Amphibian Peptides: Their Structures and Bioactivity

A thesis submitted for the Degree of Doctor of Philosophy

by

Kate Louise Wegener B. Sc. (Hons.)

from the

Department of Chemistry
The University of Adelaide

December, 2001
CONTENTS

Acknowledgements vii
Statement of Originality ix
Abstract x

Part I. Isolation and Identification of Novel Amphibian Peptides 1

Chapter 1 Introduction 2
 1.1 Amphibian Skin Secretions 2
 1.2 Peptides from Australian Frogs 5
 1.2a Neuropeptides 5
 1.2b Antibiotics 6
 1.2c Anticancer Agents 6
 1.2d Pheromones 7
 1.2e Other Functions 7
 1.3 Peptide Biosynthesis 8
 1.4 Methodology 10
 1.4a Collection of Frog Secretions 10
 1.4b HPLC Analysis 11
 1.4c Mass Spectrometry 11
 1.4d Q-TOF 2 Hybrid Quadrupole Time of Flight Mass Spectrometer 12
 1.5 Peptide Sequencing 15
 1.5a Mass Spectrometry 15
 1.5b Automated Edman Sequencing 16
 1.5c Enzyme Digestion 16
 1.5d C-terminal End Group Determination 16
 1.6 Bioactivity Testing 18

Chapter 2 Peptides from Litoria dahliai 19
 2.1 Introduction 19
 2.2 Results 22
 2.2a General 22
 2.2b Dahlein 1.2 24
 2.2c Dahlein 4.1 27
 2.2d Dahlein 5.6 31
 2.2e Bioactivity Testing 36
 2.3 Discussion 39
 2.3a Peptides from Litoria dahliai 39
 2.3b Structure and Bioactivity of the Dahleins 40
 2.4 Experimental 46
2.4a Secretion Collection and Preparation 46
2.4b HPLC Separation of Glandular Secretion 46
2.4c Mass Spectrometry Analysis 47
2.4d Determination of the Peptide Terminal Group 47
2.4e Lys-C Digestion 47
2.4f Automated Edman Sequencing 48
2.4g Preparation of Synthetic Peptides 48
2.4h Antibacterial Testing 48
2.4i Anticancer Testing 48
2.4j Neuronal Nitric Oxide Synthase Inhibition Testing 49

Part II. Amphibian Antimicrobial Peptides – Structural and Mechanistic Studies 50

Chapter 3 Introduction 51
 3.1 Antibacterial Peptides 51
 3.2 Mechanisms of Action of Antibacterial Peptides 55
 3.2a General Mechanism 55
 3.2b The Barrel-Stave Model 55
 3.2c The Toroidal Model 59
 3.2d The Carpet Model 62
 3.3 Specificity of Action 65
 3.4 Structural Features of α-Helical Antibacterial Peptides 68
 3.4a C-Terminal Amide Group 68
 3.4b Helicity 69
 3.4c Charge State 70
 3.4d Hydrophobicity 71
 3.4e Amphipathicity 72
 3.4f Hydrophilic angle 73
 3.4g Summary 74
 3.5 Hinged α-Helices 75

Chapter 4 Protein Structure Determination 77
 4.1 General 77
 4.2 Circular Dichroism 78
 4.3 Nuclear Magnetic Resonance 82
 4.3a One-dimensional Spectroscopy 84
 4.3b Two-dimensional Spectroscopy 85
 4.3c Correlated Spectroscopy (COSY) 85
 4.3d Total Correlation Spectroscopy (TOCSY) 87
 4.3e Heteronuclear Correlation Spectroscopy 88
 4.3f Nuclear Overhauser Effect Spectroscopy (NOESY) 89
4.4 Sequential Assignments
 4.4a Proton Assignments 91
 4.4b Carbon Assignments 92

4.5 Secondary Structure Identification Using NMR Spectroscopy
 4.5a Secondary Shifts 94
 4.5b NOE Connectivities 96
 4.5c Coupling Constants 98
 4.5d Amide Exchange Measurements 100
 4.5e Summary 101

4.6 Structure Calculations
 4.6a Distance Restraints 102
 4.6b Ambiguous NOEs 106
 4.6c Stereo-specific Assignments 107
 4.6d Dihedral Angle Restraints 108
 4.6e Restrained Molecular Dynamics and Simulated Annealing 109
 4.6f The Potential Energy Function 111
 4.6g Quality of Structures 113

4.7 Models for a Membrane Environment
 4.7a 2,2,2-Trifluoroethanol 117
 4.7b Micelles 118

Chapter 5 Orientation Studies

5.1 General 120

5.2 Solid-State NMR Spectroscopy
 5.2a Orientation of Peptides 124
 5.2b Peptide-Lipid Interactions 126
 5.2c Head-groups – Phosphorus NMR 127
 5.2d Acyl Chains – Deuterium NMR 129
 5.2e Mechanically Aligned Bilayers 133
 5.2f Magnetically Aligned Bilayers 134

5.3 Oriented Circular Dichroism 137

Chapter 6 Short Antibacterial Peptides

6.1 Introduction 140

6.2 Citropin 1.1
 6.2a Circular Dichroism Studies 145
 6.2b NMR Studies – Assignments 146
 6.2c Secondary Shifts 149
 6.2d Amide Secondary Shifts 151
 6.2e NOE Connectivities 151
 6.2f Coupling Constants 152
~Preface~

6.2g Structure Calculations 152
6.3 Aurein 1.2 156
 6.3a NMR Studies - Trifluoroethanol Titration 156
 6.3b Assignments 157
 6.3c Secondary Shifts 160
 6.3d Amide Secondary Shifts 161
 6.3e NOE Connectivities 162
 6.3f Coupling Constants 163
 6.3g Structure Calculations 163
6.4 Orientation Studies 167
 6.4a Oriented Circular Dichroism - Unoriented Vesicles 167
 6.4b Oriented Lipid Bilayers 168
 6.4c Solid-state NMR - Unoriented Multilayers 171
 6.4d Mechanically Oriented Multilayers 173
6.5 Discussion 181
6.6 Conclusion 185

Chapter 7 The Caerin Peptides 186
 7.1 Introduction 186
 7.2 Structure of Caerin 1.1 in DPC Micelles 192
 7.2a NMR Studies - Assignments 192
 7.2b Secondary Shifts 195
 7.2c Amide Secondary Shifts 196
 7.2d NOE Connectivities 197
 7.2e Amide Exchange 198
 7.2f Structure Calculations 199
 7.3 Caerin 1.4 204
 7.3a Circular Dichroism Studies 204
 7.3b NMR Studies - Assignments 204
 7.3c Secondary Shifts 210
 7.3d Amide Secondary Shifts 211
 7.3e NOE Connectivities 212
 7.3f Amide Exchange 213
 7.3g Structure Calculations 214
 7.4 Discussion 221
 7.5 Conclusion 225

Chapter 8 Experimental 226
 8.1 Materials 226
 8.2 CD Spectroscopy - Trifluorocethanol Titrations 226
 8.3 Solution NMR Spectroscopy 226
Abstract

Amphibians secrete a cocktail of chemicals onto their skin in response to stressful stimuli, such as attack by predators. The compounds secreted include bioactive peptides, which can protect against infection, relieve pain and regulate aspects of the animal’s physiology. Such peptides are potential therapeutic agents and can also be used to investigate the relationships between different amphibian species.

The skin secretion of the northern Australian frog *Litoria dahlii* has been investigated, with eleven novel peptides identified. These peptides have moderate biological activity, including antibacterial and anticancer actions, as well as the capacity to inhibit the enzyme neuronal nitric oxide synthase. The similarities between the isolated peptides and those from *L. aurea* and *L. raniformis* from southeast Australia, suggest these species are related, despite their geographical separation.

Many potent broad-spectrum antibiotics have previously been isolated from Australian amphibians. These peptides are believed to act by disrupting the bacterial cell membrane by forming transmembrane ‘barrel-stave’ type ion channels, lipid-incorporating toroidal pores or by assembling as a ‘carpet’ over the membrane surface.

The structures of several antibacterial peptides were determined using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. The short peptides citropin 1.1 (16 residues) and aurein 1.2 (13 residues) both form linear amphipathic α-helices, while caerin 1.1 and caerin 1.4 (both 25 residues) form amphipathic α-helical structures with flexible hinge regions around proline 15.

Oriented circular dichroism and solid-state nuclear magnetic resonance spectroscopy studies were used to investigate the orientation of citropin 1.1 and aurein 1.2 in neutral lipid bilayers. The experimental results suggest these peptides operate by the ‘carpet’ mechanism.