Factors affecting the immunogenicity
and protective efficacy
of routine childhood immunisations

Thesis submitted in requirement for the degree
of Doctor of Philosophy

The University of Adelaide
FACULTY OF HEALTH SCIENCES
Department of Paediatrics

Christina Ann Boros, M.B.B.S., F.R.A.C.P.

Date of Submission: December 2001
Table of Contents

INDEX OF TABLES 11
INDEX OF FIGURES 13
ABSTRACT 16
PUBLICATIONS ARISING FROM THIS THESIS 21
DECLARATION 22
ACKNOWLEDGEMENTS 23
ABBREVIATIONS AND STANDARD UNITS 25

CHAPTER 1. LITERATURE REVIEW 27

1.1 Pertussis infection: the scope of the problem 27
 1.1.1 The spectrum of clinical features of pertussis with age 27

1.2 Microbiology of Bordetella pertussis 29
 1.2.1 B. pertussis virulence factors: control of expression 29
 1.2.2 B. pertussis virulence factors: description 31
 1.2.2.1 Pertussis Toxin (PT) 31
 1.2.2.2 Filamentous haemagglutinin (FHA) 31
 1.2.2.3 Pertactin (PRN) 32
 1.2.2.5 Fimbriae 32
 1.2.2.6 Adenylate cyclase toxin/haemolysin 32
 1.2.2.7 Tracheal cytotoxin 33
 1.2.2.8 Dermonecrotic toxin 33
 1.2.2.9 Lipopolysaccharide 34

1.3 Pertussis vaccines: historical overview 34
 1.3.1 Whole cell vaccines 34
 1.3.2 Acellular vaccines 36

1.4 History of pertussis and pertussis vaccines in Australia 37
 1.4.1 Compulsory notification of disease 38
 1.4.2 Persistent disease reservoir 39
 1.4.3 Vaccine coverage rates 39
 1.4.4 Changes in pertussis serotypes and virulence factors 41
 1.4.4.2 Virulence factors 42

1.5 Epidemiology of other vaccine preventable diseases 42
 1.5.1 Diphtheria 42
 1.5.2 Tetanus 43
 1.5.3 Haemophilus influenzae type b infection (Hib) 44
1.6 Vaccine storage
 1.6.1 Vaccine cold chain
 1.6.1.1 Vaccine temperature monitoring devices
 1.6.1.1.1 Vaccine vial monitors
 1.6.1.1.2 Freezewatches
 1.6.1.1.3 Time Temperature integrators
 1.6.1.1.4 Electronic minimum-maximum thermometers
 1.6.1.1.5 Electronic monitors
 1.6.2 Methods of determining the effect of adverse temperature storage on triple antigen (DTP) vaccines
 1.6.2.1 Effects on the adjuvant
 1.6.2.2 Effects on vaccine antigens
 1.6.2.2.1 Methods of measuring the efficacy of pertussis vaccines
 1.6.2.3 Review of previous studies investigating the effect of adverse storage on the efficacy of DTPw vaccines
 1.6.2.3.1 The pertussis component of DTPw preparations
 1.6.2.3.1.1 Higher temperature storage
 1.6.2.3.1.2 Storage at lower temperatures
 1.6.2.3.2 Diphtheria and tetanus toxoids
 1.6.2.3.2.1 High temperature storage
 1.6.2.3.2.2 Storage at lower temperatures

1.7 Mechanisms of immunity against pertussis infection
 1.7.1 Humoral immunity
 1.7.2 Cell-mediated immunity
 1.7.2.1 Murine studies
 1.7.2.2 Human studies
 1.7.2.2.1 Studies in human adults

1.8 Neonatal immune function
 1.8.1 Neonatal Humoral Immunity
 1.8.2 Neonatal cell-mediated immunity
 1.8.2.1 Implications for responses to immunisation
 1.8.2.2 Implications for the immunisation of premature neonates

1.9 Rationale for studies presented in this thesis

1.10 Hypotheses

1.11 Aims

CHAPTER 2. MURINE IMMUNOGENICITY STUDIES: OUTBRED MICE

2.1. Introduction

2.2 Methods
 2.2.1 Mouse strain, age and sex
 2.2.2 Mouse housing
 2.2.3 Vaccines
 2.2.4 Vaccine transport
 2.2.5 Temperature loggers
 2.2.6 Vaccine storage
 2.2.7 Anaesthesia
2.2.8 Blood collection
2.2.9 Immunisation
2.2.10 Mouse numbers
2.2.11 Measurement of pertussis IgG antibody responses
 2.2.11.1 Reference Sera
 2.2.11.2 Determination of antibody concentrations
2.2.12 Statistical analysis

2.3 Results
2.3.1 Vaccine storage
2.3.2 IgG antibody concentrations
 2.3.2.1 Pre immunisation responses (day 0)
 2.3.2.2 Post- immunisation antibody responses (day 28)
 2.3.2.2.1 Mice immunised with normal saline
 2.3.2.2.1.1 Investigation of high levels of background activity in EIAs
 2.3.2.2.2 Mice immunised with DTPa or DTPw
 2.3.2.2.3 Comparisons between all storage conditions
 2.3.2.2.4 Comparisons between ideal storage and individual adverse storage conditions
 2.3.2.2.4.1 Comparisons between storage at 2°C to 8°C and –3°C for 24 hours
 2.3.2.2.4.2 Comparisons between storage at 2°C to 8°C and –3°C for 14 days
 2.3.2.2.4.3 Comparisons between storage at 2°C to 8°C and –6°C for 14 days

2.4 Conclusions

CHAPTER 3. IMMUNOGENICITY STUDIES: INBRED MICE

3.1 Introduction

3.2 Methods
 3.2.1 Mouse strain, age and sex
 3.2.2 Vaccine transport and storage
 3.2.3 Mouse numbers
 3.2.4 Mouse housing
 3.2.5 Anaesthesia, blood collection and immunisation
 3.2.6 Measurement of IgG antibody responses to pertussis antigens
 3.2.7 Statistical analysis

3.3 Results
 3.3.1 Vaccine storage
 3.3.2 Pertussis IgG antibody responses
 3.3.2.2 Pre-immunisation antibody responses (day 0)
 3.3.2.3 Post immunisation antibody responses (day 28)
 3.3.2.3.1 Mice immunised with normal saline
 3.3.2.3.2 Mice immunised with DTPa or DTPw
 3.3.2.3.3 Comparisons between inbred and outbred mice

3.4 Conclusions
CHAPTER 4. THE PROTECTIVE EFFICACY OF ADVERSELY STORED PERTUSSIS VACCINES: DEVELOPMENT OF THE MOUSE MODEL

4.1 Introduction

4.2 Review of methods of previous investigators

4.3 Development of the mouse model
 4.3.1 Pilot study #1: General methodology
 4.3.1.1 Mouse strain and age, method of challenge
 4.3.1.2 Blood collection and immunisation
 4.3.1.3 Preparation of challenge inoculum and intranasal administration
 4.3.1.4 Sacrifice, lung homogenisation and bronchoalveolar lavage
 4.3.1.5 Results
 4.3.1.5.1 Culture results
 4.3.1.5.2 Calculation of CFU/ml of B. pertussis in inoculum and lung homogenates
 4.3.1.5.3 Lung weights
 4.3.1.6 Summary of first pilot study
 4.3.1.7 Alterations to the experimental methods
 4.3.1.7.1 Anaesthesia
 4.3.1.7.2 Contamination of lung homogenate cultures
 4.3.1.7.3 Counting colony forming units
 4.3.2 Pilot study #2: Investigation of the natural course of infection in unimmunised mice using two inocula of B. pertussis of different concentrations
 4.3.2.1 Intranasal inoculum preparation and intranasal challenge
 4.3.2.2 Sacrifice post challenge
 4.3.2.3 Results
 4.3.2.3.1 Inocula concentrations
 4.3.2.3.2 Lung homogenates
 4.3.2.3.3 Lung weights
 4.3.2.3.4 Histopathological analysis of lungs
 4.3.2.3.5 Summary of second pilot study
 4.3.2.3.6 Alterations to methods after second pilot study
 4.3.2.3.6.1 Mouse housing arrangements
 4.3.2.3.6.2 Preparation of the inoculum
 4.3.2.3.6.3 Preparation and dissection of mice after sacrifice
 4.3.2.3.6.4 Agar plates used for culture of inocula and lung homogenates
 4.3.2.3.6.5 Lung homogenisation and cleaning of homogeniser
 4.3.3 Pilot study #3: assessment of outcome of modifications of experimental protocols from pilot study #2.
 4.3.3.1 Results
 4.3.3.1.1 Cultures of lung homogenates
 4.3.3.1.2 Inoculum culture results
 4.3.3.1.2.1 Bronchoalveolar lavage culture results
 4.3.3.2 Summary
 4.3.3.3 Modifications of experimental protocols after pilot #3
 4.3.4 Pilot study #4: Investigation of natural course of infection at days 2 and 4 post intranasal challenge in unimmunised mice using two inocula of different concentrations and protocol modifications from pilot studies two and three.
 4.3.4.1 Results
 4.3.4.1.1 Inocula concentrations
 4.3.4.1.2 Comparison of lung homogenate and BAL colony counts
4.3.4.2 Changes to experimental protocol after pilot study #4

4.3.5 Final protocol for the definitive protective efficacy experiments

4.3.5.1 Mouse strain and age

4.3.5.2 Housing of mice

4.3.5.3 Mouse handling

4.3.5.4 Day 0 and day 28 Immunisation and blood collection

4.3.5.5 Vaccine transport and storage

4.3.5.6 Preparation and quantification of challenge inoculum

4.3.5.7 Intranasal inoculation

4.3.5.9 Lung homogenisation

4.4 Conclusions

CHAPTER 5. DEFINITIVE PROTECTIVE EFFICACY EXPERIMENTS:
LUNG CLEARANCE STUDIES

5.1 Introduction

5.2 Additional methods

5.2.1 Vaccine storage prior to commencement of experiments

5.2.2 Vaccine storage conditions

5.2.3 Mouse numbers and time points for sacrifice post challenge

5.2.3.1 Assessment of efficacy at days 2, 4, 7 and 14 after challenge

5.2.3.3 Assessment of efficacy at day 4 after challenge

5.2.3.4 Statistical analysis

5.3 Results

5.3.1 Lung clearance in mice immunised with correctly stored vaccines

5.3.2 Comparisons between ideal storage and adverse storage of vaccines below 0°C

5.3.2.1 Inoculum concentrations

5.3.2.2 Day 0 lung homogenate culture results

5.3.2.3 Mice immunised with DTPa

5.3.2.4 Mice immunised with DTPw

5.3.2.5 Mice immunised with normal saline

5.3.2.6 Comparison between the protective efficacy of DTPa and DTPw in all experiments

5.3.4 Comparisons between ideal storage and storage of vaccines at +13°C for 48 hours prior to immunisation

5.3.4.1 Inoculum doses

5.3.4.2 Lung homogenate culture results

5.4 Conclusions

CHAPTER 6. DEFINITIVE PROTECTIVE EFFICACY EXPERIMENTS:
IGG ANTIBODY RESPONSES

6.1 Introduction

6.2 Methods of seroanalysis

6.2.1 Measurement of IgG antibodies to PT, FHA and PRN

6.2.1.1 Reference sera

6.2.2 Measurement of IgG antibodies to diphtheria and tetanus toxoids
6.3 Results

6.3.1 IgG antibody responses in mice immunised with correctly stored vaccines

6.3.1.1 Responses to pertussis antigens

6.3.1.1.1 Mice immunised with DTPa
6.3.1.1.2 Mice immunised with DTPw
6.3.1.1.3 Mice immunised with normal saline
6.3.1.1.4 Comparison between IgG antibody responses to DTPa and DTPw

6.3.1.2 IgG antibody responses to diphtheria and tetanus toxoids

6.3.1.2.1 Mice immunised with DTPa
6.3.1.2.2 Mice immunised with DTPw
6.3.1.2.3 Mice immunised with normal saline
6.3.1.2.4 Comparison between IgG antibody responses to DTPa and DTPw

6.3.2 Comparison of antibody responses between mice immunised with correctly stored vaccines and those immunised with vaccines stored below 0°C

6.3.2.1 IgG antibody responses to pertussis antigens

6.3.2.1.1 IgG responses in mice immunised with DTPa
6.3.2.1.2 IgG responses in mice immunised with DTPw
6.3.2.1.2.1 Comparisons between ideal storage and individual adverse storage conditions for DTPw in response to PT
6.3.2.1.2.2 Comparisons between ideal storage and individual adverse storage conditions for DTPw in response to FHA
6.3.2.1.2.3 Comparisons between ideal storage and individual adverse storage conditions for DTPw in response to PRN

6.3.2.2 IgG antibody responses to diphtheria and tetanus toxoids

6.3.2.2.1 Mice immunised with DTPa
6.3.2.2.2 Mice immunised with DTPw

6.3.3 Comparison between vaccine stored under ideal conditions and at +13°C for 48 hours

6.3.3.1 IgG antibody responses to pertussis antigens

6.3.3.1.1 Mice immunised with DTPa
6.3.3.1.2 Mice immunised with DTPw
6.3.3.1.3 Comparison between responses to DTPa and DTPw after immunisation with vaccine stored at +13°C for 48 hours

6.3.3.4 IgG antibody responses to diphtheria and tetanus toxoids

6.3.3.4.1 Mice immunised with DTPa and DTPw
6.3.3.4.2 Comparison between responses to DTPa and DTPw after immunisation with vaccine stored at +13°C

6.3.3.2 IgG antibody responses of mice immunised with normal saline
6.3.3.3 Correlation between lung clearance and pertussis IgG antibody concentrations four days after intranasal challenge

6.4 CONCLUSIONS
CHAPTER 7. DEFINITIVE PROTECTIVE EFFICACY EXPERIMENTS:

LUNG HISTOPATHOLOGY AND BRONCHOALVEOLAR LAVAGE FLUID ANALYSIS

7.1 Introduction

7.2 Methods
 7.2.1 Preparation of lungs for histopathological analysis
 7.2.1.1 Histopathological assessment of lung inflammation
 7.2.2 Analysis of bronchoalveolar lavage fluid
 7.2.2.1 Collection and storage of BAL fluid
 7.2.2.2 Enzyme immunoassay cytokine analysis
 7.2.2.2.1 Murine IL-2 and IL-4 EIA methods
 7.2.3 Cytospin preparation and analysis
 7.2.3.1 Cytospin slide preparation
 7.2.3.2 Staining of cytopsin slide preparations
 7.2.3.3 Analysis of cytopsin cellular composition

7.3 Results
 7.3.1 Histopathological staging of mouse lungs
 7.3.1.1 Comparisons between vaccine storage conditions
 7.3.1.1.1 Comparison between vaccine treatment groups
 7.3.1.1.2 Comparison between vaccine storage conditions
 7.3.1.2 Histopathology score sub-components
 7.3.1.2.1 Comparison between vaccine treatment groups
 7.3.1.2.2 Comparison between vaccine storage conditions
 7.3.1.2.2.1 Mice immunised with DTPa
 7.3.1.2.2.2 Mice immunised with DTPw
 7.3.1.2.2.3 Mice immunised with normal saline
 7.3.2 BAL cytopsin counts
 7.3.2.1 Comparison by vaccine treatment group
 7.3.2.2 Comparison by vaccine storage condition
 7.3.1.2.2 Mice immunised with DTPa
 7.3.1.2.3 Mice immunised with DTPw
 7.3.1.2.4 Mice immunised with normal saline
 7.3.3 BAL cytokine measurements
 7.3.4 Correlations between lung histopathology mean scores and serology day 4 post challenge
 7.3.5 Correlations between lung histopathology mean scores and mean lung homogenate culture results day 4 post challenge

7.4 Conclusions
CHAPTER 8. ANTIBODY RESPONSES TO ROUTINE IMMUNISATIONS IN PREMATURE AND TERM INFANTS

8.1 Introduction

8.2 Methods
 8.2.1 Recruitment
 8.2.1.1 Term infants, first study
 8.2.1.2 Premature infants
 8.2.1.2.1 First study
 8.2.1.2.2 Second study
 8.2.2 Recruitment criteria
 8.2.3 Informed consent
 8.2.4 Appointment schedule and data collection
 8.2.5 Data management
 8.2.6 Blood sampling procedures
 8.2.7 Separation of serum, labelling and storage of samples
 8.2.8 Immunisation procedures and vaccine details
 8.2.8.1 Australian Immunisation Schedule
 8.2.8.2.1 Management of infants unresponsive to the Hib vaccine after the primary course
 8.2.8.2.2 Management of adverse events following immunisation
 8.2.8.2 Sample size and power calculations
 8.2.9 Materials and Methods of seroanalysis
 8.2.10.1 Pertussis assays
 8.2.10.1.1 Reference sera
 8.2.10.1.2 Quality Controls (QCs)
 8.2.10.1.3 Standardisation of the immunoassays
 8.2.10.2 Anti-Diphtheria and anti-Tetanus toxoid IgG EIA
 8.2.10.3 Anti-PRP IgG antibody EIA
 8.2.11 Statistical analysis

8.3 Results
 8.3.1 First study
 8.3.1.1 Numbers of infants recruited
 8.3.1.2 Numbers of infants completing the study
 8.3.1.3 Compliance with immunisation schedule
 8.3.1.3.1 Premature infants
 8.3.1.3.2 Term infants
 8.3.1.4 Numbers of blood samples collected
 8.3.1.5 Summary of demographic data
 8.3.1.5.1 Sex distribution and birth weight
 8.3.1.5.2 Ante- and postnatal corticosteroid medication
 8.3.1.5.3 Duration of breast-feeding
 8.3.1.5.4 Blood transfusions prior to immunisation
 8.3.1.5.5 Time in hospital, in the Neonatal Intensive Care Unit (NICU) and Special Care Baby Unit (SCBU)
 8.3.1.6 Duration of oxygen therapy
 8.3.1.7 Health insurance
 8.3.1.8 Adverse events following immunisation
 8.3.2 Results of IgG antibody determination
 8.3.2.1 Pertussis serology
 8.3.2.1.1 Comparison of term and premature infant antibody concentrations
8.3.2.1.2 Comparison between term and premature infant subgroups 253
8.3.2.1.2.1 Comparison between term and extremely premature infants 253
(gestation = 27 weeks) 253
8.3.2.1.2.2 Comparison between term and very premature infants 253
(gestation 28-32 weeks) 253
8.3.2.1.2.3 Comparison between term and premature infants 254
(gestation 33-36 weeks) 254
8.3.2.1.3 Comparisons between premature infant subgroups 254
8.3.2.1.4 Summary of pertussis serology results 254
8.3.2.2 Diphtheria and Tetanus serology 255
8.3.2.2.1 Comparison between term and premature infant responses 255
8.3.2.2.2 Comparison between term and premature infant subgroup responses 256
8.3.2.2.2.1 Comparison between term and extremely premature infants 256
8.3.2.2.2.2 Comparison between term and very premature infants 256
8.3.2.2.2.3 Comparison between term and premature infants (33-36 weeks 256
gestation)
8.3.2.2.3 Comparison between premature infant subgroups 256
8.3.2.2.4 Proportion of infants in each age group achieving protective antibody 257
concentrations
8.3.2.2.4.1 Diphtheria antibodies 257
8.3.2.2.4.2 Tetanus antibodies 257
8.3.2.2.5 Summary of diphtheria and tetanus serology results 258
8.3.2.3 Hib-PRP serology 258
8.3.2.3.1 Comparison between term and premature infant responses 258
8.3.2.3.2 Comparison between term and premature infant subgroup responses 259
8.3.2.3.2.1 Comparison between term and extremely premature infants 259
8.3.2.3.2.2 Comparison between term and very premature infants 259
8.3.2.3.2.3 Comparison between term and premature infants 259
8.3.2.3.3 Comparison between premature infant subgroups 259
8.3.2.3.4 Proportion of infants in each age group achieving protective antibody 260
concentrations
8.3.2.3.4.1 Short-term protection 260
8.3.2.3.4.2 Long-term protection (determined at 7 and 19 months) 261
8.3.2.3.5 Summary of PRP serology results 261
8.3.2.4 Multiple regression analysis 262
8.3.2 Second study 263
8.3.2.1 Numbers of infants recruited in Cohort 2 and demographic 264
characteristics
8.3.2.2 Longitudinal comparisons of IgG antibody responses between premature 265
infants immunised with DTPa (cohort 1a) or DTPw in the primary series and DTPa 265
at 18 months (cohort C)
8.3.2.2.1 IgG antibody responses to pertussis antigens 265
8.3.2.2.2 IgG antibody responses to diphtheria and tetanus toxoids 265
8.3.2.3 Longitudinal comparisons of IgG antibody responses between term 266
infants immunised with DTPa (cohort 1b) or DTPw in the primary series and DTPa at 266
18 months (cohort D)
8.3.2.3.1 IgG antibody responses to pertussis antigens 266
8.3.2.3.2 IgG antibody responses to diphtheria and tetanus toxoids 266
8.3.2.4 Cross-sectional studies 267
8.3.2.4.1 Cross-sectional comparisons of IgG antibody 18 month booster 267
responses between premature infants immunised with DTPa (cohort 2) or DTPw in 267
the primary series and DTPa at 18 months (cohort C)
8.3.2.4.2 Proportion of infants with protective antibody concentrations of diphtheria and tetanus antibodies in cohorts 2, C and D. 268
8.3.2.4.3 Cross-sectional comparisons of IgG antibody responses between all newly recruited premature infants (cohorts 1a and 2 combined) and term infants (cohort 1b) at 18 and 19 months of age 268

8.3.2.4.3.1 IgG antibody responses to pertussis antigens 268
8.3.2.4.3.1.1 Comparisons between term and premature infants 268
8.3.2.4.3.1.2 Comparisons between term infants and premature infant subgroups 269
8.3.2.4.3.1.3 Comparisons between premature infant subgroups 269
8.3.2.4.3.1.4 Comparison of pertussis antibody results with first study 269

8.3.2.4.3.2 IgG antibody responses to diphtheria and tetanus toxoids 270
8.3.2.4.3.2.1 Comparisons between term and premature infants 270
8.3.2.4.3.2.2 Comparisons between term infants and premature infant subgroups 270
8.3.2.4.3.2.3 Comparisons between premature infant subgroups 271
8.3.2.4.3.2.4 Comparison of diphtheria and tetanus antibody results with first study 271

8.3.2.4.3.3 IgG antibody responses to Hib PRP 271
8.3.2.4.3.3.1 Comparisons between term and premature infants 271
8.3.2.4.3.3.2 Comparisons between term infants and premature infant subgroups 272
8.3.2.4.3.3.3 Comparisons between premature infant subgroups 272
8.3.2.4.3.3.4 Comparison of PRP antibody results with first study 272

8.4 Conclusions 273
8.4.1 First study 273
8.4.1.1 General trends in antibody concentrations 273
8.4.1.2 Pertussis antibodies 273
8.4.1.3 Diphtheria and tetanus antibodies 274
8.4.1.5 Hib PRP antibodies 274
8.4.2 Second study 280
8.4.2.1 Comparison of immunisation responses in infants immunised with DTPw or DTPa in the primary series and DTPa at 18 months 280
8.4.2.1.2 Longitudinal comparisons 280
8.4.2.2.1 Cross sectional comparisons 280
8.4.2.2.1.1 Cross-sectional comparison of antibody responses in term and premature infants at 18 and 19 months using a combined cohort of premature infants 282

CHAPTER 9 DISCUSSION 317

9.1 Murine Immunogenicity Studies 317
9.2 Murine Protective efficacy studies 319
9.3 Human immunogenicity studies 323

REFERENCES 327
Abstract

This thesis has examined the effect of adverse storage on the immunogenicity of pertussis, diphtheria and tetanus vaccines, the protective efficacy of pertussis vaccines and the effect of premature birth on antibody responses to routine childhood immunisations.

Methods

Murine Immunogenicity studies

Female Swiss outbred and Balb/c mice eight weeks of age were immunised intraperitoneally with whole cell pertussis vaccine (DTPw), acellular pertussis vaccine (DTPa) or normal saline on day 0 of each experiment. Blood was collected to determine IgG antibody responses to pertussis toxin (PT), filamentous haemagglutinin (FHA) and pertactin (PRN) on days 0 and 28. Vaccines were stored under ideal conditions (2°C to 8°C) or at −3°C for 24 hours prior to immunisation for both strains of mice and also at −3°C for 14 days or at −6°C for 14 days for Swiss outbred mice.

Murine Protective efficacy studies

The murine model was extended to include a second immunisation at 28 days, and an intranasal challenge of live pertussis organisms two weeks after the second immunisation, using Balb/c mice. Vaccines were stored under the same conditions as for the immunogenicity studies, and also at −6°C for 24 hours. At serial time points after challenge mice were sacrificed to determine lung clearance of organisms and IgG antibody responses to PT, FHA, PRN and diphtheria and tetanus toxoids. Bronchoalveolar lavages (BAL) for cell count and cytokine measurement and preparation of lungs for histopathological analysis were also performed in subsets of mice.
Human studies

Two studies were undertaken. In the first study, term and premature infants were recruited from two months of age to participate in a longitudinal study to determine IgG antibody responses to DTPa and Hib vaccine antigens before and after primary and 18 month booster immunisations. Comparisons were made between both term and premature infants and term infants and premature infant subgroups determined on the basis of gestational age at birth (extremely premature infants: gestational age at birth = 27 weeks, very premature infants: 28-32 weeks, premature infants 33-36 weeks).

In the second study, stored sera from premature and term infants enrolled in a previous study were used to perform longitudinal comparisons of the effect of immunising with DTPa or DTPw in the primary series and DTPa at 18 months on antibody responses to bacterial vaccine antigens. Cross sectional analyses were performed to confirm 18 and 19 month antibody concentrations in premature infants with different primary DTP immunisation schedules using the stored sera and sera from a second cohort of premature infants newly recruited at 18 months. In addition, further cross-sectional analyses were performed, by combining the two newly recruited premature infant cohorts and comparing term and premature infant and term and premature infant subgroup antibody responses to vaccine antigens at 18 and 19 months.

Results

Murine immunogenicity studies

In Swiss outbred mice, storage at −3⁰C for 24 hours significantly reduced vaccine immunogenicity in all cases except to PRN in DTPa. Other adverse vaccine storage conditions either had no effect on, or paradoxically produced higher antibody concentrations than ideally stored vaccines. Antibody responses to DTPa and DTPw in
Swiss outbred mice were higher than those in Balb/c mice. In both mouse strains, antibody responses to DTPa were greater, but more variable, than those to DTPw.

Murine protective efficacy studies

In general, adverse vaccine storage did not alter lung clearance rates of *B. pertussis* or murine IgG antibody responses to vaccine antigens in DTPa or DTPw or serological responses to immunisation. However, mice immunised with DTPw did not develop antibody responses to PT and demonstrated greater concentrations of diphtheria and tetanus antibodies and lesser concentrations of pertussis antibodies than mice immunised with DTPa. Mice immunised with normal saline did not demonstrate pertussis responses until 14 days after infection and these were of a very small magnitude. No significant correlations between serological responses and lung clearance were demonstrated in these mice when analyses were performed by vaccine and storage condition. However, some of the comparisons tended towards significance with moderately negative correlations demonstrated. Hence, larger numbers of mice may be necessary achieve adequate power for these comparisons.

Immunisation with DTPa resulted in slightly more rapid lung bacterial clearance, less inflammation in stained lung sections, and fewer inflammatory cells in BAL fluid than mice immunised with DTPw or saline. Mice immunised with DTPa and normal saline demonstrated a Th-2 type cytokine response in BAL fluid, whereas immunisation with DTPw conferred a Th-1 cytokine profile. None of these parameters was affected by adverse vaccine storage.
Human studies

The general pattern of IgG antibody concentrations at different study time was consistent in both term and premature infants, with low level of maternal antibodies detected at 2 months, increased responses after primary immunisation measured at the 7 month study time, a decline in antibody concentrations at the 18 month study time with increased booster responses measured at the 19 month study time.

Premature infants demonstrated lower concentrations of IgG antibodies to all vaccine antigens throughout the cohort survey period. These were significantly lower than term infants in response to pertussis vaccine antigens at all study times with one exception (PRN at 19 months). In contrast, premature infant responses to diphtheria and tetanus toxoids and Hib PRP were not, in general, significantly lower than those of term infants. Extremely premature infants demonstrated the lowest antibody concentrations, and the magnitude of antibody responses in premature infants increased with increasing gestational age at birth.

Premature immunised with DTPa from two months of age in general demonstrated significantly higher antibody responses to pertussis antigens after primary and 18 month booster immunisations, but significantly lower responses to diphtheria and tetanus toxoids than premature infants immunised with DTPw in the primary series and with DTPa at 18 months regardless of gestational age at birth. Term infant comparisons were similar, at 7 months, but there were no statistical differences in PT, FHA or diphtheria antibody concentrations between the two groups of term infants at 19 months.

Combining the two newly recruited premature infant cohorts confirmed the term and premature infant comparisons of the first study with regard to PT, FHA, PRN and Hib PRP
antibody concentrations at 18 and 19 months. However, comparisons between term infants and premature infant subgroups were altered: very premature infant pertussis antibody concentrations became more comparable with those of term infants. Extremely premature infant pertussis antibody concentrations remained significantly lower than those of term infants. Diphtheria and tetanus antibody concentrations at 18 and 19 months were affected unpredictably by the addition of a second cohort of premature infants in the analyses.

Conclusions

Although adverse storage does not appear to diminish vaccine immunogenicity or protective efficacy in the short term, vaccines should be stored according to the manufacturers instructions until long term efficacy studies can be performed.

Premature infants demonstrated lower IgG antibody concentrations to all vaccine antigens, but were able to mount protective antibody responses to diphtheria and tetanus toxoids and Hib PRP. Premature infant responses to pertussis vaccine antigens were, in general, significantly lower than those of term infants at all study times, despite evidence of increased antibody concentrations after primary and 18 month booster immunisations. Extremely premature infants demonstrated the lowest antibody concentrations to all vaccine antigens, and in particular to pertussis vaccine antigens. There is no single serological correlate of protection against pertussis infection, however, and antibody avidity and cell-mediated immune responses were not examined in these infants. Therefore these parameters should be explored before changes are made to the immunisation schedule of premature infants.