The mammalian mitochondrial Hsp70 chaperone system, new GrpE-like members and novel organellar substrates

Submitted by Dean Jason Naylor BSc. (Hons.)

A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

The Faculty of Agricultural and Natural Resource Sciences
The University of Adelaide, Waite Campus,
Department of Horticulture, Viticulture and Oenology
Glen Osmond, South Australia 5064, Australia

August, 1999
Table of contents

Table of contents... i
List of abbreviations... v
Summary.. ix
Statement of authorship.. x
Acknowledgments.. xi
List of publications.. xii

CHAPTER 1 General introduction

1.1 Scope of chaperone existence and focus of this review.. 1
1.2 The discovery of heat shock (stress) proteins and molecular chaperones........................ 3
1.3 How do proteins fold?... 9
1.4 The molecular chaperone concept.. 11

1.5 The Hsp70 molecular chaperone system... 12
 1.5.1 E. coli constitutes a model system for the study of eukaryotic molecular chaperones.... 12
 1.5.2 The E. coli DnaK (Hsp70) chaperone system... 13
 1.5.3 Structure-function relationship of the DnaK(Hsp70)/DnaJ(Hsp40)/GrpE system........ 16
 1.5.3.1 DnaK (Hsp70) component... 16
 1.5.3.2 DnaJ (Hsp40) component... 18
 1.5.3.3 GrpE component... 21
 1.5.4 Reaction cycle of the DnaK (Hsp70)/DnaJ (Hsp40)/GrpE system............................ 22
 1.5.5 In some Hsp70 systems, GrpE may be replaced by additional co-factors that
 broaden the functions of Hsp70 chaperones.. 24
 1.5.6 The DnaK (Hsp70) substrate binding motif.. 26
 1.5.7 The contribution of molecular chaperones to the folding of newly synthesised
 proteins and those unfolded by stress... 27
 1.5.8 The cooperation of molecular chaperone systems during de novo protein
 folding and the refolding of stress-denatured proteins... 28

1.6 The components involved in mitochondrial protein import, folding and assembly.......... 30
 1.6.1 The translocation of preproteins across the mitochondrial inner membrane
 requires the matrix located mt-Hsp70... 31
 1.6.2 The requirement of a distinct mt-Hsp70 system for protein (re)folding and assembly... 33
 1.6.3 Protein import and folding in mammalian mitochondria... 36

1.7 Roles of chaperones in protein degradation within E. coli and mitochondria................. 37
 1.7.1 Many stress proteins are proteases.. 37
 1.7.2 Protein degradation within the mitochondrion... 38
 1.7.3 Chaperone assisted proteases of E. coli.. 38
 1.7.3.1 The La (Lon) protease... 38
 1.7.3.2 The Clp proteases.. 39
 1.7.3.3 The FtsH (HflB) protease... 40
1.7.4 Chaperone assisted proteases within the mitochondrion
1.7.4.1 Homologues of the La (Lon) protease
1.7.4.2 Homologues of the Clp family and ClpP proteolytic subunit
1.7.4.3 Homologues of the FtsH (HflB) protease

1.8 Future directions

CHAPTER 2 Affinity-purification and identification of a mammalian mitochondrial GrpE-like protein (mt-GrpE#1)

2.1 INTRODUCTION

2.2 MATERIALS AND METHODS

2.2.1 Preparation of a DnaK-affinity column
2.2.2 Isolation of soluble mitochondrial proteins
2.2.3 DnaK-affinity chromatography
2.2.4 Protein and peptide sequence analysis
2.2.5 SDS-PAGE
2.2.6 Coomassie Brilliant Blue staining of proteins after SDS-PAGE

2.3 RESULTS AND DISCUSSION

CHAPTER 3 Isolation and characterisation of a cDNA encoding mammalian mt-GrpE#1

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

3.2.1 Synthesis of oligonucleotide primers
3.2.2 Isolation of mRNA, RT-PCR, cDNA library screening and 5'-RACE analysis
3.2.3 Production of anti-mt-GrpE#1 and anti-Hsp60 polyclonal antibodies
3.2.4 Western blot analysis
3.2.5 Northern analysis
3.2.6 Growth of tissue culture cells
3.2.7 Stress treatments, metabolic labelling and fractionation of tissue culture cells
3.2.8 Semi-quantitative RT-PCR

3.3 RESULTS AND DISCUSSION

3.3.1 Cloning of rat mt-GrpE#1 cDNA
3.3.2 Members of the GrpE family exhibit a relatively low degree of sequence identity at the amino acid level
3.3.3 mt-GrpE#1 is a low abundance mitochondrial protein of ubiquitous appearance in mammalian organs
3.3.4 mt-GrpE#1 synthesis is induced slightly by amino acid analogue treatment but not by heat shock
CHAPTER 4 Definition of two functional mitochondrial GrpE-like proteins in mammalian cells

4.1 INTRODUCTION... 61
4.2 MATERIALS AND METHODS.. 63
 4.2.1 Immunological techniques... 63
 4.2.2 Nucleotide sequence analysis... 63
 4.2.3 Southern blot analysis... 63
 4.2.4 Expression of mouse mt-GrpE#2, rat mt-GrpE#1 and rat mt-Hsp70 in E. coli..... 64
 4.2.5 Native PAGE... 66
 4.2.6 ATPase assay... 66
 4.2.7 RNA dot blot analysis... 66
4.3 RESULTS AND DISCUSSION... 67
 4.3.1 Evidence for the existence of a distinct cytosolic GrpE-like protein............... 67
 4.3.2 Identification of a second mammalian mt-GrpE cDNA................................. 68
 4.3.3 mt-GrpE#2 is present in mitochondria... 69
 4.3.4 Properties of mt-GrpE#1 and #2 and interaction with DnaK............................ 70
 4.3.5 mt-GrpE#1 and #2 are functional co-chaperones for mt-Hsp70....................... 71
 4.3.6 Expression of mt-GrpE#2... 72

CHAPTER 5 Characterisation of several Hsp70 interacting proteins
from mammalian organelles

5.1 INTRODUCTION... 74
5.2 MATERIALS AND METHODS.. 76
 5.2.1 DnaK- and ATP-affinity chromatography... 76
 5.2.2 Protein sequence analysis... 76
5.3 RESULTS.. 78
5.4 DISCUSSION... 81

CHAPTER 6 Mitochondria and peroxisomes may contain distinct
isoforms of 2,4-dienoyl CoA reductase

6.1 INTRODUCTION... 85
6.2 MATERIALS AND METHODS.. 88
 6.2.1 Purification of the 2,4-dienoyl-CoA reductases... 88
 6.2.2 Synthesis of oligonucleotide primers... 88
 6.2.3 Southern blot analysis... 89
 6.2.4 Isolation of mRNA, RT-PCR, cDNA library screening and 5' RACE analysis... 89
 6.2.5 Immunological techniques.. 89
 6.2.6 Expression of rat px-2,4-DCR#1 in E. coli.. 90
 6.2.7 Enzyme assays... 91
6.2.8 Northern blot analysis...91
6.3 RESULTS...92
 6.3.1 DnaK-affinity purification of rat px-2,4-DCR#1 and mt-2,4-DCR#1.................................92
 6.3.2 Cloning of rat px-2,4-DCR#1 cDNA..93
 6.3.3 Rat px-2,4-DCR#1 exhibits significant sequence identity with members
 of the 2,4-dienoyl CoA reductase family at the amino acid level..............................93
 6.3.4 Characterisation of recombinant rat px-2,4-DCR#1..94
 6.3.5 Expression of px-2,4-DCR#1 and mt-2,4-DCR#1 transcripts...96
6.4 DISCUSSION..97

CHAPTER 7 Summary and future directions...101

REFERENCES..104
Summary

The DnaK (Hsp70), DnaJ and GrpE heat shock proteins of *Escherichia coli* work synergistically in a diverse number of vital cellular processes including the folding of nascent polypeptides, assembly and disassembly of multimeric proteins, refolding of malformed proteins, degradation of unstable and non-native polypeptides, regulation of the stress response and the mediation of protein translocation across membranes. Various biochemical and genetic studies have identified homologues of the DnaK, DnaJ, GrpE triad within all cells and the major compartments thereof that participate in similar functions. Thus the concept of a universally conserved Hsp70 chaperone system (‘machine’ or ‘team’) has arisen and the *E. coli* triad is considered the prototype. In this study DnaK-affinity purification was employed to identify a mammalian mitochondrial GrpE homologue (mt-GrpE#1) for the first time. Isolation of a cDNA sequence encoding rat mt-GrpE#1 and deduction of its polypeptide sequence, permitted the generation of a consensus sequence for GrpE members from several biological kingdoms that revealed only six invariant residues at the amino acid level. Utilising this consensus sequence a second mammalian mt-GrpE homologue (mt-GrpE#2) was identified and shown to exhibit ~47% positional identity to mt-GrpE#1 at the amino acid level. Following synthesis in *E. coli*, the functional integrity of mt-GrpE#1 and #2 was verified by their ability to stably interact with and stimulate the ATPase activity of mammalian mitochondrial Hsp70 (mt-Hsp70). A constitutive expression of both mitochondrial GrpE transcripts was observed in 22 distinct mouse tissues but the presence of putative destabilisation elements in the 3'-untranslated region of the mt-GrpE#2 transcript, which are not present in the mt-GrpE#1 transcript, may confer a different expression pattern of the encoded proteins. Evidence is also provided for the existence of a distinct cytosolic GrpE-like protein within mammalian cells.

In conjunction with these studies, several organelar polypeptides (from mitochondria, peroxisomes and the endoplasmic reticulum) were observed to be selectively retained on an immobilised Hsp70 member, the consequence of which is speculated to be of fundamental importance in maintaining proper organelar biogenesis and may constitute a new level of metabolic regulation. The cDNA sequence of one of the retained polypeptides was determined and subsequently characterised as a putative peroxisomal isoform of 2,4-dienoyl CoA reductase. Should this be the case, it is concluded that distinct isoforms of this protein exist in mammalian mitochondria and peroxisomes rather than the dual targeting of the known mitochondrial reductase to both organelles, this has been a subject of debate for several years.