Nonperturbative Approaches to Quantum Chromodynamics

William Detmold

Special Research Centre for the Subatomic Structure of Matter
and
Department of Physics and Mathematical Physics,
Adelaide University,
Australia

January 2002
Abstract

Various nonperturbative methods are employed in investigations of Quantum Chromodynamics (QCD). An important theme in these explorations is the approximate chiral symmetry of QCD which provides a number of important constraints on our analyses.

We undertake a detailed study of the structure of the nucleon based on extant numerical simulations of QCD, exploring the methods necessary to connect these results to the physical world. We incorporate key constraints from chiral symmetry and the heavy quark limit into the extrapolation of the moments of the nonsinglet parton distributions from the large quark masses at which lattice simulations are performed to the physical regime. Using these moments, the Bjorken x and quark mass dependencies of the underlying distributions are analysed and the implications for meson masses lying on certain Regge trajectories are studied.

Using the Dyson-Schwinger equation (DSE) framework, we examine the thermodynamic behaviour of various QCD based models. In this study, we place particular emphasis on the quark density at which nuclear matter undergoes a chiral symmetry restoring phase transition to a quark-gluon plasma. In addition, we investigate the behaviour of various pion properties. The DSE method is also used to study a novel class of vertex truncations which recursively includes an infinite class of diagrams. Having solved the DSEs in a simple model, we also derive a consistent truncation of the Bethe-Salpeter equations in the various meson and diquark channels. This truncation is consistent with chiral symmetry, preserving the axial-vector Ward-Takahashi identity and Goldstone's theorem. A simple model based on this scheme produces a mass spectrum that is in reasonable agreement with experiment, exhibiting no diquark bound states.
Contents

1 Introduction .. 1

2 Nonperturbative methods in QCD
2.1 Elements of Quantum Chromodynamics .. 5
2.2 Chiral symmetry, Goldstone’s theorem and the pion ... 8
2.3 Lattice QCD ... 10
2.4 Effective Actions, Dyson-Schwinger equations, Bethe-Salpeter equations and all that .. 15

3 Moments of quark distribution functions from lattice QCD 22
3.1 Deep-inelastic scattering and parton distributions ... 22
3.2 Lattice calculations of moments of quark distributions 28
3.3 Chiral symmetry in the nucleon .. 34
3.4 PDF moments in a meson cloud model ... 37
3.5 Heavy quark limit ... 40
3.6 Improved chiral extrapolation .. 43
3.7 Polarised distributions ... 50

4 Quark distributions in the nucleon ... 55
4.1 Reconstruction of distributions from moments ... 55
4.2 Quark distributions from lattice moments ... 60
4.3 Mass dependence of quark distributions ... 62
4.4 Regge behaviour and the $J^{PC} = 1^{−−}$ trajectory 64

5 The finite chemical potential phase transition ... 69
5.1 Dense matter, asymptotic freedom and the quark gluon plasma 69
5.2 DSEs at nonzero chemical potential .. 72
5.3 Model self-energy kernels ... 74
5.4 Effective actions as energy measures ... 78
5.5 Munczek-Nemirovsky model ... 80
5.6 Maris-Roberts propagator .. 87

6 Recursive vertex truncation scheme ... 101
6.1 Consistency and bound state spectra ... 101
6.2 The recursive vertex ... 102
6.3 Consistent truncation of Bethe-Salpeter equations ... 116
6.4 Mesonic Bethe-Salpeter equations .. 120
6.5 Diquarks .. 130
7 Summary and conclusion
 A Conventions, notations and other scintilla 137
 B DSE numerical methods 141
 C Pion properties at non-zero density or temperature 143
 D List of publications 152
Bibliography 155

viii