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Abstract

In this dissertation, we aim to provide a mathematical foundation for the applica-

tion of genetic algorithms to economic models.

In order to analyse the dynamics of a genetic algorithm in an economic applica-
tion, we model the representative discrete time stochastic process as a homogeneous
Markov chain. The transition matrix for this Markov chain exhibits a number of
properties depending on each individual model, the genetic operators, and other
parameters. In particular, conditions for the existence and uniqueness of equilib-
ria, and for convergence and stability in the economic system, can be derived from
the communication and recurrence properties of the transition matrix. Two con-
cepts from Markov theory are essential to our analysis. First, partitioning states
of the Markov chain into disjoint communicating classes is fundamental in estab-
lishing the solidarity properties of recurrence or transience for all states within a
communicating class. The correspondence between absorbing states and economic
equilibria, stable or unstable, is particularly relevant in this approach. Second,
by analysing the hitting probabilities of a Markov chain on given states we gain

insight into the probability that an economic model will reach equilibrium.

Following the work of Arifovic [3], we illustrate how our theoretical results can
be applied in practice in the context of a cobweb model. Using an approach

based on Markov chains, we derive conditions for convergence with probability
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one. We compare these conditions to the local asymptotic stability conditions
derived by Dawid [24]. Calculations of stationary distributions of our chain for
sufficiently small state spaces allows us to discuss the rate of convergence and the
asymptotic properties of the model. We also consider two overlapping generations
economies. The first is a model of constant money supply, the second a model of
constant real deficit. In such two population models, it is not practical to calculate
a stationary distribution of the Markov chain. However, we do statistically analyse
market volatility in simulations. In the model of constant real deficit, we discuss
an implementation of Marcet and Sargent’s [58] least squares learning algorithm

and comment on the differences which arise as a result in simulations.
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Chapter 1

Introduction

1.1 Adaptive Learning and
Genetic Algorithms

Economic systems have been studied, modelled, and subsequently analysed in a
number of different ways. Traditionally, analytic models have been proposed to
explain the complex dynamical behaviour economic systems exhibit. Laboratory
experimentation with human test subjects have provided evidence to give insight
to these models. However, in some economic models, experimental results and
analytic models have not been in agreement. Traditional assumptions inherent
to many analytic models, the theory of rational expectations for example, have
been questioned and other plausible hypotheses proposed as alternatives to these
assumptions. Learning algorithms offered alternative analytic models of adapta-
tion and learning which incorporated these plausible hypotheses for behaviour in

economic systems, see for example Lucas [57].

Conventual genetic algorithms were first proposed for use in optimization prob-

lems. They were designed to imitate Darwin’s [23] theory of natural selection and
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evolution. In this sense, genetic algorithms are not truly function optimizers per

se, see [29], but are rather random search methods or heuristics.

The interpretation of a genetic algorithm as a metaphor for cognitive intelligence
and decentralized learning made it natural to consider its application to economic
systems. In such applications, a population of adaptive agents simulates the be-
haviour of a population of human agents. These adaptive agents formulate strategic
decisions about the economy through the application of the genetic algorithm. The
genetic algorithm is itself a synergism of evolutionary pressure and natural selec-
tion. Hence, a genetic algorithm, as used in economic applications, is considered
to be a model for the behaviour of adaptive agents within the system. The evo-
lution of decisions throughout simulations of the genetic algorithm can then be
compared with empirical results, analytic models, and other learning algorithms,

see for example Arifovic [3].

Despite the acceptance of genetic algorithms in economics, few results have been
derived for their application to economic systems. The work of Dawid [26] is a
notable exception. In Dawid’s work, several local asymptotic stability conditions
are derived. We do not follow Dawid’s approach but rather concentrate on the
absorbtion and communication properties of a Markov chain model for a genetic
algorithm. With this approach, we aim to provide a mathematical foundation for
genetic algorithms in economic applications and to derive theoretical results for
our models. We discuss particular results using simulations to illustrate our theory

in practice.

1.2 Literature Review

The cobweb model was first formulated by Ezekiel [36] and Leontief [55]. Since

then, cobweb economies have been analysed by a number of authors, see Chiarella
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[22] for a comprehensive listing of publications up to 1990. Carlson [19], Holt and
Villamil [49], Wellford [73], and Hommes et al. [50] used human test subjects to

explore cobweb economies.

Arifovic [3] applied a genetic algorithm to a cobweb model. By incorporating
an election operator into her genetic algorithm, Arifovic modelled the behaviour of
agents in the economy. She compared her simulation results for a genetic algorithm
to learning algorithms based upon price averages [20], naive expectations [36],
and least squares learning [58]. She also compared her results to the laboratory
experiments of Wellford [73]. Her simulation results showed that agents in a genetic

algorithm modelled the qualitative features observed in laboratory tests.

Dawid and Kopel [28] considered a formulation for the cobweb model which incor-
porated a market entry and exit decision. That is, agents were allowed to enter
or leave the market. Stability results were derived for this model and a genetic
algorithm using a Markov chain approach developed by Vose and Liepins [72] and
Nix and Vose [62]. See Dawid [24], Dawid [26], and Dawid and Hornik [27] for
a detailed description of this approach and its application to economic models.
This Markov chain approach provided an insight into the asymptotic convergence

properties of genetic algorithms.

Brock and Hommes [14] and Goeree and Hommes [42] analysed a non-linear cob-
web model. Agents chose from using either a freely provided naive expectations
predictor or a costly rational expectations predictor. In these models, different
hypotheses about how agents should respond to market stimulus were proposed.
An analysis of alternative behaviour for agents within the context of a genetic al-
gorithm was the topic of Franke [39]. Franke’s formulation for a genetic algorithm

incorporated adaptive expectations of different orders.

Gaffney et al. [40] discussed a cobweb model which was simulated using a modified

genetic algorithm. In this study, an alternative coding mechanism, real coding, was



1. Introduction 4

used. Pearce [63] proposed a general formulation for a genetic algorithm studied by
Gaffney et al. [40]. He considered discrete and continuous models of this genetic

algorithm and analysed their convergence properties.

Samuelson [68] formulated an overlapping generations model of fiat money in 1958.
To explore Samuelson’s theoretical model, laboratory tests were performed by Ar-
ifovic [3], Lim et al. [56], Marimon et al. [60], and Marimon and Sunder [61].
Lucas [57] and Marcet and Sargent [58] analysed the adaptive dynamics of learn-
ing schemes which represent alternative models of human behaviour. Azariadis [9],
Evans and Honkapohja [34, 35], and Woodford [75] considered sunspot equilibria.
In such models, agents believe ex ante that prices depend upon an exogenous ran-
dom variable taking on values {0, 1} according to some stochastic process. Duffy
[30] considered an overlapping generations model in disequilibrium and Bullard
[15] examined complicated equilibrium trajectories using a least squares learning

model.

Arifovic [5] considered two models of the overlapping generations type. The first
model examined was of constant money supply, the second model was of con-
stant real deficit. Arifovic [6] explained local stability with reference to Evans and
Honkapohja’s [34] [35] E-stability results and used statistical techniques in a model
of two currencies [8] to analyse equilibria. In these models, genetic algorithms were
shown to model two population dynamics and matched the behaviour of laboratory

experiments to a greater extent than other learning algorithms.

The overlapping generations model was used by Dawid [25] to investigate the be-
haviour of genetic algorithms and cyclic equilibria. Dawid’s formulation of an over-
lapping generations model of constant money supply had both cyclic equilibria of
second order and non-cyclic equilibria. Dawid showed that a genetic algorithm
could capture the cyclic behaviour of an economic model. He extended his results

to a formulation of the model which included sunspot behaviour. Dawid also used
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the Markov chain formulation of Vose and Liepins [72] and Nix and Vose [62], see
also Dawid and Kopel’s [28] analysis of a cobweb model, to derive local stability
conditions with respect to the expected dynamics of a genetic algorithm in two

population models.

Higher order cycles and the evolution of beliefs in an overlapping generations model
were considered by Bullard and Duffy [17]. In this formulation of the model, a
genetic algorithm was used to explore how agents forecast, see also Bullard and
Duffy [16, 18]. Initially agents had heterogeneous beliefs. Agents must co-ordinate
their beliefs in an equilibrium to attain an equilibrium. This approach differed
from other applications of a genetic algorithms for which the forecast function
is fixed. Agents were said to be “learning how to forecast” and selected from a
number of alternative beliefs about the nature of the model rather than directly

setting quantity decisions.

1.3 Organisation of Thesis

We present all preliminary results in Chapter 2. In Section 2.1, we discuss stochas-
tic processes and Markov chain theory. This section provides a background for
the modelling of genetic algorithms as a Markov chain. We introduce some basic
definitions from set theory in Section 2.2. Section 2.3 explains the terms, defini-
tions, and results we use to analyse our dynamic systems. This section introduces
concepts for the stability of dynamic systems and defines a first order difference

equation.

In Chapter 3, we introduce our genetic algorithm and explain the connection be-
tween this algorithm and a Markov chain. We give a general overview of evolution-
ary algorithms and the role a genetic algorithm plays as a model of behaviour for

economic systems in Section 3.1. We examine three types of coding mechanisms
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and discuss the fitness function of our genetic algorithm in Section 3.2. In Section
3.3, the genetic operators are discussed. This section details the general framework
for our algorithm. We also describe how a state transition matrix for our Markov

chain model of a genetic algorithm is obtained.

In Chapter 4, we analyse several common economic models. The first economic
model we discuss is a cobweb model, as given in Section 4.1. We analyse an
overlapping generations model of fiat money with a constant money supply in
Section 4.2. The term, fiat money, refers to an irredeemable paper currency with
a declared value derived from the authority of the government issuing it. We
describe a particular parameterization for this model in Section 4.3. In Section
4.4, we analyse an overlapping generations model of fiat money with a constant
real deficit financed through seignorage. Seignorage is defined as revenue raised by

the printing of fiat money.

We analyse the Markov chain model, discussed in Chapter 3, for a genetic algorithm
applied to an economic system in Chapter 5. General results are derived in Section
5.1. In Section 5.2, we apply these results to the cobweb model presented in
Section 4.1. We analyse the rate of convergence of simulations and the stationary

distribution of our Markov chain in Section 5.3.

In Chapter 6, we analyse the application of a genetic algorithm in two population
economic models and a respective Markov chain model. In Section 6.1, several
general results for our Markov chain representation of such models are derived.
In Section 6.2, we consider the overlapping generations model of fiat money with
a constant money supply as presented in Section 4.2. Volatility between agents
decisions is discussed in Section 6.3. In Section 6.4, we analyse the overlapping
generations model of fiat money with a constant real deficit as presented in Section

4.4. We discuss least squares learning in Section 4.5.

In Chapter 7, a summary of findings is given. We draw conclusions from previous
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finding in Section 7.1 and present some closing remarks in Section 7.2.

Parameter values for simulations are given in Appendix A. Example simulation

results are given in Appendix B.



Chapter 2

Preliminaries

2.1 Discrete Time Markov Chains

In this section we introduce some of the basic theory for Markov chains. A detailed
description of this theory as it applies to the definitions and results presented here

may be found in the texts of Feller [37] and Ross [66].

Stochastic algorithms are often used to model the temporal behaviour of economic
models in discrete time. This behaviour is described in terms of a stochastic se-
quence in discrete time X (t) over some state space S. The stochastic sequence X (t)
is said to satisfy the Markov or memoryless property if the value of the sequence

at t depends only on the value at t — 1. This is formalized in the requirement
P(X(t) = 4ol X (0) = jo, - -, X(t—1) = ji1) = P(X(t) = ju| X (t=1) = Je1), (2.1)
Vi>1,Y jo,...,Jt €S,

The Markov chain is time-homogeneous, or just homogeneous, if P(X (t) = 7]|X (t —

1) = 1) is independent of ¢. The time-invariant probabilities

P(X() = jIX(t—1) =) = P(X(s) = j|X(s —1) =), V5,6 >0, i,j €S, (2.2)
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are denoted by p; ;. These time-invariant transition probabilities define a single
step transition matrix P = [p;;]. This non-negative matrix is stochastic since
the sum of all entries along each row is one. The m-step transition probabilities
P(X(t +m) = j| X (t) = i) are denoted by pg?. The m-step transition probability

matrix is denoted by PU™ = [pET)]

Now, we can use the law of total probability and the Markov property (2.1) to
write
P(X(m+1) = j|X(0) =)
= Yk B(X (m + 1) = j|X (m)
= Yl B(X (m+1) = j1X(m) =

k, X (0) = )P(X (m) = k| X(0)) = 9),
k)P(X(m) = k| X (0)) =1),
(2.3)

so that
|S]

pTH =S pip . (2.4)
k=1

That is, the probability of entering the state j in m + 1 steps can be expressed as
the sum over all states & € S of the probability of entering the state & in m steps

starting in 7 and then entering the state j in a single step starting in k.

(

Hence, the matrix of m-step transition probabilities P(™ = | ZT)] can be calculated

as the product of P with itself m times
B T (2.5)

If it is possible to reach the state j € S from the state ¢ € S in a finite number of

steps we say j is accessible from 4 and write ¢ — j.

Definition 2.1. The state j € S is accessible from the state 1 € S iff 3 m € Z*
such that pgz-l) > 0.

When ¢ — j and j — 4, the states 4 € S and j € S are said to communicate and

we write ¢ <> J.
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Definition 2.2. Two states i € S and j € S communicate iff © is accessible from
§ and j is accessible from 1. A state which communicates with no other state is

ephemeral.

The communication relationship ¢+ is an equivalence relation since it is reflex-
ive, symmetric, and transitive. This relationship can be used to partition non-
ephemeral states into mutually disjoint communicating classes. These communi-

cating classes are an indication of the accessibility of states.

If we wish to examine additional properties of the Markov chain a more detailed
approach is required. We are often interested in how many times a particular state
is expected to be visited or how many transitions are required before a state may

be re-visited.

Let A = {klpgﬁ) > 0}. The period of state d(i), ¢ € S, is the greatest common
divisor of all members of the set A and zero if A = (). A state is periodic if it has
period greater than one and aperiodic otherwise. Periodicity only partially explains

the visiting properties of states. A more general approach is now considered.

Denote by rgz.l) the probability that the Markov chain enters the state 5 € S for
the first time in exactly m steps conditional on starting in state ¢ € S. These
probabilities are called the first entrance probabilities if i # j and first return

probabilities if © = 7.

Definition 2.3. A state i € S is recurrent iff Y .0, Tf,ti) = 1 and transient iff
o rg’ti) < 1.

For any ¢ € S, the events that the Markov chain first visits the state ¢ for different

values of m € N are mutually exclusive. Thus, the sum o, rﬁ?

is the probability

that the Markov chain ever returns to the state ¢ conditional on starting in <.

A recurrent state may exhibit two types of behaviour. While all recurrent states

i € S are such that sum Y oo, rgi-) = 1, the expected re-visit time may not be finite.
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To differentiate between states with a finite and an infinite expected re-visit time

an additional classification is necessary.

Let T; be the random variable which denotes the time that it takes to return to
the state ¢ given that the Markov chain starts in that state. We set T; = oo if the
state 4 is ephemeral. Then E[T;] = > .2, trfi-) is the expected re-visit time for state

1€ 8.

Definition 2.4. A recurrent state i € S is positive recurrent iff E[T;] < oo and

null recurrent iff E[T;] = oo.

There is one situation for which the positive recurrence of a state can immediately
be identified. If the probability of ever leaving a state once entered is zero then we

call that state absorbing.

Definition 2.5. A state i € S of a homogeneous Markov process with transition

matriz P is absorbing iff pi; = 1.

Communication between states can be used to show that all states in a com-
municating class have shared properties. The classification of states can then be
approached at the level of a communicating class. That is, null recurrence, positive
recurrence, transience, and periodicity are solidarity properties of a communicating

class.

Theorem 2.1. Ifi,7 € S belong to the same communicating class € then
(a) i and j have the same period,

(b) i is transient iff j is transient,

(c) i is null recurrent ioff j s null recurrent,

(d) i is positive recurrent iff j is positive recurrent.
Proof: See Grimmett and Stirzaker [45], pp. 204-205. o

When applying stochastic methods to economic models it might reasonably be
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expected that the behaviour of the economic model should in some way be related
to the communicating class structure of the Markov chain. In particular, absorbing
states of the Markov chain should represent stationary equilibria of the economic
model. The probability of eventual entry of the Markov chain into a particular

recurrent class is also important.

In practice it may be difficult to determine whether a communicating class is
null recurrent, positive recurrent, or transient. However, when the state space of a
Markov chain is strictly finite we can classify a communicating class by considering

classes of essential and inessential states.

Definition 2.6. A state i € S is inessential iff i — j and j # ¢ for at least one

j € S and essential otherwise.

Theorem 2.2. If the state space of a homogeneous Markov chain is finite then
(a) there ezists at least one positive recurrent class,

(b) all states in every recurrent class are positive recurrent,

(c) every essential class is a positive recurrent class.

(d) every inessential class is a transient class.
Proof: See Grimmett and Stirzaker [45], pp. 204-206. o

By Theorem 2.2 we know that in a finite state Markov chain the positive recur-
rence, null recurrence or transience of communicating classes can be determined
by examining the communication between states. Let us consider a Markov chain

in which all states communicate with the entire state space S.

Definition 2.7. A homogeneous Markov process with transition matriz P and
state space S is irreducible iff for every pair of states i,j € S, 3k € 7t s.i.
pg’kj) > 0.

We differentiate between irreducible matrices which are periodic and aperiodic by
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defining a primitive matrix.
Definition 2.8. A matriz P is primitive iff 3 k € Z* st. Pt >0,V t > k.

Theorem 2.3. A time invariant Markov chain has a primilive state transition

matriz P iff the state transition matriz P is irreducible and aperiodic.
Proof: See Seneta [69], pp. 19-20. o

A Markov chain which has entered a positive recurrent class will remain within
the class ad infinitum. If the state transition matrix is irreducible we know that
the entire state space is a single recurrent class. However, it is not immediately
obvious which states a Markov chain can be expected to inhabit in the long term
if the state transition matrix is not irreducible. In particular, it is not obvious why
a Markov chain should not be expected to remain in transient states for all time if

one or more transient states exist.

1/ 09 0.1
61 Pzz{o.o 1.0}
P12 = VU

Figure 2.1: Example chain

Let us consider the Markov chain with a single distinct recurrent class given by
Figure 2.1. The state 1 is a self-communicating inessential state, 1 <> 1. There is
a single positive recurrent class € = {2} and this class is accessible from the entire
state space. It is clear there is a particular realization of the Markov chain which
never leaves the state 1, the realization {1,1,1,...}. However, the probability that
the recurrent class € is entered grows geometrically with time and approaches one
asymptotically. To see this, note that the probability of remaining in the state 1
after a single transition is p;; = 0.9. The probability of remaining in the state 1

after two transitions is pf) = 0.9%2. The probability of remaining in the state 1 for
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ever is lim; o 0.9 = 0. We deduce that the recurrent class ¥ = {2} is entered

with probability one.

In our example there is only one realization of the Markov chain which does not
enter the state 2. It is easy to imagine an arbitrary Markov chain with infinitely
many possible realizations which involve inessential states only. Markov theory

tells us that the probability of this set of realizations is zero.

Our example, given in Figure 2.1 above, illustrates an instance of convergence with
probability one which assigns a probability mass of one to the state 2 and zero to

all others. We say the chain converges to the state 2 with probability one.

Definition 2.9. A stochastic sequence X (t) is convergent to the state j € S with
probability one if limy_,0o X (t) = j with probability one.

For a finite state Markov chain we can establish the following result.

Theorem 2.4. A finite state Markov chain has a finite mean absorption time and
converges to the state 1 € S with probability one iff i is accessible from all states

j €S8 and i is absorbing.
Proof: See Kemeny and Snell [53], pp. 43, 46. o

We now have the tools to discuss the long term behaviour of a Markov chain
and to consider the stationary behaviour of the chain. We call the distribution 7

stationary if

T =mnP. (2.6)

Hence, m = nP™, for all m > 1.

Let F(™m) = (fl(m), . flgT)) denote the distribution of X (m). Then, it follows from
equation (2.5) that
F™ = ppm™, (2.7)
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where F' = F(© ig the initial distribution of the chain. A sequence of distribution
functions {F™} is said to converge in distribution if the sequence approaches
some limiting value, lim,_,o, F® =, for some distribution 7 = (my, ..., mg)). All
such limiting distributions must be stationary. However, it does not follow that all

stationary distributions are also limiting.

Theorem 2.5. An irreducible positive recurrent Markov chain has a unique sta-

tionary distribution m = (1/E[T}]), i € S.
Proof: See Grimmett and Stirzaker [45], p. 208. o

Hence, by Theorem 2.5, an irreducible and positive recurrent Markov chain will
converge in distribution to (1/E[T}]), ¢ € S. When the chain is also aperiodic a

stronger result applies.

Theorem 2.6. An irreducible and aperiodic positive recurrent Markov chain con-

verges in distribution to m; = lim; o0 pEtJ), for all pairs i, € S.
Proof: See Whittle [74], p. 172. o

These theorems for convergence in distribution can be generalized to chains which
are not irreducible, see Karlin and Taylor [52] pp. 89-92. Let us consider an arbi-
trary Markov chain containing both positive recurrent and transient classes. Label
each positive recurrent class 1...n. Each positive recurrent class el ..., €M is
then itself an irreducible Markov chain independent of any other recurrent class
with a corresponding stationary distribution all 1=1...n. Foreveryl=1...n
and every j € €Y, let WJ[” denote the value corresponding to the state j from the
[th stationary distribution 7. Let ay], [ = 1...n, denote the probability that
our original chain ever reaches the I"* recurrent class conditional on starting in the

(t)

state . We know that with probability one, lim; . p;; = 0, for every transient

state i € S, and >, ol = 1, for every + € S. Hence, oM e S, are probability

% (]

distributions over the state space & which assign a value of zero to every transient
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state. For ¢ € S, we can see that lim;_, pftj) = ay]wy], forevery j € ¥, 1=1...n,
(

and lim;_, o plt,)C = 0, for every transient state k € S.

A stationary distribution can be interpreted in two ways according to the Ergodic
Theorem for Markov chains, see Karlin and Taylor [52], pp. 487-488. First, a
stationary distribution gives the asymptotic probability that the Markov chain is
in each state. Second, a stationary distribution gives the asymptotic proportion
of time spent in each state. See Billingsley [11] and Kingman and Taylor [54] for

more on the convergence of probability measures.

The value of P* for stochastic primitive matrices can be calculated using Perron-

Frobenius theory, see for example Seneta [69], pp. 3-11.

Theorem 2.7. The following properties apply to stochastic primitive matrices.
There exists a Perron-Frobenius eigenvalue r with left and right Perron-Frobenius
eigenvectors vy, and vg respectively such that

(a) r =1 with multiplicity one,

(b) r > || for any eigenvalue A # r,

(c) r has a strictly positive left eigenvector,

(d) v has a right eigenvector [1,...,1]T.

Proof: See Seneta [69], pp. 3-7. o

The stationary distribution 7 can be calculated as the normalized Perron-Frobenius
left eigenvector. Label the n distinct eigenvalues of a stochastic primitive matrix
in decreasing order r > |Xo| > |A3] > ... > |As]. It can be shown that the Markov
chain approaches the stationary distribution geometrically with time depending on

the magnitude of the second largest eigenvalue As.

Theorem 2.8. Let P be a nxn stochastic primitive matriz with Perron-Frobenius
eigenvalue r with corresponding positive normalized left eigenvector vg, second

largest magnitude eigenvalue Ay with multiplicity mo, and right eigenvector vy =.
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,...,1]7, then

(a) if Ay # 0, then elementwise as t — 0o
Pt =wpul + O™\, (2.8)
(b) if \o =0, then fort >n—1
Pt = wgpv], (2.9)
where vy, 1s normalized such that vaR = 1.

Proof: See Seneta [69], pp. 9-11. o

2.2 Set Notation

In this section we introduce some of the definitions commonly used in set theory.

This theory may be found in the texts of Hausdorff [46] and Pinter [64].

We shall assume that all sets are in the k dimensional Euclidean space R*. In this

space we assume the metric function p : R¥ x R¥ — R is an Euclidean distance
k
p(@,y) = /T (s — )2

Definition 2.10. A subset of R* s

(a) null or empty and denoted by @ iff the set contains no elements,

(b) countable iff the set has a one-to-one correspondence with N.
We will denote the number of elements in a countable set by |- |.

An e-neighbourhood of b is a defined as ball of radius € in R¥. That is, {z | p(z,b) <
¢}. We denote such a ball by %(b,¢). On the real number line this is the open
interval (b—€,b+¢€).

Let A be an arbitrary set in RE. A point b € R* is a boundary point of A if every

non-empty neighborhood of b intersects A and its complement. The set of all such
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points is called the boundary of A.

Definition 2.11. A non-empty subset A of R* is
(a) closed iff the set contains all its boundary points,

(b) bounded iff 3 b€ A, € >0, such that A C H(b,¢).
Let us define the diameter of a bounded, closed, and non-empty set as follows.

Definition 2.12. The diameter of a bounded closed non-empty set A C RF is

defined as diam(A) = mazzyenp(,y).
We define convezity in the usual manner, see for example Valentine [71].

Definition 2.13. A non-empty set A C R is convez iff for every pair of values

z,y € A and every A € [0,1] , Az + (1 — X)y is a member of A.

We shall denote set intersection, union, and exclusion by N, U, and \ respectively.

2.3 Discrete Time Dynamic Systems

In this section we introduce some of the basic theory for discrete time dynamic
systems. The definitions and results we introduce here can be found in the texts

of Dawid [26], Elaydi [33], and Giancarlo [41].

A dynamic system in discrete time is a set of equations which describe the be-
haviour of some system in discrete intervals. A difference equation on some subset
2 C RF is a dynamic system which defines the current state of the system in terms
of past values. We say the difference equation is of order n if the current state of
the system is a function of the past n states. Let z, € 9,1t > 0,and F: 2 — 2.
Then

z, = F(x;1),V t € Z, (2.10)

denotes a first order difference equation.
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We denote the j™ iterate of the difference equation (2.10) starting in zo by F7 (o).

We call the sequence {z;}° a trajectory or solution of the difference equation (2.10).

A fized point z € 2 of this difference equation satisfies

¥ = F(z"). (2.11)

A fixed point of a difference equation can be characterized as stable or unstable
by introducing a small perturbation to the system about the fixed point. If after
an arbitrary perturbation, the system remains in some neighbourhood of the fixed

point for all time then we say that the fixed point is stable.

Definition 2.14. A fized point z* € 9D of the difference equation (2.10) is stable
iff for any € > 0, 3 6 > 0, such that Ft(z) € B(z*,6), V xo € B(z*,¢), Vt € LT,

We call a fixed point which is not stable, unstable.

The stability of a fixed point does not tell us much about the limiting behaviour of
the system except that a trajectory which is perturbed a sufficiently small distance
from a stable fixed point is confined to some neighbourhood of the fixed point for all
time. Our Definition 2.14 does not make a distinction between a trajectory which
converges to some limiting value and a trajectory which does not. We differentiate

between these two situations by defining the asymptotic stability of a fixed point.

Definition 2.15. A fized point z* € 2 of the difference equation (2.10) is locally
asymptotically stable iff the point «* is stable and 3 € > 0 such that limg_s oo Ft(20) =
z*, ¥V xy € B(z*,€).

Definition 2.15 is a local concept of stability. We now consider the asymptotic
behaviour of all possible trajectories of a difference equation. That is, a global

concept of stability.

Definition 2.16. A fized point x* € 9 of the difference equation (2.10) is globally

asymptotically stable iff the point z* is stable and limy_ oo F*(z0) = 2*, ¥V x0 € 9.
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The stability of a difference equation may be difficult to determine. Let us consider
the linearization of F' using a Taylor series expansion about a fixed point z* of the

difference equation (2.10)
Fly) =a"+(y —2") A+ G(y), (2.12)

where A is a k X k matrix and G : 2 — 2 is a continuous function.

This gives the linearized system

Fy) =2+ (y—2")A. (2.13)

The stability of the linearized system (2.13) can be used to determine the stability

of the original non-linear system (2.12).

Theorem 2.9. Let z* be a fized point of the linearized system (2.18) such that
GW/lly — [ =0 then
(a) the original non-linear system (2.12) is locally asymptotically stable at =* if

limy._)m*

every eigenvalue of A has a magnitude strictly less than one,

(b) the original non-linear system (2.12) is unstable at x* if at least one eigenvalue
of A has a magnitude strictly greater than one,

(c) the stability of the original non-linear system (2.12) at x* is undetermined

otherwise.

Proof: See Dawid [26], p. 174 and Elayda [33], pp. 198, 203. o



Chapter 3

Genetic Algorithms

3.1 Evolutionary Algorithms and

Economic Models

Evolutionary algorithms are commonly employed as random search methods to pro-
vide heuristic solutions in optimization problems, see Alander [2] and Bodnovich
and Wong [13]. Each paradigm in this class of evolutionary algorithms share a
conceptual design rooted in the principle of natural evolution, see Spears et al [70],
Darwin [23]. Individual structures adapt according to a complex evolutionary pro-
cess modelled by a sequence of selection, reproduction, and mutation operations.
A generation of such individual structures forms a basis for a simulation model
in which population pressure and competition are an instrument for natural selec-
tion and evolution, see Forest [38]. The genetic algorithm, see Goldberg [43] and
Holland [48], is a type of evolutionary algorithm.

In economic models a genetic algorithm need not be interpreted as a function
optimizer or biological model but more as a model for the behaviour in an agent-

based economy. In such a model, an economy populated by human agents is
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simulated by a population of artificially intelligent individuals. These artificial
agents make strategic decisions about an economic system according to the genetic
algorithm and its operators. As the genetic algorithm is itself a model of natural
selection and evolution, the genetic algorithm can be interpreted in an economic
context as a model of competition and adaptive learning, see Beckenbach [10],
Birchenhal et al. [12], Edmonds [31], Edmonds and Moss [32], and Riechmann
[65]).

3.2 Coding and Fitness

To formulate a genetic algorithm for economic applications, two things must be
addressed. First, one must describe the genetic algorithm itself and the genetic op-
erators. We provide these details in Section 3.3. Second, it is necessary to describe
which variables in our model are under investigation and how these variables are
represented by the genetic algorithm. We can then relate these variables to values

in a simulation of our model and study the behaviour of our model over time.

In order to represent numbers in a way that can be manipulated by an algorithm
we need to have a method of coding these numbers in a way that can be represented
in a computer program. Three ways of doing this are to use a real code, a binary

code, or a Gray code.

In real valued coding a variable is represented directly as a number. Double preci-
sion, or the equivalent numerical type, is used. It is argued, see for example Gaftney
[40], that real coding might realistically model the behaviour of adaptive agents. A
description of the genetic operators may be readily interpreted in economic sense

when real codes are used.

The numerical precision of a real coded variable is measured in terms of a fixed
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number of decimal places accuracy. This fixed number is limited by hardware and
software considerations. We will define the gridspacing A of a coding mechanism
to be the difference between two consecutive coded values. For a real coding with

n decimal places accuracy this gridspacing is then A = 107",

Real numbers of fixed precision appear to be a reasonable and obvious representa-
tion for a variable. However, a computer translates a real number into a sequence
of bits, that is a sequence of binary numbers. The genetic algorithm was first

formulated as an evolutionary process to operate on such a sequence.

A binary code of fixed length [ is a string s = (ai_14i—2...a10a0), a; € {0,1},

i=0...1—1. The encoded value v, of the string s is
-1
Ve = Z 2a;. (3.1)
§=0

The number of bits nBIT'S used by the genetic algorithm to encode values defines
the length of the binary code to be used during simulations. Note that [ = nBIT'S.

Values for v, are equally spaced over a domain of the form 2 = [0, M]. This
domain is associated with the domain of some variable under investigation in the

economic model. The gridspacing A is given by

M

A= .
2t -1

(3.2)

The decoded value vqg € 2 for v, is

Vg = ’UeA. (33)

We define the Hamming distance between two binary strings of equal length as the
number of bit positions in which the two strings differ in value. It is a property
of binary codes that two encoded values which differ by one may have completely

dissimilar string representations. Take, for example, two encoded values vgl) =3
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and vg) = 4. Using strings of length three, these values have a string representation

of s = (011) and s = (100) respectively. These two strings have a Hamming
distance of three. A large Hamming distance between adjacent encoded values is
often referred to as a Hamming cliff. As noticed by Arifovic [3], this property can
adversely affect simulation results. For this reason an alternative coding mechanism

has been considered.

Gray coding is a permutation of binary coding. This permutation is done in such a
way that two encoded values which differ by one have string representations which
differ in exactly one bit position. That is, all adjacent Gray code strings have a
Hamming distance of exactly one. In Arifovic’s [3] simulations, Gray coding is
shown to overcome some of the problems observed when using binary coding. A

detailed comparison of binary and Gray coding is given in Section 5.3.

Let (b;_1...bo) be a binary string and (gi—1...go) a Gray coded string. Let the
® operator represent, logical xor. To convert from binary coding to Gray coding
let g;_1 = b_;. Then for i =1—-2,...,0 let g; = bi11 @ b;. To convert from Gray
coding to binary coding let b;_1 = ¢;—;. Then fori=1-2,...,0 let b; = b1 ® ;.
To give an example, and to demonstrate the Hamming property of Gray codes,
let us consider our aforementioned example above with encoded values vgl) and

v, The string representations in binary coding of sV = (011) and s® = (100)
become in Gray coding ) = (010) and () = (110) respectively.

We will define a coded decision, independent of encoding mechanism, as any mem-
ber of the set of all coded decisions = {kA|k = 0...m} where m = M/A. A
population is composed of N individuals labelled i = 1... N, where N represents
the population size nPOP used by the genetic algorithm. We define a popula-
tion decision vector corresponding to the population (1,...,N) to be an ordered

collection of N coded decisions (¢1,...,¥n), ¥; € Q, Vi=1...N.

Using the notation introduced in Section 2.1, we will define the state space S of the
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stochastic sequence X (¢) as the space of all possible population decision vectors
QF. That is, each population decision vector represents the decisions made by N
individuals in an economic model which is simulated using a genetic algorithm. Fol-
lowing the work of Rudolph [67], a sequence of genetic algorithm population states
X (t) can be considered to be a particular instance of a discrete-time homogeneous
Markov chain with stochastic transition matrix P and state space S = QY. For-
mulations of the Markov chain and its state space vary. An alternative formulation

can be found in Dawid [26] and Nix and Vose [62].

Certain states, in which all coded decisions are identical, will be used in subsequent

sections, see Dawid [27].

Definition 3.1. A population decision vector ¥ = {i;}, ¥ € S, is defined to be
homogeneous or uniform if each of the individual components i; € ¢, 1 =1...N,
of the vector v are identical. A population decision vector ¢ € S which is not

uniform is defined to be heterogeneous or non-uniform.
For k € Q the vector (k,..., k) will be denoted by wuy.

We associate with each decision in 2 a real number which represents the fitness or
payoff that an individual making that decision would receive conditional on some
population decision vector. Let f;(¢) be the continuous fitness function returning
the fitness of any value = in the domain 2 conditional on the population decision
vector 1 € S. Note that the value of f,(¢) is defined for all x € 2, not only
those values which appear in 1. Also, the value of f, (1) does not depend on which
individual i € {1,..., N} evaluates f;(1). We will refer to the fitness function as
state-independent if the fitness of every decision € 2 depends only on z and refer

to the fitness function as state-dependent otherwise.
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3.3 Operators

Genetic operators are applied in sequence to construct new generations of individ-
ual agents. We shall use Goldberg’s [43] and Holland’s [48] descriptions of genetic

algorithms and operators as a basis for a formulation of the algorithm.

The single population genetic algorithm maintains at each time step ¢ > 0 a popula-
tion decision vector which corresponds to the coded decisions made by a population
of N individuals. That is each generation index uniquely identifies a population
decision vector. A sequence of population decision vectors is generated according

to a number of stochastic rules implemented in the form of genetic operators.

The algorithm is described as follows with an exact description of each operator
provided below. Let the population decision vector labelled ¢ be given by (t).
At t = 0 a population of N coded decisions is generated by assigning a value
uniformly distributed from € to each individual and the population decision vector
1(0) is formed. At each subsequent generation ¢ > 1, selection operates on the
population decision vector (¢ — 1) N times to generate a pool of decisions ¢(t) €
QN called the mating pool. This mating pool is distinct from our population
decision vector in that it is not linked to the state of our Markov process at any
time period. The genetic operators, mutation and crossover, are applied to the
mating pool ¢(t) a fixed number of times with replacement as described below.
Finally, a comparison between the population decision vector 1(t — 1) and the
mating pool ¢(t) is conducted by the election operator, see Arifovic [3]. The
resultant population decision vector 1(t) is the representative vector of decisions

made by individuals at time ¢. This process is repeated until termination.

Both binary coding and Gray coding use strings in the binary alphabet. Hence,
we use the same genetic operators for both mechanisms. We split these genetic

operators into three stages during each time period. The first stage operator,
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selection, generates a mating pool using the previous population decision vector.

1. Proportionate selection. At time ¢ > 1, decisions are weighted according to
fitness. The probability that an individual with decision ? is selected from the

population ¢(t — 1) is fi(4(t — 1))/ (X epqn) fi(®(t — 1)). A mating pool

of size N is constructed with NV independent replications.

Two operators, crossover and mutation, operate on the mating pool during the

second stage of our algorithm.

2. Single point crossover. Two individualsa = (a;—1...ap) and b = (b1 ... bo)
are chosen at random from the mating pool. Crossover is applied with a
probability pC ROSS and the two individuals remain unchanged if crossover
is not applied. If crossover is applied then a point 4 is randomly chosen
between 0 and | — 2 and two new individuals & = (a;_1...ai+1 b;...bo),
b= (bi_1-..biy1 a;...ao) replace a and b respectively in the pool. Crossover

is repeated with replacement |N/2] times.

3. Bitwise mutation. Denote by a = (a;_; ...ao) an individual in the mating
pool. The value a;, i =0...0 — 1 is replaced with (a; + 1) mod 2 with prob-
ability pMUTATE. Every individual in the pool is subjected to mutation.

We apply election in the final stage of our algorithm at each iteration. The mating
pool and the previous population decision vector are compared. The resultant
population decision vector is representative of individuals decisions made during

that time period.

4. Election. Election is applied to all members of the current mating pool
and the previous generation of individuals. Individuals are paired from each
population in order. Paired individuals are then compared. The individual

with highest fitness is accepted into a new population splitting ties randomly.

The real coded genetic operators differ from binary and Gray operators. However, a
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three stage framework for our genetic algorithm can still be identified. During each
iteration of our algorithm we apply the first stage operator, selection, to generate

a mating pool.

1. Tournament selection. At timet > 1, two individuals are selected at random
from the population labelled ¢ — 1. The individual with highest fitness is
selected splitting ties arbitrarily. A mating pool of size IV is constructed

with N independent replications.

We then apply the two second stage operators, crossover and mutation, to the

mating pool.

2. Crossover by inner product. Two individuals a and b are chosen from the
mating pool at random. Crossover is applied with a probability pCROSS and
the two individuals remain unchanged if crossover is not applied. If crossover
is applied then two new individuals & = (n,1—7)-(a, b) and b= (1-n,1)-(a,b)
are generated, where n € [0,1] is a uniformly distributed random variable.
The individuals @ and b replace a and b respectively in the pool. Crossover

is repeated with replacement |N/2| times.

3. Random mutation. An individual a in the mating pool is replaced by a ran-
domly generated number from the domain [0,vMAX]. Mutation is applied
to every individual in the pool once with a probability pMUT ATE per trial.

No change is incurred to an individual if mutation is not applied.

Election is applied in the last and final stage of our algorithm during every time
period to generate a population decision vector which is representive of individuals

decisions during that time period.
4. Election. Real and binary coded election are identical operations.

Parameter values for the genetic algorithm are given in Appendix A.
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We establish a step transition matrix for our Markov process following Ruldolph’s
[67] work. Ruldolph considered a state-independent genetic algorithm. His “canon-
ical” genetic algorithm was constructed with three genetic operators, selection,
crossover, and mutation. As an extension to his model, an elitist operator was also
considered. This elitist operator independently stored the decision with highest
fitness found to date. He showed that in such models a state transition matrix
could be derived by analysing the transitions made by each individual genetic op-
erator. Ruldolph represented the selection, crossover, and mutation operators by
stochastic matrices, S, C, and M respectively. He showed that a state transition
matrix P of his Markov chain could be derived by the multiplication of these three
matrices in an order depending on the implementation of the genetic algorithm.
Finally, he proved two things. First, when an elitist operation is not applied, a
Markov chain modelling such a genetic algorithm has a unique non-zero stationary
distribution. Second, when an elitist operation is applied, a global optimum is

located by the genetic algorithm with probability one.

Ruldolph’s Markov chain model for the genetic algorithm extends naturally to our
state-dependent genetic algorithm. In our model, the selection, crossover, and
mutation operations are still associated with stochastic matrices S, C, and M
respectively. However, we can not immediately identify the product P =SCM of
these three matrices with our state transition matrix P = [p; ;| since the influence

of election is not accounted for.
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Equilibria and Stability

in Economic Models

4.1 Cobweb Model

The formal analysis of economic models is an essential part of social and eco-
nomic studies. Numerious models have been formulated to describe the behaviour

observable in laboratory testing. These models can be divided into two categories.

Formulations of economic models which make the behavioural assumption of ra-
tional expectations are placed into the first category. In such a formulation agents
are assumed to have identical beliefs about the economic system they inhabit and
these beliefs are consistent with the actual observed dynamics of the system. As
a consequence, rational agents are assumed to make predictions about the current
and future state of the system with perfect foresight. Furthermore, rational agents

are assumed to maximize expected utility.

Another formulation of economic models makes the behavioural assumption of

adaptive expectations. In such a formulation agents are assumed to have identical
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beliefs about the economic system they inhabit. However, these beliefs are ill-
specified in that they are not consistent with the true observed dynamics of the
system. Hence, adaptive agents do not possess perfect foresight. The assumption
of utility maximization is often made although one might also propose a model in
which agents do not behave in this way. We will consider only models specified
under utility maximization at this point and relax this assumption to formulate

our models using a genetic algorithm in the next chapter.

Let us consider a simple market of a single good which commonly occurs in eco-
nomic literature, a cobweb model. We will formulate a cobweb model as given in
Arifovic [3]. The economy is populated by N agents in competition producing a
single consumer good. Each individual agent must decide a priori the amount g;;
of goods to be produced for sale during time period ¢ > 0. Production costs are
identical between agents and the cost function ¢(g;;) under consideration is that

studied by Wellford [73] as given in Arifovic [4]

1
c(qit) = Tqip + EZJNQ?,“ (4.1)

where £ > 0, and y > 0 are constant. The price p; is set by assuming a linear

demand curve

N
p=A—BY gy, (4.2)
=1
where A > 0 and B > 0 are constant. For price to be positive it is sufficient that
A
it < —,Vi=1...N. 4.3
%t < Np " " (4.3)

Profit is calculated as revenue less production cost
. 1
iy = pegie — 563z — 5YN 0y (4.4)

We assume that all agents have identical expectations p§ for the price per unit

good p;. Hence, agents with price expectation p; have an expectation for profit of

1
I}, = Pigie — 26is — 5y NG, (4.5)
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Given p¢, each agent maximizes II§, by choosing a production of

gix = y— (pf - x) ) (4-6)

for pf > z. Hence, all agents make identical production decisions at time ¢ > 1
irrespective of their respective production decision at time ¢ = 0. For convenience,
we assume that all agents make identical production decisions at time ¢ = 0 so that
iy = q; for all t > 0 and the inequality (4.3) is a necessary and sufficient condition

for price to be positive.

It is assumed for the cobweb model that

P =pi-1, Vi 2> 1 (4.7)

Hence, from equation (4.2) and equation (4.6)

A—pt 1

BN = y—N (P11 — ). (4.8)

Re-arranging this equation gives

Pe+ gpt—l =A+ Bg- (4.9)
This equation has solution
m=@rﬂﬂ(—§Y+ﬂ, (4.10)
where p* is given by
p = %ﬁ—f (4.11)

Under this parameterization, when

B <y, (4.12)
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the trajectories for price given by equation (4.10) are convergent to the stationary

equilibrium p*, with corresponding supply

O S (4.13)
N(B +y)

For positive supply, A must be greater than z.

4.2 Overlapping Generations Model
of Constant Money Supply

Let us consider another market of a single good, an overlapping generations model.
In this model, agents live over two consecutive generations and optimize consump-

tion over their lifetime.

The overlapping generations model considered here is Samuelson’s [68] 1958 over-
lapping generations model of fiat money as given in Arifovic [3]. The economy is
populated by agents living over two consecutive time periods, ¢ and ¢ + 1, ¢ > 0.
Generations of individual agents are of equal size /N and each agent is said to be
young in the first period of life and old in the second. A single perishable consumer
good is introduced into the economy in the form of endowment. Individual agents
are endowed with w() units of good in youth and w(? units of good in old age. In
the first period of life at time ¢ agent ¢ consumes an amount cz(-’lt) € [0,w™]. The
supply of excess goods possessed by an agent ¢ in the first period of life at time ¢
is given by

sip = wh — cg,lt). (4.14)

Excess goods are supplied by agents only in youth. Nominal per capita money
supply is assumed to be constant h each period, with total supply of fiat money

Nh initially held by a generation of old agents at ¢ = 0. Excess goods are sold on
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the market at a price per good p; determined by the total supply of goods and the
total amount of fiat money in the economy

N
pt . ZZ Si’t‘

Individual young agents accumulate monetary savings through the sale of excess

(4.15)

goods
Myt = PtSit, (4-16)

and use these savings in the second period of life to purchase goods. In old age
individual agents consume an amount of goods
m;
cﬁ)H =@ 4 L (4.17)
’ Di+1
An individual’s utility U;; is a function of first and second period consumption at
t and ¢t + 1 respectively
N (2
Uie = ey, eih)- (4.18)
The utility function u(cg}t),cgill) is assumed to be concave, bounded above, in-

creasing in cg’lt) and cgi)ﬂ, and first order differentiable.

Let r; be the price ratio

ry= 2t (4.19)

Pt

Individual agents do not know the prices p; or p;41 a priori. A model of behaviour is
derived by assuming that individual agents formulate an expected value r{ for the
ratio r, with perfect foresight. This expectation is identical for all agents. Perfect
foresight assumes that the expectation r{ and the observed price ratio r; = p; /D1
coincide. Under perfect foresight individuals correctly predict the prices p, and
pis1. Individual agents ¢ = 1... N maximize utility over [0, w] at each period
t > 0 with r; treated as a constant during maximization

_ (1 (2
MaAXo <o) <w) U = wpleif, cigr),

(2) (1) (4.20)
where i = w4 —q))



4. Equilibria and Stability in Economic Models 35

The concavity of the utility function combined with identically formed expectations

for r, implies that all individual agents act identically. It follows that m;; = m,,

cz(-,lt) o cgl), and by equation (4.15) market price simplifies to

. - 421
Pt = w(l)—cgl), ( : )
and so
h
M = w® - =2 (4.22)
D
for all £t > 0.

Assuming that the initial first period consumption is given for all agents at ¢t = 0,
then the initial price py can be calculated using equation (4.15). Using equation
(4.19) and equation (4.22) we can see that the system (4.20) implicitly describes a

difference equation for price

P = F(pe), £ >0, (4.23)

where the function F' : Rt — R™ relates the price at time ¢ and ¢t + 1.

The difference equation (4.23) together with py gives a trajectory for price. We
call a solution to this recursive system which is constant for all time stationary.
The fixed point for price p* corresponding to the solution trajectory {p*}$° is then
called a stationary rational expectations equilibrium for price. We define stationary
equilibria for first period consumption ¢M* similarly. By equation (4.22), D =

w® — h/p*.
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4.3 Parameterization and

the Utility Function

The utility function as analysed by Arifovic [3] in an overlapping generations model
of constant money supply is a function of first and second period consumption for
period ¢ given by

2
w(e), ) = Ve, (4.24)

where

cﬁ)l = w® 4+ r(w® - cgl)). (4.25)

Differentating equation (4.24) with respect to CEI), where 7, is treated as a constant,

and equating the result to zero gives

21 )
(1) w w
=i — 4.2
A R (4.26)
Substituting for cgl) using equation (4.22) gives the first order linear non-homogeneous

difference equation for price

w®) 2

Pl = 5Pt — mh- (4.27)
If w® = w® this becomes
2
D41 — Py = _Wh’ (4.28)
with solution
2
Pt =Po — mht- (4.29)

If w) £ w® then the homogeneous form of equation (4.27) is

@
w
P — —Pi =0, (4.30)
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with solution

A particular solution p* for all ¢ is

2h
wl) — @)

*

p:

The general solution to equation (4.27) when w® # w® is then

O
w *®
pt:A<w(2)> +p,

where A is a constant.

Replacing A using the initial conditions, gives

w ¢
ptz(po—P)(m> +p.

If we let t — co then, from equation (4.29)
p— —oc0 as t—oo if wh)=w?.
Also, from equation (4.34)

o —p* as t—oo if wh) <w®,
p—oo as t—oo if wh>w®
= —o0 as t—oo if wl >w®

Py = p* Vit if  w® #£w®

and Do > p*)
and pg < p*,

and py = p*.

37

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

A realistic interpretation of price requires that p; > 0 for all ¢ > 0. If wl® < w®

then p* < 0 which does not make physical sense. Thus, we require that w® > w®

and py > p* for price to be non-negative for all ¢ > 0.

We substitute our price equation (4.32) into equation (4.22) to obtain the stationary

equilibrium for first period consumption. We then use equation (4.14), equation
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(4.16), and equation (4.17) to obtain the corresponding second period consuption.
That is,
V=P = v >, (4.37)

are constant where
) (2)
b i (4.38)
2
with utility

(1) @\ ?
u(c(l)’*,c(”v*):(—w —;w ) : (4.39)

The stationary equilibrium for price p, = p*, for all ¢ > 0, is unstable because the
term (w® /w®)* in equation (4.34) increases geometrically in time. This means
that the stationary equilibrium p* is attained only when the initial price p, happens

to be p* and w; # wy. Otherwise it must be that py > p* and w; > ws for p; > 0,

YV t > 0. We can use equation (4.22) to see that as p, — oo, cgl) — ¢ and
¢? s @ where
W= ), (4.40)
@ = @, (4.41)
Utility tends to
p(w, w®Y) = wWyw®, (4.42)

As p; — oo fiat money becomes valueless. As cgl) — w1 from below, a decreasing
amount of goods is left for sale at each period. Hence, a decreasing amount of
goods are available for purchase in old age, irrespective of the amount of savings
which may have been accrued in youth. This self sufficient policy of maximal
consumption guarentees a utility of exactly wWw® This is referred to, ipso facto,

as an autarkic state.



4. FEquilibria and Stability in Economic Models 39

4.4 Constant Real Deficit Financed

Through Seignorage

A constant real deficit d is financed by some external body or government via
seignorage. Seignorage is defined to be the revenue raised by money creation.
That is, by printing fiat money, see Abel and Bernanke [1]. This deficit can be
introduced into the overlapping generations model as given in Arifovic [3]. Per
capita money supply becomes time dependent and

_ hy — hey
D .

d (4.43)

The price function does not automatically assume all individuals act identically.
Price at time ¢ is determined by dividing the total value of goods sold at time t —1

by the difference in total supply and deficit at time ¢. It is given by

N
D= Z’;\?l Sz,t—lpt—l , (444)
Yiz Sig — Nd
where
N
> sig > Nd, Vi>0. (4.45)

i=1
However, as a result of concavity and utility maximization using a utility function
of the form (4.24), it turns out that individuals do act identically with m; = h;. A

substitution of equation (4.19) into equation (4.26) gives

©) (2)
w w
pict) = ——pi + —Prr1. (4.46)

2 2
Using equation (4.14) and equation (4.16) we have that m; = p;s; = py(w™® — cgl)).

Hence

pect?) = paw® —my. (4.47)
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We use equation (4.47) to substitute for pic; in equation (4.46) with m; = h;. This

gives
(2) (1)
w w
ht = (Pt — mpﬂ_l)T. (448)
Since h; > 0, we require that
w®
Pt = P > 0. (4.49)
That is
1)
pr _ wl
5 ) (4.50)
Substitution of equation (4.48) into equation (4.43) gives
d _ w(l) -+ w(2) B w(l) Pe—1 - w(2) pt+1 . (451)
2 2 pe 2 p
Let
Dt
Ty = ——, 4.52
' Pi—1 ( )
be the inflation rate. Then
1) — 94 1)
T =1+ = o (4.53)

w® @,

Equation (4.53) defines a non-linear recurrence relation describing the competitive
rational expectations equilibrium. The stationary equilibria for inflation 7* are

derived by solving the quadratic equation

w® —2d . wl®

*\2 e
(") _(1+—__w(2) s +w(2) =

0, (4.54)

where price is positive and finite, and d > 0.

Examining the discriminant of this quadratic, it is required that

(1) (2)
d < E”%"_ — Vo D®, (4.55)



4. Equilibria and Stability in Economic Models 41

T ¥ T T T T I
— = Line y=x
— Inflation function
T41 | M -
P rd

rd

= v
> rd
-
-~
= - - -1
o ngh'
e Inflation
- - —
-
-
re
rd
-~
- = |
rd
-~
rd
e
rd
L . o
rd
-~
e
-~
= - -
-
-7/ Low
= Inflation il
1 L 1 L L ] 1
T

Figure 4.1: Stability diagram for inflation

to give two distinct real roots 7}, and 7% as the respective low and high inflationary

1 w® — 2d \/ w) — 2d w(!)
i A s ot TR
> (1 g g = | (4.56)

The stability is represented graphically in Figure (4.1) plotting 7y, as a function

values

of 7, against the 45° line. By observation of Figure (4.1) the inflation rate will
approach the high inflationary equilibrium 7% if the initial inflation rate exceeds
the low stationary equilibrium value, my > 7} . Hence, the stationary equilibrium
7% is the stable attractor for all values of my > 77. The low inflation stationary
point is obtained only when my = 7}. If my < 77, then m — —o0 as ¢ — oo. For
inflation to be non-negative for all time it is necessary that my > 7}. Also, using
equation (4.50) and equation (4.52) we require that m, < w/w® so that h; > 0

for all t > 0. Hence, m € [r}, w® /w®).



Chapter 5

Stochastic Representation

of Economic Models

5.1 Stochastic Modelling and

the Markov Process

In Chapter 4 we described the economic theory used to analyse our models. Im-
plicit in our analysis is a formulation of behaviour in which utility maximization is
assumed. Under this assumption we derived a dynamical system in which all indi-
viduals act identically. In Chapter 3 we described genetic algorithms and how they
can be modelled as stochastic processes in discrete time. Implicit in this approach
is formulation of behaviour in which individual agents use the genetic operators to
generate decisions. As a consequence, agents do not act identically but adapt over
time according to a complex evolutionary process. That is, genetic learning is a

form of adaptive expectations learning which does not explicitly maximize utility.

A genetic algorithm might be applied to an economic model for several reasons.
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First, minimal experimental data is required, if any, for simulations to be run.
Second, analytic solutions for equilibrium or non-equilibrium dynamics are not
necessary. In cases where experimental data might be costly or difficult to obtain,
or where analytic solutions have not or cannot be derived, a genetic algorithm is a
useful tool. Alternatively, genetic algorithms can be used to support experimental
evidence in situations where rational expectations models are contradictory, or
when it is uncertain which of many equilibria should be the outcome of a model
over time. We will discuss an exact formulation of the genetic algorithm as applied

to individual economic models in later sections.

While the number of applications of genetic algorithms in economics is extensive,
see Arifovic [7], few publications attempt to explain the mathematics behind the
genetic algorithm. The comprehensive work of Dawid [24] is a notable exception.
The lack of detailed analysis of the genetic algorithm itself remains a problem. A
number of general convergence results are derived in this chapter by considering a
Markov chain formulation for the genetic algorithm. We then apply these results

to the cobweb model given in Section 4.1.

The genetic operators presented in Section 3.3 are chosen from a large number of
possible variations for each operator. However, what is important in our analysis
is the communicating structure of the Markov chains that operators induce. Thus,
to analyse a genetic algorithm we shall define conditions on the genetic operators
rather than considering the individual operators directly. These conditions are

defined below.

Condition 5.1. There is a strictly non-zero probability that the decision q is mu-

tated to ¢,V q € Q, V ¢ € .

Let us consider the sequence in which the genetic operators are applied. From
Section 3.3, the ordering of operations places selection first, then crossover, mu-

tation, and election. We notice that if Condition 5.1 is satisfied, each decision in
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(2 is visited infinitely many times by mutation with probability one as t — co. It
follows that each population decision vector in S is visited infinitely many times
by mutation with probability one as ¢ — oco. Thus, every population decision
vector in S is generated infinitely often with probability one by the sequence of
operations; selection, crossover, and mutation. This does not guarantee that any
particular population decision vector is elected. Hence, without loss of generality,
we need now only to consider the communication between states during election

to determine the communicating structure of the Markov chain.

A convexity condition is usually assumed. It is usual, but not necessary, for the

fitness function to be continuously differentiable over the domain 2.

Condition 5.2. The fitness function f (1) is continuous and convez, and consid-
ered as a function of q, f,(v¥) attains a distinct unique mazimum in 2 for each

respective 1 € S.

Let ¥ € S be some state and ¢ € 2 be some decision in the domain. As a
consequence of the convexity and continuity condition given by Condition 5.2 there
is some closed and bounded, convex, and non-empty subset of 2 which contains
all decisions with fitness greater than or equal to q. We call this set of values the

election space &(1) of the decision g.

Definition 5.1. The election space &(v) of a decision g € 9 conditional on the
state ¢ € S is defined to be the subset of 9 consisting of all values § € 2 such

that f3() > fo(¥).

Using Condition 5.2, the election space & (%), ¢ € 2, ¢ € S, takes the form [a, ¢] or
(g, b], for some a,b € 2, and contains the unique maximum § = arg maxzeq f3(¢),

irrespective of the value of q.

If an individual has the strictly highest possible fitness over ) conditional on some

state 90 € S then the election operator will not allow that individual’s decision to
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change in the current period. The decision may not have strictly highest fitness
in subsequent periods as the population state may change. This suggests that
absorbing states of the genetic algorithm can be identified by analysing the election

spaces of fittest individuals.

All coded decisions belong to the set €2 and are equally spaced a distance A apart.
The intersection of an election space and €2 indicates which points are coded by
the genetic algorithm in the election space. A population decision vector state
(:), ¥; € Q, 1 =1...N corresponding to the state ¢ € S is absorbing only if
|6y, () N Q| =1,V ¢=1...N. That is, all individuals have an election space
whose intersection with € contains only that coded decision which is identifiable

with each respective individual.

Theorem 5.1. Let ¢ be a population decision vector of a genetic algorithm with
gridspacing A. Then

(a) o is uniform if diam(&y,(¥)) <A, Vi=1...N,

(b) ¢ is absorbing iff diam(&y,(¥)) < A, Vi=1...N.

Proof: We first prove part (b) of out theorem. If a state is absorbing then ;,
¢t = 1...N may never change. That is, no individual may ever change their deci-
sion. Hence, every individual must have strictly highest possible fitness. Otherwise,
by Condition 5.1, there is a strictly positive probability of mutating to and subse-
quently electing a different decision in {2 with equal or better fitness. An individual
can only have strictly highest possible fitness if its election space contains no point
other than itself. That is, for every ¢ = 1... N, |&y,(¥) N 2| = 1. By Definition
5.1, &, () takes the form [a, ;] or [¢;, b], for some a,b € 2. Recall from Section
3.2 that coded decisions in 2 are equally spaced over 2 with a gridspacing of A.
Hence, the condition |&y, (1) N Q| = 1 can be re-stated as diam(&y,(¥)) < A, V
t=1...N.

To show that the reverse also holds, let us consider the individual k. The election
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space &y, (1) is defined to contain all decisions in 2 with equal or better fitness
than 1. Since 2 C 2 this election space also contains all decisions in {2 with equal
or better fitness than . If diam(&y, (¥)) < A then |6y, (v) N Q| =1 and &y, (¥)
contains no element of 2 other than 9. Hence, fy, (¢¥) > f,(¥),V ¢ € Q\{¢;} and
1 has strictly highest fitness from amongst all decisions in 2. Thus, no individual
will ever change their decision and v is absorbing. This establishes part (b) of our

theorem.

To get part (a) of our theorem, note that if fy, (¥) > f,(¢), V ¢ € Q\ {¢:}, then
; =g, Vi=1...N. That is, ¢ is uniform. o

Corollary 5.1. No non-uniform state is absorbing.

If at any time a genetic algorithm enters an absorbing state uy it remains in wy
ad infinitum. Theorem 5.1 gives a necessary and sufficient condition for a state
to be absorbing. This does not guarantee that there will be an absorbing state or
that that absorbing state will be entered. Hence, to analyse the convergence of our
Markov chain we must consider both the existence and accessibility of absorbing

states.

Theorem 5.2. Consider a genetic algorithm with gridspacing A and let P = [p; ;]
be its state transition matriz. Then the algorithm converges to the state uy € S,
k € Q, with probability one iff diam(éx(ux)) < A and for everyi € S, A m; € ZT,
such that p{™) > 0.

TyUg

Proof: If diam(&;(ug)) < A, then by Theorem 5.1, uy is an absorbing state. If
(mi)

for every ¢ € S, 3 m; € Z™T, such that Piu, > 0, then uy is accessible from every
state 7. Since 8 is finite, then by Theorem 2.4, the event X (¢) = uy occurs with
probability one in the limit ¢ — oo. Hence, the genetic algorithm converges to
the state u, with probability one. Likewise, if the genetic algorithm converges to

the state u; with probability one it must be that diam(&x(ux)) < A and for every
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1 €8, 3 m; € ZT, such that pETZ) > 0. o

In general it is difficult to show that a state u, € S, k € , will be entered with
probability one. From Theorem 5.2, we know that if a state is accessible from
the entire state space in some finite number of steps then that state is entered
with probability one. When this state is absorbing our Markov chain converges to
that state with probability one. We will consider the accessibility of the state uy
from all initial states in exactly two steps to derive a sufficient, but not necessary,

condition for convergence to the state u; with probability one.

Theorem 5.3. A Markov chain model for the genetic algorithm converges to the
state uy, € S, k € Q, with probability one if diam(&x(ux)) < A, and k € &(u;), V
j €.

Proof: Let §(p) = arg maxjeq f3(¢), ¢ € S. Conditions 5.1 and 5.2 imply that
P(h(t) = ugpl(t —1) = ¢) >0,V t > 1. T P(h(t + 1) = uelp(t) = ug(y)) > 0
then p{Z), > 0,V ¢ € S. This condition is met when k € &(u;), V j € Q. Since
diam(&;(ur)) < A, we know that u is absorbing by Theorem 5.1. Hence, the

genetic algorithm converges to the state u, € S, k € ), with probability one. o

We can generalize Theorem 5.3 to the case where there is not necessarily an ab-
sorbing state but where there is a recurrent class that is accessible from all other

states.

Theorem 5.4. The recurrent class € is entered with probability one if 3 ux € €
s.t. k € &(u; ), for every j € QL.

Proof: The result follows from the proof of Theorem 5.3 mutatis mutandis. o
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5.2 Cobweb Model

The first application of a genetic algorithm in a cobweb model was given in Ari-
fovic [3]. She demonstrated that genetic algorithms can be used to replicate the
behaviour recorded in Wellford’s [73] experiments and compared the genetic al-
gorithm simulation results to the price expectation models of Ezekiel [36] who
formulated the model using naive expectations, Marcet and Sargent [58] who for-
mulated the model using least squares learning, and Carlson [20] who formulated
the model using a sample average of past prices. Simulations showed that a ge-
netic algorithm captured three features observed in Wellford’s experimental data.
First, the genetic algorithm converged to a stationary equilibrium solution. This
convergence occured even when input parameters were consistent with unstable
behaviour according to the analysis presented in Section 4.1. That is, the inequal-
ity (4.12) was not satisfied. Second, the genetic algorithm fluctuated about the
equilibrium. Third, after thirty generations of the genetic algorithm, the price
variance was greater across randomly selected seeds when the inequality (4.12)

was not satisfied.

The early work of Arifovic provides a foundation for the exploration of the cobweb
model using genetic algorithms. Dawid and Kopel [28] consider a formulation
of a cobweb model with market exit and entry decisions. The impact of coding
on simulation results is explained using an analysis of uniform states as given in
Dawid [24], see also Vose and Liepins [72] and Nix and Vose [62]. While Arifovic
concentrates on illustrating the workings of the genetic algorithm, Dawid formally
establishes results for the genetic algorithm using stochastic theory for Markov

chains.

In the cobweb model, the supply and demand curves affect how individuals respond

to price. As derived in Chapter 4, the closed form solution for price given by



5. Stochastic Representation of Economic Models 49

equation (4.10) was p; = (po — p*)(—B/y)! + p*, where B appeared in the demand
equation setting price, given by equation (4.2) and y appeared in the cost function,
given by equation (4.1). The linear supply equation as a function of price was given

by equation (4.6).

In Arifovic’s simulations of the cobweb model using genetic algorithms, population
decision vectors contain component values which represent the supply decisions it
t=1...N,t >0, corresponding to each member of a population at time ¢. The
genetic operators generate these population decision vectors. The fitness function
is identified with the utility function as is standard with simulations using genetic
algorithms. In her application of the genetic algorithm, Arifovic uses the equation
for profit given by equation (4.4) as utility. Agents are assumed not to know the
price at time ¢ a priori. Instead, a price forecast, as given by equation (4.7), uses
the price which clears the market in the previous time period. Profit is calculated

and the average supply determines the market price, as given by equation (4.2).

We apply a similar genetic algorithm as used by Arifovic. At each time period
t > 0, our genetic algorithm encodes a population decision vector, representing
N values for supply ¢;; € [0, A/(NB)]. The initial values g;p, i = 1...N, are
randomly generated. Supply decisions are decoded to determine the market price
po=A—B Zfil gio- We generate vectors of values for supply during successive
periods ¢ > 0 by applying the genetic operators. At ¢t = 1, we apply the genetic
selection operation to construct a mating pool consisting of N supply decisions. We
apply genetic operators, crossover and mutation, to this mating pool as described
in Section 3.3. We decode each new decision §;; in the mating pool and calculate
their fitness as f(po, §;1) = podi,1 —Gi1 — %yNdﬁl. During election, we compare the
fitness of each individual ¢ in the pool with the fitness value f(pg, g o). The value
f(po, ¢io) represents the actual profit individual ¢ obtained at time ¢ = 0. The

value f(po, ¢;1) represents a prediction for utility at time ¢ using the price forecast
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p; = po. If the fitness corresponding to individual ¢ in the mating pool exceeds
the profit obtained in the previous period then ¢;; = §;1, otherwise we retain
the past supply decision and ¢;; = ¢;0. We use the values ¢;; to construct our
population decision vector at ¢t = 1. We then calculate the total supply Zfil i
and determine the corresponding price p; = A — B Zfi 1 9,1- In the consecutive
periods ¢ = 2,3,..., we continue this process, terminating after a set number of

iterations.

Set 1| Set2 | Set3| Set4]| Setb
A 2.184 2.296 2.296 2.296 2.296
B 0.0152 | 0.0168 | 0.0168 | 0.0168 | 0.0168

z 0 0 0 0 0
Y 0.016 | 0.016 | 0.0084 | 0.0016 | 0.0008
N 30 30 30 30 30

Bly 0.95 1.05 2.0 10.5 21.0
q* 2.3333 | 2.3333 | 2.9896 | 4.1594 | 4.3484
p* 1.12 1.12 | 0.7653 | 0.1997 | 0.1044

Table 5.1: Cobweb model, parameter sets 1 to 5

Two parameter sets are used in Wellford’s experiments [73] and adopted by Ar-
ifovic in her simulations. These two sets correspond to the first two parameter
sets given in Table 5.1. In Arifovic’s simulations a bit length of thirty is used
and two hundred iterations conducted. Arifovic [3] reports values close to the
stationary equilibrium price p* are obtained by the genetic algorithm and she sta-
tistically analyses the variations in price. Simulations show that convergence to
an equilibrium depends on both coding mechanism and parameter values. Prob-
lems associated with Hamming cliffs in binary coding are noted by Arifovic and
she shows that Gray coding can be used to overcome these problems. Recall from

Section 3.2 that the Hamming cliff problem is a consequence of the ordering of bits
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within a string and a correspondence with the relative weight each bit contributes
to the value of the string. Problems with these cliffs have previously been observed
in studies involving genetic algorithms, see Caruana and Schaffner [21], Goldberg

[44].

We conducted ten thousand iterations of the genetic algorithm under Gray coding
with a bit length of ten. The parameter sets we examined are given in Table 5.1.
Results for Sets 1, 2, 3, 4, and 5 are tabulated in Tables 5.2, 5.3, 5.4, 5.5, 5.6
respectively. These results represent the population decision vectors we observed
upon termination of our simulations. Supply decisions in {2 made by agents are

displayed as real numbers to four decimal places.

Simulations for the stable parameters given by Set 1 in Table 5.1 converged after
less than one hundred iterations. Simulations for Sets 2 and 3 did not converge.
However, at every iteration, a change in decision was recorded between population
decision vectors whose components took one of the two values that appear in
Table 5.3 and 5.4 respectively. No other values apart from these were observed
after around one hundred iterations. Agents in simulations for Set 4 and Set 5

maintained a diverse range of values throughout all iterations.

To explain why such results are observed, let us consider the local asympotic
stability conditions for the application of genetic algorithms derived by Dawid [26)
pp. 83-91. Dawid analyses a dynamical system in discrete time with deterministic
state calculations. This system represents the expected value of a Markov process
modelling genetic algorithm dynamics at time ¢ 4+ 1 conditional on the state of

the process at time t. He remarks that the trajectories arising from this system

Vector

Set 1 | u(2.3339)

Table 5.2: Cobweb model, population decision vector, set 1
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Agents’ decisions

2.3313 2.3313
2.3313 2.3313
2.3357 2.3313
2.3313 2.3313
2.3313 2.3357
2.3357 2.3313

2.3313
2.3313

2.3357

2.3313

2.3357
2.3357

2.3357
2.3313
2.3313
2.3357
2.3357
2.3313

2.3313
2.3357
2.3357
2.3313
2.3313
2.3313

Table 5.3: Cobweb model, population decision vector, set 2

Agents’ decisions

3.0395 3.0351
3.0351 3.0351
3.0351 3.0395
3.0351 3.0351
3.0351 3.0351
3.0395 3.0395

3.0351
3.0395
3.0351
3.0395
3.0395
3.0351

3.0351
3.0395
3.0395
3.0351
3.0395
3.0351

3.0351
3.0351
3.0351
3.0351
3.0351
3.0351

Table 5.4: Cobweb model, population decision vector, set 3

Agents’ decisions

4.0293 4.2096
4.1568 4.1260
4.1700 4.1260
4.1524 4.1524
4.1788 4.1129
4.1480 4.1964

4.1260
4.1260
4.1656
4.1392
4.2052
4.1876

4.2008
4.1876
4.1788
4.1129
4.1788
4.0733

4.0909
4.2096
4.1656
4.2052
3.9633
4.1524

Table 5.5: Cobweb model, population decision vector, set 4

Agents’ decisions

41173 4.3900
4.3240 3.5322
4.1964 4.4120
4.3944 4.1876
4.2932 4.3592
4.3240 4.3768

4.3020
4.3768
4.2756
4.3152
4.3416
4.3548

4.3724
4.3856
4.2844
4.3548
4.3636
4.3328

4.3592
4.3240
4.4076
4.3812
4.3765
4.2932

Table 5.6: Cobweb model, population decision vector, set 5

02
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approximate the behaviour of a genetic algorithm when the population size is
sufficiently large and mutation is applied with sufficiently small probability. A
binary encoded population u, € S, k € 2, with a mutation probability of zero

and one-point crossover with probability x € (0, 1] is a locally asympotically stable

AGE) 1 (. fulws)
-1 >§<l‘ff<u:>>’ (5:1)

for all binary coded strings j € Q, 7 # k, see Dawid [26] p. 87. The value [ > 0

state of this system if

in the inequality (5.1) represents the number of bits used in encoding decisions
and A(7, k) represents distance between the two outmost bits of 7 and k which
differ in value and zero when j and k differ in value at less than two distinct bit
positions. Likewise, a binary encoded population u; € S, k € €, with a mutation
probability of zero and one-point crossover with probability x € (0,1] which is

locally asymptotically stable satisfies the inequality (5.1).

It is noted by Dawid [26] pp. 161-165 that states other than stationary equilibria
may be locally asymptotically stable. Let us consider exempli gratia Set 1 of
Table 5.1 with a bit length of [ = 10 as used in Dawid’s work. There are two
distinct binary strings which are locally asympotically stable. The first reﬁresents
the stationary equilibrium ¢*, the second a value to four decimals of 2.3523 which
is encoded as the string £ = (1000000000). To display these results graphically,
Dawid takes the value of x in the inequality (5.1) to be one and rearranges this

inequality to obtain
[—1 > fj ('U,k)
L=1=X(Gk) = felu)’

(5.2)

To determine if the inequality (5.2) holds for our specified value of k, one need only

to check that the points (A(K, 5), fi(uk)/fe(uk)), 7 € 2\ {k}, lie below the curve
g = -1)/UT-1-2).

For k = (1000000000), Figure 5.1 plots the function g(\) as a solid curve and
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Figure 5.1: Local asymptotic stability diagram

points (A(k, s), f;(uk)/ fe(ue)), 7 € 2\ {k}, as diamonds. As each diamond lies
below g(A) the uniform state uy is locally asymptotically stable even when the

crossover probability is taken to be one.

We can use the inequality (5.1) to deduce properties of a genetic algorithm with
Gray coding, see also Dawid [26] p. 90. Observe that if there exists a coded decision
j € Q differing from another coded decision k& € 2 in a single bit position, then
A(J, k) = 0 and the left hand size of the inequality (5.1) becomes zero. Moreover, if
fi(ug) > fx(uk) then the right hand side of the inequality (5.1) is strictly positive.
Thus, the inequality (5.1) is not satisfied and so u; cannot be locally asymptotically

stable.

Now, recall from Section 3.2 that a Gray code k € Q\{0...0,1...1} is constructed
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such that if k has neighbours 4, j € £ corresponding to the gridpoints immediately
to the left and right of k respectively, then A3, k) = A(j, k) = 0. This implies that
in models with a suitable fitness fuctions, continuous and concave over the domain,
no uniform state other than those corresponding to stationary equilibria may be

locally asympotically stable if Gray coding is used.

The analysis of locally asymptotic stable states given by Dawid does not ex-
plain certain key observations about the model. As we have shown, the string
(1000000000) is locally asymptotically stable according to the definition of Dawid.
However, this string did not arise as a convergent point of the genetic algorithm
in Set 1 of our data. In addition, the criterion for local asymptotic stability in
uniform states does not explain the persistence of a system of two distinct supply
decisions observed in Sets 2 and Set 3 of our data. To explain such findings an
alternative approach must be found. Finally, local asymptotic stability does not
help us to understand how in Set 4 and Set 5 of our data supply decisions deviate
from the equilibrium to such an extent. That is, asymptotic convergence conditions
tell us little about the behaviour of the model if no uniform state is stable. To
answer these questions we adopt an approach based on Markov chains to analyse

the properties of election spaces in our model.

The gridspacing corresponding to a | bit binary encoding over [0, M]is A =
M/ (2" — 1), where M represents the maximum value encoded by the genetic algo-
rithm. The exact value ¢* is approximated to some desired precision by specifying
l. Denote by ¢ < ¢* and ¢4 > ¢* the two closest points to ¢* as encoded by the
genetic algorithm on either side of ¢*, possibly the point ¢* itself. Assume that the

average supply at time ¢ is less than ¢*. Thus, we can write

1 X
N Z Gip=q" — 0, (5.3)
i=1
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for some é; > 0. Hence,

1 N
o = q* - N th,t, (5-4)
i=1

represents the difference between the equilibrium supply ¢* given by equation (4.13)
and the average supply at each time period. By equation (4.2), the corresponding

price at time ¢ is given by

pr=A—BN(q" —&). (5.5)

Let 9(t) € S be our population decision vector at time ¢t > 0. From the set of all
possible supply decisions €2 at time ¢ + 1, we use equation (4.4) to calculate the
election space &5, (1(t)) representing those values with equal or higher fitness
to the supply strategy ¢* — &;. Our election space &._s,(1(t)) is convex and non-
empty, taking the form [a,b], a,b € 2. The endpoints a and b are the two real

roots of the quadratic equation in ¢
1 2 * * 1 * 2 .
pp —xP — §yN¢ =p(¢" = 6;) —z(¢* — &) — §yN(q — &) (5.6)

This has solution ¢ = ¢* — §; and

_ oPTT .
b = 2 (- b, N
- 2A"’”_(*_5)(1+2 ) .
Y A y
From Section 4.1 we deduce that
A—zx B
— (" =6)(1+2)>q¢* =6 5.8
N @802 20 -4, (58)
so that
A—z

Gr-al0) = [0 = 8,278 — (¢ = 8)(1+ 2D (5.9

yN
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When 6; = 0, diam(&}_s,(¥(¢))) = 0. An analysis of the the first derivative of
diam(&y_5,(¥(t))) with respect to &, reveals that as 0: — 0% the subset (5.9)

decreases in diameter to zero.

Assume that §; = § is a constant up to time ¢ and that ¢;; = ¢* —6,Vi=1...N.
Hence, ¢(t) = ¢ = Ug»—5. Any point in & _s(up_s) encoded by the genetic
algorithm may be elected at ¢+ 1 and the number of points encoded by the genetic
algorithm within & _;(up_s) can be determined. For there to be no more than one
point encoded by the genetic algorithm in Eqe—6(uge—5), diam(Ep_s(uge_s)) < A.
That is, up_s is an absorbing state according to Theorem 5.1. This is equivalent

to

A—z B
- -8)1+2=)—(¢* =9 < A. 5.10
@ 0020~ @ -9) (5.10)
This simplifies to
A—z B A
—(¢* -8+ = —. 5.11
@) <3 (511)
Given A, we rearrange this inequality to give a bound on & of
A A-z B\
* — — 14+ — . 5.12
§<q" + (35 yN)(+y) (5.12)
Substitution for ¢* using equation (4.13) gives
Ay
- 5.13
< 2B+y (5.13)

Analogous situations arise when the average supply given by equation (5.3) is

assumed to be ¢* + §;, §; > 0.

We give an example which displays the election space &,_(u,_) in Figure 5.2. In

this example the inequality (5.13) is satisfied. Hence, the state ug_ is absorbing.

Theorem 5.5. Let ¢* be the stationary equilibrium supply for the cobweb model
given by equation (4.13). If there is a supply decision q € Q in a genetic algorithm
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Figure 5.2: Gridspacing and set 1
simulation of the cobweb model with gridspacing A such that

Ay
g < = 5.14
" -d <53 e (5.14)
then the genetic algorithm is convergent to the uniform state uq with probability
one. Conversely, if the genetic algorithm is convergent to the uniform state u,,

q € §2, with probability one, then the inequality (5. 1/) is satisfied.

Proof: To use Theorem 5.3 two requirements must be met. The first requirement is
that diam(&,(u,)) < A, the second that u, € &(u;),V j € Q. From the inequalities
(5.10)-(5.13), we know that diam(&(u,)) < A, if the inequality (5.14) is satisfied.

Let us consider the second requirement. By Condition 5.2 the election space
&%(uk) of the population decision vector wu; € S, k € Q, contains the value
¢ = argmaxgeg f3(ug). Using our analysis of equation (5.9), diam(é&y(uy)) is a
strictly decreasing function as k approaches ¢*. Notice that utility, hence fitness,
is a quadratic function of supply with a negative coefficient of the squared term.
By definition, an election space conditional on the decision k. and the state U,
contains all values for supply in 2 of equal or better fitness than k. Two pos-
sibilities arise. First, both endpoints of &(ux)) have the same fitness. Second,
the endpoints of & (ut)) have different fitness. In the first case, notice that since
fitness is a quadratic function of supply, ¢ occurs at the midpoint of &(ux) so
that diam(&;(ux)) = 2|¢ — k|. We deduce from Section 4.1 that if & < ¢* then
¢ > ¢" and if k > ¢" then § < ¢*. This means that 2|G — k| > 2|¢* — k| and
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diam (&% (ug)) > 2|q* — k|. Hence, the point ¢ occurs in every election space & (ux)

for which |¢* — k[ > |¢* — .

In the second case, fitness is still a quadratic function of supply. However, & (ux)
is confined within 2 causing the two endpoints of &(uy) to have different fitness.
Trivially, & (ux) contains every decision ¢ where |¢* —k| > |¢* —¢q|. Now, y < B+y,
as both B and y are non-negative. Hence, if |¢* — ¢| > A/2 then the inequality
(5.14) can never be satisfied. Hence, ¢ is the unique point in Q2 strictly closest to ¢*.
This point occurs in every election space &x(ug), k € §2 because every k € Q \ {q}
is distanced further from ¢* then g. Theorem 5.3 now completes the first part of

our proof.

It also follows that if the genetic algorithm converges to the state u, with proba-
bility one, then u, must be an absorbing state. If the state uy is absorbing, then
diam(&,(u,)) < A). Hence, the inequality (5.14) must be satisfied. This completes

our proof. o

Note that the parameters for Set 1, in which convergence to a single point is

observed, satisfy the inequality (5.13).

We have derived a test for a genetic algorithm to converge to the state ¢ € {2 with
probability one. However, convergence to the state ¢ with probability one is not

the only type of behaviour we have observed in our simulations.

To explain the second and third sets of simulation results from Table 5.3 and Table
5.4 respectively, we again consider our election space given by equation (5.9). We
again assume that §; = ¢ is a constant up to time ¢ and that ¢;; = ¢* — 4, V
i=1...N. Hence, (t) = ¢ = ug—_s. Suppose we relax the constraint (5.10) and
instead look at the election space when the right hand side is 2A

A—zx
yN

24T (g -+ 2?) —(¢" —5) < 24, (5.15)

then there are at most two distinct points encoded by the genetic algorithm in
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é”q*_,;(uq*_g).

The inequality (5.15) simplifies to

Y
0 < A—"—, 5.16
B+y ( )

Again, analogous situations arise when the average supply given by equation (5.3)

is assumed to be ¢* + &, §; > 0.

6+t A — 5 ]

*

q
e | | | L

- —A q- i 9+ + A

e— & (u,) —

X

Figure 5.3: Gridspacing and set 2

We give an example which displays the election space &,_(u,_) in Figure 5.3. In
this example the state u,_ is not absorbing. However, the inequality (5.16) is

satisfied and &, (u,_) contains only the two coded decisions ¢_ and g;.

It may be that the inequality (5.16) is satisfied by the states u,_ and u,,. Let us
consider the set A C S composed of all of population decision vectors ¥ = (1),
¥ € {¢_,q+}, i = 1...N. Now, the value maxyep 4cy diam(&;(¢)) occurs either
at ¥ = u, , ¢ = q_ or at Y = uq,, ¢ = g4. To verify that &(¢), contains no
more than two distinct points in Q for all ¥ € A, g € {q_, ¢4}, it is sufficient that
inequality (5.16) be satisfied for u,_ and u,, .

Theorem 5.6. Let ¢* be the stationary equilibrium supply for the cobweb model
given by equation ({.18). If there is a supply decision q € Q in a genetic algorithm

stmulation of the cobweb model with gridspacing A such that

<At (5.17)
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Vge{q_,q.}, and B o € S such that ¢ is absorbing, then the set A = {(k;)|k; €
{9-,9+},7 = 1...N} forms a positive recurrent class. Conversely, if the set A
forms a positive recurrent class, then the inequality (5.17) is satisfied, ¥ q €

{g-,q4}, and P p € S such that ¢ is absorbing.

Proof: The inequality (5.17) follows from inequality (5.16). If no globally asymp-
totically stable state exists, and if ¢_ and ¢, are such that the inequality (5.17)
is satified, then &,_(p) N Q and &, (p) N contain exactly the two points ¢_ and
q+. That is, A is a recurrent class because all states in A communicate but no
state outside A is accessible. Following an argument similar to that used in the
proof of Theorem 5.5, both of g_ or g, occur in every election space &(ug), k € Q
and we can use Theorem 5.4 to show that A is entered with probability one. This
completes the first part of our proof. If A forms a positive recurrent class then it
must be that the inequality (5.17) is satified, V ¢ € {q_, ¢4}, or a state outside A is
accessible. Also, no absorbing state may exist so that all states in A communicate.

This completes our proof. o

In Set 2 of the input parameters given in Table 5.1, ¢ = 2.3317, ¢* = 2.3333,
and g, = 2.3357 with a gridspacing of approximately 0.0044. The election space
&(2.3317)(U(2.3317)) is approximately [2.3317,2.3382]. There are two points encoded
by the genetic algorithm within this region, namely ¢_ and ¢4. A similar result

holds for &2 .3357) (u(2.3357))-

If the diameter of an election space is sufficiently large, more than two distinct
points from 2 lie within the election space. When diam(é&,(u,)) > Ay/(B + y) for
at least one of ¢ € {q_,¢+}, we might expect that all states in S are recurrent.
However, the domain 2 = [0, M] is bounded and these boundaries cause some of

the states to be transient.

Theorem 5.7. The set € = {(k:)|k: € &o(uo) N E(up) NQi=1...N} forms a

positive recurrent class iff the inequality (5.17) is not satisfied for at least one of
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the coded decisions {q_,q,} and B € S such that ¢ is absorbing.

Proof: Recall from section 3.2 that 2 = [0, M] so that M denotes the largest value
in Q. Now, any coded decision 7 € &,(u,) can be reached by each individual in
the genetic algorithm. Hence, any state with components from &;(u,) is accessible

from wu,.

Recall our comments on the set (5.9). For ¢ € 2, the diameter of &,(u,) — 0
linearly as ¢ — ¢*. Now, &y(ug) denotes the election space with largest possi-
ble diameter from those coded decisions g < ¢*. Likewise, &y (upr) denotes the
election space with largest possible diameter from those coded decisions ¢ > ¢*.
These election spaces overlap. Hence, the state of the Markov chain has a positive

probability of leaving S \ € never to return and all states S \ € are transient.

We now show that all states in ¥ are accessible. From this accessibility we can
deduce that all states in ¥ communicate. Let m denote the slope of the straight
line segment diam(&;(u,)), ¢ > ¢* so that —m denotes the slope of the straight
line segment diam(&,(u,)), ¢ < ¢*. As the inequality (5.17) is not satisfied for at
least one of u, , u,,, at least one of u,_, ug, has an election space of diameter at
least 2A. However, both q_ and ¢, are at a distance strictly less than A from g¢*.
That is, m > 2. Hence, if the state of the Markov chain were to move from g_
to ¢4 + A or from ¢, to ¢ — A the diameter of the election space will increase
from at least 2A to at least 2A + mA. To reach a coded decision r € Q2 outside
&,(u,) in the next time period, let the state of the Markov chain move to a uniform
state u,, 7 € &,(u,), such that |¢* —r| > |¢* — ¢|. Such a state u, must exist and
diam(&, (u,)) will exceed diam(&y(uq)) by at least mA. Repeating this process,
every uniform state in 4 may be reached. From these uniform states it is possible
to reach any other state in ¥’. No state in ¥ communicates with a state in S\ .

Hence, the set of states ¥ is recurrent.

It follows from Theorem 5.5 and Theorem 5.6 that if ¥ forms a positive recurrent
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class then the inequality (5.17) may not satisfied for at least one of the coded

decisions {q_, ¢, }. o

In the simulation results in Table 5.5 and Table 5.6 for Sets 4 and 5 respectively, a
broad range of values is recorded. Hence, we do not expect the inequality (5.16) to
be satisfied. For Set 4 of our input parameters from Table 5.1, g = 4.1568, ¢* =
4.1594, and g, = 4.1612 with a gridspacing of approximately 0.0044. The election
space &(a.1568) (U(a.1568)) is approximately [4.1568,4.2170]. There are fourteen points
encoded by the genetic algorithm within this region. Similar results are obtained
when one considered the election space &(4.1612)(t(s.1612)). Populations retain a
diverse range of values ad infinitum. Analogous results apply for Set 5 of our input

parameters.

Theorem 5.8. Let € be a recurrent class in a genetic algorithm simulation of the
cobweb model with gridspacing A. Either

(a) € is a single absorbing state, either q_ or gy, or
(b) € is composed of all states {(k;)|ki € {¢-,¢+},i=1...N}, or
(c) € is composed of all states {(k;)|ki € &(uo) N En(up) NQi=1...N}.

Let us assume that ¢, lies closer to ¢* than ¢_. In Theorem 5.8 above, for % to be
composed of all states {(k;)|k; € &(wo) N Em(up)NQ, i =1... N} two cases must
apply. First, the inequality (5.14) is violated for ¢, and ¢y — q— > Ay/(2B + 2y).
Second, the inequality (5.17) is violated at least for ¢_ and ¢y —q- > Ay/(B+vy).
Hence,

A=q, —q. > (5.18)

This simplifies to
B>

RS

. (5.19)

In the cobweb model described in Section 4.1, convergence to ¢* is obtained for

stable parameter values B < y. This means that case (c) of Theorem 5.8 might
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occur even when ¢* is locally asymptotically stable with respect to these naive
expectations cobweb dynamics. Hence, to ensure that case (c) of Theorem 5.8

does not occur, B < y/2.*

In simulations using the genetic algorithm, convergence to the single decision clos-
est to ¢* can occur only when the inequality (5.13) is satisfied. The gridspacing A
decreases as the number of bits used in encoding solutions increases. Let &, as
the minimum of {¢* — ¢_, ¢+ — ¢*}. The value 0, lies in the range (0,A/2] so
that the largest possible value of 0, decreases as A decreases. The ratio of the
largest value of &pin to A is constant. Recall that the inequality (5.13) exhibits a
dependence on both A and § > .4, This means that if a simulation does not con-
verge under some particular bit length, it cannot a priori be forced to converge by
arbitrarily increasing the accuracy of the coding. Furthermore, a simulation which
is convergent using one particular bit length may not be convergent with another.
Either the inequality (5.13) is satisfied in a new parameterization or not. The
probability that any particular bit length chosen at random satisfies the inequality

(5.13) is a constant for any set of parameters in the economic model.

To illustrate this result, we simulate the stable parameters given by Set 1 with a
bit length of thirteen rather than ten. Results of this simulation are given in Table
5.7. Tt can be verified that the condition for convergence given by the inequality
(5.13) is not satisfied. The inequality (5.16) is satisfied and the two values q_ and

g+ are observed.

The number of decisions encoded by a genetic algorithm within any election space
determines the maximum number of different decisions which may be adopted
by individual agents. Arifovic conducted a statistical test using twenty random
seed values and thirty generations of a genetic algorithm. She concluded that

a cobweb model containing an unstable stationary equilibrium has a greater price

*I am indebted to one of the examiners for this observation.
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Agents’ decisions
2.3336 2.3336 2.3330 2.3336 2.3330
2.3336 2.3336 2.3336 2.3330 2.3336
2.3330 2.3330 2.3330 2.3336 2.3330
2.3330 2.3330 2.3336 2.3330 2.3330
2.3330 2.3330 2.3330 2.3336 2.3330
2.3336 2.3336 2.3330 2.3336 2.3336

Table 5.7: Cobweb model, second simulation of set 1

variance than a model containing a stable stationary equilibrium. This is consistent
with the analysis of the election space and the inequality (5.13). An increased
relative likelihood that multiple points in election spaces are encoded by the genetic
algorithm causes a greater volatility in decisions and a greater price variance in

simulations.

Let us consider Arifovic’s [6] notion of a stable stationary equilibrium under a
genetic-algorithm adaptation. For some k& € 2, consider the uniform state ug. Let
the genetic algorithm be in state uy at some time ¢ and replace the j** component
(uk); by @; # k, @; € Q. Arifovic defines the state u; as stable under a genetic-
algorithm adaptation if the genetic algorithm returns to u;. We now contrast this
approach with our stability analysis and that of Dawid. We have shown that the
inequality (5.13) is a necessary and sufficient condition for convergence. By our
remarks on Dawid’s local asymptotic stability condition, if Gray coding is used
the inequality (5.1) and the inequality (5.13) are either both satisfied or neither.
Thus, under Gray coding a uniform state is locally asympotically stable according
to Dawid when it is stable under a genetic-algorithm adaptation. However, if Gray
coding is used, the inequality (5.1) can be satified when the inequality (5.13) is not.
A uniform state which is locally asympotically stable state according to Dawid does
not necessarily imply stability under a genetic-algorithm adaptation unless Gray
coding is applied. Each of the three convergence conditions are satisfied when the

inequality (5.13) is satisfied.
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Applying concepts for stability is limited in practice by a number of factors. Ari-
fovic’s stability under a genetic-algorithm adaptation may be difficult or impossible
to determine analytically. Dawid’s inequality (5.1) for local asympotic stability is
derived under a number of assumptions including an infinitely large population
size, low mutation rates, and infinitely many time steps. His inequality (5.1) also
specifically applies to single point crossover and binary code. When multiple sta-
ble states exist, stability conditions do not provide information about the relative
likelihood that any one particular stable uniform state will be attained. Recall
from Theorem 5.1 that only uniform states may be absorbing. Hence, we can
tell which states are absorbing by examining the inequality (5.13) for each uniform
state ux € S. This does not in itself guarantee convergence when satisfied. That is,
the inequality (5.13) is not sufficient to show that a genetic algorithm converges.
However, our approach can be universally applied across all genetic algorithms
with a coding mechanism of the type described in Section 3.2. Furthermore, we
have made few assumptions about the genetic operators, see Section 5.1. Our
Markov model for the genetic algorithm also provides insights into the role input
parameters play in simulations. The inequality (5.13) links the parameters of the
economic system and parameters of the genetic algorithm in a single condition.
For the cobweb model, we have used the inequality (5.13) to derive Theorem 5.8.
This result does address the convergence of the genetic algorithm. Similar results
must be derived for each economic model studied. It follows that no one particular

concept for the stability of uniform states is useful across all models.
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5.3 Stationary Distribution

and Convergence Rate

The convergence condition given by inequality (5.13) and the analysis of recurrent
classes summerized by Theorem 5.8 make definitive statements about the asymp-
totic behaviour of the genetic algorithm. However, these do not give any insight
into the rate at which a stationary distribution is approached. When inequality
(5.13) is not satisfied, particularly with an irreducible transition matrix, it is de-
sirable to have some measure of the proportion of time spent in states near the

equilibrium. Inequality (5.13) and Theorem 5.8 do not address this.

Using Perron-Frobenius theory given in Section 2.1 it is possible to calculate the
stationary distribution and rate of decay numerically for sufficiently small state

spaces.

We use input parameters which correspond to those used by Arifovic [3] where
the value of A has been modified for single agent experiments with N = 1. Our
results are then used to support observations made by Arifovic and to explain the

simulation output we present in Section 5.2.

Set 1 Set 2
A .\ 2290
B | 0.0152 | B | 0.0168
x 0|z 0
y | 0.016 |y 0.016
N 1|N 1

Table 5.8: Comparison of decay rates, parameter sets 1 and 2

Let us consider a single agent experiment, with nBIT'S = 3, and a gridspacing

of A = 4.5/7 for binary code with input parameters given by set 2 of Table 5.8.
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We give all stochastic matrices to three decimal places and all eigenvalues and
stationary distributions to four decimal places. The matrix M given by (5.21)
represents the bitwise mutation operator. The matrix P given by (5.22) represents
the state transition matrix after election and is an irreducible matrix. The selection

and crossover matrices are given by the 8 x 8 identity matrix I.

We calculate the stationary distribution m = (7, ..., ms) using Theorem 2.7 as the

normalized positive Perron-Frobenius left eigenvector of P

w:(o.oooo, 0.0005, 0.0000, 0.0469, 0.9515, 0.0010, 0.0000, 0.0000).
(5.20)

This stationary distribution gives an example of behaviour common to binary codes
under bitwise mutation. A comparatively large proportion of time is spent in the
second state, my = 0.0005. Almost no time is spent in the third state even though
this state has a higher fitness than the second. It is evident from the matrix (5.22)
that the probability of entry to the third state from the second in a single transition

is much lower than the probability of entry to the fourth and sixth state.

The value of 5 = 0.9515 is interesting because it is a direct consequence of the
Hamming cliff problem, see Section 3.2. Observing the transition matrix (5.22),
we can see that once the fifth state is entered it is difficult to leave. The actual
value ps 5 is one using three decimal places. Once at the fifth state, the fourth state
has strictly higher fitness than the fifth. A Hamming cliff arises because there is a
comparatively low probability of leaving the current state even though a state with
higher fitness exists. State five is binary coded to the string 100 and state four
is binary coded to the string 011. The probability of mutating from state four to
state five is (p)MUTATE)? = 3.6 x 107°, displayed as 0.000 in the matrix (5.21).

The rate of decay is given by Theorem 2.8 as the magnitude of the second largest
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[ 0.904
0.031
0.031
0.001
0.031
0.001
0.001
| 0.000

[ 0.904
0.000
0.000
0.000
0.000
0.001
0.001

0.000

0.031
0.904
0.001
0.031
0.001
0.031
0.000
0.001

0.031
0.935
0.000
0.000
0.000
0.031
0.000
0.001

0.031
0.001
0.904
0.031
0.001
0.000
0.031
0.001

0.031
0.001
0.936
0.000
0.000
0.000
0.031
0.001

0.001
0.031
0.031
0.904
0.000
0.001
0.001
0.031

0.001
0.031
0.031
0.999
0.000
0.001
0.001
0.031

0.031
0.001
0.001
0.000
0.904
0.031
0.031
0.001

0.031
0.001
0.001
0.000
1.000
0.031
0.031
0.001

0.001
0.031
0.000
0.001
0.031
0.904
0.001
0.031

0.001
0.031
0.000
0.001
0.000
0.936
0.001
0.031

0.001
0.000
0.031
0.001
0.031
0.001
0.904
0.031

0.001
0.000
0.031
0.000
0.000
0.000
0.935
0.031

0.000 |
0.001
0.001
0.031
0.001
0.031
0.031

0.904

0.000 |
0.001
0.001
0.000
0.000
0.000
0.000
0.904
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(5.21)

(5.22)
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eigenvalue A, of the transition matrix P

Az = 0.9992. (5.23)

The value of A\ indicates a slow decay to the stationary distribution because it is

close to one.

We contrast our results for binary coding with those obtained using Gray coding.
With Gray code
Ay = 0.9725. (5.24)

We expect a simulation using Gray coding to reach a stationary distribution much

faster than its binary counterpart.

The stationary distribution under Gray coding is

W:(O.OOOO, 0.0003, 0.0053, 0.4863, 0.4972, 0.0107, 0.0002, 0.0000)-
(5.25)

Gray code does not form Hamming cliffs to the same degree as binary code. It is
reasonable to expect in this model that the proportion of time spent in states about
the stationary equilibrium to be more equally divided than binary code. This is
independent of the actual Euclidean distance between the stationary equilibrium
and the value of states four and five so long as neither state is absorbing. Hence,
with Gray coding it is unlikely that any state in the stationary distribution have
a value of greater than 0.5. This effect explains why convergence of simulations
using binary codes may be observed to exhibit a false convergence to unexpected

values as noted by Arifovic.

We display the results of similar experiments using a bit length of three to eight bits
in Table 5.9 and Table 5.10. Bit lengths of more than eight bits are computationally

difficult to analyse due to the exponential increase in the size of the state space
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Binary Gray
nBITS | A A | B<A|RD<2A] X |[<A|%<2A
3 0.6714 | 0.9992 | 0.9984 | 0.9994 | 0.9725 | 0.9835 | 0.9995
4 0.3133 | 1.0000 | 1.0000 | 1.0000 | 0.9750 | 0.9835 | 0.9995
5 0.1516 | 1.0000 | 1.0000 | 1.0000 | 0.9765 | 0.9835 | 0.9995
6 0.0770 | 1.0000 | 1.0000 | 1.0000 | 0.9775 | 0.9735 | 0.9995
7 0.0374 | 1.0000 | 0.5701 | 1.0000 | 0.9778 | 0.9790 [ 0.9921
8 0.0184 | 1.0000 | 1.0000 | 1.0000 | 0.9787 | 0.9838 | 0.9996
Table 5.9: Results for set 1 of input
Binary Gray
nBITS | A Ay | D<Al % <2A] X |[D<A|%<2A

3 0.6429 | 0.9992 | 0.9984 | 0.9994 | 0.9725 | 0.9835 | 0.9995
0.3033 | 1.0000 | 1.0000 | 1.0000 | 0.9750 | 0.9835 | 0.9995
0.1435 | 1.0000 | 0.9840 | 1.0000 | 0.9746 | 0.5635 | 0.9825
0.0738 | 1.0000 | 0.5831 | 1.0000 | 0.9770 | 0.9790 | 0.9921
0.0350 | 1.0000 | 0.8785 | 0.9080 | 0.9827 | 0.9838 | 0.9995
0.0175 | 1.0000 | 0.8868 | 0.9105 | 0.9850 | 0.9805 | 0.9953

w N O o

Table 5.10: Results for set 2 of input
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and numerical errors in P when positive entries become extremely close to zero.
The fourth and seventh columns represent the asymptotic proportion of time spent
in states less than one gridspace from the stationary equilibrium. The fifth and
eighth column represent the asymptotic proportion of time spent in states less than
two gridspaces from the stationary equilibrium. Note that the value vMAX is at
most A/(NB) which is approximately 4.7 for set 1 and 4.5 for set 2. We chose
values for yM AX are such that the inequality (5.16) was not satisfied.

Tables 5.9 and 5.10 indicate that Gray code decays at a faster rate than binary.
These results can also be used to support the observation that the rate of decay
decreases as the number of states increases. In this experiment increasing the
number of bits used to encode values decreases the decay rate. The asymptotic
proportion of time spent in states near the equilibrium is not directly related to the
size of the state space. This observation is also consistent with simulation results.
Asymptotically, the genetic algorithm spends a large proportion of the time within
one or two gridspaces of the stationary equilibrium, as previously observed in Table
5.5 and Table 5.6. The stable parameters given by Set 1 have a faster decay than
the unstable parameter Set 2. Such behaviour has previously been observed by

Arifovic.



Chapter 6

Two Population Models

6.1 An Extension of our Markovian

Model to Two Populations

Two population models, such as the overlapping generations model described in
Chapter 2, are not formulated as a Markov process in the same way as previously
explained. In two population models, individual agents live over two consecutive
periods. First period consumption decisions are made by agents in their youth.
No consumption decisions are made in old age. Second period consumption of
individuals is dependent on both the amount of monetary savings accrued by these
individuals in their youth and the price per unit good set by the individuals that
are young during these individuals’ old age. In such a model, utility is a function
of first period consumption decisions made by two populations of agents over two
generations. Hence, the state of the Markov process which describes this behaviour

involves two populations rather than one.

To differentiate between one and two population models, we denote the state of the

Markov process by [¢, ], where 9 represents a population of first period consump-
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tion decisions made by IV old agents in their youth and ¢ represents a population
of first period consumption decisions made by N young agents. The set of all coded
decisions 2 and the domain 2 are unchanged. The set of all possible states S in a
two population model represents all possible combinations of 2V ordered decisions
from Q. For some q € 2, [, 9] € S, the fitness function is given by f,([¢, ¢]), and
the election space by &, (¥, ¢]).

In two population models, the selection operator uses decisions made by old agents
in their youth to generate decisions for new young agents. Hence, decisions made
by young agents at time ¢t — 2, who are old at time ¢ — 1, are used to generate new
decisions at time ¢. This means that if the Markov chain is in state [, ¢] € S at
some time ¢ then at time ¢ + 1 the Markov chain will be in a state [, #], ¢ € Q.

Theorem 6.1. Let ([, ¢:]), ¥i,0i € Q, 1 =1...N, be a population decision vec-

tor of the genetic algorithm with gridspacing A corresponding to the state [, ] €

S. If diam(&y, ([¢, ¢])) < A and diam(&,,([p,¥])) <A, Vi=1...N, then

(a) the state of the genetic algorithm alternates between |1, @] and [p,¥] in each
successive time period, and

(b) ¥ and @ are uniform.

Proof: In an argument similar to that used in Theorem 5.1, let us consider the
individual k. The election spaces &y, ([¢, ¢]) and &, ([¢,]) contain all decisions
z,y € Q such that fo([, ¢]) > fy, ([¥, ¢]) and fy([p, ¥]) > fo, ([0, ¥]) respectively.
If diam(&y, ([¢,¢])) < A and diam(&,, ([¢,4])) < A then ¢ and ¢ both have
strictly highest possible fitness from amongst all decisions in 2. For this to hold
for all individuals ¢ = 1... N, it must be that ¢; = ¢y and ¢; = g, Vi =1...N.
That is both 1 and ¢ are uniform. As both populations have strictly highest
possible fitness, no individual at time ¢, t + 2, t + 4, ..., or at time ¢t + 1, £ + 3,
t+5, ..., is permitted to change decision. Hence, the state of the genetic algorithm

alternates between [, ¢] and [, ¥]. o
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Note that in Theorem 6.1 above, ¥ and ¢ need not necessarily be distinct. We
observe that if ¢ = ¢ satisfies Theorem 6.1 then the state of the genetic algorithm

will never change. We now address the criteria for absorbing states.
Theorem 6.2. All absorbing states are of the form [ug,ux] € S, k € Q.

Proof: Let the state of the genetic algorithm be [, ¢] € S, at some time ¢t > 0.
The state of the genetic algorithm at ¢ + 1 must be of the form [p, ¢], ¢ € QV.
If 1 # o, the state [, ¢] is not absorbing. By Theorem 6.1, both 1 and ¢ must
be uniform since all individuals in the two populations must have stictly highest
fitness and satisfy diam(&y, ([¢, ¢])) < A and diam(&,,([¢,¥])) <A, Vi=1...N.

Hence, all absorbing states are of the form [ug, ug), & € €. o

Corollary 6.1. The state [ug, ux], k € Q, is absorbing iff diam(&([uk, ux])) < A.

6.2 Constant Money Supply

Arifovic [3] first demonstrated that a genetic algorithm can be applied in an econ-
omy of two populations. She examined two overlapping generations models, a
model of constant money supply and a model of constant real deficit. Apart from
the additional complexity a two population model introduces in comparison to a
single population model, a feature of Arifovic’s parameterization for the overlap-
ping generations model is multiplicity of equilibria. Arifovic compared her simu-
lation results for the genetic algorithm in these models to rational expectations,
experimental evidence [56, 61], and adaptive learning schemes such as price aver-
aging [57] and least squares learning [58]. Differences in the stability of equilibria
and convergence were noted between models. In particular, it was found that equi-
libria might be stable in one formulation for the model and unstable in another.

In Arifovic’s model of constant money supply, the rational expectations analysis as
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given in Chapter 2 predicts that the autarkic state should be the stable attractor
for equilibrium price paths py # p*. Experimentally the unstable stationary equi-
librium p* was observed. It was also obtained by Arifovic in simulations using the

genetic algorithm.

We describe Arifovic’s formulation for the genetic algorithm as applied to the
overlapping generations model of constant money supply as follows. Initially two
populations representing the first period consumption of N individuals at ¢ = 0
and N individuals at ¢ = 1 are randomly generated over [0, w(")] by the genetic
algorithm. These consumption decisions are decoded according to Section 3.2 to
give the values for individual first period consumption CE}O) and cz(-,ll), 1=1...N.
Excess goods are sold by young individuals to old individuals at each period to

accumulate monetary savings. At ¢ = 0,1, a young individual ¢ accumulates a

saving of

81,0 = 'w(l)—CgO), (61)

Si1 = w(l)—cg}l). (6.2)

With a constant money supply the price of each unit of good at ¢ = 0,1 is

Nh
Po = —F > (6.3)
Zil\;si,o
Nh
P = —, (6.4)

S Si
where h is the per capita money supply. A young individual ¢ at ¢t =0and ¢t =1
has m; and m,; units of fiat money respectively to purchase goods in old age
mM;o = SioPo, (6-5)

m;1 = Si1D1- (6-6)

Second period consumption for an old individual ¢ at ¢t =1 is given by
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We calculate the utility corresponding to an old individual ¢ with first period

consumption at ¢ = 0 and second period consumption at t =1 as

pip = clgey. (6.8)

The first application of genetic operators occurs at period ¢t = 2. We use the
utility received by agents born at ¢ = 0 during selection at ¢ = 2 to generate a
mating pool of N individuals. Let these individuals have corresponding decisions
6512) , % = 1...N. We then apply crossover and mutation to this mating pool.
The utility received by each agent living over periods ¢ = 0 and ¢ = 1 is given
by equation (6.8). However, an individual agent at time ¢ > 2 formulating a first
period consumption decision has no method a priori of determining either the price
at time ¢ or the price at time t+ 1. Hence, agents at ¢ = 2 estimate their potential

utility using the price at ¢t = 0 as a forecast for the price at ¢ = 2 and the price at

t = 1 as a forecast for the price at ¢t = 3. Thus
pf = Pt—2, Vit Z 2. (69)

The potential fitness of each individual in the mating pool is calculated as follows.

Determine the savings each individual accumulates,
§ia=wh — &l (6.10)
the corresponding potential holdings of fiat money
M2 = 8205, (6.11)
= §i2Do, (6.12)
and the corresponding potential second period consumption
&8 = w42, (6.13)

= w® 4 22 (6.14)
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An agent’s fitness is then

fia = 8527, (6.15)

3

We use the election operator to compare the mating pool and the population born
at t = 0. The resultant population becomes the representative population of agents
at t = 2. Once all consumption decisions at ¢ = 2 are known, we can calculate p,
and the utility of all agents who live over periods t = 1 and ¢ = 2. We continue this
process at t = 3 and all subsequent iterations of the genetic algorithm, terminating

once a specified number of generations have been produced.

Rational expectations analysis of the overlapping generations model as given in
Chapter 2 and the price expectation formulation for the genetic algorithm given
by equation (6.9) are not consistent. There is no reason a priori why the equilib-
ria resulting from adaptive price expectations would retain the same properties of
stability and existence as those equilibria found under a rational expectation anal-
ysis. To verify the existence of stationary equilibria under such an adaptive rule,
and to determine the stability of these equilibria, let us consider a formulation of
the overlapping generations model using adaptive price expectations as given by

equation (6.9).

Assuming that all agents maximize utility, then all agents act identically. Utility

is given by
w(c? w® 4w — VY), Vi > 2 (6.16)
where
e_ D¢
ry = ~ (617)
¢ Piv1

represents the ratio of forecast values for price at ¢t and ¢ + 1. We will assume a

product form for utility as given by equation (4.24).

The first order conditions give the optimal first period consumption strategy as a
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function of r¢

¢ ' =———+ —. (6.18)
e 2
Using equation (4.19), equation (6.9), and equation (6.17), we have
Ty =179, V1 >2. (6.19)

We substitute this into equation (6.18) to give

@ 1 (1)

1) w w

e + 5 .2
“ 2 Tt—9 2 (6 0)

By equation (4.19) and equation (4.21)

1
Cm:wmwm_44+wm_ (6.21)
‘ 2 w2

We obtain a stationary solution to this equation for first period consumption by a

substitution of

A= = (6.22)

to give

A A (6.23)

This is consistent with equation (4.38) derived under perfect foresight.

To determine the stability of the stationary point (6.23), we write the second order

non-linear recurrence relationship (6.21) as a coupled system of first order equations

in x and y
w@ M — s w®
Tig41 = D) + )
Y41 = Ty
Let
w(l) + w(2)
Ty = Q41 + —2“:
@ @) (6.25)
w4+ w
Yer1 = Py +—m——
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Then the system (6.24) becomes

w® ) — @ _ 25, @
Qi1 = - )

Biy1 = .

A Taylor series expansion about the point (0,0) yields the linearized system

w®?
1 = m(at = B), @
Brr1 = o
That is
w® —w®
At | _ | LD @ o) — @ | (6.28)
Br1 1 0 B
The matrix
w® e
w®) — @ 1) — @ ; (629)
il 0
has eigenvalues which satisfy the characteristic equation for A
@) )
2 w w B
N0 —wd T o @ = 6=0)
This characteristic equation has roots in A of
1 w® 1 w® w®@
7 4 24—
5@ —w® T 3 \/(w(l) —o®) T — @ (6.31)

If w® > %w(z) then the characteristic equation (6.30) has imaginary roots with
w?

1
2w — @’ (6.52)

1 w(®@) w2
o e _ 2
Sm(A) = 5 \/411)(1) —® (w(l] = w(z)) : (6.33)
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If w) = Sw® then the characteristic equation (6.30) has two repeated roots

A=2. (6.34)

If w) < %w@) then the matrix (6.29) has at least one eigenvalue with a magnitude

exceeding 2.

This analysis concludes that each eigenvalue of the matrix (6.29) has a magnitude
less than one only when the characteristic equation (6.30) has imaginary roots

which lie within a ball of radius one in the complex plane. That is

VRe(M)2 + Sm(N)? < 1. (6.35)
This inequality becomes
w(?)
or
w® > 20®, (6.37)

Hence, the fixed point ((w® + w®)/2, (w® + w®)/2) is a locally asymptotically
stable point of the system (6.27) only if w?) > 2w®. By Theorem 2.9, the station-
ary equilibrium ¢™* = (w® 4+ w®)/2 of the non-linear system (6.24) is locally
asymptotically stable only if w®) > 2w,

The autarkic state cgl) = wW is a situation for which equation (6.21) is not valid.
Once consumption is at a maximum, it will remain so thereafter. Let us consider
equation (6.18) displayed in Figure 6.1 which gives the optimal consumption strat-
egy as a function of ¢, ¢t > 2, for all individual agents under the adaptive price
expectation (6.9). A price ratio rf < w®/w(V results in an optimal consumption
strategy égl) > w(D. That is, individuals predict that best returns will be obtained

if all first period endowment is consumed. Hence, the autarkic state is locally

asymptotically stable in a neighbourhood rq < w(2)/w(1).
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Set 1 Set 2 Set 3
w 150 120 100
w® 10 20 90
h 1000 500 1000
N 30 30 30
) 80 70 95
) 80 70 95
p* 14.2857 10 200

Table 6.1: Model of constant money supply, parameter sets 1 to 3

Vector

Set 1 | u(so.0587)

Set 2 | u(70.0203)

Table 6.2: Constant money supply, population decision vector, sets 1 and 2

Agents’ decisions
04.7214 96.0899 95.4056 94.0371 94.2326
05.2101 94.6236 94.8191 94.4281 95.5034
95.4056 94.9169 95.6989 95.0146 95.4056
95.8944 93.8416 95.7966 95.2101 94.7214
94.9169 96.0899 94.8191 94.7214 94.6236
94.9169 95.3079 95.2101 94.6236 95.1124

Table 6.3: Constant money supply, population decision vector, set 3
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Figure 6.1: First period consumption, cgl) against 7y

Let us consider the parameters sets given in Table 6.1. These three sets correspond
to the first two sets of input studied by Arifovic [3]. Set 1 and Set 2 satisfy the
inequality (6.37) so that we expect the fixed point ((w® + w®)/2, (WM + w®)/2)
given by equation (6.23) to be locally asymptotically stable. We conducted ten
thousand iterations of the genetic algorithm under Gray coding with a bit length
of ten. In all simulations of Set 1 and Set 2, each of the thirty agents adopted the
same decision. Convergence was attained in the majority of simulations within the
first two hundred iterations of our algorithm. No change was recorded after this
convergence. Set 3 of Table 6.1 represents a set of parameters which do not satisfy
the inequality (6.37) for local asymptotic stability. That is, the fixed point given by
equation (6.23) is not locally asymptotically stable. A diverse range of values was
observed throughout the simulation. Results for the first two parameter sets are
tabulated in Table 6.2. The value of the population decision vector at the end of the
simulation for parameter Set 3 is recorded in Table 6.3. First period consumption

decisions made by agents are displayed as real numbers to four decimal places.
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The findings of the genetic algorithm for Set 1 and Set 2 of Table 6.1 are consistent
with our stability analysis, except that the autarkic state was not observed during
any simulation. We know from our stability analysis that trajectories for first
period consumption are attracted to the autarkic state in the region ro < w® /w®,
Hence, one might expect a simulation of the model to behave similarly. This is
not the case. We display in Figure 6.2 and Figure 6.3 a numerical simulation of
the trajectories for first period consumption given by equation (6.21), with inital
values at t = 0 and ¢ = 1 equally spaced ten units apart over [0, w"]. The hashed
area marked x represents the region for which consumption at ¢ = 2 is maximal.
All consumption paths with initial conditions sufficiently close to equilibrium are

convergent to c)*,

To explore the behaviour of the genetic algorithm initialized close to the autar-
kic state, we repeated our simulations one hundred times and enforced the initial
condition ro < w®/w). That is, the genetic algorithm was initialized for param-
eter sets 1 and 2 within the hashed region displayed in Figure 6.2 and Figure 6.3
respectively. The genetic algorithm was not observed to converge to the autarkic
state in any of these simulations. That is, our results were of a similar kind to

those given in Table 6.2.

In simulations of the first two parameter sets given in Table 6.1 it is found that
although all individuals at ¢ = 2 receive highest fitness for the first period consump-
tion decision w(!), few individuals actually find this decision. This is explained by
observing that there is only ever a relatively small probability that the genetic
operators will generate such a decision. Hence, this decision will generally not
be adopted. Instead, an individual might maintain their previous consumption
decision from ¢ = 0, or choose some decision between this value and w(. Now
notice that there is a strictly positive probability that a population of decisions at

t = 2 remains unchanged by the genetic operators from that at ¢ = 0. That is all
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individuals maintain their previous first period consumption decision from ¢ = 0.
From such an observation it is easy to conclude that r; > w® /w® > w®@ /M) if
ro < w® /w), Hence, the genetic algorithm has a positive probability of leaving
the region marked x in Figure 6.2 and Figure 6.3 so long as neither of the two
populations are identically u,u). Hence, convergence to the stationary equilibrium
occurs. The chance that the autarkic state is observed in randomly generated

populations is infinitesimal.

The genetic algorithm has given insight into the behaviour of economic systems. In
particular, the reasons why individuals are attracted to one particular equilibrium
over another is important. As noted above, local asymptotic stability conditions
are unlikely to be the sole factor in the convergence of simulations using a genetic
algorithm. In Set 3 of Table 6.1 we might have expected convergence to the au-
tarkic state. This was not the case, as illustrated in Table 6.3. We repeated our
simulations using one hundred thousand iterations. Convergence was not observed.
The convergence of the genetic algorithm gives an insight into the economic model.
As remarked by Arifovic [3], convergence in the genetic algorithm and empirical
results are in agreement. Hence, genetic algorithms more accurately represents the
behaviour of this economic model than do other learning algorithms. In our anal-
ysis of the cobweb model, it was meaningful to consider gridspacing in the genetic
algorithm to analyse convergence. We also apply this approach to this model, as

given below.

We encode the exact value ¢{1* to some fixed precision in the genetic algorithm by
specifying the gridspacing of A. Denote M < ¢+ and c(+1) > (U the two closest
points to ¢(* encoded by the genetic algorithm on either side of ¢U* possibly the
point ¢M* itself. Assume that the average first period consumption is less than

c¢D*_ Thus, we can write

i N

N cip =M 0, (6.38)

1=1
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for some §; > 0. Hence,

N
1
6t = c(l),* _ N Z 67(}'), (639)
=1

represents the difference between the equilibrium first period consumption (D
given by equation (4.38) and the average first period consumption at each time
period. By equation (4.15) and equation (4.14), the corresponding price at time ¢

is given by
h
Pe= Tt — e 1 6y

(6.40)

Let (cg}t) ) be our population decision vector at time ¢ > 0 corresponding to the state
() € S. From the set of all possible first period consumption decisions at time ¢+
1, we use equation (4.24) to calculate the election space &,u).-_s, (1(t)) representing
those values with equal or higher fitness to the first period consumption strategy
D> — §,. Our election space &,m).._z (¥(t)) is convex and non-empty, taking the
form [a,b], a,b € 2. The endpoints a and b are the two real roots of the quadratic

equation in ¢

B + iy (w0 = ) = (O = 6)@® + 18 (w0 = D +8)). (6.41)

This has solution ¢ = c¢V* — §; and

(2)
$=w+ g, (6.42)
T

Assume that §, = § is a constant up to time t and that cili) =c*_§ Vi=
1...N. Hence, ¥(t) = ¥ = Uqw«_g, Te41 = 1, and our election space is given by
[cW* — 5 w® 4 w@ — W* + §]. For the state [uw.._g, U .«_s] to be absorbing
no more than one point may be encoded by the genetic algorithm in the election
space E.)._g([Ugrr_g; Uers_g))- That is, ug-_s is an absorbing state according to

Theorem 6.1 and Theorem 6.2. We require that

w® 4+ w® — D g5 D5 <A (6.43)
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This simplifies to

M) 4 @ A
-t i< T (6.44)

Substitution of ¢M* = (w® + w®)/2 gives

A

Analogous situations arise when average supply given by equation (6.38) is assumed

to be ¢U* + 6, 6, > 0.

We now note that the inequality (6.45) can never be satisfied if both ¢ and csrl)

are equi-distant from ¢V, That is, c)* occurs at the exact midpoint of two coded

M or cSLl) lies closer to

decisions in §. Otherwise, we can assume that one of either ¢
¢1* than the other. Denoting 6 as the minimum of {c(M)* — W, c$) — M} it
follows that the inequality (6.45) is always satisfied by the one unique point either

¢ or ¢ strictly closest to ¢

The situation in which all agents consume all available goods must be treated as
a special case during simulations of a genetic algorithm to avoid run time errors
when price tends to infinity. That is, we check for such a situation during execution
of our algorithm and terminate the process appropriately should the need arise.

This autarkic state is always encoded by the genetic algorithm.

Theorem 6.3. A Markov chain model for genetic algorithm simulation of the
overlapping generations model of constant money supply has

(a) an absorbing state u,w,

(b) an absorbing state u_q) , tff cﬁ,ﬁn = arg mineq|cM* — Y| is unique, where

min

W+ §s given by equation (6.28)
Proof: Proof follows from previous observations and Corollary 6.1. o

In Set 1 and Set 2 of Table 6.1 convergence to the absorbing state c(l)-n given

m

by Theorem 6.3 can reasonably be expected. In Set 3 of Table 6.1 our analysis
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indicates convergence should be expected. However, this was not observed in
practice. This suggests the rate of decay to the stationary distribution of the
chain is slow. That is, although we expect one of the two absorbing states given
by Theorem 6.3 to be attained by our Markov chain, the epoch of arrival was not
observed. The probability that either of the two distinct absorbing states of the
Markov chain are attained cannot in general be calculated without an analysis
of the stationary distribution of the process. It is not practical to calculate this
distribution for this application of the genetic algorithm due to the size of the state

space.

6.3 Volatility

In Section 6.2 we commented that it is not practical to calculate the rate of decay
for our Markov process to its stationary distribution. However, we can measure the
volatility of the market over time in a manner similar to that used by Arifovic [4].
In our analysis we are interested in variation between coded decisions rather than
price. Hence, we define volatility Vr in terms of individual first period consumption

) ¢=1...N, over the periods t =0...T

1,t’
N T
() _ (1)%)2
Vr = NT LD =1 T+ -1 ZZ(CM ARl (6.46)

i=1 t=0

If we perform R independent simulations for some fixed set of input parameters

and fixed value for T', the sample mean volatility V- over these R replications is
L&
Vr=% Z ViE, (6.47)

where V¥ denotes the volatility corresponding to the k** numbered trial.
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The sample variance s% in the volatility over R replications is
1 R
2 1 ke : .
Sh= 51 > (VE =), (6.48)

We conducted R = 100 independent simulations with T = 100. We selected a bit
length of ten for binary and Gray coded simulations and used Set 1 of Table 6.1
as input parameters. Simulation statistics are tabulated in Table 6.4. Figure 6.4
displays the sample mean volatility as a function of time for binary, Gray, and real
coded simulations. We give some example results for a single simulation run of our

genetic algorithm in Appendix B.

Binary | Gray Real
Vigo | 57.2113 | 53.9031 | 89.5923
so | 13.2858 | 11.9545 | 9.1866

Table 6.4: Volatility, output statistics

Let Vg, Vg, and Vg, represent the binary coded, Gray coded, and real coded
sample mean volatilities respectively as given in Table 6.4. Let s%, s%, and s%,
represent the binary coded, Gray coded, and real coded sample variance in the
volatility respectively as given in Table 6.4. Let pp, ug, and pg, represent the
binary coded, Gray coded, and real coded volatilities respectively. To statistically
test the hypothesis Hy : up = p¢ with alternative hypothesis H, : up > pg, we
use a two sample t-test with R — 1 degrees of freedom. A t-value statistic of 1.8510
is calculated. This means that our null hypothesis Hy is rejected in favor of the
alternative hypothesis H, at a significance level of o = 0.05 but is retained at a
significance level of o = 0.025. Hence, in rejecting the null hypothesis Hy at a
significance level of @ = 0.05 we are 95% confident that Hj is false and that the
true binary coded volatility exceeds the true Gray coded volatility. We compare

the real coded sample means with the binary and Gray sample means in a similar
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fashion. In the first instance, binary and real coded samples, we propose the null
hypothesis H; : up = pgr, and the alternative hypothesis Hy : ugp > pp. In the
second instance, Gray and real coded samples, we propose the null hypothesis
H, : uc = pgr, and the alternative hypothesis H, : pr > pe. Both the null
hypotheses H; and H, are rejected in favor of the alternative hypotheses H; and
H, respectively with at a significance level of approximately 0%. That is, it is

almost certain that H; and H, are false.

Mean volatility
2500 T T T T T T T T

— binary
= = gy
-+ real

2000

1500

Value

1000

500

0 i Il 1 i i Il L L

0 10 20 30 40 50 60 70 80 90 100
Time Period

Figure 6.4: Mean volatility V;

This experiment demonstrates the importance of coding mechanisms on simula-
tion results. A complete analysis of the stationary distribution of our Markov
chain model is not possible for the overlapping generations model. However, these
findings are conclusive evidence, for this particular set of parameters, of the in-
herent differences between genetic algorithms which employ binary, Gray, and real
coding mechanisms. Similar results are obtained when alternative parameter sets

are considered.
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6.4 Constant Real Deficit

The overlapping generations model of constant real deficit has been shown to admit
two stationary equilibria for consumption in Chapter 2 for which money is valued.
The stationary low inflationary equilibrium is the attracting point for existing
genetic algorithms. However, the low inflationary equilibrium is reached under
rational expectations dynamics only if first period consumption decisions within
the population are initialized at that equilibrium c(Ll)’* with 79 = 7}. Simulations
performed by Arifovic [5] converge to the low inflationary equilibrium. The high
inflationary equilibrium is the stable equilibrium point under rational expectations
for all my > 7}. One might reasonably ask how these two conflicting statements are

reconciled. To address these issues let us start by considering a genetic algorithm

and the interactions brought about by its fitness function.

Our implementation of the genetic algorithm for this model closely follows that
given in Section 6.2 for the overlapping generations model of constant money sup-
ply. The difference in a model of constant deficit is that market price is calculated

using equation (4.44).

If price forecasts are made according to p§ = p;—o as given in equation (6.9) and

utility is given by equation (4.24) then the relationship for consumption is

which is identical to equation (6.18). By equation (4.19), equation (4.44), and

using s, = w® — ¢

(2) ) _ (1)
1 _ w w ;% w
R T e (i (6.50)
w) — ¢, —d

Stationary equilibrium values for first period consumption are given as the two real
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roots of the quadratic equation in ¢
2¢” — (3w + w?® — 2d)¢ + w (W® + w® - d) = 0. (6.51)

This has roots c(Ll)’* and cg)’* representing the low and high stationary inflation

equilibria

1
3(310(1) +w® —2d) F i \/(w(l) —w®)2 4+ 4d(d — w®) — w®), (6.52)

respectively. These two equilibria are consistent with those derived under rational

expectations.

To determine the stability of the stationary point (6.52), we write the second order

non-linear recurrence relationship (6.50) as a coupled system of first order equations

in z and y
) w? w—y  w
t+1 )
Yt+1 = Ty
Let
Tepr = oggr + D,
o (6.54)
Y1 = Bt
where ¢(1* represents a solution to equation (6.50), either c(Ll)‘* or cg)’*.
Then the system (6.53) becomes
2 W) — 8, — () (1)
a = 5 pm A 3+
W T G e (6.55)
b1 = o

A Taylor series expansion about the point (0,0) yields the linearized system

w(2) ( at(w(l) — c(l))*) IBt )

Qi1 = 9 (w® — > — g)2 T w® — e — g

(6.56)

ﬂt+1 = Q.
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That is
w®  w® = M w®@ 1
41 — 2 (w(l) — oD d)? n 2 ) — W — d y
By 1 0 B
(6.57)
The matrix
0@ @) — e w® 1
2 (w(l) — (L) _ d)2 - 92wl — W — ¢ : (658)
1 0
has eigenvalues which satisfy the characteristic equation for A
(2) (1) _ (1) ) 1
v PR =0. (6.59)

2 (w® — c* — )2 2wl —cx —d

This characteristic equation has roots in A of

1w®  w® — e i1 w®@ @ = ) b 4w(2) 1
2 2 (w® = dr —g)272 2 (w®—chx—d2) =~ 2 w®—cbx—g

(6.60)

For the linearised system (6.57) to be locally asymptotically stable according to
the stability criteria given in Theorem 2.9, it is required that the absolute value of

both roots of the characteristic equation be less than one.

All first period consumption decisions c§1) > w — d represent a situation for
which a break down in the economy is observed. All such decisions are locally

asymptotically stable.

Let us consider four parameter sets used by Arifovic [5] as given in Table 6.5. We
conducted ten thousand iterations of the genetic algorithm under Gray coding with
a bit length of ten. In all simulations for Set 1 and Set 2 of our input, each of
the thirty individuals adopted the same decision. Convergence was attained in the

majority of simulations within the first two hundred iterations of our algorithm.
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Set 1 Set 2 Set 3 Set 4

w® 150 10 10 2
w® 30 4 4 1.8
d 15 0.001 | 0.67544 | 0.0024

;| 1.38197 | 1.00033 | 1.03769 | 1.57922
| 3.61803 | 2.49917 | 1.07076 | 1.58306
clL’* 95.7294 | 7.00067 | 8.15843 | 1.93392
C}}* 129.270 | 9.99833 | 8.16613 | 1.96368

Table 6.5: Model of constant real deficit, parameter sets 1 to 4

No change was recorded after convergence was attained. Note that the high in-
flationary stationary equilibrium is an unstable fixed point for all parameter sets.
The simulation output corresponding to Set 3 and Set 4 of Table 6.5 varies. We
report a typical simulation for which a break down in the economy was observed.
This break down occured in both simulations within one hundred iterations of our
algorithm. The values of the population decision vectors observed at the end of
simulations for the first two parameter sets are tabulated in Table 6.6. Population
decision vectors for the last two parameter sets are tabulated in Table 6.7 and Ta-
ble 6.8. First period consumption decisions made by agents are displayed as real

numbers to four decimal places.

Arifovic reports convergence to the low stationary equilibrium for all published sets
of parameter values. We obtain convergence in all simulations only for Set 1 and
Set 2 of Table 6.5. In both of these sets, the low inflationary stationary equilibrium
is locally asymptotically stable and the high inflationary stationary equilibrium is
unstable. Graphical stability diagrams for equation (6.50) corresponding to Set
1 and Set 2 are given in in Figure 6.5 and Figure 6.6 respectively. These plot
the trajectories for consumption with inital values at ¢t = 0 and ¢t = 1 equally

spaced ten units apart over [0,w()]. In both figures, the hashed region marked
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Vector

Set 1 | u(gs.7478)

Set 2 | u(6.9990)

Table 6.6: Constant real deficit, population decision vector, sets 1 and 2

Agents’ decisions
8.9638 8.9736  8.9442 8.8074 10.0000
8.9736 8.9736 10.0000 8.7878  8.8660
0.8826  9.9902 8.8563 8.8563  8.9247
8.9051 8.7781  8.9540 9.9413  9.0127
8.8660 9.3646  8.8856 9.8142 10.0000
8.8856 10.0000 8.8269 9.0518  8.7487

Table 6.7: Constant real deficit, population decision vector, set 3

Agents’ decisions
2.0000 2.0000 2.0000 2.0000 1.9980
2.0000 2.0000 1.9804 2.0000 1.9960
2.0000 2.0000 2.0000 1.9921 2.0000
1.9941 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 1.9882 2.0000
2.0000 1.9863 2.0000 2.0000 2.0000

Table 6.8: Constant real deficit, population decision vector, set 4
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X represents initial conditions such that a breakdown of the economy is observed.
That is, price becomes infinite or negative. Random initialization of first period
consumption in Set 1 and Set 2 is unlikely to generate initial values within the
unstable region. Convergence to the low inflationary equilibrium can then be
expected with reasonable certainty. In parameter Set 3 and Set 4 of Table 6.5,
the low and high inflationary stationary equilibria are unstable. We demonstrate
in Table 6.7 and Table 6.8 that a breakdown in the economy may occur during

simulations.

We can examine the stationary equilibria in greater detail by considering our
Markov chain model of the genetic algorithm. Through such an analysis we explain

why the high inflationary stationary equilibrium is not observed in simulations.

The value cg)’* is encoded by the genetic algorithm to some precision by specifying

the gridspacing A. Denote c(le < C(Ll)’* < c(LlJ)r and cg) < c(}})’* S cgl the two

closest points to c(Ll)’* and cg)’* encoded by the genetic algorithm on either side of

cg)’* and c(f})’* respectively. Assume that the average first period consumption at

time ¢ is less than c(I})’*. Thus, we can write

N
1 .
N2 = b (6.61)
i=1
for some 6, > 0. Hence,
N
N 1
8 = cg)’ -~ cg,lt), (6.62)
=1

represents the difference between the high inflationary equilibrium ¢(** given by

equation (6.52) and the average first period consumption at each time period.

Let (cElt)) be our population decision vector at time ¢ > 0 corresponding to the
state 1(t) € S. From the set of all possible first period consumption decisions at

time t+ 1, we calculate the subset of decisions representing those values with equal

(1)

or higher fitness to the first period consumption strategy chl, — d¢. Our election
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Figure 6.5: Model of constant real deficit, consumption paths (cgl_)l, §1’), set 1
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Figure 6.6: Model of constant real deficit, consumption paths (cﬁl_)l, §1)), set 2
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Figure 6.7: Gridspacing and the high inflationary equilibrium

space & (1, _, (1(t)) is convex and non-empty, taking the form [b,a], a,b € 2. The
Crr -

endpoints a and b are the two real roots of the quadratic equation in ¢

dw® + 7 (WD = 9)) = (D = &) (W + g, (WM — D* 4+ 6)).  (6.63)

This has solution ¢ = cg)’* — &, and

@
p=wh 42— Dy, (6.64)

[
Tev1

By equation (4.19) and equation (6.19), we have

e _ P
g, =2, (6.65)
Pt

We substitute for the value of p;_; using equation (4.44) and use equation (4.14)

to give
w® =M —q

w® — Y,

(6.66)

Tig1 =
Assume that §, = ¢ is a constant up to time ¢ and that cg’lt) == cg)’* —6,Vi=1...N.
Hence, ¥(t) =9 = Uoi)e _g- Then
wl) — c(,})’* +0—d

e = 1 6.67
i w(.z) _ CE{})}* + 6 ( )

is a constant, 7g.
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Now, notice that irrespective of how close average first period consumption is to the
high inflationary equilibrium, the dynamics of the system favors values which are
further displaced from the stationary equilibrium. The equilibrium value does not
appear in the election space. This is also true when average first period consump-
tion given by equation (6.61) is assumed to be cg)’* + 8;, 8; > 0. Figure 6.7 gives
an example in which the election spaces (f’c(;)_ ([uc(f;)_,uc(Hll]) and gcﬁi([ucgl’ ucﬁ}L])

are displayed.

Cr,” Chy
- | 3 1 -
s D
o H+

= G (g, ugn ) —
S (g ug) —

Figure 6.8: Gridspacing and divergence

The election spaces corresponding to states about the low inflationary equilib-
rium include the equilibrium point for all sufficiently small deviations from the

S-}) "™ approaches

equilibrium value. However, changes in stability occur whenever ¢
cg)’*. Figure 6.8 gives an example in which convergence is not possible where
&, m ([uc(Lll ) gl ]) and é"cgl ([ucﬁ}l ) Uglt) ]) represent the regions obtained when first
period consumption is c(Lll and cgl respectively. From equation (6.52) the low and
high inflationary equilibria approach a single value as (w® —w®)® +4d(d—w® -
w®) — 0. Low and high inflationary equilibrium values may not necessarily be
within one gridspace as given in Figure 6.8. In simulations, fluctuations about the
low inflationary equilibrium occur. When fluctuations are not sufficiently small,

divergence becomes inevitable.

Absorbing states of the Markov process are calculated by considering the diameter

of the election space &) ([u.w, uam]), for all ¢V € Q. The diameter of this election
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space is

diam (& ([ugmy, uem))) = 2] — &b, (6.68)

where
w® ) — M w®

5 o0 D — g + 5 (6.69)

An analysis of the value of the derivative of diam(&,) ([u.m),u.m])) reveals that

d(diam(&.q) ([um, um])))
dc®)

0, (6.70)

as ) — ¢ or as ) — ¢, The diameter of this election space is an increasing

function as ¢) — 0 from the right and as ¢ — w(") from the left.

Let ¢W* represent a solution of equation (6.51). That is, either D or

Let § > 0, then a state [ty s Ugrwps) OF [Uge_g, Uen)s_g] TESPeECtively is an
absorbing state if

w(2) w(l) — (c(l)v* 4+ 5) w(l)

2
2 w) — (cW*£d)—d 2

(D> £ 6) —

< A. (6.71)

This inequality is simplified by a substitution for the first occurrence of the term

C(l)’*
(1) — (1) (1) _ (A(1),% + 5)
(2) w C _(2) w (C
lw o —cDx — g Wy COEN + 20| < A, (6.72)
or
Sw®
’ wed + 2(5’ < A. (6.73)

T Tw® — O — d)(w® — (¢ £ 6) — d)
Four cases arise when we wish to determine the diameter of an election space at
the points ¢\ + 4, *ts,

Below we provide a full derivation for the case corresponding to the point c(Ll)’* +4.

The inequality (6.73) becomes

—sw®d
(w® — ™ — @) (w® — (P +8) — d)

+26 < A (6.74)
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This can be rearranged to

—ow®d + (28 — A) D — " — )P — ()" +8) —d) <0 (6.75)

The left side of this inequality describes a quadratic function in
—276% + (292 + vA — w@d)s — YA, (6.76)

where

v =wV - c(Ll)’* —d. (6.77)

Note that this quadratic has a negative coefficient of §2.
The quadratic equation (6.76) has two real and positive roots if

(297 + 7A — wPd)? > 8y3A. (6.78)

If the inequality (6.78) is not satisfied, then the quadratic equation (6.76) lies
entirely below the horizontal axis. Hence, the inequality (6.75) is satisfied for all

W _

values of §. The situations for which § < 0 and § > cy are not covered

by our initial assumptions. Hence, é € [0, cg)’* — c(Ll)’*].

If the inequality (6.78) is satisfied, denote the two real roots of equation (6.76) by
p1 and pa, p1 < pp. The inequality (6.75) is satisfied in the regions (—oo, p1) and

(p2, +00). The sub-sets [0, p1) and (p2, cg)’* - cg)’*] represent practical ranges for

5.

The quadratic equation g : R — R given by equation (6.76) is displayed in Figure
6.9 for the case p; # p2, p1, P2 € R. The two intervals of interest for § are denoted
by Z, and Z, respectively. The low and high inflationary equilibria occur at § =0

W _ D

and 6 = cg respectively.

The values of p; and p, are given by

1 2 () 1 2
= _ il — @2 — 8~3
e (29° + A —w¥d) F e \/(27 + vA — w@d)? — 8y3A, (6.79)
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T §= c([})’* — C(Ll)’*
| A -
P1 P2 )
6=0
9(9)

Figure 6.9: Graphical representation of roots and the quadratic g(J)

respectively.

We have derived a condition on the diameter of an election space by considering

the point c(Ll)’* + ¢ and deriving two intervals of interest, Z; and Z,. Notice that

we may just as easily have considered a point c(bl,)’* — 6 and obtained equivalent

intervals. Observing the symmetry inherent between these two points, the intervals

of interest for § are [0,0%)’* - c(Ll)’*], if equation (6.76) has imaginary roots, and
[0, &P — & — py] U [ — " — g, D — 9] otherwise. Now, of our four

original cases c(Ll)’* + 4, cg)’* + §, we can derive a condition on the diameter of an
election space for the remaining two similarly by considering either of c(Ll')’* -4,

D™ 1 5. Let us consider the case ¢ — 4.

The inequality (6.73) becomes

—6w®d
(D = " = d)(w® — (" = 8) - )

+26 <A, (6.80)

This is re-arranged to

—6wPd + (26 — A)(wh — M — d)(w® — (- 8) —d) < 0. (6.81)

The left side of this inequality describes a quadratic function in ¢

2782 — (wBd + yA — 29%)6 — 724, (6.82)
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where 7 is given by equation (6.77).
Note that this quadratic has a positive coefficient of §2.

The quadratic equation (6.82) always has two real roots, one positive and one
negative. Denote these two real roots by g1 and g;, o1 < 02. The inequality (6.81)
is satisfied in the region (g1, 02). The sub-sets [0, 02) and (gl,—(cg)’* — c(Ll)’*)]

represent our intervals of interest for 4.

T Jo
§=0 h(3)
§ =i o T
| -
01 ‘ 02 )

Figure 6.10: Graphical representation of roots and the quadratic h(8)

The quadratic equation h: R — R given by equation (6.82) is displayed in Figure
6.9. The two intervals of interest for § are denoted by J; and J» respectively.
The low and high inflationary equilibria occurs at § = — (P — P*) and 6 =0

respectively.

The value of p; and g, is given by

1 il

—(wPd +yA — 29 F —1/(w®@ A —292)2 + 8y3A :

47(“’ +7 7)¢47\/(w d+vyA - 29%)% + 874, (6.83)
respectively.

A break down in the economy occurs once average first period consumption reaches
or exceeds w) —d. Hence, all states with average first period consumption greater

than or equal to w() — d are absorbing. This establishes the following theorem.

Theorem 6.4. A Markov chain model for a genetic algorithm simulation of the

overlapping generations model of constant real deficit has
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(a) at most four absorbing states u oy, u ), u ) , and v ) , for which fiat money
el Crt Cy_ Culy
is valued, and which satisfy the inequality (6.78),
(b) an absorbing state for every state ¢ € S which represents a break down in the

economy,

(c) at least one absorbing state which represents a break down in the economy.
Proof: Proof follows from previous observations and Corollary 6.1. o

For our parameter sets, the state u is an absorbing state for Set 1 and Set 2,
L—

each of U 1)y U) s Uyl and u ) are absorbing states of Set 3, and each of u
L- L+ H-

(1)
H+ e’

uc(ler , and Uy are absorbing states of Set 4.

In light of these results we can re-consider the output of our genetic algorithm
given in Tables 6.6, 6.7, 6.8, the trajectory diagrams given in Figures 6.5, 6.6,
and the local asymptotic stability condition analysis given by our discussion of
the inequality (6.60). For parameter sets 1 and 2, we have shown that the low
stationary inflationary equilibrium is locally asymptotically stable. The state Uo)
is the only absorbing state near this equilibrium and was obtained by our genetic
algorithm. In parameter sets 3 and 4 we have shown that there are no locally
asymptotically stable states apart from those which represent a break down in
the economy. While there exist absorbing states which represent both the low
and high inflationary equilibrium states, these were not obtained by our genetic
algorithm. Instead, as predicted by the stability analysis, a break down in the

economy occurred.

Each of the approaches, genetic algorithms, local asymptotic stability, and Markov
chains, give unique insight into the behaviour of an economic system. Hence,
when applying a genetic algorithm, one should consider all with equal merit as

each describes some aspect of the model.
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6.5 Comparison to Least Squares Learning

In an overlapping generations model of constant real deficit, Arifovic [5] compared
the results of her simulations using a genetic algorithm to Marcet and Sargant’s [58]
least squares learning algorithm. Where least squares learning predicted divergence
of the model, Arifovic found that an application of the genetic algorithm with
a price forecast given by equation (6.9) was convergent to the low inflationary

equilibrium =7.

In this section, we replace the price forecast (6.9) by the least squares mechanism
suggested by Marcet and Sargant. That is, unknown values for price are forecast by
extrapolating a line of best fit which interpolates known values for price. With such
a mechanism in place, we demonstrate how simulations of the genetic algorithm in
an overlapping generations model of constant real deficit can replicate the expected

dynamics of least squares learning.

Least squares learning is the forecast rule

Piy1 = Bipts (6.84)

where

By = [Z_:(pi—l)2:| [ipipi—1] ' (6.85)

i=1 =1
In this experiment, 3; exhibits a functional dependence on all past prices. Our
Markov chain model as given in Section 6.1 for the genetic algorithm is inappro-
priate under such a dependence. Hence, we report simulation results only for this

model.

In the implementation of least squares learning, we calculate market prices accord-
ing to equation (4.44). The price forecast mechanism is changed from equation
(6.9) to equation (6.84). To initialize the economy, we generate three populations

rather than two as per usual. Hence, we start our simulation at ¢ = 3.
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Table 6.9: Least squares learning, population decision vector, sets 1 and 2

Vector

Set 1

U(95.7478)

Set 2

U(6.9990)

Agents’ decisions

9.7458
8.7878
9.7849
8.7878
9.2473
9.9511

9.7751
9.9804
9.7947
8.2306
9.8826
10.0000

7.1945
9.9706
9.6871
9.7947
9.8240
9.8435

9.7556
9.9413
9.8044
9.7360
9.6871
9.8826

9.0029
9.7165
9.6089
9.7458
9.9217
9.6480

Table 6.10: Least squares learning, population decision vector, set 3

Agents’ decisions

1.9960
2.0000
2.0000
2.0000
2.0000
1.9980

2.0000
2.0000
1.9921
2.0000
2.0000
2.0000

2.0000
2.0000
1.9902
1.9706
2.0000
2.0000

1.9941
2.0000
2.0000
2.0000
2.0000
2.0000

1.9765
1.9980
2.0000
1.9608
2.0000
1.9980

Table 6.11: Least squares learning, population decision vector, set 4
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Figure 6.11: Simulated output to set 3 of least squares learning, Bo = 1.0376
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Figure 6.12: Analytic solution to set 3 of least squares learning
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Figure 6.13: Simulated output to set 4 of least squares learning, Bo = 1.25
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Figure 6.14: Analytic solution to set 4 of least squares learning
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We conducted ten thousand iterations of the genetic algorithm under Gray coding
with a bit length of ten and recorded simulation results for all parameter sets given
in Table 6.5. All agents in simulations for the stable parameters given by Set 1
and Set 2 converged to the low inflationary stationary equilibrium after less than
one hundred iterations. This convergence is consistent with the dynamics of least
squares learning. Simulations for Sets 3 and 4 diverged and the simulations were
stopped with a break down in the economy under less than a thousand iterations.
The population decision vectors obtained by our genetic algorithm are recorded for
Set 1 and Set 2 in Table 6.9 and for Set 3 and Set 4 in Table 6.10 and Table 6.11
respectively. Agents’ decisions in 2 are displayed as real numbers to four decimal

places.

Figure 6.11 demonstrates, after a period of adjustment, the ocillatory behaviour
of least squares learning in a single simulation of our genetic algorithm for Set 3
of Table 6.5. This can be compared with the analytic solution trajectories given
in Figure 6.12. Between iterations fifty and two hundred simulation results closely
match qualitative features exhibited by the analytic model. After iteration two
hundred the amplitude of oscillations is greater in simulations. A break down in
the economy occured shortly after iteration three hundred. Figure 6.13 demon-
strates a single simulation of our genetic algorithm for Set 4 of Table 6.5. This
simulated behaviour can be compared with the analytic solution trajectories given
in Figure 6.14. Again the qualitative features exhibited by the analytic model can
be distinguished in simulations. The spikes in inflation occuring in iterations seven
and nine are typical to simulations of two populations. Inflation after iteration
twelve increased until it became negative in iteration seventeen and a break down

in the economy occured.

Note that the convergence of the analytic model for least square learning depends

on initial values for By. For more on the convergence of this model refer to Marcet
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and Sargent [59] and Arifovic [5]. For the purpose of demonstration we report

results only for those parameter sets we consider.

Vector

Set 4 | u(g.1036)

Table 6.12: Least squares learning, second simulation of set 4

Not all simulations of Set 4 exhibit the same behaviour as we have reported, even
given identical initial values of f;. Convergence to a uniform state can occur,
even when this is not consistent with analytic results. To illustrate this we report
another set of simulation results Set 4 in Table 6.12 where §; = 1.25. We also notice
that the state we report does not consistently appear. That is, other uniform state
are observed and these states are typically closer to the low inflationary stationary
equilibrium than the state reported in Table 6.12. Even given this, a break down in
the economy is the most likely outcome a priori of any simulation for this parameter

set.

These experiments show how the behaviour of the least squares le:irning algorithm
can be modelled by a genetic algorithm. Simulations also show that the outcome of
any two simulations are not identical. Convergence or a break down in the economy
may be observed. Furthermore, this experiment demonstrates the inherent differ-
ences between simulations modelling a least squares learning algorithm as opposed
to those conducted in Section 6.4. That is, the particular implementation of price
forecast mechanism will effect simulation results. Hence, the choice of particular

forecast mechanism can not be made arbitrarily.



Chapter 7

Overview

7.1 Conclusions

Economic systems are commonly studied by considering simulation results and
deterministic models of behaviour. Genetic have also been proposed as models
for the behaviour of economic systems. These models give additional insight into
the behaviour of the respective economic system. However, genetic algorithms are
inherently stochastic. When using genetic algorithms it becomes necessary to take
into account the stochastic effects such algorithms introduce. Hence, it makes sense

to consider modelling genetic algorithms using stochastic processes.

To build a mathematical foundation for an analysis of genetic algorithms in eco-
nomic models, we modelled the representative discrete time stochastic process as
a homogeneous Markov chain. With this approach, we defined a state transition
matrix corresponding to this Markov chain and investigated the properties the
transition matrix exhibited. The form of this transition matrix depended on each
particular model, the genetic operators, and other parameters. However, upon con-

sideration of this matrix we established two key conditions, one on the convexity
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of the utility function, the other on the genetic mutation operator, which gener-
alized our approach. Using these conditions, we partitioned states of our Markov
chain into disjoint communicating classes and established the solidarity properties
of recurrence and transience for all states. An analysis of the comminication and
hitting probabilities on given states of our chain gave us insight into the long term
behaviour of our chain. We used these concepts from Markov theory to derive
corresponding conditions for the existence and uniqueness of equilibria, and for

convergence and stability in an economic system.

We illustrated how our theoretical results could be applied in practice in context
of a cobweb model investigated by Arifovic [4]. For this model, we derived a condi-
tion for the existence of absorbing states of our Markov chain and for convergence
with probability one to such a state. Furthermore, we discussed the behaviour
of chain when no absorbing states existed. We proved that for this model three
distinct types of behaviour are possible. First, convergence to a unique absorbing
state with probability one was possible. Second, entry to a small recurrent class
in a neighbourhood of the equilibrium with probability one was possible when no
absorbing states exist. Otherwise, entry to a large recurrent class, possibly con-
sisting of all states, was possible. We compared our results to the local asymptotic
stability conditions derived by Dawid [24] and to the stability criteria suggested
by Arifovic [6]. To discuss the rate of convergence and the asymptotic properties
of the model, we calculated the stationary distribution of our chain for sufficiently
small state spaces. These results were consistent with those experimental results

provided by Arifovic.

We also considered two overlapping generations economies investigated by Ari-
fovic [5]. First, a model of constant money supply. Second, a model of constant
real deficit. Again, we applied a Markov chain analysis to these two population

models to derive conditions for the existence of absorbing states. In analysing the
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long term behaviour of the chain, we showed that, due to multiplicity of absorb-
ing states, convergence to any particular absorbing state with probability one is
not possible. We linearized the corresponding non-linear deterministic models to
analyse the local asymptotic stability properties of the two economies. We com-
pared our simulation results with those results derived though our Markov chain
analysis and our analysis of the deterministic models to give valuable insight into
the behaviour of genetic algorithms. In two population models, it was not prac-
tical to calculate a stationary distribution of our Markov chain. However, we did
statistically analyse market volatility in our simulations. This statistical analysis
showed that market volatility and hence simulation results differ between imple-
mentations of our genetic algorithm. In the model of constant real deficit, we
discussed an implementation of Marcet and Sargent’s [58] least squares learning
algorithm. Differences between this implementation and a standard implementa-
tion were apparent. Hence, choice of implementation could not be made arbitrarily

without affecting the behaviour of our genetic algorithm.

7.2 Closing Remarks

Despite the acceptance of genetic algorithms in economic applications, a mathemat-
ical analysis of their behaviour in such applications is rarely attempted. Dawid’s
[24] work in this field is a notable exception. We have used Markov chains to pro-
vide a mathematical foundation for genetic algorithms in economic applications.
Using this Markov chain approach, we derived a number of general convergence
results and applied these results to a cobweb model and an overlapping genera-
tions model. While we have considered only these two economic models studied by
Arifovic [3], the potential number of applications for these results is extensive. We

hope that these results can be used to dispel some of the common misconceptions
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held about the nature of genetic algorithms and to give insight into their behaviour

in economic applications.



Appendix A

Parameter Values

Operator probabilities Input parameters Interval size

pCROSS 0.6 | nPOP 30 | vMAX ﬁ

pMUTATE varies | nGEN 10,000 | vMIN 0.0
nBITS 10, 13

Table A.1: Genetic algorithm parameter values, cobweb model

Operator probabilities Input parameters Interval size

pCROSS 0.6 | nPOP 30 | vMAX w®

pMUTATE varies | nGEN 10,000 | vMIN 0.0
nBITS 10

Table A.2: Genetic algorithm parameter values, overlapping generations model

A value of pMUTATE = 0.033 is used in binary and Gray coded simulations. A
value of pMUTATE = 0.33 is used in real coded simulations. The number of bits

nBITS is immaterial in real coded simulations.
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Simulation Plots

Genetic Algorithm Price Patterns
158 T T T T T T T T T

15f- -

1451

Price

1351 B

12.5H b

12 1 i 1 ] i ] L i i
0 10 20 30 40 50 €0 70 80 90 100

Time Period

Figure B.1: Example real coded output, single simulation
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Figure B.2: Example binary coded output, single simulation
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Figure B.3: Example Gray coded output, single simulation
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