The Blood-Brain Barrier in Normal and Pathological Conditions

By

Chunni Zhu, B Med, M Msc

Thesis submitted for the degree of
Doctor of Philosophy
To The University of Adelaide
Department of Anatomical Sciences

April 2001
TABLE OF CONTENTS

ABSTRACT .. I

DECLARATION .. III

ACKNOWLEDGEMENTS ... IV

PUBLICATIONS AND PRESENTATIONS ... VI

Publications: ... vi
Presentations: ... vi

ABBREVIATIONS: .. IX

1 INTRODUCTION ... 1

1.1 What is the blood-brain barrier? ... 1
1.2 Historical review of the blood-brain barrier ... 1
1.3 Structure of the blood-brain barrier .. 3
 1.3.1 Tight junctions ... 3
 1.3.2 Non-fenestrated ECs with a low density of vesicles 6
1.4 Other components of the BBB ... 7
 1.4.1 Pericytes ... 7
 1.4.2 Astrocytes .. 10
1.5 Molecular anatomy of the BBB ... 14
 1.5.1 Proteins of unknown function .. 14
 1.5.1.1 Endothelial Barrier Antigen ... 14
 1.5.1.2 OX-47 .. 18
 1.5.2 Proteins of transport function ... 20
 1.5.2.1 Glucose Transporter Protein 1 .. 20
 1.5.2.2 P-glycoprotein .. 29
 1.5.2.3 Gamma-Glutamyl Transpeptidase .. 34
 1.5.3 Junctional proteins ... 36
 1.5.3.1 Occludin ... 36
 1.5.3.2 The proteins ZO-1 and ZO-2 .. 37
1.6 BBB transport ... 38
1.6.1 Transport via carrier systems .. 38
 1.6.1.1 Glucose transport .. 38
 1.6.1.2 Amino acid transport ... 39
1.6.2 Transport via receptors .. 40
 1.6.2.1 Transferrin receptor-mediated iron uptake 40
 1.6.2.2 Insulin receptor-mediated insulin uptake 42
1.7 Development of the BBB .. 42
1.8 The BBB in pathological conditions 47
 1.8.1 Traumatic brain injury .. 51
 1.8.2 Toxaemia ... 53
1.9 Summary .. 56

2 AIMS OF THE THESIS .. 59

3 MATERIALS AND METHODS .. 60

3.1 Materials .. 60
 3.1.1 Animals .. 60
 3.1.1.1 Clostridium perfringens type D epsilon prototoxin-induced oedema model 60
 3.1.1.2 Traumatic brain injury model 60
 3.1.1.3 In vivo immunological targeting of EBA model 60
 3.1.2 Clostridium perfringens type D epsilon prototoxin 61
 3.1.3 Antibodies and antisera .. 61
 3.1.3.1 Primary antibodies and antisera 61
 3.1.3.2 Secondary antibodies ... 63
 3.1.4 Biochemical reagents .. 63
 3.1.4.1 Immunochemicals .. 63
 3.1.4.3 BBB tracers ... 63
 3.1.4.4 Resins .. 64
3.2 Methods ... 64
 3.2.1 Animal models .. 64
 3.2.1.1 Clostridium perfringens type D epsilon prototoxin-induced oedema 64
 3.2.1.2 Traumatic brain injury .. 65
 3.2.1.3 In vivo immunological targeting of EBA 69
 3.2.2 Animal perfusion .. 69
 3.2.3 Tissue preparation ... 70
 3.2.3.1 Brain .. 71
3.2.3.2 Eyes .. 71
3.2.4 Immunocytochemistry .. 72
 3.2.4.1 Light and electron microscope immunocytochemistry for EBA 72
 3.2.4.2. Light and electron microscope immunocytochemistry for GLUT1 77
 3.2.4.3 Light and electron microscope immunocytochemistry for endogenous albumin 78
 3.2.4.4 Post-embedding immunogold staining for EBA 78
3.2.5 Histochemistry for HRP study .. 79
3.2.6 Quantitative assessment of EBA immunoreactivity 80
 3.2.6.1 Quantitative assessment of EBA immunoreactivity at the LM level 80
 3.2.6.2 Quantitative assessment of EBA immunoreactivity at the EM level 81
3.2.7 Quantitative assessment of GLUT1 immunoreactivity 82
 3.2.7.1 Quantitative assessment of GLUT1 immunoreactivity at the LM level 82
 3.2.7.2 Quantitative assessment of GLUT1 immunoreactivity at the EM level 82

4 RESULTS ... 83

4.1 Clostridium perfringens type D epsilon prototoxin-induced BBB opening 83
 4.1.1 General conditions of experimental animals ... 83
 4.1.2 Ultrastructural changes of the BBB in prototoxin-induced BBB opening 83
 4.1.3 Permeability of the BBB in prototoxin-induced BBB opening 91
 4.1.4 EBA expression in prototoxin-induced BBB opening 99
 4.1.4.1 EBA expression in controls .. 99
 4.1.4.2 EBA expression in experimental animals ... 100
 4.1.4.3 Quantitative assessment of EBA expression in prototoxin-induced BBB opening 101
 4.1.5 GLUT1 expression in prototoxin-induced BBB opening 116
 4.1.5.1 Qualitative analysis of GLUT1 expression 116
 4.1.5.2 Quantitative analysis of GLUT1 expression 116
4.2 Traumatic brain injury model .. 130
 4.2.1 General conditions of experimental animals ... 130
 4.2.2 Gross pathological changes in the brain .. 130
 4.2.3 Ultrastructure of the BBB in TBI .. 131
 4.2.4 Permeability of the BBB in TBI .. 140
 4.2.4.1 Serum albumin permeability in TBI .. 140
 4.2.4.2 Lanthanum permeability in TBI .. 141
 4.2.5 EBA expression in TBI .. 153
 4.2.6 GLUT1 expression in TBI ... 172
4.3 In vivo immunological targeting of EBA .. 191
4.3.1 Permeability of the BBB and BRB .. 191
 4.3.1.1 HRP permeability ... 191
 4.3.1.2 Serum albumin permeability ... 202
4.3.2 Immunocytochemistry for EBA .. 210

5 DISCUSSION .. 219

5.1 Clostridium perfringens type D epsilon prototoxin-induced BBB opening 219
 5.1.1 The integrity of the BBB in prototoxin-induced BBB opening 219
 5.1.2 EBA expression in prototoxin-induced BBB opening 224
 5.1.3 GLUT1 expression in prototoxin-induced BBB opening 229
 5.1.4 Conclusion .. 231

5.2 Traumatic brain injury (TBI) .. 232
 5.2.1 The integrity of the BBB in TBI .. 232
 5.2.2 EBA expression in TBI ... 239
 5.2.3 GLUT1 expression in TBI ... 244
 5.2.4 Conclusion .. 251

5.3 In vivo immunological targeting EBA .. 253
 5.3.1 The effect of anti-EBA injection on the BBB and BRB 253
 5.3.2 The intravenously injected anti-EBA antibody 258
 5.3.3 The significance of control antibodies 261
 5.3.4 Conclusion .. 262

6 GENERAL DISCUSSION AND CONCLUSION ... 264

6.1 The integrity of the BBB ... 267
6.2 EBA expression and its function .. 268
6.3 GLUT1 expression ... 271
6.4 General conclusion ... 272
6.5 Limitations and future studies .. 273

APPENDIX ... 276

Raw data .. 276
Publications ... 292

BIBLIOGRAPHY .. 318
ABSTRACT

The blood-brain barrier (BBB) consists of a specialised endothelium which effectively prevents free exchange between the blood and the brain but selectively allows the transport of nutrients and maintains homeostasis in the central nervous system. Despite decades of research, many aspects of the BBB are still obscure. The current study investigated the BBB in normal and pathological conditions induced by intravascular and extravascular insults. Intravascular insult was induced by the administration of Clostridium perfringens (Cl p) type D epsilon prototoxin. Extravascular insult was induced by an impact acceleration model for closed head injury to induce traumatic brain injury (TBI). The integrity of the BBB was examined ultrastructurally and by its ability to exclude endogenous and exogenous tracers. The expression of two BBB specific proteins, the endothelial barrier antigen (EBA) and the glucose transporter 1 (GLUT1), was studied.

The normal BBB was impermeable to macromolecules (serum albumin and horseradish peroxidase (HRP)) and small molecules (ionic lanthanum). Ultrastructurally the cerebral endothelium was non-fenestrated and had a low density of cytoplasmic vesicles. Tight junctions sealed the interendothelial cleft and effectively prevented the passage of tracers. Endothelial cells (ECs) at the BBB strongly expressed EBA and GLUT1.

Breakdown of the BBB was observed in both the Cl p prototoxin and the TBI models. Leakage of tracers indicated the development of vasogenic brain oedema. Undulation of EC luminal membrane and increased cytoplasmic vesicles appeared
to be a common response to vascular injury in the two models. The alteration of tight junctions occurred mainly in traumatic brain injury.

A reduction in EBA immunoreactivity in brain vessels correlated with the disruption of the BBB in both models and appeared to be a sensitive indicator of the compromised BBB. The function of EBA at the BBB was further studied by \textit{in vivo} immunological targeting of this antigen. Intravenous injection of anti-EBA led to rapid opening of the BBB and the intravenously injected anti-EBA was bound to ECs, suggesting the formation of antigen-antibody complexes \textit{in vivo}.

GLUT1 expression showed dissimilar results in the two models. \textit{Clp} prototoxin injection did not affect the expression of GLUT1, while TBI evidently reduced GLUT1 immunoreactivity. It appears that TBI has a profound effect on the cerebral glucose metabolism.

This study increased our understanding of the pathobiology of the BBB. Targeting BBB-specific proteins may provide a useful tool for future research into the function of the BBB.