COMBINATION ANTI-CYTOKINE IMMUNOTHERAPY IN AN OVINE MODEL OF GRAM-NEGATIVE SEPTIC SHOCK

A thesis submitted to the University of Adelaide as the requirement for the degree of Doctor of philosophy

by

Sandra Peake BM BS, BSc (Hons), FANZCA, FFICANZCA

Department of Medicine
University of Adelaide
and
Transplant Immunology Laboratory
The Queen Elizabeth Hospital

August 2000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>1.2 PATHOGENESIS OF SEPTIC SHOCK</td>
<td>9</td>
</tr>
<tr>
<td>1.3 CYTOKINES</td>
<td>13</td>
</tr>
<tr>
<td>1.4 TUMOUR NECROSIS FACTOR-α (TNF-α)</td>
<td>16</td>
</tr>
<tr>
<td>1.5 INTERLEUKIN-1 (IL-1)</td>
<td>32</td>
</tr>
<tr>
<td>1.6 ADJUNCTIVE THERAPIES IN SEPTIC SHOCK</td>
<td>44</td>
</tr>
<tr>
<td>1.6.1 Anti-bacterial therapies</td>
<td>44</td>
</tr>
<tr>
<td>1.6.2 Anti-inflammatory therapies</td>
<td>47</td>
</tr>
<tr>
<td>1.6.3 Specific anti-cytokine therapies</td>
<td>48</td>
</tr>
<tr>
<td>1.6.4 Anti-TNF-α therapies</td>
<td>49</td>
</tr>
<tr>
<td>1.6.5 Anti-IL-1 therapies</td>
<td>65</td>
</tr>
<tr>
<td>1.7 CONCLUSIONS</td>
<td>70</td>
</tr>
<tr>
<td>1.8 AIMS OF THE THESIS</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 2: MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>2.2 MATERIALS</td>
<td>74</td>
</tr>
</tbody>
</table>
2.1.1 Culture medium 74
2.1.2 Monoclonal antibodies 74
2.1.3 Buffers 74
2.1.4 Chemicals and reagents 74

2.2 METHODS 76

2.2.1 Cytokine assays 76
2.2.1.1 IL-1β immunoassay 76
2.2.1.2 IL-6 immunoassay 76
2.2.1.3 TNF-α immunoassay 77

2.2.2 Escherichia coli (E.coli) American Type Culture Collection (ATCC) 25922 77
2.2.2.1 Establishment of a standard curve for E.coli ATCC 25922 78
2.2.2.2 Preparation of E.coli ATCC 25922 78
2.2.2.3 Minimum inhibitory concentration of gentamicin for E.coli ATCC 25922 79

2.2.3 Endotoxin Assay 79
2.2.3.1 Plasma 79
2.2.3.2 Immunoglobulin 80

2.2.4 Monoclonal Antibodies 80
2.2.4.1 Cryopreservation of cells 80
2.2.4.2 Cell culture 81
2.2.4.3 Immune ascites 81
2.2.4.4 Ammonium sulphate precipitation 82
2.2.4.5 Quantification 82
CHAPTER 3: DEVELOPMENT OF A REPRODUCIBLE OVINE HYPERDYNAMIC MODEL OF GRAM-NEGATIVE SEPTIC SHOCK

3.1 INTRODUCTION
3.2 AIMS
3.3 METHODS
3.3.1 Determination of the LD_{100} iv. bolus dose of live E.coli ATCC 25922 in sheep
3.3.2 Establishment of a lethal hyperdynamic model of E.coli-induced septic shock
3.3.2.1 Insertion of monitoring catheters
3.3.2.2 Experimental protocol
3.3.3 Statistical analysis
3.4 RESULTS
3.4.1 E.coli infusion
3.4.2 General observations
3.4.3 Cardiopulmonary effects
3.4.4 Laboratory data
3.4.4.1 Haematology
3.4.4.2 Biochemistry
3.4.4.3 Thyroid function tests
3.4.4.4 Cytokines
3.4.5 Organ injury
CHAPTER 4: ANTI-OVINE IL-1B MONOCLONAL ANTIBODY IMMUNOTHERAPY IN AN OVINE MODEL OF GRAM-NEGATIVE SEPTIC SHOCK

4.1 INTRODUCTION

4.2 AIMS

4.3 METHOD

4.3.1 Insertion of monitoring catheters

4.3.2 Experimental protocol

4.3.3 Statistical analysis

4.4 RESULTS

4.4.1 Anti-IL-1β monoclonal antibody infusion

4.4.2 E.coli infusion

4.4.3 General observations

4.4.4 Cardiopulmonary effects

4.4.5 Laboratory variables

4.4.5.1 Haematology

4.4.5.2 Biochemistry

4.4.5.3 Thyroid function tests

4.4.5.4 Cytokines
CHAPTER 5: COMBINATION IMMUNOTHERAPY WITH ANTI-TNF-α AND ANTI-IL-1β MONOCLONAL ANTIBODIES IN AN OVINE MODEL OF GRAM-NEGATIVE SEPTIC SHOCK

5.1 INTRODUCTION 203
5.2 AIMS 205
5.3 METHOD 206
5.3.1 Insertion of monitoring catheters 206
5.3.2 Experimental protocol 206
5.3.3 Statistical analysis 210
5.4 RESULTS 213
5.4.1 E.coli infusion 213
5.4.2 General observations 215
5.4.3 Cardiopulmonary effects 215
5.4.4 Laboratory data 227
5.4.4.1 Haematology 227
5.4.4.2 Biochemistry 229
5.4.4.3 Thyroid function tests 234
5.4.4.4 Cytokines 236
SUMMARY

This thesis examines the role of anti-cytokine monoclonal antibodies (mAb) as adjunctive treatment in an animal model of septic shock. In particular, the role of combination immunotherapies directed against more than one cytokine is investigated.

The study aims were to: 1) develop a lethal hyperdynamic ovine model of gram-negative septic shock which reproduces the pathophysiologic derangements observed in human septic shock; 2) evaluate the efficacy of a mAb directed against (ovine) interleukin-1β (IL-1β), a pivotal mediator in the pathogenesis of septic shock, to ameliorate the pathophysiologic derangements and reduce mortality in a lethal hyperdynamic ovine model of gram-negative septic shock; and 3) test the hypothesis that a combination of anti-cytokine immunotherapeutic strategies directed against two pivotal mediators in the pathogenesis of septic shock, namely IL-1β and tumour necrosis factor-α (TNF-α), is superior to monotherapy against either cytokine alone.

The first results chapter (Chapter 3) describes the development of the ovine model of septic shock. The intravenous (iv.) dose of live E.coli required to produce 100% mortality (LD₁₀₀ dose) in awake, non-resuscitated sheep was determined to be 2 – 3 x 10⁹ live organisms/ml. The administration of basic supportive therapies (fluids, antibiotics) following the iv. LD₁₀₀ infusion of live E.coli in awake sheep was associated with the development of a reproducible hyperdynamic model of septic shock. Multiple pathophysiological derangements were demonstrated including myocardial depression (decreased stroke volume and left ventricular stroke work indices), progressive metabolic acidosis (decreased arterial and mixed venous pH and increased plasma lactate levels), increased plasma endotoxin and immunoreactive cytokine (IL-1β, TNF-α) levels and multiple organ injury. Mortality was 100% and survival time ranged from 8.4 hours to 15.0 hours.
Chapter 4 examines the efficacy of a neutralising mAb directed against sheep IL-1β (3.41) to:
(1) inhibit the live bacterial-induced pathophysiological derangements and; (2) improve survival, in the established ovine model of gram-negative septic shock. The prophylactic iv. infusion of anti-ovine IL-1β mAb 3.41 one hour prior to an iv. LD_{100} live E.coli infusion was associated with an ameliorated hypodynamic response, a sustained increase in systemic mean arterial pressure and attenuated metabolic acidosis (increased arterial and mixed venous pH and decreased plasma lactate levels) relative to control animals not receiving anti-ovine IL-1β mAb 3.41. However, the beneficial effects were incomplete. In particular, myocardial depression, multiple organ injury and elevated circulating cytokine levels (TNF-α) were not prevented. In addition, survival 24 hours post-infectious challenge was not significantly improved following the administration of anti-ovine IL-1β mAb 3.41.

The therapeutic effects of dual cytokine blockade employing a combination of mAb directed against ovine IL-1β (3.41) and TNF-α (6.09) are investigated in Chapter 5. Compared with anti-ovine TNF-α mAb 6.09 alone, prophylactic iv. combination anti-ovine IL-1β and TNF-α immunotherapy in sheep receiving an iv. LD_{100} infusion of live E.coli afforded no additional beneficial effects with respect to the observed amelioration of hypotension, metabolic acidosis and leucopaenia. Similarly, both monotherapy with anti-ovine TNF-α mAb 6.09 and combination anti-ovine IL-1β 3.41 and anti-ovine TNF-α mAb 6.09 therapy were associated with a progressive improvement in cardiac performance (increased cardiac index) over the 24 hour study period. However, divergent effects on mixed venous oxygen were demonstrated. With regard to organ dysfunction, neither monotherapy with anti-ovine TNF-α mAb 6.09 or combination anti-ovine IL-1β 3.41 and anti-ovine TNF-α mAb 6.09 therapy prevented multiple organ injury and survival was not significantly different between the two treatment groups.
In conclusion, there were significant beneficial effects of mAb targeting either IL-1β or TNF-α. However, an incremental improvement with dual cytokine blockade was not demonstrated in the current model of ovine gram-negative septic shock induced by a lethal infusion of live E.coli.