INVESTIGATIONS INTO THE GASTROINTESTINAL
CONTROL OF APPETITE AND FOOD INTAKE

A thesis submitted by
Rosalie Vozzo

For the degree of
Doctor of Philosophy

Department of Medicine
University of Adelaide

June 2002
TABLE OF CONTENTS

Thesis summary xvi
Statement of originality xix
Dedication xx
Acknowledgements xxi
Publications xxiv

Chapter 1 APPETITE AND DISEASE

1.1 Introduction 1
1.2 Obesity 1
 1.2.1 Epidemiology 2
 1.2.2 Biology of overweight and obesity 3
 1.2.3 Obesity and associated health risks 12
1.3 Anorexia nervosa 13
 1.3.1 Definition and epidemiology 14
 1.3.2 Perceptions of food in anorexia nervosa 14
 1.3.3 Appetite-related symptoms in anorexia nervosa 15
 1.3.4 Appetite-regulating peptides 15
1.4 Anorexia of ageing 16
 1.4.1 Epidemiology 17
 1.4.2 Sensory perception 17
 1.4.3 Gut-peptide release 18
 1.4.4 Leptin 19
 1.4.5 Central appetite-regulating pathways 19
1.5 Conclusion 19

Chapter 2 REGULATION OF APPETITE AND FOOD INTAKE

2.1 Introduction 21
2.2 Central mechanisms controlling food intake 21
 2.2.1 Neuroanatomical sites 22
Chapter 3 DIETARY MACRONUTRIENTS AND THEIR COMPARATIVE EFFECTS ON APPETITE AND FOOD INTAKE

3.1 Introduction 48
3.2 Macronutrient satiating hierarchy 49
 3.2.1 Dietary interventions and pre-loading studies 49
 3.2.2 Time course of effects 50
 3.2.3 Implications for weight loss 52
3.3 Characteristics of foods affecting satiety 53
 3.3.1 Sensory properties of food 53
 3.3.2 Volume and weight 54
 3.3.3 Energy density 55
 3.3.4 Frequency of feeding 56
3.4 Conclusion 59

Chapter 4 EFFECTS OF MONOSACCHARIDES ON GLYCEMIC CONTROL AND APPETITE REGULATION IN HEALTHY INDIVIDUALS AND IN PATIENTS WITH NON-INSULIN DEPENDENT DIABETES MELLITUS

4.1 Introduction 60
4.2 Fructose in the diabetic diet 61
 4.2.1 Glycemic control 61
4.3 Monosaccharide absorption 62
4.3.1 Monosaccharide transporters
4.3.2 Glucose transport
4.3.3 Fructose transport
4.4 Effects of monosaccharides on appetite
4.4.1 Comparative satiating efficiencies of monosaccharides
4.4.2 Peptide hormones
4.5 Metabolic responses to monosaccharide ingestion
4.5.1 Blood glucose
4.5.2 Peptide hormones
4.6 Conclusion

Chapter 5 THE ROLE OF NITRIC OXIDE MECHANISMS IN THE REGULATION OF MAMMALIAN FEEDING BEHAVIOUR

5.1 Introduction
5.2 Nitric oxide physiology
5.2.1 Endogenous NO production
5.2.2 Nitric oxide synthase localisation
5.2.3 Cellular targets of NO
5.2.4 Physiological functions of NO
5.3 Nitric oxide and food intake
5.3.1 Nitric oxide antagonists and food intake
5.3.2 Nitric oxide synthase inhibition in genetically obese animals
5.3.3 Effects of food deprivation on NO production
5.3.4 Non-specific effects of NOS antagonists
5.4 Mechanisms regulating NO synthase inhibition-induced anorexia
5.4.1 Central mechanisms
5.4.2 Peripheral mechanisms
5.5 Conclusion

Chapter 6 COMMON METHODOLOGIES

6.1 Introduction
Chapter 7 THE EFFECTS OF INCREASED DIETARY PROTEIN ON SATIETY ARE ATTENUATED BY FAT

7.1 Summary 94
7.2 Introduction 94
7.3 Method 95
 7.3.1 Subjects 95
 7.3.2 Protocol 96
 7.3.3 Macronutrient preloads and buffet meal 97
 7.3.4 Appetite sensations 97
 7.3.5 Biochemical variables 97
 7.3.6 Statistical analyses 97
7.4 Results 97
 7.4.1 Subjects, baseline diets and blinding of preloads 98
 7.4.2 Appetite sensations 98
 7.4.3 Energy and macronutrient intakes 99
 7.4.4 Plasma glucose and insulin 99
 7.4.5 Plasma free fatty acids 100
7.5 Discussion 100
Chapter 8 HIGH PROTEIN, HIGH CARBOHYDRATE AND HIGH FAT YOGHURT PRE-LOADS AND THEIR EFFECT ON SUBSEQUENT SPONTANEOUS FOOD INTAKE IN HEALTHY SUBJECTS

8.1 Summary 108
8.2 Introduction 108
8.3 Methods 109
 8.3.1 Subjects 109
 8.3.2 Protocol 109
 8.3.3 Yoghurt pre-loads 110
 8.3.4 Buffet meal 110
 8.3.5 Statistical Analyses 110
8.4 Results 111
 8.4.1 Yoghurt pre-loads 111
 8.4.2 Food intake 112
 8.4.3 Timing and size of eating episodes 112
 8.4.4 Macronutrient intake 113
 8.4.5 Appetite sensations 113
8.5 Discussion 113

Chapter 9 EFFECT OF MEAL FREQUENCY ON FOOD INTAKE

9.1 Summary 122
9.2 Introduction 122
9.3 Methods 123
 9.3.1 Subjects 123
 9.3.2 Protocol 123
 9.3.3 Pre-nading schedule 124
 9.3.4 Pre-load composition 124
 9.3.5 Test meals 125
 9.3.6 Statistics 125
9.4 Results
 9.4.1 Blood glucose 126
 9.4.2 Appetite sensations 126
 9.4.3 Food intake 127
9.5 Discussion 127

Chapter 10 ANTROPYLORODUODENAL, CHOLECYSTOKININ AND FEEDING RESPONSES TO PULSATILE AND NON-PULSATILE INTRADUODENAL LIPID INFUSION

10.1 Summary 137
10.2 Introduction 138
10.3 Methods 139
 10.3.1 Subjects 139
 10.3.2 Protocol 139
 10.3.3 Measurement of antropyloroduodenal pressures 140
 10.3.4 Quantification of plasma cholecystokinin 140
 10.3.5 Assessment of appetite and food intake 140
 10.3.6 Statistical analyses 140
10.4 Results 141
 10.4.1 Antropyloroduodenal pressures 141
 10.4.2 Plasma cholecystokinin 142
 10.4.3 Appetite and food intake 142
10.5 Discussion 143

Chapter 11 GLYCEMIC, HORMONE AND APPETITE RESPONSES TO MONOSACCHARIDE INGESTION IN PATIENTS WITH TYPE 2 DIABETES

11.1 Summary 152
11.2 Introduction 153
11.3 Methods 154
 11.3.1 Subjects 154
13.2 Introduction 186
13.3 Methods 187
 13.3.1 Subjects 187
 13.3.2 Protocol 187
 13.3.3 Measurement of antropyloroduodenal pressures 188
 13.3.4 Statistical analysis 188
13.4 Results 188
 13.4.1 Antropyloroduodenal pressures 188
 13.4.2 Appetite and food intake 189
13.5 Discussion 189

Chapter 14 CONCLUSION 198

APPENDIX
A 1 Three-day diet diary 202
A 2 Visual analogue questionnaires 206
A 3 Energy content and macronutrient composition of foods served as buffet lunch 208
A 4 Manometric catheter and placement 209

REFERENCES 210
THESIS SUMMARY

This thesis presents studies relating to the gastrointestinal regulation of appetite and food intake. The two broad areas that have been investigated in these studies are 1) the specific effects mediated by different nutrients present in the gastrointestinal tract and 2) the involvement of nitric oxide mechanisms in the peripheral regulation of appetite and food intake. These topics were primarily evaluated in healthy young adult humans, but also in patients with type 2 diabetes.

Obesity is an increasingly prevalent disease the causes of which relate in part to the constant and readily available supply of high fat, energy dense foods. Common dietary approaches to its treatment include a low energy, low-fat, high-carbohydrate diet; however diets with increased protein are becoming increasingly popular. The ability of high protein, rather than carbohydrate and fat pre-loads to produce greater satiety and reduced food intake after a fixed time interval and under spontaneous feeding conditions was investigated in healthy humans. Hunger decreased and fullness increased after both high carbohydrate and high protein pre-loads, relative to no pre-load. Although all nutrient pre-loads delayed the first food request, there was no effect of varying macronutrient ratios on this delay, or on the daily eating frequency. Compensation for over consumption was accurate following high protein but not following high fat or high carbohydrate pre-load, hence total daily food intake was greater after high carbohydrate and high fat pre-loads. These results indicate that the effect of increasing the protein content of the diet is probably to increase satiety and to induce a relative suppression of energy intake at subsequent meals.

Included in the many treatments for overweight and obesity are modifications to specific eating patterns. An inverse relationship has been demonstrated between the number of meals consumed per day and the general state of health. The effects of increased meal frequency on suppression of appetite and food intake were evaluated in healthy humans. Mixed-nutrient meals ingested or infused intragastrically in different frequencies had no significant effect on blood glucose concentrations, on hunger, desire to eat, fullness and satiation, or on ad libitum food intake. These findings do not support the promotion of increased meal frequency as a means of reducing food intake.
The interaction between nutrients and mucosal chemoreceptors in the small intestine plays a major role in the regulation of both gastric emptying and appetite. The contribution of the pulsatile nature of gastric emptying to small intestinal feedback mechanisms modulating antropyloroduodenal motility, gastrointestinal hormone release and food intake is unknown. The effects of intraduodenal infusions of a triglyceride mixture either continuously or in a pulsatile fashion on antropyloroduodenal motility, cholecystokinin release and appetite and food intake were evaluated in healthy humans. The two modes of lipid infusion had similar effects on antropyloroduodenal pressures, plasma cholecystokinin concentrations, hunger and fullness ratings and energy intake. These results indicate that the acute effects of intraduodenal lipid on antropyloroduodenal pressures, plasma cholecystokinin concentrations and appetite are not modified by a pulsatile mode of lipid delivery into the duodenum. The pulsatile nature of gastric emptying is therefore unlikely to contribute to any major extent to the nutrient-induced changes in antropyloroduodenal motility, but hormone release, appetite and food intake.

It is predicted that by 2010 approximately 1.5 million Australians will be affected by non-insulin dependent (type 2) diabetes mellitus. The primary aim of treatment is to reduce blood glucose concentrations, and in the case of many people with type 2 diabetes, who are overweight, to reduce body weight. Fructose has been proposed as an alternative sweetener to glucose in the diet of type 2 diabetics. The relative effects of fructose and glucose on blood glucose, plasma insulin and incretin (glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP)) concentrations, and acute food intake were investigated in patients with diet controlled type 2 diabetes and in non-diabetic, control subjects. Fructose produced smaller post-ingestion blood glucose concentrations than glucose and higher insulin concentrations in diabetics than in non-diabetics. The differences in insulin concentrations were not accounted for by increased incretin (GLP-1 and GIP) concentrations. There was no difference between the effects of fructose and glucose on suppression of food intake in either diabetics or non-diabetics. These results indicate that on the basis of initiating efficiency alone, fructose is unlikely to be useful as a replacement for glucose in the diet of obese patients with type 2 diabetes.

Complex peripheral and central pathways exist, in which a variety of neurotransmitters integrate multiple factors that regulate appetite and food intake. The inhibitory neurotransmitter, nitric oxide (NO) has emerged as a potential regulator of numerous
processes which affect feeding behaviour, including gastrointestinal transit and motility, as well as central and peripheral neural pathways implicated in the control of food intake. Nitric oxide synthase inhibitors reduce food intake in rodents and chickens. The involvement of NO in regulating appetite and food intake pre- and post-prandially was assessed in healthy humans and in an animal model of feeding regulation.

No previous studies have evaluated the possibility that NO regulates appetite and feeding behaviour in humans. NG-nitro-L-nonomethyl arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), non-selective inhibitors of NO synthase (NOS), were administered intravenously in two separate studies, to evaluate the role of NO in the short-term regulation of appetite in healthy subjects. Neither drug had any effect on energy intake or sensation of hunger or fullness. Consistent with a systemic effect both L-NMMA and L-NAME decreased heart rate and blood pressure. It is unlikely that peripheral NO has a role in the regulation of normal human appetite and food intake.

To evaluate the role of NO mechanisms in mediating the effects of small intestinal nutrients on antropylooduodenal motility and appetite in healthy humans, intravenous L-NAME was administered prior to and concurrent with intraduodenal lipid infusion. NG-nitro-L-arginine methyl ester (L-NAME) increased diastolic blood pressure, decreased heart rate and had no effect on antropylooduodenal pressures or food intake. Intravenous administration of the systemic NO synthase inhibitor L-NAME, in a dose that affects cardiovascular function in humans, does not modify the antropylooduodenal motor and appetite responses to intraduodenal lipid infusion. Despite having significant effects on cardiovascular function in the doses used, neither L-NMMA nor L-NAME, had any effect on feeding or appetite and antropylooduodenal motor responses to intraduodenal lipid. These results suggest that NO does not affect short-term appetite, food intake or antropylooduodenal motor function in humans.

The studies reported in this thesis provide new information on the regulation of appetite food intake by gastrointestinal mechanisms in healthy and type 2 diabetics humans. These observations will contribute to advances in basic appetite physiology and clinically to dietary interventions in the treatment of obesity and type 2 diabetes mellitus.