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Abstract

In this dissertation) we aim to provide a mathematical foundation for the applica-

tion of genetic algorithms to economic models.

In order to analyse the dynamics of a genetic algorithm in an economic applica-

tion, we model the representative discrete time stochastic process as a homogeneous

Markov chain. The transition matrix for this Markov chain exhibits a number of

properties depending on each individual model, the genetic operators, and other

parameters. In particular, conditions for the existence and uniqueness of equilib-

ria, and for convergence and stabitity in the economic system, can be derived from

the communication and recurrence properties of the transition matrix. Two con-

cepts from Markov theory are essential to our analysis. First, partitioning states

of the Markov chain into disjoint communicating classes is fundamental in estab-

lishing the solidarity properties of recurrence or transience for all states within a

communicating class. The correspondence between absorbing states and economic

equilibria, stable or unstable, is particularly relevant in this approach. Second,

by analysing the hitting probabilities of a Markov chain on given states we gain

insight into the probability that an economic model will reach equilibrium.

Following the work of Arifovic [3], we illustrate how our theoretical results can

be applied in practice in the context of a cobweb model. Using an approach

based on Markov chains, we derive conditions for convergence with probabiiity



one. We compare these conditions to the local asymptotic stability conditions

derived by Dawid [24]. Calculations of stationary distributions of our chain for

sufficiently small state spaces allows us to discuss the rate of convergence and the

asymptotic properties of the model. We also consider two overlapping generations

economies. The first is a model of constant money supply, the second a model of

constant real deficit. In such two population models, it is not practical to calculate

a stationary distribution of the Markov chain. However, we do statistically analyse

market volatility in simulations. In the model of constant real deficit, we discuss

an implementation of Marcet and Sargent's [58] least squares learning algorithm

and comment on the differences which arise as a result in simulations.
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Chapter 1

Introduction

1.1 Adaptive Learning and

Genetic Algorithms

Economic systems have been studied, modelled, and subsequently analysed in a

number of different ways. Traditionally, analytic models have been proposed to

explain the complex dynamical behaviour economic systems exhibit. Laboratory

experimentation with human test subjects have provided evidence to give insight

to these models. However, in some economic models, experimental results and

analytic models have not been in agreement. Traditional assumptions inherent

to many analytic models, the theory of rational expectations for example, have

been questioned and other plausible hypotheses proposed as alternatives to these

assumptions. Learning algorithms offered alternative analytic models of adapta-

tion and learning which incorporated these plausible hypotheses for behaviour in

economic systems, see for example Lucas [57].

Conventual genetic algorithms were first proposed for use in optimization prob-

lems. They were designed to imitate Darwin's [23] theory of natural selection and



7. Introduction

evolution. In this sense, genetic algorithms are not truly f'unction optimizers per

se, see [29], but are rather random search methods or heuristics'

The interpretation of a genetic algorithm as a metaphor for cognitive intelligence

and decentralized learning made it natural to consider its application to economic

systems. In such applications, a population of adaptive ageuts simulates the be-

haviour of a population of human agents. These adaptive agents formulate strategic

decisions about the economy through the application of the genetic algorithm. The

genetic algorithm is itself a synergism of evolutionary presstrre and natural selec-

tion. Hence, a genetic algorithm, as used in economic applications, is considered

to be a model for the behaviour of adaptive agents within the system. The evo-

Iution of decisions throughout simulations of the genetic algorithm can then be

compared with empirical results, analytic models, and other learning algorithms,

see for example Arifovic [3].

Despite the acceptance of genetic algorithms in economics, few results have been

derived for their application to economic systems. The work of Dawid [26] is a

notable exception. In Dawid's work, several local asymptotic stability conditions

are derived. We do not follow Dawid's approach but rather concentrate on the

absorbtion and communication properties of a Markov chain model for a genetic

algorithm. With this approach, we aim to provide a mathematical foundation for

genetic algorithms in economic applications and to derive theoretical results for

our models. We discuss particular results using simulations to illustrate our theory

in practice.

t.2 Literature Review

The cobweb model was first formulated by trzekiel [36] and Leontief [55]. Since

then, cobweb economies have been analysed by a number of authors, see Chiarella

2



7. Introduction

122] for a comprehensive listing of publications up to 1990. Carlson [19], Holt and

Villamil [49], Wellford [73], and Hommes et al. [50] used human test subjects to

explore cobweb economies.

Arifovic [3] applied a genetic algorithm to a cobweb model. By incorporating

an election operator into her genetic algorithm, Arifovic modelled the behaviour of

agents in the economy. She compared her simulation results for a genetic algorithm

to learning algorithms based upon price averages [20], naive expectations [36],

and least squares learning [58]. She also compared her results to the laboratory

experiments of Wellford [73]. Her simulation results showed that agents in a genetic

algorithm modelled the qualitative features observed in laboratory tests.

Dawid and Kopel [28] considered a formulation for the cobweb model which incor-

porated a market entry and exit decision. That is, agents were allowed to enter

or leave the market. Stability results were derived for this model and a genetic

algorithm using a Markov chain approach developed by Vose and Liepins [72] and

Nix and vose [oz]. see Dawid [24), Dawid [26], and Dawid and Hornik l27l for

a detailed description of this approach and its application to economic models.

This Markov chain approach provided an insight into the asymptotic convergence

properties of genetic algorithms.

Brock and Hommes [1a] and Goeree and Hommes [42] analysed a non-linear cob-

web model. Agents chose from using either a freely provided naive expectations

predictor or a costly rational expectations predictor. In these models, different

hypotheses about how agents should respond to marhet stimulus were proposed.

An analysis of alternative behaviour for agents within the context of a genetic al-

gorithm was the topic of Franke [39]. Franke's formulation for a genetic algorithm

incorporated adaptive expectations of different orders.

Gaffney et al. [40] discussed a cobweb model which was simulated using a modified

genetic algorithm. In this study, an alternative coding mechanism, real coding, was

3



7. Introduction

used. Pearce [63] proposed a general formulation for a genetic algorithm studied by

Gaffney et ai. [a0]. He considered discrete and continuous models of this genetic

algorithm and analysed their convergence properties.

Samuelson [68] formulated an overlapping generations model of fiat money in 1958.

To explore Samuelson's theoretical model, laboratory tests were performed by Ar-

ifovic [3], Lim et al. [56], Marirnon et al. [60], and Marimon and Sunder [61].

Lucas [57] and Marcet and Sargent [5S] analysed the adaptive dynamics of learn-

ing schemes which represent alternative models of human behaviour. Azariadis [9],

Evans and Honkapohja [34,35], and Woodford [75] considered sunspot equilibria.

In such models, agents believe ex ante that prices depend upon an exogenous ran-

dom variable taking on values {0,1} according to some stochastic process. Duffy

[30] considered an overlapping generations model in disequilibrium and Bullard

[15] examined complicated equilibrium trajectories using a least squares learning

model.

Arifovic [5] considered two models of the overlapping generations type. The first

model examined was of constant money supply, the second model was of con-

stant real deficit. Arifovic [6] explained local stability with reference to Evans and

Honkapohja's [34] [35] E-stability results and used statistical techniques in a model

of two currencies [8] to analyse equilibria. In these models, genetic algorithms were

shown to model two population dynamics and matched the behaviour of laboratory

experiments to a greater extent than other learning algorithms.

The overlapping generations model was used by Dawid [25] to investigate the be-

haviour of genetic algorithms and cyclic equilibria. Dawid's formulation of an over-

lapping generations model of constant money supply had both cyclic equilibria of

second order and non-cyclic equilibria. Dawid showed that a genetic algorithm

could capture the cyclic behaviour of an economic model. He extended his results

to a formulation of the model which included sunspot behaviour. Dawid also used

4



7. Introduction

the Markov chain formulation of Vose and Liepins [72] and Nix and Vose [62], see

also Dawid and Kopel's [28] analysis of a cobweb model, to derive local stability

conditions with respect to the expected dynamics of a genetic algorithm in two

population models.

Higher order cycles and the evolution of beliefs in an overlapping generations model

were considered by Bullard and Duffy [17]. In this formulation of the model, a

genetic algorithm was used to explore how agents forecast, see also Bullard and

Duffy [16, 18]. Initially agents had heterogeneous beliefs. Agents must co-orclinate

their beliefs in an equilibrium to attain an equilibrium. This approach differed

from other applications of a genetic algorithms for which the forecast function

is fixed. Agents were said to be "learning how to forecast" and selected from a

number of alternative beliefs about the nature of the model rather than directly

setting quantity decisions.

1.3 Organisation of Thesis

We present all preliminary results in Chapter 2. In Section2.I, we discuss stochas-

tic processes and Markov chain theory. This section provides a background for

the modelling of genetic algorithms as a Markov chain. We introduce some basic

definitions from set theory in Section 2.2. Section 2.3 explains the terms, defini-

tions, and results we use to analyse our dynamic systems. This section introduces

concepts for the stability of dynamic systems and defines a first order difference

equation.

In Chapter 3, we introduce our genetic aigorithm and explain the connection be-

tween this algorithm and a Markov chain. We give a general overview of evolution-

ary algorithms and the role a genetic algorithm plays as a model of behaviour for

economic systems in Section 3.1. We examine three types of coding mechanisms

5



7. Introduction

and discuss the fitness function of our genetic algorithm in Section 3.2. In Section

3.3, the genetic operators are discussed. This section details the general framework

for our algorithm. We also describe how a state transition matrix for our Markov

chain model of a genetic algorithm is obtained.

In Chapter 4, we analyse several common economic models. The first economic

model we discuss is a cobweb model, as given in Section 4.1. We analyse an

overlapping generations model of fiat money with a constant money supply in

Section 4.2. The term, fiat money, refers to an irredeemable paper currency with

a declared value derived from the authority of the government issuing it. We

describe a particular parameterization for this model in Section 4.3. In Section

4.4, we analyse an overlapping generations moclel of fiat money with a constant

real deficit financed through seignorage. Seignorage is defined as revenue raised by

the printing of fiat money.

We analyse the Markov chain model, discussed in Chapter 3, for a genetic algorithm

applied to an economic system in Chapter 5. General results are derived in Section

5.1. In Section 5.2, we apply these results to the cobweb model presented in

Section 4.1. We analyse the rate of convergence of simulations and the stationary

distribution of our Markov chain in Section 5.3.

In Chapter 6, we analyse the application of a genetic algorithm in two population

economic models and a respective Markov chain model. In Section 6.1, several

general results for our Markov chain representation of such models are derived.

In Section 6.2, we consider the overlapping generations model of fiat money with

a constant money supply as presented in Section 4.2. Volatility between agents

decisions is discussed in Section 6.3. In Section 6.4, we analyse the overlapping

generations model of fiat money with a constant real deficit as presented in Section

4.4. We discuss least squares learning in Section 4.5.

6

In Chapter 7, a summary of findings is given. We draw conclusions from previous
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finding in Section 7.1 and present some closing remarks in Section7.2.

Parameter values for simulations are given in Appendix A. Example simulation

results are given in Appendix B.

7



Chapter 2

Preliminaries

2.L Discrete Time Markov Chains

In this section we introduce some of the basic theory for Markov chains. A detailed

description of this theory as it applies to the definitions and results presented here

may be found in the texts of Feller [37] and Ross [66].

Stochastic algorithms are often used to model the temporal behaviour of economic

models in discrete time. This behaviour is described in terms of a stochastic se-

quence in discrete time X(ú) over some state space 5. The stochastic sequence X(ú)

is said to satisfy Lhe Markou or rnernoryless property if the value of the sequence

at ú depends only on the value at, t - 1. This is formalized in the requirement

p(x(¿) : jlx(0): jo,...,x(t-1): i'-'): P(x(¿) : itlx(t-1): iF:_), (2.r)

Vú>1,V.70,...,jt€3.

The Markov chain îs time-homogeneous) or just homogeneous, if tr(X(t) : ilx(t-
1) : ¿) is independent of ú. The time-invariant probabilities

P(X(¿) : jlx(t- 1) : z) : tr(X(s) : ilx(t- 1) : z), V s, t) 0, i.,j e E, (2.2)
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are denoted by p¿,¡. These time-invariant transition probabilities define a single

step transition matrix P : lp¡,¡1. This non-negative matrix is stochastic since

the sum of all entries along each row is one. The m-step transition probabilities

P(X(¿ t m) : jlx(t) :d) are denoted tw pl?. The rn-step transition probability

matrix is denoted by P@) : l4:?l

Now, we can use the law of total probability and the Markov property (2.1) to

write

P(X(m+1) :7lX(0) :z)
: tf1, P@(m + 1) : ilx(^): k,x(0): i,)P(x(m) : /clx(O)) :,),
: Df1, P@(m+ 1) : ilx(*): k)P(x(m) : klx(0)) :,),

(2.3)

so that
lsl

plT*') : D,rli) rr,, (2.4)

9

k=l

That is, the probability of entering the state j inm * l steps can be expressed as

the sum over all states k e E of the probability of entering the state k in rn steps

starting in ø and then entering the state j in a single step starting in k.

Hence, the matrix of rn-step transition probabilities P(-) : lpl|\can be calculated

as the product of P with itself rn times

p(*) : p*. (2 b)

If it is possible to reach the state j e E from the state 'd € 5 in a finite number of

steps we say 7 is accessi,ble from i' and write i' -+ i.

Definition2.!. The state j e S i,s accessi,blefromthe state ? € S i,ff)me.V'+

such that nl! > o

When i, -+ j and j -+ i,, lhe states ¿ € S and j € 5 are said to communicate and

we write i, <+ i.
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Definition 2.2. Two states i e E and j e S communi,cate i,ff i, i,s accessi,ble from

j and j 'is accessi,ble frorn t. A state uhi,ch commun'icates wi,th no other state i's

ephemeral.

The communication relationship ++ is an equivalence relation since it is reflex-

ive, symmetric, and transitive. This relationship can be used to partition non-

ephemeral states into mutually disjoint communicating classes. These communi-

cating classes are an indication of the accessibility of states.

If we wish to examine additional properties of the Markov chain a more detailed

approach is required. We are often interested in how many times a particular state

is expected to be visited or how many transitions are required before a state may

be re-visited.

Let A. : {nlpllo) > 0}. The period, of state d,(i), i € ,S, is the greatest common

divisor of all members of the set Á. and zero if Ä : Ø. A state is periodic if it has

period greater than one and aperiodic otherwise. Periodicity only partially explains

the visiting properties of states. A more general approach is now considered.

Denote AV ,[? the probability that the Markov chain enters the state J € ,S for

the first time in exactly rn steps conditional on starting in state ¿ e S. These

probabilities are called Lhe fi,rst entrance probabi,Ii,ties iÎ i, I j and fi,rst return

probabiliti,es tf i, : i .

Definition2.3. A state i e E 'is recurrent itrÐ7rr::ì : I and, transi,ent i'ff

tf, ,[') . t.

For any i, e E, the events that the Markov chain first visits the state ¿ for different

values of m € N are mutually exclusive. Thus, the sum Ð7rr::ì is the probability

that the Markov chain ever returns to the state ¿ conditional on starting in e.

A recurrent state may exhibit two types of behaviour. While all recurrent states

i e E are such that sum D=rr::): 1, the expected re-visit time may not be finite.
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To differentiate between states with a finite and an infinite expected re-visit time

an additional classification is necessary.

Let T¿ be the random variable which denotes the time that it takes to return to

the state i given that the Markov chain starts in that state. \Me set T¿: æ if the

state i is ephemeral. Then ElTi]: tfo t[t) ts the expected re-visit time for state

i e S.

Definition 2.4. A recurrent state i e E i,s posi,ti,ue recurrent itr EIT,] 1 æ and

null recurrent i,ff ElTil: oa.

There is one situation for which the positive recurrence of a state can immediately

be identified. If the probability of ever leaving a state once entered is zero then we

call that state absorbi,ng.

Definition 2.5. A state i e E of a homogeneous Marlcou pI'ocess wi,th transi,ti,on

matri,r P i,s absorbi'ng i'ff P¿,n:1.

Communication between states can be used to show that all states in a com-

municating class have shared properties. The classification of states can then be

approached at the level of a communicating class, That is, null recurrence, positive

recurrence, transience, and periodicity are solidarity properties of a communicating

class.

Theorem 2J. If i, j € E belong to the san'ùe cornrnuni,cat'ing class € then

(a) i, and j haue the same peri'od,

(b) i, is transi,ent i,ff j i,s trans'ient,

(c) i, i,s null recurrent i,ff j i,s null recurrent,

(d) i, i,s posi,ti,ue recurrent i'ff j i's posi,ti'ue recurrent.

Proof: See Grimmett and Stirzaker [4¡], pp. 204-205' o

When applying stochastic methods to economic models it might reasonably be
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expected that the behaviour of the economic model should in some way be related

to the communicating class structure of the Markov chain. In particular, absorbing

states of the Markov chain should represent stationary equilibria of the economic

model. The probability of eventual entry of the Markov chain into a particular

recurrent class is also important.

In practice it may be difficult to determine whether a communicating class is

null recurrent, positive recurrent, or transient. However, when the state space of a

Markov chain is strictly finite we can classify a communicating class by considering

classes of essenti,al and i,nessenti,al states.

Definition2.6. A stateies i,si,nessenti,ali,ffi,-+ i and j þi, for atleast one

j e E and essent'ial otherwise.

Theorem 2.2. If the state space of a homogeneous Markou chai,n is fini'te then

(a) there eri,sts at least one positi,ue recurrent class,

(b) all states i,n euery recurrent class are posi'tzue recurrent,

(c) euery essenti,al class i,s a posi'ti,ue recurrent class'

(d) euery i,nessenti,al class i's a trans'ient class.

Proof: See Grimmett and Stirzaker [45], pp. 204-206. o

By Theorem 2.2 we know that in a finite state Markov chain the positive recur-

rence, null recurrence or transience of communicating classes can be determined

by examining the communication between states. Let us consider a Markov chain

in which all states communicate with the entire state space S.

Definition2.7. A homogeneous Markou prlcess with transi,ti,on matri,r P and

state space 3 i,s i,rred,uci,ble i'ff for euerA pai,r of states i',i e E, 
= 

k e Z+ s.t.

oÍ:ì ,0

We differentiate between irreducible matrices which are periodic and aperiodic by
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defining a pri,mi,ti,ue matrix.

Definition 2.8. A matrir P i,s pri'mi,ti'ue iff= k e Z+ s.t. P'> 0,V t> k.

Theorem 2.3. A ti,me i,nuari,ant Markou chai,n has a pri,miti,ue state transi,tion

matri,r P i,ff the state transi,ti,on matri,r P is i,rreduci,ble and aperiodi,c.

Proof: See Seneta [69], pp. I9 20. o

A Markov chain which has entered a positive recurrent class will remain within

the class ad infinitum. If the state transition matrix is irreducible we know that

the entire state space is a single recurrent class. However, it is not immediately

obvious which states a Markov chain can be expected to inhabit in the long term

if the state transition matrix is not irreducible. In particular, it is not obvious why

a Markov chain should not be expected to remain in transient states for all time if

one or more transient states exist.

21

Dt c :0.1

0.9
0.0

0.1

1.0

1

2
P-

Figure 2.1: Example chain

Let us consider the Markov chain with a single distinct recurrent class given by

Figure 2.1. The state 1is a self-communicating inessential state, 1++ 1. There is

a single positive recurrent class € -- {2} and this class is accessible from the entire

state space. It is clear there is a particular realization of the Markov chain which

never leaves the state 1, the realization {1,1,1,...}. However, the probability that

the recurrent class € is enlered grows geometrically with time and approaches one

asymptotically. To see this, note that the probability of remaining in the state 1

after a single transition is pr,r : 0.9, The probability of remaining in the state 1

after two transitions ir p!?ì : 0.92. The probability of remaining in the state 1 for
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ever is lim¿--¡oo 0.9¿ : 0. We deduce that the recurrent class € : {2} is entered

wi,th probabr,li,tE one.

In our example there is only one realization of the Markov chain which does not

enter the state 2. It is easy to imagine an arbitrary Markov chain with infinitely

many possible realizations which involve inessential states only. Markov theory

tells us that the probability of this set of realizations is zero'

Our example, given in Figure 2.1 above, illustrates an instance of convergence with

probability one which assigns a probability mass of one to the state 2 and zero to

all others. We say the chain conuerges to the state 2 wi,th probabili,ty one.

Definition 2.9. A stochast'ic sequence X(t) 'is conuergent to the state j e S wi,th

probabi,li,ty one i,f li,m¿-,oX(t): i wi,th probabi,li'ty one.

For a finite state Markov chain we can establish the following result.

Theorem 2.4. A fini,te state Markou chai,n has a fi,ni,te rnean absorpti,on ti,me and

conuerges to the state t e 3 wi,th probabi,li,ty one i,f i 'is accessi,ble from all states

j e E and i, i,s absorbi,ng.

Proof: See Kemeny and Snell [53] , pp. 43, 46. o

We now have the tools to discuss the long term behaviour of a Markov chain

and to consider the stationary behaviour of the chain. We call the distribution ø.

stati,onary if
r -- rP. (2.6)

Hence, ir :T P^, for all m) L.

Let F@) : (Í{^), . . . ,/,1i') denote the distribution of X(m). Then, it follows from

equation (2.5) that

p(m) : FP^, (2.7)
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where F : F(o) is the initial distribution of the chain. A sequence of distribution

functions {f{^l¡ is said to conuerge i,n di,stri,buti,on if the sequence approaches

some limiting value, lim¿--¡* p(t) : r, for some distribution r : (nr,. . . , n¡s¡). All

such limiting distributions must be stationary. However, it does not follow that all

stationary distributions are also limiting.

Theorem 2.5. An i,rreduci,ble posi,tiue recurrent Markou cha'in has a unique sta-

tionary di,stri,buti,on'tr : (1 I EITÀ)' ¿ e S.

Proof: See Grimmett and Stirzaker [a5], p. 208. o

Hence, by Theorem 2.5, an irreducible and positive recurrent Markov chain will

converge in distribution to (Ll4l7:À), i e E. When the chain is also aperiorlic a

stronger result applies.

Theorem 2.6. An i,rreduci,ble and aperi,odi,c posi,ti,ue recurrent Marlcou chai,n con-

uerges i.n d,i,stri,buti,on to r¡:lim¿a*pl:),for all pai'rs'i,i e 3.

Proof: See Whittle 174], p. 772. o

These theorems for convergence in distribution can be generalized to chains which

are not irreducible, see Karlin and Taylor [¡Z] pp. 89-92. Let us consider an arbi-

trary Markov chain containing both positive recurrent and transient classes. Label

each positive recurrent class 1....n. Each positive recurrent class €['],...,ø/1") is

then itself an irreducible Markov chain independent of any other recurrent class

with a corresponding stationary distribution vU),1:7...n. For every l:7...n
and every i e €lLl, let rtl denote the value corresponding to the state j from the

lúä stationary distribution n[¿]. Let a[¿1, I : 7...n, denote the probability that

our original chain ever reaches the l¿ä recurrent class conditional on starting in the

state z. We know that with probability one, lim¿- *pl:) : 0, for every transient

state z € 5, and ÐLr*ltf :1, for every i e E. Hence, *lt),i, €,S, are probability

distributions over the state space S which assign a value of zero to every transient



2. Preliminaries 16

state. For¿ e 5, we can see that lim¿- *p[:): a!\¿l#),for every i €€lt],1:1...n,
and lim¿*- pÍ:I:0, for every transient state k e S.

A stationary distribution can be interpreted in two ways according to the Ergodic

Theorem for Markou cha'ins, see Karlin and Taylor [52], pp' 487-488. First, a

stationary distribution gives the asymptotic probability that the Markov chain is

in each state. Second, a stationary distribution gives the asymptotic proportion

of time spent in each state. See Billingsley [11] and Kingman and Taylor [5a] for

more on the convergence of probability measures.

The value of Pk for stochastic primitive matrices can be calculated using Perron-

Frobeni,us theory, see for example Seneta [09], pp. 3-11.

Theorem 2.7. The followi,ng properti,es apply to stochasti,c primi,tiue matrices.

There erists a Percon-Frobeni,us ei,genualue r wi,th left and ri,ght Perron-Frobenius

ei,genuectors uy, and, u¡¿ respecti'uely such that

(a) r :7 wi,th multi,pli,ci,ty one,

(b) , > lÀl for any ei'genualue À f r,

(c) r has a stri,ctly posi,ti'ue left ei'genuector,

(d,) r has a ri,ght ei,genuector [1,...,1]t.

Proof: See Seneta [69], pp. 3-7. o

The stationary distribution rT can be calculated as the normalized Perron-Frobenius

left eigenvector. Label lhe n distinct eigenvalues of a stochastic primitive matrix

in decreasing order, > lÀ.rl I lÀrl > ... >

chain approaches the stationary distribution geometrically with time depending on

the magnitude of the second largest eigenvalue À2.

Theorem 2.8. Let P be a nxn stochasti,c pri,mi,ti,ue matri,r wi,th Perron-Frobenius

ei,genualue r wi,th correspondi,ng posi,ti,ue normal'ized left ei,genuector uy,, s€cofi,d,

largest magni,tude ei,genualue Àz wi,th multi'pli'ci'tU 'trtz, and ri'ght ei,genuectoru¡y:
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[1,...,!fr,then
(o) ¿f Àz 10, then elementwi'se as t -+ cn

Pt : unu[, t o(t^'-t lÀrl'), (2 s)

(b) ,Í Àz:0, then for t ) n - 7

Pt : unu[,, (2 e)

where u7 'is normali,zed such that u[ua:1

Proof: See Seneta [69], pp. 9-11

2.2 Set Notation

In this section we introduce some of the definitions commonly used in set theory.

This theory may be found in the texts of Hausdorff [a6] and Pinter [64].

We shall assume that all sets are in the k dimensional Euclidean space Rk. In this

space we assume the metric function p : Rk x Rfr -+ R. is an Euclidean distance

p(r,a): Ðf:r@n - a¿)2

Definition 2.10. A subset o/Rk zs

(a) nutt or empty and denoted by Ø i,ff the set contai,ns no elements,

(b) countable i,ff the set has a one-to-one correspondence wi,th N.

We will denote the number of elements in a countable set by | ' l.

Ãn e-nei,ghbourhood,of ó is a defined as ball of radius e in lRfr ' That is, {r I p@,b) <

e). We denote such a ball by Ø(b,e). On the real number line this is the open

interval (b - ,,b + 6).

Let A be an arbitrary set in lRe. A point ó e Ñ is a boundary poi,nt of A if every

non-emptv neighborhood of b intersects -4. and its complement. The set of all such

o
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points is called the boundary of lt.

Definition2.lL. A non-empty subset,{ o/Rk zs

(a) closed i,ff the set conta'ins all i,ts boundary poi'nts,

(b) bounded iff 
= 

b e t\, e ) 0, such that lr c Ø(b,e).

Let us define lhe di,ameter of a bounded, closed, and non-empty set as follows.

Definition 2.L2. The d,iameter of a bounded closed non-empty set l\ C IRe is

defined as di,am(/\) : mar*,re¡P(r,a).

We define conueri,ty in the usual manner, see for example Valentine [71].

Definition2.1.3. A non-empty set A C lRk 'is conuer i,ff for euery pai,r of ualues

r,U€lt andeuera Àe [0,7],Àr+(1 -À)yi'samemberof lt.

We shall denote set intersection, union, and exclusion by l'ì, U, and \ respectively.

2.3 Discrete Time Dynamic Systems

In this section we introduce some of the basic theory for discrete time dynamic

systems. The definitions and results we introduce here can be found in the texts

of Dawid [26], Elaydi [33], and Giancarlo [41].

A dynamic system in discrete time is a set of equations which describe the be-

haviour of some system in discrete intervals. A difference equation on some subset

Ø ç Ñ is a dynamic system which defines the current state of the system in terms

of past values. We say the difference equation is of order n if the current state of

the system is a function of the past n states. Let rt e Ø,t ) 0, and F: Ø -+ Ø.

Then

q:F(rt-r),V¿ e z+, (2.10)

denotes a first order di,fference equati,on.
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We denote lhe jth iterate of the difference equation (2.10) starting in ø6 by Fi(ro).

We call the sequence {r¿}f; a trajectory or soluti,or¿ of the difference equation (2.10).

A .fired poi,nt r e Ø of this difference equation satisfies

r* : F(r*) (2. 1 1)

A fixed point of a difference equation can be characterized as stable or unstable

by introducing a small perturbation to the system about the fixed point. If after

an arbitrary perturbation, the system remains in some neighbourhood of the fixed

point for all time then we say that the fixed point is stable.

Definition 2.L4. A fired poi,nt r* € Ø of the di,fference equati,on (2.10) i,s stable

i,fffor o,na€ > 0, f ð) 0, suchthatF'(ro)€Ø(r.,ô), V rs€Ø(r*,€),V teZ+.

We call a fixed point which is not stable, unstable'

The stability of a fixed point does not tell us much about the limiting behaviour of

the system except that a trajectory which is perturbed a sufficiently small distance

from a stable fixed point is confined to some neighbourhood of the fixed point for all

time. Our Definition 2.14 does not make a distinction between a trajectory which

converges to some limiting value and a trajectory which does not. We differentiate

between these two situations by defining the asymptoti,c stabi,Iity of a fixed point.

Definition 2.I5. A fi,red poi,nt r* € Ø of the difference equati,on (2 10) i,s locally

asymptotically stable i,ff the point r* i,s stable andl e ) 0 such that li.m¡-ooFt(ro) :

r*,V rs e Ø(r*,e).

Definition 2.15 is a local concept of stability. We now consider the asymptotic

behaviour of all possible trajectories of a difference equation. That is, a global

concept of stability.

Definition 2.L6. A fired poi,nt r* e Ø of the di,fference equation (2.10) i,s globally

asymptoti,cally stable i,ff the poi,nt r* i's stable and limprooFt(ro) : r*,V rs € Ø'
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The stability of a difference equation may be difficult to determine. Let us consider

the linearization of F using a Ta¡,Is1 series expansion about a fixed point z* of the

difference equation (2. 10)

F(a) : r* + (a - :0.)A + G(a), (2.72)

where A is a k x k matrix and G : Ø -+ I is acontinuous function

This gives the linearized system

F(a): r* + (a - r.)A (2.13)

The stability of the linearized system (2.13) can be used to determine the stability

of the original non-linear system (2.12).

Theorem 2.9. Let r* be a fired poi,nt of the li,neari,zed system (2.13) such that

l'imy-+n*l lc(s) lll lla - r. I I : 0 then

(a) the origi,nal non-l'inear system (2 12) i,s locally asymptoti,cally stable at r* i,f

euerA ei,genualue of A has a magni,tude stri,ctly less than one,

(b) the ori,gi,nal non-lineo,r system (2 12) i.s unstable at r* if at least one eigenualue

of A has a magni,tude stri,ctly greater than one,

(c) the stabi,ldty of the origi,nal non-l'inear system (2 12) at r* 'is undetermined

otherwise.

Proof: See Dawid [20], p. 774 and Elayda [33], pp. 198, 203 ô



Genetic Algorithms

Chapter 3

3.1 Evolutionary Algorithms and

Economic Models

Evolutionary algorithms are commonly employed as random search methods to pro-

vide heuristic solutions in optimization problems, see Alander [2] and Bodnovich

and Wong [13]. Each paradigm in this class of evolutionary algorithms share a

conceptual design rooted in the principle of natural evolution, see Spears et al [70],

Darwin [23]. Individual structures adapt according to a complex evolutionary pro-

cess modelled by a sequence of selection, reproduction, and mutation operations.

A generation of such individual structures forms a basis for a simulation model

in which population pressure and competition are an instrument for natural selec-

tion and evolution, see Forest [38]. The genetic algorithm, see Goldberg [43] and

Holland [48], is a type of evolutionary algorithm.

In economic models a genetic algorithm need not be interpreted as a function

optimizer or biological model but more as a model for the behaviour in an agent-

based economy. In such a model, an economy populated by human agents is
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simulated by a population of artificially intelligent individuals. These artificial

agents make strategic decisions about an economic system according to the genetic

algorithm and its operators. As the genetic algorithm is itself a model of natural

selection and evolution, the genetic algorithm can be interpreted in an economic

context as a model of competition and adaptive learning, see Beckenbach [10],

Birchenhal et al. 112], trdmonds [31], Edmonds and Moss [32], and Riechmann

[65]

3.2 Coding and Fitness

To formulate a genetic algorithm for economic applications, two things must be

addressed. F'irst, one must describe the genetic algorithm itself and the genetic op-

erators. We provide these details in Section 3.3. Second, it is necessary to describe

which variables in our model are under investigation and how these variables are

represented by the genetic algorithm. We can then relate these variables to values

in a simulation of our model and study the behaviour of our model over time.

In order to represent numbers in a way that can be manipulated by an algorithm

we need to have a method of coding these numbers in a way that can be represented

in a computer program. Three ways of doing this are to use a real code, a bi,nary

code, or a Gray code.

In real valued coding a variable is represented directly as a number. Double preci-

sion, or the equivalent numerical type, is used. It is argued, see for example Gaffney

[40], that real coding might realistically model the behaviour of adaptive agents. A

description of the genetic operators may be readily interpreted in economic sense

when real codes are used.

The numerical precision of a real coded variable is measured in terms of a fixed
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number of decimal places accuracy. This fixed number is limited.by hardware and

software considerations. We will define the gri,dspaci,ng A of a coding mechanism

to be the difference between two consecutive coded values. For a real coding with

n decimal places accuracy this gridspacing is then A : 10-".

Real numbers of fixed precision appear to be a reasonable and obvious representa-

tion for a variable. However, a computer translates a real number into a sequence

of bits, that is a sequence of binary numbers. The genetic algorithm was first

formulated as an evolutionary process to operate on such a sequence.

A binary code of fixed length I is a string s : (a¿-1aL-2...atao), øi € {0' 1}'

i,:0 ...l - 7. The encoded ualue u" of the string s is

2t oj. (3. 1)

The number of bits vBITS used by the genetic algorithm to encode values defines

the length of the binary code to be used during simulations. Note that I : nBITS.

Values for u" are equally spaced over a domain of the form Ø : l},Ml. This

domain is associated with the domain of some variable under investigation in the

economic model. The gridspacing A is given by

6: ! ,. Q.2).tl 1'L 
-L

The decoded ualue u¿ e Ø for u" is

(3.3)

We define lhe Hammi,ng di,stance between two binary strings of equal length as the

number of bit positions in which the two strings differ in value. It is a property

of binary codes that two encoded values which differ by one may have completely

dissimilar string representations. Take, for example, two encoded values ui1) : 3

ue

I _1t
j:0

U¿ u"L
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urd. rL") : 4. Using strings of length three, these values have a string representation

of s(1) : (011) and s(2) : (100) respectively. These two strings have a Hamming

distance of three. A large Hamming distance between adjacent encoded values is

often referred to as a Hammi,ng cli,ff. Ãs noticed by Arifovic [3], this property can

adversely affect simulation results. For this reason an alternative coding mechanism

has been considered.

Gray coding is a permutation of binary coding. This permutation is done in such a

way that two encoded values which differ by one have string representations which

differ in exactly one bit position. That is, all adjacent Gray code strings have a

Hamming distance of exactly one. In Arifovic's [3] simulations, Gray coding is

shown to overcome some of the problems observed when using binary coding. A

detailed comparison of binary and Gray coding is given in Section 5.3.

Let (b¿-1 ...b0) be a binary string and (9¿-1 ...g0) a Gray coded string. Let the

O operator represent logical xor. To convert from binary coding to Gray coding

let g¿-1 --brr.Then foyi:l -2,...,0let g¿:b¿+t Ob¿. To convert from Gray

coding to binary coding let b¿-r : gpt.Then for i':l-2,..,,0let bn: b¿+tØg¿.

To give an example, and to demonstrate the Hamming property of Gray codes,

let us consider our aforementioned example above with encoded values uÍt) attd

,Í'). Th. string representations in binary coding of s(1) : (011) and s(2) : (100)

become in Gray coding 3(t) : (010) and 3(z) : (110) respectively.

We will define a coded deci,si,on, independent of encoding mechanism, as any mem-

ber of the set of all coded decisions f¿ : {kAlk - 0...rn} where m: MlL. A

populati,on is composed of ,n/ individuals labelled 'i: I...¡y', where ly' represents

the population size vPOP used by the genetic algorithm. We define a popula-

ti,on decision uector corresponding to the population (1,...,¡/) to be an ordered

collection of l/ coded decisions (rþr,. . .,rþ,u), tþ¿ e Q,Y i,:1 . . . ¡/.

24

Using the notation introduced in Section2.l, we will define the state space,S of the
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stochastic sequence X(ú) as the space of all possible population decision vectors

f¿N. That is, each population decision vector represents the decisions made by l/
individuals in an economic model which is simulated using a genetic algorithm. Fol-

Iowing the work of Rudolph [67], a sequence of genetic algorithm population states

X (t) can be considered to be a particular instance of a discrete-time homogeneous

Markov chain with stochastic transition matrix P and state space 5 : f)N. For-

mulations of the Markov chain and its state space vary. An alternative formulation

can be found in Dawid [26] and Nix and Vose [62].

Certain states, in which all coded decisions are identical, will be used in subsequent

sections, see Dawid [27].

Definition 3.1. A population deci'si,on uector rþ : {rþ¿}, ,þ e E, i,s defined to be

homogeneous or uni,form i,f each of the i'ndi,ui'dual components 1þ¡ e 1þ, i:1 . ..N,

of the uector þ are i,denti,cal. A population decisi,on uector ,þ e E whi,ch i,s not

uniform i,s defi,ned to be heterogeneous or non-un'iform'

For k € f,) the vector (k,. . ., k) will be denoted by u*.

We associate with each decision \n Ø a real number which represents the fitness or

po,Aoff that an individual making that decision would receive conditional on some

population decision vector. Let f"(tþ) be the continuous fi,tness functi,on returning

the fitness of any value r in the domain Ø condilional on the population decision

vector ,þ e E. Note that the value of h(rþ) is defined for all r e Ø, not only

those values which appear in T/. Also, the value of l"(1þ) does not depend on which

individual i e {7,...,¡/} evaluates l"(rþ). We will refer to the fitness function as

state-i,ndependent if the fitness of every decision r e Ø depends only on z and refer

to the fitness function as state-dependent otherwise'
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3.3 Operators

Genetic operators are applied in sequence to construct new generations of individ-

ual agents. We shall use Goldberg's [43] and Holland's [48] descriptions of genetic

algorithms and operators as a basis for a formulation of the algorithm.

The single population genetic algorithm maintains at each time step ú > 0 a popula-

tion decision vector which corresponds to the coded decisions made by a population

of l/ individuals. That is each generation index uniquely identifies a population

decision vector. A sequence of population decision vectors is generated according

to a number of stochastic rules implemented in the form of genetic operators,

The algorithm is described as follows with an exact description of each operator

provided below. Let the population decision vector labelled ú be given bV ,þ(t)

Ãt t -- 0 a population of l/ coded decisions is generated by assigning a value

uniformly distributed from 0 to each individual and the population decision vector

{(0) is formed. At each subsequent generation t } 7,, selecti,on operates on the

population decision vector ',þ(t - 1) lú times to generate a pool of decisions rp(t) e

f)N, called the mati,ng pool. This mating pool is distinct from our population

decision vector in that it is not linked to the state of our Markov process at any

time period. The genetic operators, mutat'ion and crossoner) are applied to the

mating pool tp(ú) a fixed number of times with replacement as described below.

Finally, a comparison between the population decision vector ,þ(t - 1) and the

mating pool p(ú) is conducted by the electi,on operator, see Arifovic [3]. The

resultant population decision vector r/(t) is the representative vector of decisions

made by individuals at time ú. This process is repeated until termination.

Both binary coding and Gray coding use strings in the binary alphabet. Hence,

we use the same genetic operators for both mechanisms. We split these genetic

operators into three stages during each time period. The first stage operator,

26
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selection, generates a mating pool using the previous population decision vector.

L Proport,ionate selecti,on. At time t ) 7, decisions are weighted according to

fitness. The probability that an individual with decision'i is selected from the

population ,þ(t - t) is fi(/(ú - 1))/(t j..ú(t-r) f ¡(rþ(t - 1)) A mating pool

of size -fy' is constructed with ,^/ independent replications.

Two operators, crossover and mutation, operate on the mating pool during the

second stage of our algorithm.

2. Si,ngte poi,nt crossouer. Two individuals o -- (a;r' . . oo) and b : (brt' . . bo)

are chosen at random from the mating pool. Crossover is applied with a

probability pC RO S S and the two individuals remain unchanged if crossover

is not applied. If crossover is applied then a point 'i is randomly chosen

between 0 and I - 2 and two new individuals â : (or-t...a¿+t b¿...b0),

E: (bt-, ...b¿+r a¿...ao) replace ø and b respectively in the pool. Crossover

is repeated with replacement lNl2) times.

3. Bi,twi,se mutati,on. Denote Ly a - (or-r.. . ø6) an individual in the mating

pool. The value ai)'i:0... ¿ - 1 is replaced with (a¿ * 1) mod 2 with prob-

ability pMUTAT,E. Every individual in the pool is subjected to mutation.

We apply election in the final stage of our algorithm at each iteration. The mating

pool and the previous population decision vector are compared. The resultant

population decision vector is representative of individuals clecisions made during

that time period.

4. Electi,on. Election is applied to all members of the current mating pool

and the previous generation of individuals. Individuals are paired from each

population in order. Paired individuals are then compared. The individual

with highest fitness is accepted into a new population splitting ties randomly.

The real coded genetic operators differ from binary and Gray operators. However, a
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three stage framework for our genetic algorithm can still be identified. During each

iteration of our algorithm we apply the first stage operator, selection, to generate

a mating pool.

7. Tournament selecti,on. At time t > 1, two individuals are selected at random

from the population labelled t - L The individual with highest fitness is

selected splitting ties arbitrarily. A mating pool of size ly' is constructed

with l/ independent replications.

We then apply the two second stage operators, crossover and mutation, to the

mating pool.

2. Crossouer by i,nner product. Two individuals ø and b are chosen from the

mating pool at random. Crossover is applied with a probability pC ROSS and

the two individuals remain unchanged if crossover is not applied. If crossover

is applied then two new individuals ã: (n,1-ù'(ø, b) and ô : (1 -n,rl)'(o,b)
are generated, where T € [0,1] is a uniformly distributed random variable.

The individuals â and û replace ø and b respectively in the pool. Crossover

is repeated with replacement lN12) times.

3. Random mutati,on. An individual ¿ in the mating pool is replaced by a ran-

domly generated number from the domain l0,uMAX]. Mutation is applied

to every individual in the pool once with a probability pMUTAT-E per trial.

No change is incurred to an individual if mutation is not applied.

Election is applied in the last and final stage of our algorithm during every time

period to generate a population decision vector which is representive of individuals

decisions during that time period.

4. Electi,or¿. Real and binary coded election are identical operations.

Parameter values for the genetic algorithm are given in Appendix A.
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We establish a step transition matrix for our Markov process following Ruldolph's

[67] work. Ruldolph considered a state-independent genetic algorithm. His "canon-

ical" genetic algorithm was constructed with three genetic operators, selection,

crossover, and mutation. As an extension to his model, an elitist operator was also

considered. This elitist operator independently stored the decision with highest

fitness found to date. He showed that in such models a state transition matrix

could be derived by analysing the transitions made by each individual genetic op-

erator. Ruldolph represented the selection, crossover, and mutation operators by

stochastic matrices, S, C , and M respectively. He showed that a state transition

matrix P of his Markov chain could be derived by the multiplication of these three

matrices in an order depending on the implementation of the genetic algorithm.

Finally, he proved two things. First, when an elitist operation is not applied, a

Markov chain modelling such a genetic algorithm has a unique non-zero stationary

distribution. Second, when an elitist operation is applied, a global optimum is

located by the genetic algorithm with probability one.

Ruldolph's Markov chain model for the genetic algorithm extends naturally to our

state-dependent genetic algorithm. In our model, the selection, crossover, and

mutation operations are still associated with stochastic matrices ^9, C, and M

respectively. However, we can not immediately identify the product Þ: SCM of

these three matrices with our state transition matrix P : þr,7] since the influence

of election is not accounted for.



Chapter 4

Equilibria and Stability

in Economic Models

4.L Cobweb Model

The formal analysis of economic models is an essential part of social and eco-

nomic studies. Numerious models have been formulated to describe the behaviour

observable in laboratory testing. These models can be divided into two categories.

Formulations of economic models which make the behavioural assumption of ra-

tional expectations are placed into the first category. In such a formulation agents

are assumed to have identical beliefs about the economic system they inhabit and

these beliefs are consistent with the actual observed dynamics of the system. As

a consequence, rational agents are assumed to make predictions about the current

and future state of the system with perfect foresight. Furthermore, rational agents

are assumed to maximize expected utility.

Another formulation of economic models makes the behavioural assumption of

adaptive expectations. In such a formulation agents are assumed to have identical
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beliefs about the economic system they inhabit. However, these beliefs are ill-

specified in that they are not consistent with the true observed dynamics of the

system. Hence, adaptive agents do not possess perfect foresight. The assumption

of utitity maximization is often made although one might also propose a model in

which agents do not behave in this way. We will consider only models specified

under utility maximization at this point and relax this assumption to formulate

our models using a genetic algorithm in the next chapter.

Let us consider a simple market of a single good which commonly occurs in eco-

nomic literature, a cobweb model. We will formulate a cobweb model as given in

Arifovic [3]. The economy is populated by l/ agents in competition producing a

single consumer good. Each individual agent must decide a priori the amount q¿,¿

of goods to be produced for sale during time period ¿ > 0. Production costs are

identical between agents and the cost function c(q¡,¡) under consideration is that

studied by Wellford [73] as given in Arifovic [4]

c(q¿,t) : rqi,t +|uNø?,r,, (4.1)

where r ) 0, and E ) 0 are constant. The price p¿ is set by assuming a linear

rlemand curve 
N

Pt: A- BT.qn,r, (4'2)
i=7

where A > 0 and B ) 0 are constant. For price to be positive it is sufficient that

A
qn,t . fu,v 'i :1 . . . ¡rr. (4.3)

Profit is calculated as revenue less production cost

1lI' t: PtQi,t - rq¿,t - 2U
Nq?,, (4.4)

We assume that all agents have identical expectations pf for the price per unit

good p¿. Hence, agents with price expectation pl have an expectation for profit of

nl,r: Plq¿,t - ïqi,t - 
l¡u/Vø',,r. 

(4.5)
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Given pl, each agent maximizes nl'by choosing a production of

øo,r: 4 @i - ù, (4.6)

for p", > r. Hence, all agents make identical production decisions at time t > 7

irrespective of their respective production decision at time ú : 0. For convenience,

we assume that all agents make identical production decisions at time t : 0 so that

Qi,t : q¡ for all I > 0 and the inequality (4.3) is a necessary and sufficient condition

for price to be positive.

It is assumed for the cobweb model that

Pl:Pt-t,V¿>1

Hence, from equation (a.2) and equation (a.6)

(4.7)

(4.s)

(4.e)

(4.10)

(4.11)

(4.12)

Re-arranging this equation gives

This equation has solution

A-P, r ,'ffi : 
-'* 

(Pt-t - r)

prl-LPr-t:A+BYaa

(j) t
pt: (Po - P.) * p*,

where p* is given by

Under this parameterization, when

B < U,
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the trajectories for price given by equation (4.10) are convergent to the stationary

equilibrium p*, with corresponding supply

o*: l-*,. (4.13)' ¡ú(B +a) \ -/

For positive supply, A must be greater than r

4.2 Overlapping Generations Model

of Constant Money Supply

Let us consider another market of a single good, an overlapping generations model.

In this model, agents live over two consecutive generations and optimize consump-

tion over their lifetime.

The overlapping generations model considered here is Samuelson's [68] 1958 over-

lapping generations model of fiat money as given in Arifovic [3]. The economy is

populated by agents living over two consecutive time periods, ú and t + L, ú > 0.

Generations of individual agents are of equal size ly' and each agent is said to be

Aoung in the first period of life and old in the second. A single perishable consumer

good is introduced into the economy in the form of endowment. Individual agents

are endowed with u(1) units of good in youth and T.u(2) units of good in old age. In

the first period of life at time ú agent ¿ consumes an amourf, clt) e [0,u(1)]. The

supply of excess goods possessed by an agent i in the first period of life at time f

is given by

si,t: ,rt - ,l!), Øl4)

Excess goods are supplied by agents only in youth. Nominal per capita money

supply is assumed to be constant h each period, with total supply of fiat money

,n/h, initially held by a generation of old agents at t :0. Excess goods are sold on
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the market at a price per good p¿ determined by the total supply of goods and the

total amount of fiat money in the economy

Nh
P¿: -L¡ s¿,t

Individual young agents accumulate monetary savings through the sale of excess

goods

TTL¿,¡ -- Ptsi,tt (4.16)

and use these savings in the second period of life to purchase goods. In old age

individual agents consume an amount of goods

(2) _we)+rro,,. (4.rT)cì,+t = p+t

An individual's utility U¿,t is a function of first and second period consumption at

úandúflrespectively
(J¿,t: pkl:),"Í?)*r) (4.18)

The utility function pkl!,"1,?)ì is assumed to be concave, bounded above, in-

creasing i" tjt/ und 
"l')*r, 

and first order differentiable.

Let r¡ be the price ratio
PtTt: 

-Pt+t

Individual agents do not know the prices pt or p+t a priori. A model of behaviour is

derived by assuming that individual agents formulate an expected value rr" for the

ratio r¿ with perfect foresight. This expectation is identical for all agents. Perfect

foresight assumes that the expectationr", and the observed price ratio r¿ : PtlP+t

coincide. Under perfect foresight individuals correctly predict the prices p¿ and

pt+t. Individual agents i : I. . .ly' maximize utility over [0, r(t)] at each period

¿ > 0 with r¿ treated as a constant during maximization

ma*0."11.,,r,r (J¡,, : pkll,r|?)ì,

where ,|?Ì*'

34

(4.15)

(4.1e)
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The concavity of the utility function combined with identically formed expectations

for r¿ implies that all individual agents act identically. It follows that m¿,¿ : Trltt

"::) 
: cjt), and by equation (a.15) market price simplifies to

h
(4.21)Pt: 

^" -,,5Ð'

and so

"Í'):'"'-lr, (4.22)

forallf>0

Assuming that the initial first period consumption is given for all agents at f : 0,

then the initial price p6 can be calculated using equation (4.15). Using equation

(4.19) and equation @.22) we can see that the system (4.20) implicitly describes a

difference equation for price

Pt+t:F(pr),ú)0, (4.23)

where the function ,F. : IR+ -+ IR+ relates the price at time ú and ú -l 1

The difference equation (a.23) together with p6 gives a trajectory for price. \Me

call a solution to this recursive system which is constant for all time stati,onary.

The fixed point for price p* corresponding to the solution trajectory {p-}3" is then

called a stati,onary rati,onal erpectati,ons equi,li,bri,umfor price. We define stationary

equilibria for first period consumptie¡ ¿(1),* similarly. By equation (a.22), ¿(7)'* -
wQ) - hlp*.
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(4.2s)

(4.30)

(4.28)

4.3 Parameterization and

the Utility F\rnction

The utility function as analysed by Arifovic [3] in an overlapping generations model

of constant money supply is a function of first and second period consumption for

period ú given by

t þÍ') ,"Í?) : 
"Í') "Í?r, (4.24)

where

"Í?r: r(') + r¡(wl) - rÍt)) (4.25)

Differentating equat ion (4.2a) with respect to cjl), where r¿ is treated as a constant,

and equating the result to zero gives

,(z) 1 ?r(1)
(4.26)2rt 2

Substituting forctt) ,rsitrg equation (4.22) gives the first order linear non-homogeneous

difference equation for price

11ì Iu)\') 2
þt+t: ,^Pt- ,'¡)\') u;2)

(4.27)

If ,u(1) - wQ) this becomes

1),l +

h

2
Pt+t-Pt:- t"',u\')

h,

with solution

1¡ r(t) * w(z) then the homogeneous form of equation @.27) is

2
Pt: Po - t"\ht

't t)\')

0p?+t -ffirr
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with solution

,r:(#)'

If we let ú -+ oo then, from equation (4.29)

Pt ) -æ as I -+ oo if w0) : wQ).

Also, from equation (4.34)

37

(4.31)

A particular solution p* for all f is

_2hP - w0) -wQ)'

The general solution to equation (a.27) when ,0 I t¿(2) is then

P,: A(#), * r*,

where ,4 is a constant.

Replacing ,4. using the initial conditions, gives

p,: (po - o, (#)'*o-

(4.32)

(4.33)

(4.34)

(4.35)

PtlP*
Pt)æ
Pt)-æ
Pt: P*

as ú-+oo

as ú-+oo

as ú-+oo

vt

if 1110) q ryQ),

if ry1) 2 ry(z)

if .,G) > wQ)

if w0) + uQ)

and po ) p*,

and po 1 p*,

and Po: P*.

(4.36)

A realistic interpretation of price requires that Pt ) 0 for all ú > 0. If 'u.'(1) < u(2)

then p* ( 0 which does not make physical sense. Thus, we require that r¡(1) > wQ)

and p6 ) p* for price to be non-negative for all f > 0.

We substitute our price equation (4.32) into equati on (4.22) to obtain the stationary

equilibrium for first period consumption. We then use equation (4.14), equation
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(4.3e)

(4.38)

(4.16), and equation (4.17) to obtain the corresponding second period consuption.

That is,

,lt):rÍr):c(1),*, Vú)0, (4.JT)

are constant where

with utility

r1).* 1x(r) ¡ ryQ)

2

pl(c(t),*, c(t)'*¡ - (4js1)
2

The stationary equilibrium for price pt : p* , for all f ) 0, is unstable because the

term (,u(1) lwØ\t in equation (a.3a) increases geometrically in time. This means

that the stationary equilibrium p* is attained only when the initial price p6 happens

to bep* and wrlwz.Otherwise it must be that Po) P* and a.'1 ) w2fot Pt) 0,

V ¿ > 0. We can use equati on (4.22) to see that as pt -) -, ,Ít) -+ c(1)'* and

,Í") - ¿(2),*, where

.(1),* : ,(t), (4.40)

,(2),* : ,(r). (4.41)

Utility tends to

H,(wQ¡,wQ)¡ - w1)wQ) (4.42)

A" p, -+ oo fiat money becomes valueless. At .[t) -+'¿¡(1) from below, a decreasing

amount of goods is left for sale at each period. Hence, a decreasing amount of

goods are available for purchase in old age, irrespective of the amount of savings

which may have been accrued in youth. This self sufficient policy of maximal

consumption guarentees a utility of exactly wG)ryQ). This is referred to, ipso facto,

as an autarki,c state.
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4.4 Constant Real Deficit Financed

Through Seignorage

A constant real deficit d is financed by some external body or government via

seignorage. Seignorage is defined to be the revenue raised by money creation.

That is, by printing fiat money, see Abel and Bernanke [1]. This deficit can be

introduced into the overlapping generations model as given in Arifovic [3]. Per

capita money supply becomes time dependent and

d,_ht-hr_t. Ø.4J)
Pt

The price function does not automatically assume all individuals act identically.

Price at time ú is determined by dividing the total value of goods sold at time ú - 1

by the difference in total supply and deficit at time t. It is given by

DI t si';lPt-t
Pt: !¡¡ ^, ,, (4.44)

L¡:t s¡'t - 1\ 0'

where
N

(4.45)

However, as a result of concavity and utility maximization using a utility function

of the form (4.24), it turns out that individuals do act identically wilh m¡ : ht. A.

substitution of equation (a.19) into equation (4.26) gives

?r(1) wQ)
-- 2 P, -l , Pt+t.

Using equation (4.14) and equation (4.16) we have that m¿: Ptst: p¿(w$) - "Ít)).

i:t

(1)
Ptci' (4.46)

pr"l') : ptw\) -
Hence

rfl¿ (4.47)
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We use equation (4.47) to substitute for p¿c¿ in equation (4.46) wilh m¿: h¿. This

grves

40

Since h¿ ) 0, we require that

That is

tuQ)
Pt- u¡¡P¿+t 

) 0

pr*, - .(t)
et - ulÐ

(4.48)

(4.4e)

(4.50)

(4.51)

Substitution of equation (4.4S) into equation (4.43) gives

d- 11G) ¡ 11Q) ,0) pr-, wQ) pr+t

2 2pr2P,

Let
Pt

ttt 
- )

Pt-t
(4.52)

be the inflation rate. Then

wG) - 2d ?r(1)
(4.53)

wQ) wQ)rt

Equation (4.53) defines a non-linear recurrence relation describing the competitive

rational expectations equilibrium. The stationary equilibria for inflation r* ate

derived by solving the quadratic equation

rt+t -- | I

where price is positive and finite, and d > 0.

Examining the discriminant of this quadratic, it is required that

wo)

1xQ)
0 (4.54)

wG)wQ), (4.55)
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]f t+t

'tf ¡

Figure 4.1: Stability diagram for inflation

to give two distinct real roots ø'f and zr|7 as the respective low and high inflationary

values
1

t 1+
,(r) - 2¿

wQ)
+ 2 (4.56)

The stability is represented graphically in Figure (a.1) plotting n¿ar as a function

of r¿ against the 45" line. By observation of Figure (a.1) the inflation rate will

approach the high inflationary equilibrium rf, if the initial inflation rate exceeds

the low stationary equilibrium value, Ts ) Ti. Hence, the stationary equilibrium

urþ is the stable attractor for all values of zr¡ ) ri. The low inflation stationary

point is obtained only when ro : TL. If Ts 1ni, then 7r¿ ) -Ø as ú -+ oo. For

inflation to be non-negative for all time it is necessary that Ts )- iti. Also, using

equation (4.50) and equation (4.52) we require that' r¿ .--Q) f wQ) so that ht > 0

for all ú > 0. Hence, Ts e lri,uQ f w(2)).

Line

Hsh
lnflation

Low

lnflation



Chapter 5

Stochastic Representation

of Economic Models

5.1 Stochastic Modelling and

the Markov Process

In Chapter 4 we described the economic theory used to analyse our models. Im-

plicit in our analysis is a formulation of behaviour in which utility maximization is

assumed. Under this assumption we derived a dynamical system in which all indi-

viduals act identically. In Chapter 3 we described genetic algorithms and how they

can be modelled as stochastic processes in discrete time. Implicit in this approach

is formulation of behaviour in which individual agents use the genetic operators to

generate decisions. As a consequence, agents do not act identically but adapt over

time according to a complex evolutionary process. That is, genetic learning is a

form of adaptive expectations learning which does not explicitly maximize utility.

A genetic algorithm might be applied to an economic model for several reasons.
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First, minimal experimental data is required, if any, for simulations to be run.

Second, analytic solutions for equilibrium or non-equilibrium dynamics are not

necessary. In cases where experimental data might be costly or difficult to obtain,

or where analytic solutions have not or cannot be derived, a genetic algorithm is a

useful tool. Alternatively, genetic algorithms can be used to support experimental

evidence in situations u'here rational expectations models are contradictory, or

when it is uncertain which of many equilibria should be the outcome of a model

over time. We will discuss an exact formulation of the genetic algorithm as applied

to individual economic models in later sections.

While the number of applications of genetic algorithms in economics is extensive,

see Arifovic [7], few publications attempt to explain the mathematics behind the

genetic algorithm. The comprehensive work of Dawid [2a] is a notable exception.

The lack of detailed analysis of the genetic algorithm itself remains a problem. A

number of general convergence results are derived in this chapter by considering a

Markov chain formulation for the genetic algorithm. We then apply these results

to the cobweb model given in Section 4.1.

The genetic operators presented in Section 3.3 are chosen from a large number of

possible variations for each operator. However, what is important in our analysis

is the communicating structure of the Markov chains that operators induce. Thus,

to analyse a genetic algorithm we shall define conditions on the genetic operators

rather than considering the individual operators directly. These conditions are

defined below.

Condition 5.L. There i,s a stri,ctlA non-zero probabili,ty that the deci,sion q is mu-

tatedto4,Vq€0,Vqef¿.

Let us consider the sequence in which the genetic operators are applied. From

Section 3.3, the ordering of operations places selection first, then crossover, mu-

tation, and election. We notice that if Condition 5.1 is satisfied, each decision in
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Q is visited infinitely many times by mutation with probability one as ú -+ oo. It
follows that each population decision vector in .S is visited infinitely many times

by mutation with probability one as I -+ oo. Thus, every population decision

vector in 5 is generated infinitely often with probability one by the sequence of

operations; selection, crossover, and mutation. This does not guarantee that any

particular population decision vector is elected. Hence, without loss of generality,

we need now only to consider the communication between states during election

to determine the communicating structure of the Markov chain.

A convexity condition is usually assumed. It is usual, but not necessary, for the

fitness function to be continuously differentiable over the domain Ø.

Condition 5.2. The f,tness function foþþ) is cont'inuous and conner, and, consid,-

ered as a function oÍ q, fo(rþ) attains a disti,nct unique marimum i,n Ø for each

respectiue rþ e S.

Let tþ € .S be some state and q e I be some decision in the domain. As a

consequence of the convexity and continuity condition given by Condition 5.2 there

is some closed and bounded, convex, and non-empty subset of. Ø which contains

all decisions with fitness greater than or equal to q. We call this set of values the

election space Eoþþ) of the decision q.

Definition 5.1. The election space Eoþþ) of a decisi,on q € Ø conditional on the

state þ € S is defi,ned to be the subset of Ø cons'isting of all ualues Q e Ø such

thatfq(þ)>fo(rþ).

Using Condition 5.2, the election space Eoþþ), q € f,), tþ e S, takes the form [a, q] or

[q, b], for some a,b e Ø, and contains the unique maximum 4 : arg maxqeØ fqþþ),

irrespective of the value of q.

If an individual has the strictly highest possible fitness over f,) conditional on some

state Ty' e .S then the election operator will not allow that individual's decision to
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change in the current period. The decision may not have strictly highest fitness

in subsequent periods as the population state may change. This suggests that

absorbing states of the genetic algorithm can be identified by analysing the election

spaces of fittest individuals.

All coded decisions belong to the set 0 and are equally spaced a distance A apart.

The intersection of an election space and 0 indicates which points are coded by

the genetic algorithm in the election space. A population decision vector state

(rþn), ,þ¿ € f), ? - 1...ly' corresponding to the state T/ € 5 is absorbing only if

l8t,þþ) af^¿l : l,V i,:1...ly'. That is, all individuals have an election space

whose intersection with fl contains only that coded decision which is identifiable

with each respective individual.

Theorem 5.t. Let þ be a populati,on decisi,on uector of a geneti,c algori,thm wi,th

gri,dspaci,ng L.. Then

(o) ,þ is uni,form if diam(8,¡,,(rþ)) < L, V i,: 1 . . . Iy',

(b) ,þ i,s absorbi,ng iffdi,am(Et,þþ)) < A, V i,:L...N.

Proof: We first prove part (b) of out theorem. If a state is absorbing then Ty'¿,

i, : | .. .l/ may never change. That is, no individual may ever change their deci-

sion. Hence, every individual must have strictly highest possible fitness. Otherwise,

by Condition 5.1, there is a strictly positive probability of mutating to and subse-

quently electing a different decision in f) with equal or better fitness. An individual

can only have strictly highest possible fitness if its election space contains no point

other than itself. That is, for every i: I...N, l4+,(rþ) ñf)1 :1. By Definition

5.I, E¡,,(ll) takes the form lo,rþol or ltþ¿,ó], for some a,b e Ø. P.iecall from Section

3.2 that coded decisions in f) are equally spaced over g with a gridspacing of A.

Hence, the condition lEa,(rlt)a 0l : t can be re-stated as diam(E¡,(t/)) < A, V

i:1...1/.

To show that the reverse also holds, let us consider the individual k. The election
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space Et,rþþ) is defined to contain all decisions in Ø with equal or better fitness

than tþ¡. Since Q c Ø this election space also contains all decisions in 0 with equal

or better fitness thanþ¡. If diam(E¡,-(rþ)) < A then l8+,(rþ) nf)l : 1 and Eq,,(rþ)

contains no element of f) other Lhantþ¡. Hence, ft,r(rþ) > fr(rþ),V ç e f)\{r/¿} and

tþ¡has strictly highest fitness from amongst all decisions in f2. Thus, no individual

will ever change their decision and ry' is absorbing. This establishes part (b) of our

theorem.

To get part (a) of our theorem, note that ff ft,oþþ) > fr(rþ),V I € C) \ {T/¿}, then

tþ¡:tþn,Yi:1...¡/. Thatis,ry'isuniform. o

Corollary 5.1. l/o non-uni,form state i,s absorbi,ng.

If at any time a genetic algorithm enters an absorbing state z¡ it remains in z¡

ad infinitum. Theorem 5.1 gives a necessary and sufficient condition for a state

to be absorbing. This does not guarantee that there will be an absorbing state or

that that absorbing state will be entered. Hence, to analyse the convergence of our

Markov chain we must consider both the existence and accessibility of absorbing

states.

Theorem 5.2. Consider a genetic algorithm with gridspacing L, and let P : lp¿,¡l

be its state transit'i,on matri,r. Then the algorithm conuerges to the state u¡ e S,

k e Q, with probabi,li,ty one iff di,am(E¡("r)) < L, and for euery i e E, a m¡ e Z+ ,

such that pÍii) , 0

Proof: If diam(á¿("*)) < A, then by Theorem 5.1, u¿ is an absorbing state. If
for every 'd e .S, ) m¿ € Z+, such tt 

"t 
pl7;) ) 0, then z¿ is accessible from every

state i. Since,S is finite, then by Theorem2.4, the event X(t): ur occurs with

probability one in the limit ú -+ oo. Hence, the genetic algorithm converges to

the state z¡ with probability one. Likewise, if the genetic algorithm converges to

the state z6 with probability one it must be that diam (E*("*)) < A and for every
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i e 5,1 m¿ e Z+, strch that p::î) > 0. o

In general it is difficult to show that a state u¿ e S, k € 0, will be entered with

probability one. From Theorem 5.2, we know that if a state is accessible from

the entire state space in some finite number of steps then that state is entered

with probability one. When this state is absorbing our Markov chain converges to

that state with probability one. We will consider the accessibility of the state z¡

from all initial states in exactly two steps to derive a sufficient, but not necessary,

condition for convergence to the state u¡ with probability one.

Theorem 5.3. A Markou chai,n model for the genetic algori,thm conuerges to the

state u¡ e E, lr e Q, wi,th probabili,ty one if diam(E¡(u*)) < A,, and k e E¡(u¡), V

/€f¿.

Proof: Let 8(ò - argmaxø€o fq@), g e S. Conditions 5.1 and 5.2 imply that

P(,i(ú) : u1(p)lrþ(t - r) : ç) > 0, V t > 7. If F(ú(r + 1) : 
"*lrþ(t) 

: z41r¡) ) 0

thenpf),o > 0,V p€s.Thisconditionismet when ke E¡(rrr'), V/ € f¿. Since

diam(E¡(uo)) < A, we know thal u¡ is absorbing by Theorem 5.1. Hence, the

genetic algorithm converges to the state u¿ € S, k € fl, with probability one. o

We can generalize Theorem 5.3 to the case where there is not necessarily an ab-

sorbing state but where there is a recurrent class that is accessible from all other

states.

Theorem 5.4. The recurrent class € is entered with probability one if 1 u¡ e €
s.t. k e E¡(u¡), for euery j € A.

Proof: The result follows from the proof of Theorem 5.3 mutatis mutandis. o



5. Stochastic Representation of Economic Models 48

5.2 Cobweb Model

The first application of a genetic algorithm in a cobweb model was given in Ari-

fovic [3]. She demonstrated that genetic algorithms can be used to replicate the

behaviour recorded in Wellford's [73] experiments and compared the genetic al-

gorithm simulation results to the price expectation models of Ezekiel [36] who

formulated the model using naive expectations, Marcet and Sargent [58] who for-

mulated the model using least squares learning, and Carlson [20] who formulated

the model using a sample average of past prices. Simulations showed that a ge-

netic algorithm captured three features observed in Wellford's experimental data.

First, the genetic algorithm converged to a stationary equilibrium solution. This

convergence occured even when input parameters were consistent with unstable

behaviour according to the analysis presented in Section 4.1. That is, the inequal-

ity @.12) was not satisfied. Second, the genetic algorithm fluctuated about the

equilibrium. Third, after thirty generations of the genetic algorithm, the price

variance was greater across randomly selected seeds when the inequality (a.n)

was not satisfied.

The early work of Arifovic provides a foundation for the exploration of the cobweb

model using genetic algorithms. Dawid and Kopel [28] consider a formulation

of a cobweb model with market exit and entry decisions. The impact of coding

on simulation results is explained using an analysis of uniform states as given in

Dawid [24], see also Vose and Liepins [72] and Nix and Vose [62]. While Arifovic

concentrates on illustrating the workings of the genetic algorithm, Dawid formally

establishes results for the genetic algorithm using stochastic theory for Markov

chains.

In the cobweb model, the supply and demand curves affect how individuals respond

to price. As derived in Chapter 4, the closed form solution for price given by
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equation (4.10) was p¿ : (po - p.)(-B lA)' I p*, where B appeared in the demand

equation setting price, given by equation @2) and y appeared in the cost function,

given by equation (a.1). The linear supply equation as a function of price was given

by equation (a.6).

In Arifovic's simulations of the cobweb model using genetic algorithms, population

decision vectors contain component values which represent the supply decisions q¿,¿,

'i:L..¡y', ¿ > 0, corresponding to each member of a population at time ú. The

genetic operators generate these population decision vectors. The fitness function

is identified with the utility function as is standard with simulations using genetic

algorithms. In her application of the genetic algorithm, Arifovic uses the equation

for profit given by equation @.Q as utility. Agents are assumed not to know the

price at time ú a priori. Instead, a price forecast, as given by equation (4.7), uses

the price which clears the market in the previous time period. Profit is calculated

and the average supply determines the market price, as given by equation @.2).

We apply a similar genetic algorithm as used by Arifovic. At each time period

ú ) 0, our genetic algorithm encodes a population decision vector, representing

Iy' values for supply Q¡,t € l},Al(NB)1. The initial values Qt,o,,i - 1...ly', are

randomly generated. Supply decisions are decoded to determine the market price

Po: A- BDLrÇ¿,0. We generate vectors of values for supply during successive

periods ú > 0 by applying the genetic operators. At ú : 1, we apply the genetic

selection operation to construct a mating pool consisting of lú supply decisions. We

apply genetic operators, crossover and mutation, to this mating pool as described

in Section 3.3. We decode each new decision 4¿tin the matingpool and calculate

their fitness as /(p6, ã¿,r) : poí¿l-r4¿l-laNø?,r. During election, we compare the

fitness of each individual i in the pool with the fitness value f (po,q¿,0). The value

f (po,q¡,o) represents the actual profit individual i obtained at time ú : 0. The

value Í(po,q¿,t) represents a prediction for utility at time ú using the price forecast
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pl : po. If the fitness corresponding to individual ¿ in the mating pool exceeds

the profit obtained in the previous period then q¿,1 : 4¿,t, otherwise we retain

the past supply decision and g¿,1 : Qi,o. We use the values Ç¡J Lo construct our

population decision vector at t :1. We then calculate the total supply f[1øl,r
and determine the corresponding price pt: A- BÐl=rqn,r. In the consecutive

periods t : 2,3, . . ., we continue this process, terminating after a set number of

iterations.

Set 1 Set 2 Set 3 Set 4 Set 5

A

B

x)

a

¡/
Bla

q*

p*

2.r84

0.0152

0

0.016

30

0.95

2.3333

r.t2

2.296

0.0168

0

0.016

30

1.05

2.3333

t.t2

2.296

0.0168

0

0.0084

30

2.0

2.9896

0.7653

2.296

0.0168

0

0.0016

30

10.5

4.7594

0.1997

2.296

0.0168

0

0.0008

30

2L.0

4.3484

0.7044

Table 5.1: Cobweb model, parameter sets 1 to 5

Two parameter sets are used in Wellford's experiments [73] and adopted by Ar-

ifovic in her simulations. These two sets correspond to the first two parameter

sets given in Table 5.1. In Arifovic's simulations a bit length of thirty is used

and two hundred iterations conducted. Arifovic [3] reports values close to the

stationary equilibrium price p* are obtained by the genetic algorithm and she sta-

tistically analyses the variations in price. Simulations show that convergence to

an equilibrium depends on both coding mechanism and parameter values. Prob-

lems associated with Hamming cliffs in binary coding are noted by Arifovic and

she shows that Gray coding can be used to overcome these problems. Recall from

Section 3.2 that the Hamming cliff problem is a consequence of the ordering of bits



5. Stochastic Representation of Economic Models 51

within a string and a correspondence with the relative weight each bit contributes

to the value of the string. Problems with these cliffs have previously been observed

in studies involving genetic algorithms, see Caruana and Schaffner [21], Goldberg

144)

We conducted ten thousand iterations of the genetic algorithm under Gray coding

with a bit length of ten. The parameter sets we examined are given in Table 5.1.

Results for Sets I,2,3,4, and 5 are tabulated in Tables 5.2,5.3,5.4, 5.5, 5.6

respectively. These results represent the population decision vectors we observed

upon termination of our simulations. Supply decisions in 0 made by agents are

displayed as real numbers to four decimal places.

Simulations for the stable parameters given by Set 1 in Table 5.1 converged after

Iess than one hundred iterations. Simulations for Sets 2 and 3 did not converge.

However, at every iteration, a change in decision was recorded between population

decision vectors whose components took one of the two values that appear in

Table 5.3 and 5.4 respectively. No other values apart from these were observed

after around one hundred iterations. Agents in simulations for Set 4 and Set 5

maintained a diverse range of values throughout all iterations.

To explain why such results are observed, Iet us consider the local asympotic

stability conditions for the application of genetic algorithms derived by Dawid [26]

pp. 83-91. Dau'id analyses a dynamical system in discrete time with deterministic

state calculations. This system represents the expected value of a Markov process

modelling genetic algorithm dynamics at time f * 1 conditional on the state of

the process at time ú. He remarks that the trajectories arising from this system

Vector

Sei 1 1.1(2.333e)

Table 5.2: Cobweb model, population decision vector, set 1
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Agents' decisions
2.33t3
2.3373
2.3357
2.3313

2.3313
2.3357

2.3313
2.3313

2.3313
2.3313
2.3357
2.3313

2.3313
2.3313
2.3357
2.3313
2.3357
2.3357

2.3357
2.3313
2.3313
2.3357
2.3357
2.3313

2.3313
2.3357
2,3357
2.3313
2.3313
2.33t3

Table 5.3: Cobweb model, population decision vector, set 2

Agents' decisions
3.0395
3.0351
3.0351
3.0351
3.0351
3.0395

3.0351
3.0351
3.0395
3.0351
3.0351
3.0395

3.0351
3.0395
3.0351
3.0395
3.0395
3.0351

3.0351
3.0395
3.0395
3.0351
3.0395
3.0351

3.0351
3.0351
3.0351
3.0351
3.0351
3.0351

Table 5.4: Cobweb model, population decision vector, set 3

Agents' decisions
4.0293
4.1568
4.1700
4.1524
4.r788
4.t480

4.2096
4.t260
4.1260
4.t524
4.7129
4.7964

4.L260
4.1260
4.1656
4.7392
4.2052
4.1876

4.2008
4.t876
4.I788
4.7t29
4.1788
4.0733

4.0909
4.2096
4.1656
4.2052
3.9633
4.t524

Table 5.5: Cobweb model, population decision vector, set 4

Agents' decisions
4.It73
4.3240
4.7964
4.3944
4.2932
4.3240

4.3900
3.5322
4.4120
4.7876
4.3592
4.3768

4.3020
4.3768
4.2756
4.3152
4.34t6
4.3548

4.3724
4.3856
4.2844
4.3548
4.3636
4.3328

4.3592
4.3240
4.4076
4.3812
4.3765
4.2932

52

Table 5.6: Cobweb model, population decision vector, set b
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approximate the behaviour of a genetic algorithm when the population size is

sufficiently large and mutation is applied with sufficiently small probability. A

binary encoded population u¡" € S, k e {'1, with a mutation probability of zero

and one-point crossover with probability X € (0, 1] is a locally asympotically stable

state of this system if

^(i,k).!(,_/*("*)\¿-1- t [t -ffi)' (5 1)

for all binary coded strings j e Q, j + k, see Dawid [26] p. 87. The value I > 0

in the inequality (5.1) represents the number of bits used in encoding decisions

and )(7, k) represents distance between the two outmost bits of j and k which

differ in value and zero when j and k differ in value at less than two distinct bit

positions. Likewise, a binary encoded population u¡ € E, k e f), with a mutation

probability of zero and one-point crossover with probability X € (0,1] which is

locally asymptotically stable satisfies the inequality (5.1).

It is noted by Dawid [26] pp. 161-165 that states other than stationary equilibria

may be locally asymptotically stable. Let us consider exempli gratia Set 1 of

Table 5.1 with a bit length of I : 10 as used in Dawid's work. There are two

distinct binary strings which are locally asympotically stable. The first represents

the stationary equilibrium q*, the second a value to four decimals of 2.3523 which

is encoded as the string k: (1000000000). To display these results graphically,

Dawid takes the value of X in the inequality (5.1) to be one and rearranges this

inequality to obtain

'-=r+94, (b2)

=1 -16Ã' ,U '

To determine if the inequality (5.2) holds for our specified value of k, one need only

to check that the points (À(k, j), f¡@r)lfo(u*)), j e ç¿ \ {k}, lie below the curve

s()) : (t - r)l(t - 1- À).

For k : (1000000000), Figure 5.1 plots the function 9(À) as a solid curve and
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Figure 5.1: Local asymptotic stability diagram

points ()(k,s), l¡("ùlfu(ux)), i € CI \ {k}, as diamonds. As each diamond lies

below g()) the uniform state z¡ is locally asymptotically stable even when the

crossover probability is taken to be one.

We can use the inequality (5.1) to deduce properties of a genetic algorithm with

Gray coding, see also Dawid [26] p. 90. Observe that if there exists a coded decision

J € CI differing from another coded decision ,k e f) in a single bit position, then

^(j,k):0 
and the left hand size of the inequality (tr.t) becomes zero. Moreover, if

f ¡@o) > f x@n) then the right hand side of the inequality (5.1) is strictly positive.

Thus, the inequality (5.1) is not satisfied and so LL¡ cannot be locally asymptotically

stable.

Now, recall from Section3.2 that a Gray code fr e 0\{0. . .0,1 .. .1} is constructed
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such that if k has neighbours i,i € Q corresponding to the gridpoints immediately

totheleftandrightof krespectively,then 
^(i,k):À(J,k) 

:0. Thisimpiiesthat

in modeis with a suitable fitness fuctions, continuous and concave over the domain'

no unif.orm state other than those corresponding to stationary equilibria may be

locally asympotically stable if Gray coding is used'

The analysis of locally asymptotic stable states given by Dawid does not ex-

plain certain key observations about the model. As we have shown, the string

(1000000000) is iocally asymptotically stable according to the definition of Dawid'

However, this string did not arise as a convergent point of the genetic algorithm

in Set 1 of our data. In addition, the criterion for locai asymptotic stability in

uniform states does not explain the persistence of a system of two distinct supply

decisions observed in sets 2 and set 3 of our data' To explain such findings an

alternative approach must be found. Finally, locai asymptotic stability does not

help us to understand how in Set 4 and Set 5 of our data supply decisions deviate

from the equilibrium to such an extent. That is, asymptotic convergence conditions

tell us little about the behaviour of the model if no uniform state is stable' To

answer these questions we adopt an apploach based on Markov chains to analyse

the properties of election spaces in our model'

The gridspacing corresponding to a I bit binary encoding over [0, M] is a :

M lQ, - 1), where M represents the maximum value encoded by the genetic algo-

rithm. The exact value q* is approximated to some desired precision by specifying

l. Denote by q- ( q* and q+ 2 q" the two closest points to q* as encoded by the

genetic algorithm on either side of q*, possibly the point q* itself' Assume that the

average supply at time f is less than q*' Thus' rwe can write

N
1

F ti=l

(5.3)Qi,t: Q* - 6t
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(5.e)

(5.7)

for some ô¿ > 0. Hence,
1N

6t:8*-tDoo,r, (5.4)
i:l

represents the difference between the equilibrium supply q* given by equation (a.13)

and the average supply at each time period. By equation (4.2), the corresponding

price at time ú is given by

Pt:A-BN(q--6¿) (b.bJ

Let þ(t) € 5 be our population decision vector at time ¿ > 0. From the set of all

possible supply decisions 0 at time t + 7, we use equation @.\ to calculate the

election space Eq*-õr(rþ(Ð) representing those values with equal or higher fitness

to the supply strategy e* - 6t.our election space Eo.-ur(rþ(ù) is convex and non-

empty, taking the form la,b), a,b e Ø. The endpoints ø and ó are the two real

roots of the quadratic equation in /

pó- ró- |uNO':p(q* - d,) - r(q. - ¿ò - la|(q. - 6r)r. (5.6)

This has solution ó: q* - ô¿ and

ó 2e::-(q.-ô,),

,#- (q. - ô,)(i +2T)

From Section 4.L we deduce that

# - (q. -ô¿)(1 + 2B-) > Q* - 6t, (5.8)

A-r
yN

B
so that

Eq* -õ,(rþ(t)) : fq* - 6¿, 2 - (q. - õ¿)(t + 2
a

)l
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Fr--l--A-ô¡

58

q"

q- -L q- Q+ q+*A

I tr-("r-)---1

F igure 5.2: Gridspacing and set 1

simulation of the cobweb model with grid,spacing A, such that

lq._ ql .+ffi, (b.14)

then the geneti,c algorithm 'is conuergent to the uni,form state uo wi,th probabi,ti,ty

one. Conuersely, if the geneti,c algorithm 'is conuergent to the uniform state uq,

q eç¿, with probabili,ty one, then the inequality (5.14) i,s satisfied.

Proof: To use Theorem 5.3 two requirements must be met. The first requirement is

that diam(4("ò) < A, the second that un e E¡(u¡),V j e fl. From the inequalities

(5.10)-(5.13), we know that diam(Eo@ò) < a, if the inequality (5.1a) is satisfied.

Let us consider the second requirement. By Condition 5.2 the electiorì. space

En(un) of the population decision vector z¡ € s, k € f,), contains the value

d : argmaxqeØ fq(ur). Using our analysis of equation (b.9), diam(E¡,(u¡)) is a
strictly decreasing function as k approaches g*. Notice that utility, hence fitness,

is a quadratic function of supply with a negative coefficient of the squared term.

By definition, an election space conditional on the decision ft and the state u¡

contains all values for supply in g of. equal or better fitness than k. Two pos-

sibilities arise. First, both endpoints of E*(u*)) have the same fitness. Second,

the endpoints of Ex("n)) have different fitness. In the first case, notice that since

fitness is a quadratic function of supply, f occurs at the midpoint of E¡r(u¡) so

that diam(En("*)) : zl/ - kl. We deduce from Section 4.1 that if k < q* then

Q > q. and if l, > q* then f 1q*. This means that 2lq_ kl 2 2lq. _ kl and
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diam(E¡("r)) > 2lq. - kl. Hence, the point q occurs in every election space En(rr)

for which lq. - kl > lqo - ql.

In the second case, fitness is still a quadratic function of supply. However, En(u*)

is confined within Ø causing the two endpoirrts of E¡(u¡,) to have different fitness.

Trivially, En(un) contains every decision q where lq. -kl > lq- -ql. Now, A < B +A,

as both B and A are non-negative. Hence, if lq- - ql > Ll2 then the inequality

(5.14) can never be satisfied. Hence, q is the unique point in f) strictly closest to q*.

This point occurs in every election space Et (u*), k e f) because every k e f) \ {q}

is distanced further from q* then q. Theorem 5.3 now completes the first part of

our proof.

It also follows that if the genetic algorithm converges to the state zo with proba-

bility one, then un must be an absorbing state. If the state uo is absorbing, then

diam(Eo(uo)) < A). Hence, the inequality (5.1a) must be satisfied. This completes

our proof. o

Note that the parameters for Set 1, in which convergence to a single point is

observed, satisfy the inequality (5.13).

We have derived a test for a genetic algorithm to converge to the state q € f) with

probability one. However, convergence to the state q with probability one is not

the only type of behaviour we have observed in our simulations.

To explain the second and third sets of simulation results from Table 5.3 and Table

5.4 respectively, we again consider our election space given by equation (5.9). We

again assume that ô¿ : ô is a constant up to time ú and that 1i,t : Ç* - ô, V

i:1... ¡/. Hence, ,þ(t) : tþ : uq.-t. Suppose we relax the constraint (5.10) and

instead look at the election space when the right hand side is 2A

Á-- R,'# - (q. - ô)(t + ,;) - (q- - ô) 1 2L, (5.15)

then there are at most two distinct points encoded by the genetic algorithm in
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En. -d(uq, _-t).

The inequality (5.15) simplifies to

a.xu!¡, (b.16)

Again, analogous situations arise when the average supply given by equation (5.3)

is assumed to be q* * õt, dr ) 0.

F''-l'-A-d¡
q

q- -4, q- q+*A

Figure 5.3: Gridspacing and set 2

We give an example which displays the election space Eo-(uo-) in Figure 5.3. In

this example the state uo- is not absorbing. However, the inequality (5.16) is

satisfied and En_(øo-) contains only the two coded decisions q- and ga.

It may be that the inequality (5.16) is satisfied by the states uo- and zo*. Let us

consider the set 
^ 

g 5 composed of all of population decision vectors ,þ : (rþ¡),

th e {q-,e+}., i: 1...-|y'. Now, the value maxd,€^,q€,¡,diam(Eo(r/)) occurs either

attþ: uq-t Q - q- ü attþ: uq+,Q: Q+.To verify that Er(tþ), contains no

more than two distinct points in f) for all_{ r_A, Ç € {q-,q*},it is sufficient that

inequality (5.16) be satisfied for uo_ and zo*.

Theorem 5.6. Let q* be the stati,onary equilibri,um supply for the cobweb model

giuen by equation (/r.13) If there i,s a supply decision q € f¿ in a genetic algorithm

si,mulation of the cobweb model with gridspacing L, such that

lq. - ql < A;+, (b.17)b+a

Q+
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V q e {q-,q*}, andi g € 3 such that g'is absorbi,ng, then the set Ä: {(k¿)lk¿ e

{q-,q*},i : L..¡rI} forms a posi,tiue recurrent class. Conuersely, i,f the set lv

forms a positi,ue recurrent class, then the i,nequali,ty (5.17) i,s satisfi,ed, V q €

{q-,qn}, andfr I e S such that g i,s absorbing.

Proof: The inequatity (5.17) follows from inequality (5.16). If no globally asymp-

totically stable state exists, and if q- and q+ are such that the inequality (5.17)

is satified, then En_(e) n 0 and Eo*(ç) r-ì f) contain exactly the two points q- and

e+. That is, r\. is a recurrent class because all states in Â. communicate but no

state outside Â is accessible. Following an argument similar to that used in the

proof of Theorem 5.5, both of q- or Ç-c occur in every election space En(un),,k e f)

and we can use Theorem 5.4 to show that .4. is entered with probability one. This

completes the first part of our proof. If ,A forms a positive recurrent class then it

must be that the inequality (5.17) is satified, V q e {q-,q+), or a state outside Â is

accessible. Also, no absorbing state may exist so that all states in .¿\. communicate.

This completes our proof. o

In Set 2 of the input parameters given in Table 5.7, q- :2.3377, q* : 2.3333,

and q.. : 2.3357 with a gridspacing of approximately 0.0044. The election space

Ep.ea.z)(ue.ssn) is approximately [2.3317,2.3382]. There are two points encoded

by the genetic algorithm within this region, namely q- and q¡. A similar result

holds for Ep.zzsz¡ (u1z.assz¡).

If the diameter of an election space is sufficiently large, more than two distinct

points from f-) Iie within the election space. When diam(En(uò) 2 La l(B + y) for

at least one of q € {q-,Ç+}, we might expect that all states in .S are recurrent.

However, the domain Ø : .l0, Ml is bounded and these boundaries cause some of

the states to be transient.

Theorem 5.7. The set€: {(k¿)lk¿e Es(us)aE¡a(u¡¡) ne¿,'i:L...N} forms a

posi,tiue recurrent class i,ff the inequality (5.17) i.s not sati,sfied for at least one of
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the coded decis'ions {q-,q*} andfig e E such that ç i's absorbing.

Proof : Recall from section 3.2 that g : [0,, M] so that M denotes the largest value

in f). Now, any coded decision r € En@) can be reached by each individual in

the genetic algorithm. Hence, any state with components from Eo(uo) is accessible

from uo.

Recall our comments on the set (5 9) For q e 9, the diarneter of En(uo) -+ 0

linearly as q -) q*. Now, áe(u6) denotes the election space with largest possi-

ble diameter from those coded decisions q < q*. Likewise, E*(ur) denotes the

election space with largest possible diameter from those coded decisions q > q*.

These election spaces overlap. Hence, the state of the Markov chain has a positive

probability of leaving 5 \ € never to return and all states S \€ are transient.

We now show that all states in € are accessible. From this accessibility we can

deduce that all states in € communicate. Let m denote the slope of the straight

Iine segment diam(Eo(uò), q > q* so that -rn denotes the slope of the straight

line segment díam(Eo(uò), q < q*.As the inequality (5.17) is not satisfied for at

least one of uo_, uq+, at least one of uq-, uq+ has an election space of diameter at

least 24. However, both q- and q.. are at a distance strictly less than A from q*.

That is, m > 2. Hence, if the state of the Markov chain were to move from q-

to q+ -F A or from q1 to q- - A the diameter of the election space will increase

from at least 2A to at least 2L+ rnA. To reach a coded decision r € f) outside

Eo(u) in the next time period, Iet the state of the Markov chain move to a uniform

state 2", r e En(u), such that lq. - rl > lq. - ql. Such a state u" must exist and

diam(8,(u")) will exceed diam(Eo@o)) bV at least rnA. Repeating this process,

every uniform state in € may be reached. From these uniform states it is possible

to reach any other state in €. No state in € commlnicates with a state in S \€.
Hence, the set of states € is reatrrent'.

It follows from Theorem 5.5 and Theorem 5.6 that if € forms a positive recurrent
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class then the inequality (5.17) may not satisfied for at least one of the coded

decisions {q-, q+} . o

In the simulation results in Table 5.5 and Table 5.6 for Sets 4 and 5 respectively, a

broad range of values is recorded. Hence, we do not expect the inequality (5.16) to

be satisfied. For Set 4 of our input parameters from 'i.able 5.7, q- - 4.1568, q* :
4.7594, and q1 : 4.7612 with a gridspacing of approximately 0.0044. The election

space Ega5es¡(u1+.rsoa¡) is approximately [4.1568,4.2170). There are fourteen points

encoded by the genetic algorithm within this region. Similar results are obtained

when one considered the election space E6san¡(ug.trlrz¡). Populations retain a

diverse range of values ad infinitum. Analogous results apply for Set 5 of our input

parameters.

Theorem 6.8. Let€ be a recurrent class i,n a genetic algori,thm simulati,on of the

cobweb model wi,th gri,dspaci,ng L. Ei,ther

(") € 'is a si,ngle absorbing state, either q- or e+, or

(b) € 'is composed of all states {(ko)lkn € {q-, e+},i - 1.. .N}, or

(") €'is composed of all states {(ko)lkn e Es(us) À E¡a(u¡a) n CI, ? : 1 . . . ¡tr}.

Let us âssume that q..,, lies closer to q* than q-. In Theorem 5.8 above, for € to be

composed of all states {(kn)lkn € Es(us)r\E¡a(u¡a) nf),'i - 1...1/} two cases must

apply. First, the inequality (5.1a) is violated for q1 and qa - q- ) LyIQB +2a).

Second, the inequality (5.17) is violated at least for q- and q1 - q- ) Lg I @ + y).

Hence,

a : 8+ - q_ ) T=+ (b.18)2 Bia
This simplifies to

(5.1s)

In the cobweb model described in Section 4.1, convergence to g* is obtained for

stable parameter values B < y. This means that case (c) of Theorem 5.8 might

s2!-2
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occur even when q* is locally asymptotically stable with respect to these naive

expectations cobweb dynamics. Hence, to ensure that case (c) of Theorem 5.8

does not occur, B <A12..

In simulations using the genetic algorithm, convergence to the single decision clos-

est to g* can occur only when the inequality (5.13) is satisfied. The gridspacing A

decreases as the number of bits used in encoding solutions increases. Let 6^¿n as

the minimum of {q. - Ç-,Q+ - q.}. The value õ^¿nlies in the range (0,4/2] so

that the largest possible value of 6*¿n decreases as A decreases. The ratio of the

largest value of õ*¿n to A is constant. Recall that the inequality (5.13) exhibits a

dependence on both A and õ ) 6^¿n. This means that if a simulation does not con-

verge under some particular bit length, it cannot a priori be forced to converge by

arbitrarily increasing the accuracy of the coding. Furthermore, a simulation which

is convergent using one particular bit length may not be convergent with another.

Either the inequality (5.13) is satisfied in a new parameterization or not. The

probability that any particular bit length chosen at random satisfies the inequality

(5.13) is a constant for any set of parameters in the economic model.

To illustrate this result, we simulate the stable parameters given by Set 1'with a

bit length of thirteen rather than ten. Results of this simulation are given in Table

5.7. It can be verified that the condition for convergence given by the inequality

(5.13) is not satisfied. The inequality (5.16) is satisfied and the two values q- and

q+ are observed.

The number of decisions encoded by a genetic algorithm within any election space

determines the maximum number of different decisions which may be adopted

by individual agents. Arifovic conducted a statistical test using twenty random

seed values and thirty generations of a genetic algorithm. She concluded that

a cobweb model containing an unstable stationary equilibrium has a greater price

"I am indebted to one of the examiners for this observation.
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Agents' decisions

2.3336
2.3336
2.3330

2.3330

2.3330
2.3336

2.3336
2.3336
2.3330
2.3330

2.3330
2.3336

2.3330
2.3336
2.3330
2.3336

2.3330
2.3330

2.3336
2.3330
2.3336
2.3330

2.3336
2.3336

2.3330
2.3336
2.3330
2.3330

2.3330
2.3336

Table 5.7: Cobweb model, second simulation of set 1

variance than a model containing a stable stationary equilibrium. This is consistent

with the analysis of the election space and the inequality (5.13). An increased

relative likelihood that multiple points in election spaces are encoded by the genetic

algorithm causes a greater volatility in decisions and a greater price variance in

simulations.

Let us consider Arifovic's [6] notion of a stable stationary equilibrium under a

genetic-algorithm adaptation. For some k e fì, consider the uniform state 26. Let

the genetic algorithm be in state up at some time ú and replace the jth component

(uo)¡ by p¡ * k, gj e Q. Arifovic defines the state u¡ ã,s stable under a genetic-

algorithm adaptation if the genetic algorithm returns to u¡. We now contrast this

approach with our stability analysis and that of Dawid. We have shown that the

inequality (5.13) is a necessary and sufficient condition for convergence. By our

remarks on Dawid's local asymptotic stability condition, if Gray coding is used

the inequality (5.1) and the inequality (5.13) are either both satisfied or neither.

Thus, under Gray coding a uniform state is locally asympotically stable according

to Dawid when it is stable under a genetic-algorithm adaptation. However, if Gray

coding is used, the inequality (5.1) can be satified when the inequality (5.13) is not.

A uniform state which is locally asympotically stable state according to Dawid does

not necessarily imply stability under a genetic-algorithm adaptation unless Gray

coding is applied. Each of the three convergence conditions are satisfied when the

inequality (5.13) is satisfied.
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Applying concepts for stability is limited in practice by a number of factors. Ari-

fovic's stability under a genetic-algorithm adaptation may be difficult or impossible

to determine analytically. Dawid's inequality (5.1) for local asympotic stability is

derived under a number of assumptions including an infinitely large population

size, Iow mutation rates, and infinitely many time steps. His inequality (5.1) also

specifically applies to single point crossover and binary code. When multiple sta-

ble states exist, stability conditions do not provide information about the reìative

likelihood that any one particular stable uniform state will be attained. Recall

from Theorem 5.1 that only uniform states may be absorbing. Hence, we can

tell which states are absorbing by examining the inequality (5.13) for each uniform

state u¡ € .S. This does not in itself guarantee convergence when satisfied. That is,

the inequality (5.13) is not sufficient to show that a genetic algorithm converges.

However, our approach can be universally applied across all genetic algorithms

with a coding mechanism of the type described in Section 3.2. Furthermore, we

have made few assumptþns about the genetic operators, see Section 5.1. Our

Markov model for the genetic algorithm also provides insights into the role input

parameters play in simulations. The inequality (5.13) links the parameters of the

economic system and parameters of the genetic algorithm in a single condition.

For the cobweb model, we have used the inequality (5.13) to derive Theorem 5.8.

This result does address the convergence of the genetic algorithm. Similar results

must be derived for each economic model studied. It follows that no one particular

concept for the stability of uniform states is useful across all models.



5.3 Stationary Distribution

and Convergence Rate

The convergence condition given by inequality (5.13) and the analysis of recurrent

classes summerized by Theorem 5.8 make definitive statements about the asymp-

totic behaviour of the genetic algorithm. However, these do not give any insight

into the rate at which a stationary distribution is approached. When inequality

(5.13) is not satisfied, particularly with an irreducible transition matrix, it is de-

sirable to have some measure of the proportion of time spent in states near the

equilibrium. Inequality (5.13) and Theorem 5.8 do not address this.

Using Perron-Frobenius theory given in Section 2.7 iI is possible to calculate the

stationary distribution and rate of decay numerically for sufficiently small state

spaces.

\Me use input parameters which correspond to those used by Arifovic [3] where

the value of A has been modified for single agent experiments with .fy' : 1. Our

results are then used to support observations made by Arifovic and to explain the

simulation output we present in Section 5.2.
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Set 1 Set 2

A

B

r
a

¡/

2.r84
30

0.0152

0

0.016

1

A

B

T

a

¡/

2.296
30

0.0168

0

0.016

1

Table 5.8: Comparison of decay rates, parameter sets 1 and 2

Let us consider a single agent experiment, with vBITS:3, and a gridspacing

of A : 4.517 for binary code with input parameters given by set 2 of Table 5.8.
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We give all stochastic matrices to three decimal places and all eigenvalues and

stationary distributions to four decimal places. The matrix M given by (5.21)

represents the bitwise mutation operator. The matrix P given l:y (5.22) represents

the state transition matrix after election and is an irreducible matrix. The selection

and crossover matrices are given by the 8 x 8 identity matrix .I.

We calculate the stationary distributioÍr r : (nr, . .. , n'3) using Theorem 2.7 as the

normalized positive Perron-Frobenius left eigenvector of P

'tf ( 0.0000, 0.0005, 0.0000, 0.0469, 0.9515, 0.0010, 0.0000, 0.0000 ) .

(5.20)

This stationary distribution gives an example of behaviour common to binary codes

under bitwise mutation. A comparatively large proportion of time is spent in the

second state, r'z : 0.0005. Almost no time is spent in the third state even though

this state has a higher fitness than the second. It is evident from the matrix (5.22)

that the probability of entry to the third state from the second in a single transition

is much lower than the probability of entry to the fourth and sixth state.

The value of zr5 : 0.9515 is interesting because it is a direct consequence of the

Hamming cliff problem, see Section 3.2. Observing the transition matrix (5.22),

we can see that once the fifth state is entered it is difficult to leave. The actual

value ps,s is one using three decimal places. Once at the fifth state, the fourth state

has strictly higher fitness than the fifth. A Hamming cliff arises because there is a

comparatively low probability of leaving the current state even though a state with

higher fitness exists. State five is binary coded to the string 100 and state four

is binary coded to the string 011. The probability of mutating from state four to

state five is (pMUTATE)3 = 3.6 x 10-5, displayed as 0.000 in the matrix (5.21).

The rate of decay is given by Theorem 2.8 as the magnitude of the second largest
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ll/[ -

P-

0.904

0.031

0.031

0.001

0.031

0.001

0.001

0.000

0.031

0.904

0.001

0.031

0.001

0.031

0.000

0.001

0.031

0.001

0.904

0.031

0.001

0.000

0.031

0.001

0.001

0.03i

0.031

0.904

0.000

0.001

0.001

0.031

0.031

0.001

0.001

0.000

0.904

0.031

0.031

0.001

0.001

0.031

0.000

0.001

0.031

0.904

0.001

0.031

0.001

0.000

0.031

0.001

0.031

0.001

0.904

0.031

0.000

0.001

0.001

0.031

0.001

0.031

0.031

0.904

69

(5.21)

(5.22)

0.904

0.000

0.000

0.000

0.000

0.001

0.001

0.000

0.031

0.935

0.000

0.000

0.000

0.031

0.000

0.001

0.031

0.001

0.936

0.000

0.000

0.000

0.031

0.001

0.001

0.031

0.031

0.999

0.000

0.001

0.001

0.031

0.031

0.001

0.001

0.000

1.000

0.031

0.031

0.001

0.001

0.031

0.000

0.001

0.000

0.936

0.001

0.031

0.001

0.000

0.031

0.000

0.000

0.000

0.935

0.031

0.000

0.001

0.001

0.000

0.000

0.000

0.000

0.904
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eigenvalue )2 of the transition matrix P

Àz:0.9992. (5.23)

The value of ì2 indicates a slow decay to the stationary distribution because it is

close to one.

We contrast our results for binary coding with those obtained using Gray coding.

With Gray code

Àz:0.9725. (5.24)

We expect a simulation using Gray coding to reach a stationary distribution much

faster than its binary counterpart.

The stationary distribution under Gray coding is

7t ( 0.0000, 0.0003, 0.0053, 0.4863, 0.4972, 0.0107, 0.0002, 0.0000 )
(5.25)

Gray code does not form Hamming cliffs to the same degree as binary code. It is

reasonable to expect in this model that the proportion of time spent in states about

the stationary equilibrium to be more equally divided than binary code. This is

independent of the actual Euclidean distance between the stationary equilibrium

and the value of states four and five so long as neither state is absorbing. Hence,

with Gray coding it is unlikely that any state in the stationary distribution have

a value of greater than 0.5. This effect explains why convergence of simulations

using binary codes may be observed to exhibit a false convergqnce to unexpected

values as noted by Arifovic.

We display the results of similar experiments using a bit length of three to eight bits

in Table 5.9 and Table 5.10. Bit lengths of more than eight bits are computationally

difficult to analyse due to the exponential increase in the size of the state space
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Table 5.9: Results for set 1 of input

7T

Binary Gray

nBITS A À2 %<L % <zn À2 %<L % <zn

3

4

5

6

7

8

0.6774

0.3133

0.1516

0.0770

0.0374

0.0184

0.9992

1.0000

1.0000

1.0000

1.0000

1.0000

0.9984

1.0000

1.0000

1.0000

0.5701

1.0000

0.9994

1.0000

1.0000

1.0000

1.0000

1.0000

0.9725

0.9750

0.9765

0.9775

0.9778

0.9787

0.9835

0.9835

0.9835

0.9735

0.9790

0.9838

0.9995

0.9995

0.9995

0.9995

0.9921

0.9996

Binary Gray

nBITS A Àz T <L T <zn À2 Y <L % <zn
3

4

5

6

n
I

8

0.6429

0.3033

0.1435

0.0738

0.0350

0.0175

0.9992

1.0000

1.0000

1.0000

1.0000

1.0000

0.9984

1.0000

0.9840

0.5831

0.8785

0.8868

0.9994

1.0000

1.0000

1.0000

0.9080

0.9105

0.9725

0.9750

0.9746

0.9770

0.9827

0.9850

0.9835

0.9835

0.5635

0.9790

0.9838

0.9805

0.9995

0.9995

0.9825

0.9921

0.9995

0.9953

Table 5.10: Results for set 2 of input
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and numerical errors in P when positive entries become extremely close to zero.

The fourth and seventh columns represent the asymptotic proportion of time spent

in states less than one gridspace from the stationary equilibrium. The fifth and

eighth column represent the asymptotic proportion of time spent in states less than

two gridspaces from the stationary equilibrium. Note that the value uMAX is aL

most A/(Ir/B) which is approximately 4.7 for set 1 and 4.5 for set 2. We chose

values for uMAX are such that the inequality (5.16) was not satisfied.

Tables 5.9 and 5.10 indicate that Gray code decays at a faster rate than binary.

These results can also be used to support the observation that the rate of decay

decreases as the number of states increases. In this experiment increasing the

number of bits used to encode values decreases the decay rate. The asymptotic

proportion of time spent in states near the equilibrium is not directly related to the

size of the state space. This observation is also consistent with simulation results.

Asymptotically, the genetic algorithm spends a large proportion of the time within

one or two gridspaces of the stationary equilibrium, as previously observed in Table

5.5 and Table 5.6. The stable parameters given by Set t have a faster decay than

the unstable parameter Set 2. Such behaviour has previously been observed by

Arifovic.



Chapter 6

Two Population Models

6.1 An Extension of our Markovian

Model to Two Populations

Two population models, such as the overlappittg generations model described in

Chapter 2, are not formulated as a Markov process in the same way as previously

explained. In two population models, individual agents live over two consecutive

periods. First period consumption decisions are made by agents in their youth.

No consumption decisions are made in old age. Second period consumption of

individuals is dependent on both the amount of monetary savings accrued by these

individuals in their youth and the price per unit good set by the individuals that

are young during these individuals' old age. In such a model, utility is a function

of first period consumption decisions made by two populations of agents over two

generations. Hence, the state of the Markov process which describes this behaviour

involves two populations rather than one.

To differentiate between one and two population models, we denote the state of the

i\4arkov process by lrþ,rp], whereTy' represents a population of first period consump-
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tion decisions made by l/ old agents in their youth and g represents a population

of first period consumption decisions made by l/ young agents. The set of all coded

decisions 0 and the domain I are unchanged. The set of all possible states .S in a

two population model represents all possible combinations of 2.Öy' ordered decisions

from (l. For some q € Ø,lrþ,p) e S, the fitness function is given by lo(lrþ,p]), and

the election space LV En(rþ,pl)

In two population models, the selection operator uses decisions made by old agents

in their youth to generate decisions for new young agents. Hence, decisions made

by young agents at time t-2, who are old at time ú- 1, are used to generate new

decisions at time ú. This means that if the Markov chain is in state lrþ,ç] € .S at

some time ú then at time út 1 the Markov chain will be in a state lç,Ó1, d e f)t.

Theorem 6.L. Let (lrþr,p¿l), tþ¿,g¿ eç),'i - 1.. . N, be a populati'on decision uec-

tor of the genetic algori,thm wi,th gridspaci,ng L corcespondi,ng to the state[tþ,ç] e

S. If di,am(E¡,(rþ,çl)) < L, and d'iam(E nk,rþl)) ( A, V i,:1' . . . N, then

(a) the state of the genetic algorithm alternates between þþ,p) ànd' [p,rþ] i,n each

successiue time peri,od, and

(b) ,þ and g are uni,form.

Proof: In an argument similar to that used in Theorem 5.1, let us consider the

individual k. The election spaces Et,u(lrþ,cp]) and Ero(lç,r/]) contain all decisions

r,U € (l such lhat f"(þþ,,p1) >- ft'*(lrþ,pl) and fo([ç,rþ]) > f ,o(lç,r/l) respectively.

If diam(E¡r(rþ,çl)) < A and diam(Eru[ç,rþ])) < A then tþ¡ç and tp¡ both have

strictly highest possible fitness from amongst all decisions in Íì. For this to hold

for all individuals i : 1...¡f, it must be that rþ¿ : tþrc and g¿ : gte,Y i, : 1... N.

That is both d and g ãre uniform. As both populations have strictly highest

possible fitness, no individual at time ú, t + 2, t + 4,..., or at time ú + 1, ¿ + 3,

ú + 5, . . ., is permitted to change decision. Hence, the state of the genetic algorithm

alternates between þþ,tpl and lç,rþ1. o
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Note that in Theorem 6.1 above, tþ and p need not necessarily be distinct. We

observe that if ,þ: p satisfies Theorem 6.1 then the state of the genetic algorithm

will never change. We now address the criteria for absorbing states.

Theorem 6.2. All absorbi,ng states are of the formlur,rr) e 5, k e f)

Proof: Let the state of the genetic algorithm b" lrþ,,p1 e S, at some time t ) 0.

The state of the genetic algorithm at ú * 1 must be of the form [p,Ó), d e CIt.

If ',þ + 9, the state [T/, p] is not absorbing. By Theorem 6.1, both T/ and tp must

be uniform since all individuals in the two populations must have stictly highest

frtness and satisfy diam(8,¡[rþ,ç])) ( A and diam(E uk,rþ))) ( A, V z : 1 . . . l/.
Hence, all absorbing states are of the form [ur,ur], k e Q. o

Corollary 6.1. The state lur,ur), k e Q, is absorbi,ng i,ff di,am(Eo(lux,"o])) < A

6.2 Constant Money Supply

Arifovic [3] first demonstrated that a genetic algorithm can be applied in an econ-

omy of two populations. She examined two overlapping generations models, a

model of constant money supply and a model of constant real deficit. Apart from

the additional complexity a two population model introduces in comparison to a

single population model, a feature of Arifovic's parameterization for the overlap-

ping generations model is multiplicity of equilibria. Arifovic compared her simu-

lation results for the genetic algorithm in these models to rational expectations,

experimental evidence [56, 61], and adaptive learning schemes such as price aver-

aging [57] and least squares learning [58]. Ditrerences in the stability of equilibria

and convergence were noted between models. In particular, it was found that equi-

libria might be stable in one formulation for the model and unstable in another.

In Arifovic's model of constant money supply, the rational expectations analysis as
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given in Chapter 2 predicts that the autarkic state should be the stable attractor

for equilibrium price paths po * p". Experimentally the unstable stationary equi-

librium p* was observed. It was also obtained by Arifovic in simulations using the

genetic algorithm.

We describe Arifovic's formulation for the genetic algorithm as applied to the

overlapping generations model of constant money supply as follows. Initially two

populations representing the first period consumption of l/ individuals at t : 0

and l,/ individuals at f : 1 are randomly generated over [0, r(t)] by the genetic

algorithm. These consumption decisions are decoded according to Section 3.2 to

give the values for individual first period consumptio" tllJ u"d 
"ft') 

, 'i : 7. . . ¡/.

Excess goods are sold by young individuals to old individuals at each period to

accumulate monetary savings. At ú : 0,1, a young individual i accumulates a

saving of

si,o: .Q-"Í)ì,

si,t: .t'l_ ,,lll'

With a constant money supply the price of each unit of good at ú : 0, 1 is

Nh
sN)
L¿:t s¿,o

Nh

(6.1)

(6.2)

Po

Pt

(6.3)

sNt
L¡-t s¿,t

where h is the per capita money supply. A young individual i, at t: 0 and t : I

has rn¿,6 and m¿¡ units of fiat money respectively to purchase goods in old age

TrL¿,s: s¿,oPor (6.5)

rtù¿,1 : si.,tPt. (6.6)

Second period consumption for an old individual i at t: 1 is given by

- u)Q) +ffii'o
Pt

.Í?

(6 4)

(6.7)
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We calculate the utility corresponding to an old individual ¿ with first period

consumption at ú : 0 and second period consumption at ú : 1 as

Fi,o: ,::ì"::l (6 8)

The first application of genetic operators occurs at period t : 2. We use the

utility received by agents born at t : 0 during selection at, t : 2 to generate a

mating pool of l/ individuals. Let these individuals have corresponding decisions

¿Íl), ¿: 1...1y'. We then apply crossover and mutation to this mating pool.

The utility received by each agent living over periods f : 0 and t : L is given

by equation (6.8). However, an individual agent at time t> 2 formulating a first

period consumption decision has no method a priori of determining either the price

at time ú or the price at time ú*1. Hence, agents att:2 estimate their potential

utility using the price at t :0 as a forecast for the price at t : 2 and the price at

ú : 1 as a forecast for the price at t:3. Thus

pl:pt-z,Vt>2. (69)

The potential fitness of each individual in the mating pool is calculated as follows.

Determine the savings each individual accumulates,

3¿,2 : .Ø - "ll), (6.10)

the corresponding potential holdings of fiat money

ñt¡,2 : í¡,zpl, (6.11)

í¿,zPo, (6.12)

and the corresponding potential second period consumption

õl?l w(2)
ffii,2

p3

.@) *ñt¿,2

+ (6.13)

(6.14)
Pt
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An agent's fitness is then

þi,z: ¿Íì¿l?ì. (6 15)

We use the election operator to compare the mating pool and the population born

at t :0. The resultant population becomes the representative population of agents

at t :2. Once all consumption decisions at t :2 are known, we can calculate p2

and the utility of all agents who live over periods ú : 1 and t : 2. We continue this

process at t :3 and all subsequent iterations of the genetic algorithm, terminating

once a specified number of generations have been produced.

Rational expectations analysis of the overlapping generations model as given in

Chapter 2 and the price expectation formulation for the genetic algorithm given

by equation (6.9) are not consistent. There is no reason a priori why the equilib-

ria resulting from adaptive price expectations would retain the same properties of

stability and existence as those equilibria found under a rational expectation anal-

ysis. To verify the existence of stationary equilibria under such an adaptive rule,

and to determine the stability of these equilibria, let us consider a formulation of

the overlapping generations model using adaptive price expectations as given by

equation (6 9)

Assuming that all agents maximize utility, then all agents act identically. Utility

is given by

pkÍ'),wQ)+ri(wo -"Ít))), vt>2, (6.16)

where

r: : -Pí-. (6.17)
' p"r*r'

represents the ratio of forecast values for price at ú and t + 7. We will assume a

product form for utility as given by equation @.2\.

The first order conditions give the optimal first period consumption strategy as a
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function of rf

79

(6.18)

Using equation (4.19), equation (6.9), and equation (6.17), we have

rL:rt-z,vt>2. (6.19)

We substitute this into equation (6.18) to give

-(r) -'*(2) 
1 ?r(r)ci' : 2 ,r-+ 7' (6'20)

By equation (a.19) and equation (4.21)

(1) uQ) w() - r5!, lu,Í)

"l'' 
:1ñ,+1. (6.21)

We obtain a stationary solution to this equation for first period consumption by a

substitution of

"Ít) 
:.i!r:... -¿(1)'*, (6.22)

to give

"l')
,(z) 1 ?r(1)

I-

2 ri' 2

rrr.*, ryQ) ¡ ryQ)

2

This is consistent with equation (4.38) derived under perfect foresight.

To determine the stability of the stationary point (6.23), we write the second order

non-linear recurrence relationship (6.2i) as a coupled system offirst order equations

inrandg
w(2)w0)_w u0)rt+t : Z ,C_r- 2, (6.24)

Ut+t : ,',

ryQ) ¡ s(z)
Tt+I o¿+r -f

(6.23)

(6.25)2

1xQ) ¡ 1x(z)

Let

Ut+t þt+t *
2
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Then the system (6.24) becomes

at+t

1t+t. : Q,¿.

That is

The matrix

wQ) wO) - uQ) - 2& wQ)
at+t 2 uG)-wQ)-2at 2

0r+,

80

(6.26)

û.¿

A Taylor series expansion about the point (0,0) yields the linearized system

uG) - w(2)

1

w0) - wQ)

0

(6.27)

(6.28)

(6.2e)

(6.30)

(6.32)

wQ) -wQ)at+r

þt+,

wQ) _wQ)

wG) - uQ)
1

lu'G) - uQ)

0

has eigenvalues which satisfy the characteristic equation for )

This characteristic equation has roots in I of

I wQ)

t2 w(2) \ wQ)
À' - ulr¡ - ulrr) * r1r¡ - rø : o'

1

227¡G) - w(2)
+ (6.31)

1¡n¡(t) > f;wQl then the characteristic equation (6.30) has imaginary roots with

wQ)

wG) - u(2)

1

tsm()) 4 2 (6.33)
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11 ,(t) : lw(2) then the characteristic equation (6.30) has two repeated roots

À:2 (6.34)

If tr.,(1) < f;w(z) then the matrix (6.29) has at least one eigenvalue with a magnitude

exceeding 2.

This analysis concludes that each eigenvalue of the matrix (6.29) has a magnitude

less than one only when the characteristic equation (6.30) has imaginary roots

which lie within a ball of radius one in the complex plane. That is

(À)'+ Sm())2 < 1 (6.35)

This inequality becomes

wQ)_<a
rl1) - uQ)

(6.36)

or

,(t) s 2.(z) (6.37)

Hence, the fixed point ((t¡(tl + wØ) 12,1.u(1) + w(2)) 12) is a locally asymptotically

stable point of the system (6.27) only if ¿(t) ;' 2wQ) . By Theorem 2.9, the station-

ary equilibrium c(1),* : (u(1) +w(2\12 of the non-linear system (6.24) is locally

asymptotically stable only i¡,rr-l(t) > 2wQ).

The autarkic state 
"Ít) 

: tr.,(l) is a situation for which equation (6.21) is not valid.

Once consumption is at a maximum, it will remain so thereafter. Let us consider

equation (6.18) displayed in Figure 6.1 which gives the optimal consumption strat-

egy as a function of rf , t ) 2, for all individual agents under the adaptive price

expectation (6.9). A price ratio rf 1 ryQ) f 1xQ) results in an optimal consumption

strategy ¿Ít) t tr.,(l). That is, individuals predict that best returns will be obtained

if all first period endowment is consumed. Hence, the autarkic state is locally

asymptotically stable in a neighbourìrood rs < u)Q) lw0).

1
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Set 1 Set 2 Set 3

Tr(1)

w(2)

h

¡/

"(1),*
,(2),*

p

150

10

1000

30

80

80

t4.2857

720

20

500

30

70

70

10

100

90

1000

30

95

95

200

Table 6.1: Model of constant money supply, parameter sets 1 to 3

Vector

Set 1 u(80.0587)

Sei 2 ug0.o2s3)

Table 6.2: Constant money supply, population decision vector, sets 1 arrd 2

Agents' decisions

94.7274
95.2101
95.4056
95.8944
94.9169
94.9169

96.0899
94.6236
94.9169
93.8416
96.0899
95.3079

95.4056
94.8191
95.6989
95.7966
94.8191
95.2101

94.037L
94.4287
95.0146
95.2101
94.72L4
94.6236

94.2326
95.5034
95.4056
94.72r4
94.6236
95.Lr24

82

Table 6.3: Constant money supply, population decision vector, set 3
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Figure 6.1: First period consumptiott, ,lt) against rf

Let us consider the parameters sets given in Table 6.1. These three sets correspond

to the first two sets of input studied by Arifovic [3]. Set 1 and Set 2 satisfy the

inequality (6.37) so that we expect the fixed point ((tr(tl + uØ) f 2, (ur(1) + wØ) 12)

given by equation (6.23) to be locally asymptotically stable. We conducted ten

thousand iterations of the genetic algorithm under Gray coding with a bit length

of ten. In all simulations of Set 1 and Set 2, each of the thirty agents adopted the

same decision. Convergence was attained in the majority of simulations within the

first two hundred iterations of our algorithm. No change was recorded after this

convergence. Set 3 of Table 6.1 represents a set of parameters which do not satisfy

the inequality (6.37) for local asymptotic stability. That is, the fixed point given by

equation (6.23) is not locally asymptotically stable. A diverse range of values was

observed throughout the simulation. Results for the first two parameter sets are

tabulated in Table 6.2. The value of the population decision vector at the end of the

simulation for parameter Set 3 is recorded in Table 6.3. First period consumption

decisions made by agents are displayed as real numbers to four decimal places.

- - Max¡mum
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The findings of the genetic algorithm for Set 1 and Set 2 of Table 6.1 are consistent

with our stability analysis, except that the autarkic state was not observed during

any simulation. We know from our stability analysis that trajectories for first

period consumption are attracted to the autarkic state in the region ro < wQ) ¡1xG).

Hence, one might expect a simulation of the model to behave similarly. This is

not the case. We display in Figure 6.2 and F igure 6.3 a numerical simulation of

the trajectories for first period consumption given by equation (6.21), with inital

values at t :0 and ú : 1 equally spaced ten units apart over [0, r(t)]. The hashed

area marked x represents the region for which consumption at t : 2 is maximal.

All consumption paths with initial conditions sufficiently close to equilibrium are

convergent to c(l)'*.

To explore the behaviour of the genetic algorithm initialized close to the autar-

kic state, we repeated our simulations one hundred times and enforced the initial

condition ro < wQ) ft¿(1). That is, the genetic algorithm was initialized for param-

eter sets 1 and 2 within the hashed region displayed in Figure 6.2 and Figure 6.3

respectively. The genetic algorithm was not observed to converge to the autarkic

state in any of these simulations. That is, our results were of a similar kind to

those given in Table 6.2.

In simulations of the first two parameter sets given in Table 6.1 it is found that

although all individuals at t:2 receive highest fitness for the first period consump-

tion decision ?r(1), few individuals actually find this decision. This is explained by

observing that there is only ever a relatively small probability that the genetic

operators will generate such a decision. Hence, this decision will generally not

be adopted. Instead, an individual might maintain their previous consumption

decision from ú:0, or choose some decision between this value and t¿(1). Now

notice that there is a strictly positive probability that a population of decisions at

t : 2 remains unchanged by the genetic operators from that aL t :0. That is all
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Figure 6.2: Model of constant money supply, consumption paths (ci!r, cit)), set r
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Figure 6.3: Model of constant money supply, consumption paths ("ÍLr, cfl)), set 2
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individuals maintain their previous first period consumption decision from t : 0.

From such an observation it is easy to conclude that 11 2 11$) f wQ) 2 6Q) f ry0 \f

rs < uQ)f,u.,(1). Hence, the genetic algorithm has a positive probability of leaving

the region marked x in Figure 6.2 and Figure 6.3 so long as neither of the two

populations are identically LLuo).Hence, convergence to the stationary equilibrium

occurs. The chance that the autarkic state is observed in randomly generated

populations is infinitesimal.

The genetic algorithm has given insight into the behaviour of economic systems. In

particular, the reasons why individuals are attracted to one particular equilibrium

over another is important. As noted above, local asymptotic stability conditions

are unlikely to be the sole factor in the convergence of simulations using a genetic

algorithm. In Set 3 of Table 6.1 we might have expected convergence to the au-

tarkic state. This was not the case, as illustrated in Table 6.3. We repeated our

simulations using one hundred thousand iterations. Convergence was not observed.

The convergence of the genetic algorithm gives an insight into the economic model'

As remarked by Arifovic [3], convergence in the genetic algorithm and empirical

results are in agreement. Hence, genetic algorithms more accurately represents the

behaviour of this economic model than do other learning algorithms. In our anal-

ysis of the cobweb model, it was meaningful to consider gridspacing in the genetic

algorithm to analyse convergence. We also apply this approach to this model, as

given below.

We encode the exact value c(1)'* to some fixed precision in the genetic algorithm by

specifying the gridspacing of A. Denote 
"9) I c(t)'* ,ttd "f) I c(r)'* the two closest

points to c(1),* encoded by the genetic algorithm on either side of ¿(1)'*, possibly the

point c(1),* itself. Assume that the average first period consumption is less than

¿(1)'*. Thus, \Me can write
-N
I 5- 

"Í,t/ 
: t(r)'* - 5,, (6'38)

¡¡t'
i=1
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for some ôr > 0. Hence,
1N

ô¿: ¿(1),* - +IrÍ1], (6.39)
,, 

-i:,

represents the difference between the equilibrium first period consumption c(1)'*

given by equation (4.38) and the average first period consumption at each time

period. By equation (a.15) and equation (4.14), the corresponding price at time ú

is given by
h

Pt (6.40)

(6.42)

(6.43)

1 '*+ô)w

Let (cÍl/) be our population decision vector at time ú ) 0 corresponding to the state

,þ(t) e S. From the set of all possible first period consumption decisions at time t*
1, we use equation (4.24) to calculate the election space E"{r),*-6rþþ(t)) representing

those values with equal or higher fitness to the first period consumption strategy

"(r)'* - d¿. Our election space E"o),*-5rþþ(t)) is convex and non-empty, taking the

form [a, b), a,b e Ø. The endpoints ø and b are the two real roots of the quadratic

equation in @

ó@(zl trl*r(tu(r) _ d)) : (c(r),* _ 6ò(wØ +ri*r(wT) _.(r),* + ô¿)). (6.41)

This has solution þ : ¿(r)'* - ô¿ and

4): u(D **- c(')'* + ô,
t t+l

Assume that ô¿ : ð is a constant up to time ú and that 
"l:r) 

: r(1),* - õ,Y'i:
1..,¡/. Hence, ,þ(t) : tþ: u.tr),.-¿, rl+t: 1, and our election space is given by

[c(t¡'* - ð,r¡(t) *wQ) - "(r),* 
* ô]. For the state lu"e>,"_6,u"trr,.-ô] to be absorbing

no more than one point may be encoded by the genetic algorithm in the election

space E"o*-6(luco),*_.õ)r",t,,.-r]). That is, uo'-6 is an absorbing state according to

Theorem 6.1 and Theorem 6.2. We require that

,(t) + uQ) -"(t),* a 5 - r(t),* +ô < A
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This simplifies to
w0)+wQ) _.(r),* ^ A

2 +ut 
z

Substitution of 6(1),* - 1ru(1) + ,(z))f 2 gives

^Aò<-
2

88

(6.44)

(6.45)

Analogous situations arise when average supply given by equation (6.38) is assumed

to be 
"(r),* 

* ô¿, ô¿ ) 0.

We now note that the inequality (6.a5) can never be satisfied if both 
"9) 

utra "f)
are equi-distant from c(1),*. That is, c(1)'* occurs at the exact midpoint of two coded

decisions in f). Otherwise, we can assume that one of either .!) ot "f) ti"t closer to

c(1),* than the other. Denoting õ¡1¿n ãs the minimum of {c(r¡'* - .q),.f) - c(1)'*} it

follows that the inequality (6.45) is always satisfied by the one unique point either

"9) 
ot cf) strictly closest to c(1)'*.

The situation in which all agents consume all available goods must be treated as

a special case during simulations of a genetic algorithm to avoid run time errors

when price tends to infinity. That is, we check for such a situation during execution

of our algorithm and terminate the process appropriately should the need arise.

This autarkic state is always encoded by the genetic algorithm.

Theorem 6.3. A Marlcou chai,n model for geneti.c algori,thm si,mulati,on of the

ouerlappi,ng generations model of constant money supply has

(a) an absorbing state u.0),

(b) an absorbing stateu.o)., ¡ff"!)),- arg min"1,¡rçlc(1)'* -c(1)l is unique, where

.(r)'* ¿t giuen by equati,on (6.23)

Proof: Proof follows from previous observations and Corollary 6.1. o

In Set 1 and Set 2 of Table 6.1 convergence to the absorbing state c$], given

by Theorem 6.3 can reasonably be expected. In Set 3 of Table 6.1 our analysis
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indicates convergence should be expected. However, this was not observed in

practice. This suggests the rate of decay to the stationary distribution of the

chain is slow. That is, although we expect one of the two absorbing states given

by Theorem 6.3 to be attained by our Markov chain, the epoch of arrival was not

observed. The probability that either of the two distinct absorbing states of the

Markov chain are attained cannot in general be calculated without an analysis

of the stationary distribution of the process. It is not practical to calculate this

distribution for this application of the genetic algorithm due to the size of the state

space.

6.3 Volatility

In Section 6.2we commented that it is not practical to calculate the rate of decay

for our Markov process to its stationary distribution. However, we can measure the

volatility of the market over time in a manner similar to that used by Arifovic [4].

In our analysis we âre interested in variation between coded decisions rather than

price. Hence, we define volatility V7 in terms of individual first period consumption

"Íì, ¿- 1...,ôy', over the periods ú : 0...?

1NT
v_ : __: 

-, 
t t(rÍ:/ _ .(r),*¡2. (6.46)' a lr/(7 + t) i:1 t:o

If we perform R independent simulations for some fixed set of input parameters

and fixed value for T, the sample mean volatility V7 over these -R replications is

1
(6.47)V7 Ðu,!,R k:t

R

where I/f denotes the volatility corresponding to the k¿h numbered trial
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The sample variance sf in the volatility over ¡? replications is

90

(6.48)
1R,i: Eilfur. -v,)

k:t

We conducted ,R : 100 independent simulations with ? : 100. We selected a bit

length of ten for binary and Gray coded simulations and used Set 1 of Table 6.1

as input parameters. Simulation statistics are tabulated in Table 6.4. Figure 6.4

displays the sample mean volatility as a function of time for binary, Gray, and real

coded simulations. We give some example results for a single simulation run of our

genetic algorithm in Appendix B.

Binary Gray Real

Vroo

^25 1oo

57.2t73

13.2858

53.9031

11.9545

89.5923

9.1866

Table 6.4: Volatility, output statistics

LeL Vp, V6, and V¿, represent the binary coded, Gray coded, and real coded

sample mean volatilities respectively as given in Table 6.4. Let s2B, s2ç, and s2p,

represent the binary coded, Gray coded, and real coded sample variance in the

volatility respectively as given in Table 6.4. Let ¡-r,s, lt"ç, and pú¿, represent the

binary coded, Gray coded, and real coded volatilities respectively. To statistically

test the hypothesis Ho : þB : ltc with alternative hypothesis Ho : þa ) þc, we

use a two sample ú-test with R - 1 degrees of freedom. A ú-value statistic of 1.8510

is calculated. This means that our null hypothesis flo is rejected in favor of the

alternative hypothesis 11, at a significance level of o : 0.05 but is retained at a

significance level of o : 0.025. Hence, in rejecting the null hypothesis fI¡ at a

significance level of o : 0.05 we are gSTo confident that ,FIo is false and that the

true binary coded volatility exceeds the true Gray coded volatility. We compare

the real coded sample means with the binary and Gray sample means in a similar
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fashion. In the first instance, binary and real coded samples, we propose the null

hypothesis Ht : þn : lf,R, and the alternative hypothesis Hu : ltn ) l-tn. In the

second instance, Gray and real coded samples, we propose the null hypothesis

Hz : þc : lf,R, and the alternative hypothesis H, '. lf,n ) ltc. Both the null

hypotheses Ë11 and H2 are rejected in favor of the alternative hypotheses Ë16 and

-F1" respectively with at a significance level of approximately 0%. That is, it is

almost certain lhat H1 and H2 are false.

Mean volatility
2500

2000

1 500

o-õ

1 000

s00

10 20 30 40 50 60 70
PenodTme

Figure 6.4: Mean volatility V¿

This experiment demonstrates the importance of coding mechanisms on simula-

tion results. A complete analysis of the stationary distribution of our Markov

chain model is not possible for the overlapping generations model. However, these

findings are conclusive evidencc, for this particular set of parameters, of the in-

herent differences between genetic algorithms which employ binary, Gray, and real

coding mechanisms. Sirnilar results are obtained when alternative parameter sets

are considered.
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6.4 Constant Real Deficit

The overlapping generations model of constant real deficit has been shown to admit

two stationary equilibria for consumption in Chapter 2 for which money is valued.

The stationary low inflationary equilibrium is the attracting point for existing

genetic algorithms. However, the lorv inflationary equilibrium is reached under

rational expectations dynamics only if first period consumption decisions within

the population are initialized at that equilibrium cf)'- with ro : z-Ï.. Simulations

performed by Arifovic [5] converge to the low inflationary equilibrium. The high

inflationary equilibrium is the stable equilibrium point under rational expectations

for all r¡ ) ri. One might reasonably ask how these two conflicting statements are

reconciled. To address these issues let us start by considering a genetic algorithm

and the interactions brought about by its fitness function'

Our implementation of the genetic algorithm for this model closely follows that

given in Section 6.2 for the overlapping generations model of constant money sup-

ply. The difference in a model of constant deficit is that market price is calculated

using equation (4.44).

If price forecasts are made according to pi -- Pt-z as given in equation (6.9) and

utility is given by equation @.2\ then the relationship for consumption is

l1)ci' .(z) 1 wQ)_r_
2ri'2)

which is identical to equation (6.18). By equation (4.19), equation (4.44), and

using s¿: vl{é) - "Ít)

wQ) .Q - "l
1)

-2 u(1)

2 ,¿¡(1) - "!!r-a
+

(6.4e)

2
(6.50),Ít) :

Stationary equilibrium values for first period consumption are given as the two real
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roots of the quadratic equation in /

2,þ'- (3,utt) +wQ) -2d,)Ó*u(1)1tu(1) + wQ) - d) : o (6.51)

This has .oots cf)'* and .$)'* representing the low and high stationary inflation

equilibria

f,{t.u, + wQ) - 2d) +i (tu(rl - wQ))z + 4d(d - u0) - u(2)), (6.52)

respectively. These two equilibria are consistent with those derived under rational

expectations.

To determine the stability of the stationary point (6.52), we write the second order

non-linear recurrence relationship (6.50) as a coupled system of first order equations

inrandy
wQ) wG) _ a,rt+r

wG)
-L_' 2 '2 ryQ)-rt-d (6.53)

Let

Ut+t r¡

rt+t

Ut+t

o+t I ¿(1)'*,

þ+t I c(t)'*'
(6.54)

where c(1),* represents a solution to equation (6.50), either cf)* o. 
"{t)'*

Then the system (6.53) becomes

wQ) ?r(1) - 0, - "(r),*at+t 2 1¡G) - e* - cQ)'* - O

At+t : Q'¡'

A Taylor series expansion about the point (0,0) yields the linearized system

.+- 
"(r),*, (6.55)

dt+l +( a¿(w1) - "(t)'*¡
þ,

þt+ Q¿.

(tr(t) - ¿(t),* - ¿¡z ?r(1) - cQ)'* - ¿ (6.56)
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That is

94

uQ) ,(t) -.(t),* uQ)

2 1xo) - cG),* - ¿

0

1

Qt+t

þt+,

2 (w0) - ¿(t)'* - d,)'

The matrix

1

,,tQ) ,(1) - "(1),*
u(2) 1

- 2 w0)- cG)'*-¿
0

(6.57)

(6.5s)2 (wØ - ¿(r)'* - d,)'

1

has eigenvalues which satisfy the characteristic equation for )

^2

This characteristic equation has roots in À of

uQ) ,.,(I) - r(t)'* , wQ) 1 _^- 2 @6 -ær -æ^ 
* 7 uo - c(t),. - d:0' (6'5e)

1.Q) ,(1) - "(1),*
wQ) ¿(1) - ¿(1)'*

2
wQ) 1

2 2 (tr(t)-ç(t),*-¿¡z 2 (wØ - c(t)'* - d)'
1+-
2

-4 2 ryQ) - cG)," - O

(6.60)

For the linearised system (6.57) to be locally asymptotically stable according to

the stability criteria given in Theorem 2.9,it is required that the absolute value of

both roots of the characteristic equation be less than one.

All first period consumption decision. "lt) I u(t) - d represent a situation for

which a break down in the economy is observed. AII such decisions are locally

asymptotically stable.

Let us consicler four parameter sets used by Arifovic [5] as given in Table 6.5. We

conducted ten thousand iterations of the genetic algorithm under Gray coding with

a bit length of ten. In all simulations for Set 1 and Set 2 of our input, each of

the thirty individuals adopted the same decision. Convergence was attained in the

majority of simulations within the first two hundred iterations of our algorithm.
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Set 1 Set 2 Set 3 Set 4

wo)

uQ)

d

'|f L

ttH

"'¿*

"þ.

150

30

15

1.38197

3.61803

95.7294

t29.270

10

4

0.001

1.00033

2.49917

7.00067

9.99833

10

4

0.67544

1.03769

1.07076

8.15843

8.16613

2

1.8

0.0024

r.57922

1.58306

1.93392

1.96368

Table 6.5: Model of constant real deficit, parameter sets 1 to 4

No change was recorded after convergence was attained. Note that the high in-

flationary stationary equilibrium is an unstable fixed point for all parameter sets.

The simulation output corresponding to Set 3 and Set 4 of Table 6.5 varies. 'We

report a typical simulation for which a break down in the economy was observed.

This break down occured in both simulations within one hundred iterations of our

algorithm. The values of the population decision vectors observed at the end of

simulations for the first two parameter sets are tabulated in Table 6.6. Population

decision vectors for the last two parameter sets are tabulated in Table 6.7 and Ta-

ble 6.8. First period consumption decisions made by agents are displayed as real

numbers to four decimal places.

Arifovic reports convergence to the low stationary equilibrium for all published sets

of parameter values. We obtain convergence in all simulations only for Set 1 and

Set 2 of Table 6.5. In both of these sets, the low inflationary stationary equilibrium

is locally asymptotically stable and the high inflationary stationary equilibrium is

unstable. Graphical stability diagrams for equation (6.50) corresponding to Set

1 and Set 2 are given in in Figure 6.5 and Figure 6.6 respectively. These plot

the trajectories for consumption with inital values at t : 0 and t : L equally

spaced ten units apart over [0,tl-;(t)]. In both figures, the hashed region marked
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Vector

Set 1 ue5.T47B)

Set 2 t¿(6.ese0)

Table 6.6: Constant real deficit, population decision vector, sets 1 and 2

Agents' decisions

8.9638
8.9736
9.8826
8.9051
8.8660
8.8856

8.9736
8.9736
9.9902
8.778t
9.3646

10.0000

8.9442
10.0000

8.8563
8.9540
8.8856
8.8269

8.8074
8.7878

8.8563
9.9413
9.8142
9.0518

10.0000
8.8660
8.9247
9.0127

10.0000

8.7487

Table 6.7: Constant real deficit, population decision vector, set 3

Agents' decisions
2.0000
2.0000
2.0000
7.9941
2.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
1.9863

2.0000
1.9804
2.0000
2.0000
2.0000
2.0000

2.0000

2.0000
7.9921
2.0000
1.9882
2.0000

1.9980
1.9960
2.0000
2.0000
2.0000
2.0000

96

Table 6.8: Constant real deficit, population decision vector, set 4
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x represents initial conditions such that a breakdown of the economy is observed.

That is, price becomes infinite or negative. Random initialization of first period

consumption in Set 1 and Set 2 is unlikely to generate initial values within the

unstable region. Convergence to the low inflationary equilibrium can then be

expected with reasonable certainty. In parameter Set 3 and Set 4 of Table 6.5,

the low and high inflationary stationary equilibria are unstable. We demonstrate

in Table 6.7 and Table 6.8 that a breakdown in the economy may occur during

simulations.

We can examine the stationary equilibria in greater detail by considering our

Markov chain model of the genetic algorithm. Through such an analysis we explain

why the high inflationary stationary equilibrium is not observed in simulations.

The value 
"$)'* 

i, encoded by the genetic algorithm to some precision by specifying

the gridspacing A. Denote ,f! < "(;)'. 
< cf] a"d ,*)- < "l})'* 

< "$f tn. t*o

closest points to cf)'* and c$)'* encoded by the genetic algorithm on either side of

,f)'* ,nd ,$)'* ,.rp.ctively. Assume that the average first period consumption at

time ú is less than c$)'*. Thus, we can write

1N

r f "l:) 
: ,*)o - 6,, (6.61)

i.:t

for some ô¿ > 0. Hence,
1N

õr: c*)'* -;t"Í,'/, (6.62)
i,=l

represents the difference between the high inflationary equilibrium ¿(r)'* given by

equation (6.52) and the average first period consumption at each time period.

f,et (cÍ?) be our population decision vector at time ¿ > 0 corresponding to the

state ,r/(ú) € S. From the set of all possible first period consumption decisions at

time t*1, we calculate the subset of decisions representing those values with equal

or higher fitness to the first period consumption strategy 
"lr)* - ô¿. Our election
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Figure 6.5: Model of constant real deficit, consumption paths (rÍLr,cl1)), set 1
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Figure 6.6: Model of constant real deficit, consumption paths ("ÍLr,cjl)), set z
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F,l'-^-ôl
.Í})'*

(1)
cH'_

T
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l- e",;\(u"\|\,u"r+ )
+ -|F- t,,;,_(lu.ç,_, r.u, l) -f

Figure 6.7: Gridspacing and the high inflationary equilibrium

space E"fiir--orþþ(ù) is convex and non-empty, taking the form fb,a], a,b e Ø. The

endpoints ø and b are the two real roots of the quadratic equation in þ

ó@(zl .l_rl+r(tr(tl - ù-_ (c(r),* - 6ò12Ø -l-rl*r(u(tl -c(1)'.+ôr)). (6.63)

This has solution ó: "*)o - ô¿ and

ó: wG) ** - "*),. 
+ 6r. (6.64)

't'l+t

By equation (a.19) and equation (6.19), we have

'í*r: 
Pf*r' (6'65)

We substitute for the value of pt-t using equation (4.44) and use equation (4.14)

e
¿+1

Assume that ô¿ : ô is a constant up to time f and that ,ll) : ,*)'.

to give

(6.66)

-ô,Vi:1...1/.
Hence, ,þ(t) : rþ -- u"\j),._0. Then

(6.67)

is a constant, rs
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Now, notice that irrespective of how close average first period consumption is to the

high inflationary equilibrium, the dynamics of the system favors values which are

further displaced from the stationary equilibrium. The equilibrium value does not

appear in the election space. This is also true when average first period consump-

tion given by equation (6.61) is assumed to be ,$)'* + 6¿, 6¿ ) 0. Figure 6.7 gives

an example in which the election spaces E"ç¡r_(lu"r'r_,u"ç>_)) and E"o ([r"!i1,""çf])

are displayed.

c(]),. 
"Í),*

(1)
ci._

(1)
c'u'+

l- t",;\([.,"!]f ,""çfl) -|
I t"r,(lu"l!''"'' l) -l

Figure 6.8: Gridspacing and divergence

The election spaces corresponding to states about the low inflationary equilib-

rium include the equilibrium point for all sufficiently small deviations from the

equilibrium value. However, changes in stability occur whenevercf)'* upproaches

"t+)o. 
Figure 6.8 gives an example in which convergence is not possible where

E.g1(lu"ur,u"<;t)) and E.rt ([""!]f ,""çf]) represent the regions obtained when first

period consumptiotr is 
"ftÌ 

a"d c$f respectively. From equation (6.52) the low and

high inflationary equilibria approach a single value as (u(t) -wØ)Ø +4d(d-?r(1) -
1¡(z)) -+ 0. Low and high inflationary equilibrium values may not necessarily be

within one gridspace as given in F igure 6.8. In simulations, fluctuations about the

low inflationary equilibrium occur. \Mhen fluctuations are not sufficiently small,

divergence becomes inevitable.

Absorbing states of the Markov process are calculated by considering the diameter

of the election space E"¡¡(lu.1r¡, u"1'l]), for all c(1) e 0. The diameter of this election
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space rs

where

2

or

diam(á"r,1([r",,,, z"<'l])) : 2lc1) - ¿(t)1,

?r(r) -(c(i),*+õ)-d 2

101

(6.68)

;(r) - 
w(2) w0) - cQ) - u(t)c' : 2 ;lL-Ã: d- 2

(6.6e)

An analysis of the value of the derivative of diam(8"1'¡([2"1'1,r.t'l])) reveals that

d(diam(E"t'r (["çg,t4'rl) 
-+ o (6.70)

dc1) ' "'

as c(1) - ,l)o or as c(1) -+ c$)'.. The diameter of this election space is an increasing

function as c(1) -+ 0 from the right and as c(1) -+ tu(l) from the left.

Let c(1),* represent a solution of equation (6.51). That is, either "f)'* 
o. 

"(])'..
Let ô ) 0, then a state fu"1r1,,¡6,u"{r),.10J or [u"{r),.-¿,u"{r),--6] respectively is an

absorbing state if

1c(r),*+ Ð-+ uG) - (c(1)'. + ô) u(1)
< a. (6.71)

This inequality is simplified by a substitution for the first occurrence of the term

,(r),*

¡.o,-y! H ,-u(2)ffi+zal <n, g.T2)

<A (6.73)

Four cases arise when we wish to determine the diameter of an election space at

the points ,())'* +ô, 
"$)'* 

+ ð.

Below we provide a full derivation for the case corresponding to the point tf)'. + ð.

The inequality (6.73) becomes

_ 6wQ)d * r^- 1r{t) - ¿(r),* - d)(w{1) - (c(t)'* + 6) - d) - --

(6.74)-5rQ)¿ +26 < L
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This can be rearranged to

_õwØd+e6_A)(?r(1) _cf),. _ù@(t) _kf,. +ô) -d) <0. (6.7b)

The left side of this inequality describes a quadratic function in d

-2tõ' + (21'+ zA - ,(') d)6 - 'y" L, (6.76)

where

1 : ry(J) - "(Ì)'. - ¿. (6.77)

Note that this quadratic has a negative coefficient of 62.

The quadratic equation (6.76) has two real and positive roots if

(21" + 1L - r(')d,)" > 8?'4. (6.28)

If the inequality (6.78) is not satisfied, then the quadratic equation (6.76) lies

entirely below the horizontal axis. Hence, the inequality (6.75) is satisfied for all

values of ô. The situations for which ô < 0 and ð > "*)* - cf)'. are not covered

by our initial assumptions. Hence, ô e [0, c{})'. - rt)*].

If the inequality (6.78) is satisfied, denote the two real roots of equation (6.76) by

p1 and gz, pt 1 p2. The inequality (6.75) is satisfied in the regions (-oo, Pr) and

(pr,+oo). The sub-sets [0,pr) and (p2,cfi)'. -.f)'.1 ..pr"sent practical ranges for

ð.

The quadratic equation g : lR -+ IR given by equation (6.76) is displayed in Figure

6.9 for the case h I pz, pt, pz € lR. The two intervals of interest for d are denoted

by T, and 12 respectively. The low and high inflationary equilibria occur at ô : 0

andd -cl])'. -cf)'. respectively.

The values of p1 and p2 are given by

fier'*tL- w,)d)*+ (21, + 7a, - wØ¿¡z - 8734, (6.79)
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õ:"*)'* -cf)*

Pzô:0

e(ô)

Figure 6.9: Graphical representation of roots and the quadratic a(d)

respectively.

We have derived a condition on the diameter of an election space by considering

the point ,(Ì)'* + d and deriving two intervals of interest, T1 ald 22. Notice that

we may just as easily have considered a point cfi)'. - ô and obtained equivalent

intervals. Observing the symmetry inherent between these two points, the intervals

of interest for ô are [0,"1])'- - "f)'.], 
if equation (6.76) has imaginary roots, and

[0,"$)'. -"f)* - pz]u["$)'- - .f)o - pr,r*)'* -"f)'-] otherwise. Now, of our four

original .ur.. 
"f)'* 

+ õ, cll)* * d, we can derive a condition on the diameter of an

election space for the remaining two similarly by considering either of "f)* - õ,

,l})'* + ð. Let us consider the case "{)* - 5.

The inequality (6.73) becomes

-5-(z)¿ + 26 < L. (6.80)

This is re-arranged to

_õute)d+eõ _A)(u(l) -c|* -d)(?r(l) -@(|,)'. -ô) -d) < 0. (6.81)

The left side of this inequality describes a quadratic function in ô

T,

É
T,

Ë

6Pt

216' - çwØd+ lA - zf)6 - -y2 L, (6.82)
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where 7 is given by equation (6.77).

Note that this quaclratic has a positive coefficient of õ2 -

The quadratic equation (6.82) always has two real roots, one positive and one

negative. Denote these tu'o real roots by pr and p2, Ø 1 8z.The inequality (6.81)

is satisfied in the region (pr, pr). The sub-sets [0, pr) and (p1, -("!})'* - ,f)'.)]

represent our intervals of interest for ð.

,Jt ét
ð:0 h(6)

5 : 
"(l)'.- 

,(r),*

Qt Qz õ

Figure 6.10: Graphical representation of roots and the quadratic h(ô)

The quadratic equationh'. R-+ IR given by equation (6.82) is displayed in Figure

6.9. The two intervals of interest for ô are denoted by Jt and J2 respectively.

The low and high inflationary equilibria occurs at ô : -(.$)'- - "(:)*) 
and ô : 0

respectively.

The value of p1 and p2 is given by

frrro'or rya - 2t\ * +
respectively.

(wØd Ì "ya - 212¡z * 8734, (6.83)

A break down in the economy occurs once average first period consumption reaches

or exceeds u(1) - d. Hence, all states with average first period consumption greater

than or equal to tl(l) - d are absorbing. This establishes the following theorem.

Theorem 6.4. A Markou chain model for a gdneti,c algori,thm si,mulation of the

ouerlapping generations model of constant real defi,cit has
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(a) at most four absorbi,ng states u"{;\ , u.{r) , u.ft\_, and, u"o) , for whi'ch fiat moneE

is ualued, and whi,ch sati,sfy the i,nequality (6.73),

(b) an absorbi,ng state for euerA state tþ e S whi,ch represents a break down in the

econorna,

(c) at least one absorbi,ng state whi,ch represents a brealc down i'n the econornA.

Proof : Proof follows from previous observations and Corollary 6.1. o

For our parameter sets, the state z"<rl is an absorbing state for Set 1 and Set 2,

each of u"l!, u.{;t, u"çt_, and u"Ø are absorbing states of Set 3, and each of z"tÐ ,

u"{Ð , and u.t}r_ ut" absorbing states of Set 4.

In light of these results we can re-consider the output of our genetic algorithm

given in Tables 6.6,6.7,6.8, the trajectory diagrams given in Figures 6.5, 6.6,

and the local asymptotic stability condition analysis given by our discussion of

the inequality (6.60). For parameter sets 1 and 2, we have shown that the low

stationary inflationary equilibrium is locally asymptotically stable. The state z"<r

is the only absorbing state near this equilibrium and was obtained by our genetic

algorithm. In parameter sets 3 and 4 we have shown that there are no locally

asymptotically stable states apart from those which represent a break down in

the economy. While there exist absorbing states which represent both the low

and high inflationary equilibrium states, these were not obtained by our genetic

algorithm. Instead, as predicted by the stability analysis, a break down in the

economy occurred.

Each of the approaches, genetic algorithms, local asymptotic stability, and Markov

chains, give unique insight into the behaviour of an economic system. Hence,

when applying a genetic algorithm, one should consider all with equal merit as

each describes some aspect of the model.
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6.5 Comparison to Least Squares Learning

In an overlapping generations model of constant real deficit, Arifovic [5] compared

the results of her simulations using a genetic algorithm to Marcet and Sargant's [58]

least squares learning algorithm. Where least squares learning predicted divergence

of the model, Arifovic found that an application of the genetic algorithm with

a price forecast given by equation (6.9) was convergent to the low inflationary

equilibrium zri.

In this section, we replace the price forecast (6.9) by the least squares mechanism

suggested by Marcet and Sargant. That is, unknown values for price are forecast by

extrapolating a line of best fit which interpolates known values for price' With such

a mechanism in place, we demonstrate how simulations of the genetic algorithm in

an overlapping generations model of constant real deficit can replicate the expected

dynamics of least squares learning.

Least squares learning is the forecast rule

pl+t: þtpt, (6.84)

where

0,: l@o_,)' Þi P¿P¿-t

-1t-r
(6.85)

i=L

In this experiment, B¿ exhibits a functional dependence on all past prices. Our

Markov chain model as given in Section 6.1 for the genetic algorithm is inappro-

priate under such a dependence. Hence, we report simulation results only for this

model.

In the implementation of least squares learning, we calculate market prices accord-

ing to equation (4.44). The price forecast mechanism is changed from equation

(6.g) to equation (6.84). To initialize the economy, we generate three populations

rather than two aS per usual. Hence, r1'e start our simulation at t :3.
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Vector

Set 1 u@5.7478)

Set 2 u(6.see0)

Table 6.9: Least squales learning, population decision vector, sets 1 and 2

Agents' decisions

9.7458
8.7878
9.7849
8.7878
9.2473
9.9511

9.775t
9.9804
9.7947
8.2306
9.8826

10.0000

7.7945
9.9706
9.6871

9.7947
9.8240
9.8435

9.7556
9.9413
9.8044
9.7360
9.6871
9.8826

9.0029
9.7165
9.6089
9.7458
9.9217
9.6480

Table 6.10: Least squares learning, population decision vector, set 3

Agents' decisions

1.9960
2.0000
2.0000
2.0000
2.0000
1.9980

2.0000
2.0000
1.9921

2.0000
2.0000
2.0000

1.9941
2.0000
2.0000
2.0000
2.0000
2.0000

1.9765
1.9980
2.0000

1.9608
2.0000
1.9980

2.0000
2.0000
1.9902
1.9706
2.0000
2.0000
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Table 6.11: Least squares learning, population decision vector, set 4
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Genet¡c Algorilhm Price Patterns
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Figure 6.11: Simulated output to set 3 of least squares learninE, þo:1.0376
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Figure 6.12: Analytic solution to set 3 of least squares learning
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Figure 6.13: Simulated output to set 4 of least squares learning, þo:1.25
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Figure 6.14: Analytic solution to set 4 of least squares learning
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We conducted ten thousand iterations of the genetic algorithm under Gray coding

with a bit length of ten and recorded simulation results for all parameter sets given

in Table 6.5. All agents in simulations for the stable parameters given by Set 1

and Set 2 converged to the low inflationary stationary equilibrium after ìess than

one hundred iterations. This convergence is consistent with the dynamics of least

squares learning. Simulations for Sets 3 and 4 diverged and the simulations were

stopped with a break down in the economy under less than a thousand iterations.

The population decision vectors obtained by our genetic algorithm are recorded for

Set 1 and Set 2 in Table 6.9 and for Set 3 and Set 4 in Table 6.10 and Table 6.11

respectively. Agents' decisions in f2 are displayed as real numbers to four decimal

places.

Figure 6.11 demonstrates, after a period of adjustment, the ocillatory behaviour

of least squares learning in a single simulation of our genetic algorithm for Set 3

of Table 6.5. This can be compared with the analytic solution trajectories given

in Figure 6.12. Between iterations fifty and two hundred simulation results closely

match qualitative features exhibited by the analytic model. After iteration two

hundred the amplitude of oscillations is greater in simulations. A break down in

the economy occured shortly after iteration three hundred. Figure 6.13 demon-

strates a single simulation of our genetic algorithm for Set 4 of Table 6.5. This

simulated behaviour can be compared with the analytic solution trajectories given

in Figure 6.14. Again the qualitative features exhibited by the analytic model can

be distinguished in simulations. The spikes in inflation occuring in iterations seven

and nine are typical to simulations of two populations. Inflation after iteration

twelve increased until it became negative in iteration seventeen and a break down

in the economy occured.

Note that the convergence of the analytic model for least square learning depends

on initial values for Bs. For more on the convergence of this model refer to Marcet
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and Sargent [59] and Arifovic [5]. For the purpose of demonstration we report

results only for those parameter sets we consider.

Vector

Set 4 1r (8. to36)

Table 6.12: Least squares learning, second simulation of set 4

Not all simulations of Set 4 exhibit the same behaviour as we have reported, even

given identical initial values of 00. Convergence to a uniform state can occur'

even when this is not consistent with analytic results. To illustrate this we report

another set of simulation results Set 4 in Table 6'12 where þo: r'25' We also notice

that the state we report does not consistently appear. That is, other uniform state

are observed and these states are typically closer to the low inflationary stationary

equilibrium than the state reported in Table 6.12. Even given this, a break down in

the economy is the most likely outcome a priori of any simulation for this parameter

set

These experiments show how the behaviour of the least squares learning algorithm

can be modelled by a genetic algorithm. Simulations also show that the outcome of

any two simulations are not identical. Convergence or a break down in the economy

may be observed. Furthermore, this experiment demonstrates the inherent cliffer-

ences between simulations modelling a least squares learning algorithm as opposed

to those conducted in Section 6.4. That is, the particular implementation of price

forecast mechanism will effect simulation results. Hence, the choice of particular

forecast mechanism can not be made arbitrarily.



Chapter 7

Overview

7.L Conclusions

Economic systems are commonly studied by considering simulation results and

deterministic models of behaviour. Genetic have also been proposed as models

for the behaviour of economic systems. These models give additional insight into

the behaviour of the respective economic system. However, genetic algorithms are

inherently stochastic. When using genetic algorithms it becomes necessary to take

into account the stochastic effects such algorithms introduce. Hence, it makes sense

to consider modelling genetic algorithms using stochastic processes'

To build a mathematical foundation for an analysis of genetic algorithms in eco-

nomic models, we modelled the representative discrete time stochastic process as

a homogeneous Markov chain. With this approach, we defined a state transition

matrix corresponding to this Markov chain and investigated the properties the

transition matrix exhibited. The form of this transition matrix depended on each

particular model, the genetic operators, and other parameters. However' upon con-

sideration of this matrix we established two key conditions, one on the convexity
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of the utility function, the other on the genetic mutation operator, which gener-

alized our approach. Using these conditions, we partitioned states of our Markov

chain into disjoint communicating classes and established the solidarity properties

of recurrence and transience for all states. An analysis of the comminication and

hitting probabilities on given states of our chain gave us insight into the long term

behaviour of our chain. We used these concepts from Markov theory to derive

corresponding conditions for the existence and uniqueness of equilibria, and for

convergence and stability in an economic system.

We iìlustrated how our theoretical results could be applied in practice in context

of a cobweb model investigated by Arifovic [a]. For this model, we derived a condi-

tion for the existence of absorbing states of our Markov chain and for convergence

with probability one to such a state. Furthermore) we discussed the behaviour

of chain when no absorbing states existed. We proved that for this model three

distinct types of behaviour are possible. First, convergence to a unique absorbing

state with probability one was possible. Second, entry to a small recurrent class

in a neighbourhood of the equilibrium with probability one was possible when no

absorbing states exist. Otherwise, entry to a large recurrent class, possibly con-

sisting of all states) was possible. We compared our results to the local asymptotic

stability conditions derived by Dawid [2a] and to the stability criteria suggested

by Arifovic [6]. To discuss the rate of convergence and the asymptotic properties

of the model, we calculated the stationary distribution of our chain for sufficiently

small state spaces. These results were consistent with those experimental results

provided by Arifovic.

We also considered two overlapping generations economies investigated by Ari-

fovic [b]. First, a model of constant money supply. Second, a model of constant

real deficit. Again, we applied a Markov chain analysis to l;hese two population

models to derive conditions for the existence of absorbing states. In analysing the
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long term behaviour of the chain, we showed that, due to multiplicity of absorb-

ing states, convergence to any particular absorbing state with probability one is

not possible. We linearized the corresponding non-linear deterministic models to

analyse the local asymptotic stability properties of the two economies. We com-

pared our simulation results with those results derived though our Markov chain

analysis and our analysis of the deterministic models to give valuable insight into

the behaviour of genetic algorithms. In two population models, it was not prac-

tical to calculate a stationary distribution of our Markov chain. However, we did

statistically analyse market volatility in our simulations. This statistical analysis

showed that market volatility and hence simulation results differ between imple-

mentations of our genetic algorithm. In the model of constant real deficit, we

discussed an implementation of Marcet and Sargent's [58] Ieast squares learning

algorithm. Differences between this implementation and a standard implementa-

tion were apparent. Hence, choice of implementation could not be made arbitrarily

without affecting the behaviour of our genetic algorithm.

7.2 Closing Remarks

Despite the acceptance of genetic algorithms in economic applications, a mathemat-

ical analysis of their behaviour in such applications is rarely attempted. Dawid's

[24] work in this field is a notable exception. We have used Markov chains to pro-

vide a mathematical foundation for genetic algorithms in economic applications.

Using this Markov chain approach, we derived a number of general convergence

results and applied these results to a cobweb model and an overlapping genera-

tions model. While we have considered only these two economic models studied by

Arifovic [S], ttre potential number of applications for these results is extensive. We

hope that these results can be used to dispel some of the common misconceptions
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held about the nature of genetic algorithms and to give insight into their behaviour

in economic applications.



Appendix A

Parameter Values

Table 4.1: Genetic algorithm parameter values, cobweb model

Operator probabilities Input parameters Interval size

pCROSS

pMUTATE

0.6

varies

nPOP

nGEN

nBITS

30

10,000

10

uMAX

UMIN

wo)

0.0

Table 4.2: Genetic algorithm parameter values, overlapping generations model

A value of pM|TATE:0.033 is used in binary and Gray coded simulations. A

value of pMLITATE -- 0.33 is used in real coded simulations. The number of bits

nBITS is immaterial in real coded simulations.

Operator probabilities Input parameters Interval size

pCROSS

pMUTATE

0.6

varies

nPOP

nGEN

nBITS

30

10,000

10, 13

uMAX

UMIN

A
NB

0.0
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Simulation Plots
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Figure B.1: Example real coded output, single simulation
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