THE MYOCARDIAL METABOLIC AND HAEMODYNAMIC EFFECTS OF PERHEXILINE IN IN VIVO AND IN VITRO MODELS

Steven Anthony Unger

A Thesis submitted to The University of Adelaide as the requirement for the degree of

Doctor of Philosophy

The Cardiology Unit, North Western Adelaide Health Service

Department of Medicine, The University of Adelaide.

September 2000
TABLE OF CONTENTS

Table of Contents ii
Thesis Summary vii
Declaration ix
Acknowledgments x

CHAPTER 1: A LITERATURE REVIEW OF METABOLIC APPROACHES TO MYOCARDIAL ISCHAEMIA 1

1.1 INTRODUCTION 2

1.2 CHRONIC MYOCARDIAL ISCHAEMIA 3

1.2.1 Epidemiology 3

1.2.2 Pathogenesis 4

1.3 CARDIAC METABOLISM 7

1.3.1 Overview of fatty acid metabolism 8

1.3.1.1 Uptake and transport within the aqueous cytoplasm 8

1.3.1.2 Transport into mitochondria 9

1.3.1.3 β-oxidation 10

1.3.1.4 TCA cycle and electron transport chain 10

1.3.2 Regulation of fatty acid metabolism 11

1.3.3 Overview of carbohydrate metabolism 13

1.3.4 Regulation of carbohydrate metabolism 14

1.3.5 Substrate utilisation by the heart: the cost in oxygen 16

1.3.6 Myocardial metabolism during ischaemia/reperfusion 18

1.3.7 The role of fatty acid metabolites 22

1.4 MANAGEMENT OF CHRONIC MYOCARDIAL ISCHAEMIA 24

1.4.1 Medical therapy 24

1.4.1.1 Nitrates 24

1.4.1.2 β-adrenoceptor antagonists 25
1.4.1.3 L-type calcium antagonists 25

1.4.2 Revascularisation 26
1.4.2.1 Percutaneous transluminal coronary angioplasty 26
1.4.2.2 Coronary artery bypass surgery 28
1.4.2.3 Transmyocardial laser revascularisation 29

1.4.3 Limitations of current strategies 30

1.5 METABOLIC APPROACHES TO MYOCARDIAL ISCHAEMIA 32
1.5.1 Increasing glucose supply to the heart 35
1.5.1.1 Glucose-insulin-potassium (GIK) 35
1.5.2 Decreasing fatty acid supply to the heart 38
1.5.2.1 Antilypolytic agents 38
1.5.2.2 β-adrenoceptor antagonists 38
1.5.3 Stimulation of glucose oxidation 39
1.5.3.1 Dichloroacetate 39
1.5.3.2 L-carnitine 40
1.5.4 Inhibition of fatty acid oxidation 41
1.5.4.1 CPT-1 inhibitors 41
1.5.4.2 Thiazolidinediones 44
1.5.4.3 Piperazine derivatives 45

1.5.5 Other pharmacologic approaches 48
1.5.5.1 Coenzyme Q10 48

1.6 PERHEXILINE 49
1.6.1 Haemodynamic effects 50
1.6.1.1 Animal studies 50
1.6.1.2 Human studies 52

1.6.2 Clinical efficacy 54

1.6.3 Toxicity 56
1.6.3.1 Short-term toxicity 56
1.6.3.2 Interactions with hypoglycaemic agents 56
1.6.3.3 Long-term toxicity 57
1.6.3.4 Torsade de pointes 59

1.6.4 Pharmacokinetics 59
1.6.5 Circumvention of toxicity 61
1.6.6 Mechanisms of therapeutic action 62
1.6.7 The role of perhexiline in the 21st century 64

1.7 EXPERIMENTAL TECHNIQUES USED TO MEASURE CARDIAC ENERGY METABOLISM 66
1.7.1 Coronary sinus catheterisation 66
1.7.2 Biochemical tissue analysis 68
1.7.3 Nuclear magnetic resonance spectroscopy 69
1.7.4 14C- and 3H- labelled substrates 71
1.7.5 Positron emission tomography 73
1.7.6 Nuclear imaging with radioiodinated fatty acids 76

1.8 SCOPE OF THE CURRENT STUDY 79

CHAPTER 2: THE HAEMODYNAMIC EFFECTS OF PERHEXILINE IN CONSCIOUS SHEEP 93

2.1 INTRODUCTION 94

2.2 METHODOLOGY 95
2.2.1 Animals and materials 95
2.2.2 Preliminary experiments using bolus doses of perhexiline 96
2.2.3 Set-up of chronically instrumented sheep model 97
2.2.4 Haemodynamic measurements 99
2.2.5 Perhexiline assay and estimation of myocardial drug content 102
2.2.6 Experimental protocol 104
2.2.7 Statistical analysis 105

2.3 RESULTS 106
2.3.1 Bolus perhexiline administration (preliminary experiments) 106
2.3.2 Perhexiline infusions 107
2.3.2.1 Perhexiline pharmacokinetics 107
2.3.2.2 Haemodynamic effects 108
2.3.2.3 Other effects 110

2.4 DISCUSSION 111
CHAPTER 3: THE EFFECT OF PERHEXILINE ON FATTY ACID OXIDATION RATES IN SHEEP

3.1 INTRODUCTION

3.2 METHODOLOGY

3.2.1 Animals and materials

3.2.2 Preliminary experiments

3.2.3 Preparation of IPPA

3.2.4 Experimental protocols

3.2.5 Imaging and data analysis

3.2.6 Statistical analysis

3.3 RESULTS

3.3.1 Short-term infusions

3.3.2 24 hour infusions

3.4 DISCUSSION

CHAPTER 4: THE EFFECTS OF PERHEXILINE ON CARDIAC METABOLISM, FUNCTION, AND EFFICIENCY IN THE ISOLATED WORKING RAT HEART

4.1 INTRODUCTION

4.2 METHODOLOGY

4.2.1 Background

4.2.1.1 Working rat heart models

4.2.1.2 Ischaemia/reperfusion models

4.2.1.3 Measurement of metabolism in the working rat heart

4.2.2 Preliminary experiments: problems and solutions

4.2.2.1 Pressure build-up in the closed system

4.2.2.2 BSA foaming

4.2.2.3 Bacterial contamination

4.2.2.4 Selection of albumin source

4.2.2.5 Ischaemia

4.2.2.6 Chronic dosing of rats with perhexiline

4.2.3 Experimental procedures
4.2.3.1 Animals and materials 166
4.2.3.2 Preparation of perfusate 167
4.2.3.3 Set-up of apparatus 170
4.2.3.4 Working heart perfusions 174
4.2.3.5 Haemodynamic measurements 177
4.2.3.6 Measurement of palmitate and glucose oxidation 178
4.2.3.7 Biochemical tissue analysis 180
4.2.3.8 Statistical analysis 185

4.3 RESULTS 185

4.3.1 Acute perhexiline exposure 185
4.3.1.1 Haemodynamics 186
4.3.1.2 Metabolic effects 187
4.3.2 24 Hour perhexiline exposure 189
4.3.2.1 Haemodynamics 190
4.3.2.2 Metabolic effects 191

4.4 DISCUSSION 193

4.4.1 Summary of results 193
4.4.2 Comparison with published studies using the working rat heart 195
4.4.3 Establishment of an ex vivo model 199
4.4.4 Changes in metabolic efficiency 203

CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 247

5.1 SUMMARY: MAJOR EXPERIMENTAL FINDINGS 248
5.2 ISSUES ARISING FROM MAJOR EXPERIMENTAL FINDINGS 249
5.3 FUTURE EXPERIMENTS 255

APPENDIX 260

BIBLIOGRAPHY 261
SUMMARY

Perhexiline is an effective anti-anginal agent without clinically significant haemodynamic effects which is postulated to have a primary “metabolic” mechanism of action. Recent in vitro work in isolated cardiac mitochondria suggested that inhibition of the key enzyme in the regulation of fatty acid catabolism, carnitine palmitoyltransferase (CPT-1), may play a key role in the action of perhexiline. The experiments described in this thesis are primarily aimed at investigating the postulated metabolic effects of perhexiline in the heart, and correlating these to changes in haemodynamics. Secondary aims are the assessment of the time-dependence of such changes, and the investigation of haemodynamic changes induced by parenteral perhexiline in a conscious animal model.

Haemodynamic effects of parenteral perhexiline

An experimental model of chronically catheterised sheep enabled the monitoring of haemodynamics during and after intravenous perhexiline administration in conscious animals. The major haemodynamic effects of brief intravenous infusions of perhexiline were vasoconstriction, followed by bradycardia. There was no evidence of negative inotropy to suggest any significant calcium channel antagonism at the dosages used.

Metabolic effects of perhexiline in vivo

Nuclear medicine imaging of the heart following injection of a radio-iodinated fatty acid (IPPA) enabled assessment of the effects of parenteral perhexiline administration
on myocardial fatty acid utilisation in an *in vivo* animal model. The use of a known CPT-1 inhibitor, etomoxir, resulted in a significant delay in myocardial clearance of IPPA, indicating inhibition of beta oxidation. However no significant changes in the uptake or clearance kinetics of IPPA were seen following either short-term or long-term (24 hours) perhexiline infusions.

Metabolic effects of perhexiline in vitro

The working rat heart model was used to assess both substrate utilisation and haemodynamics in response to perhexiline and the known CPT-1 inhibitors, etomoxir and oxfenicicine. Although there were no significant effects of acute *in vitro* perhexiline exposure on myocardial energetics of efficiency, *ex vivo* experiments following 24 hours of transdermal perhexiline administration demonstrated an increase in cardiac work performed per unit of fatty acid consumption, associated with improved myocardial efficiency.

In conclusion, perhexiline's effects on cardiac metabolism are not as striking as those of oxfenicicine *in vitro* and etomoxir *in vivo*. However it appears that any such effects of perhexiline are related to total duration of perhexiline exposure, and further work is required in more suitable models of chronic perhexiline administration.