ1111
4.7 The relationship between phosphorylation status of MmPI3kγ1111 and its lipid kinase activity
4.8 Discussion
CHAPTER 5: THE ROLE OF MmPI3ky1111 IN LYMPHOCYTE MIGRATION IN VITRO AND IN VIVO

5.1 Introduction 104
5.2 Mutagenesis of MmPI3ky1111 106
5.3 Lipid Kinase activity of MmPI3kyKR 108
5.4 Protein kinase activity of MmPI3kyKR 108
5.5 Development of a retroviral dominant-negative expression system 109
5.6 Generation of B lymphocytes stably-transfected with pcDNA3::MmPI3kyKR 112
5.7 Protein and lipid kinase activity of the MmPI3kyKR 113
5.8 Effect of transfection with MmPI3kyKR on in vitro chemotaxis of B300.19-huCCR6 cells in response to human MIP-3α 114
5.9 CCR6 expression on B300.19-huCCR6::MmPI3kyKR cells 115
5.10 Calcium mobilisation of B300.19-huCCR6 cells stably-transfected with pcDNA3::MmPI3kyKR 116
5.11 In vivo recruitment of B300.19-huCCR6 cells 117
5.12 The effect of transfection with MmPI3ky1111 on in vivo migration of B300.19-huCCR6 cells 119
5.13 Discussion 122

CHAPTER 6: GENERAL DISCUSSION

6.1 Discussion 129
CHAPTER 7: BIBLIOGRAPHY

7.1 Bibliography

APPENDIX I

APPENDIX II