Geochemical perspectives on the petroleum habitat of the Cooper and Eremanga Basins, central Australia

BERND HEINRICH MICHAELSEN

This thesis is submitted in fulfilment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Department of Geology and Geophysics
The University of Adelaide
South Australia

January 2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
<tr>
<td>Declaration</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Publications (cf. Appendix 4)</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Technical Reports to Industry</td>
<td>xviii</td>
</tr>
<tr>
<td>Abbreviations and Symbols</td>
<td>xix</td>
</tr>
<tr>
<td>Units</td>
<td>xx</td>
</tr>
<tr>
<td>Key to Maturity and Source Parameters</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Chapter 1

Introduction: Petroleum habitat of the Cooper and Eromanga Basins, central Australia

1.1 HISTORY OF PETROLEUM EXPLORATION 1
1.2 TECTONIC AND STRUCTURAL SETTING 1
1.2.1 Cooper Basin 1
1.2.2 Eromanga Basin 5
1.3 STRATIGRAPHY OF THE COOPER AND EROMANGA BASINS REGION 7
1.3.1 Wuthatun Basin 7
1.3.2 Cooper Basin 7
1.3.2.1 Merrinella Formation 7
1.3.2.2 Tirawaarna Sandstone 11
1.3.2.3 Pungawarra Formation 11
1.3.2.4 Muertee Shale 11
1.3.2.5 Epsilon Formation and Rennanah Shale 11
1.3.2.6 Dungyingle Formation 11
1.3.2.7 Toolonchey Formation 11
1.3.2.8 Nappamerri Group (Alsbury and Tintooa Formations) 12
1.3.3 T Simpson Basin (Cockatoo Formation) 12
1.3.4 Eromanga Basin 12
1.3.4.1 Pooalwara Formation 12
1.3.4.2 Rioten and Algobuckina Sandstone 12
1.3.4.3 Birkhead Formation 16
1.3.4.4 Adori Sandstone and Westwars Formation 16
1.3.4.5 Namur Sandstone 16
1.3.4.6 Murta Formation 16
1.3.4.7 Cudro-elle Formation 16
1.3.4.8 Building Shale and Welliwellulla Formation 16
1.3.4.9 Coochacad Formation and Mackunda Formation 17
1.3.4.10 Wiston Formation 17
1.4 TIMING OF HYDROCARBON EXPULSION 17
1.5 MATURITY CONTROL ON THE DISTRIBUTION OF HYDROCARBONS 20
1.6 ECONOMIC GEOLOGY 21
1.6.1 Proven and probable reserves 21
1.6.2 Estimated undiscovered reserves 22
1.6.3 Resource/hydrocarbon production 23
1.7 SCOPE OF THIS THESIS 23
Chapter 2

Biochemistry and origin of Permain oils from the Cooper Basin

2.1 SUMMARY
2.2 INTRODUCTION
2.2.1 Rationale of study
2.2.2 Sample selection and vitrinite reflectance maps
2.3 EXPERIMENTAL
2.3.1 Sample preparation
2.3.2 Gas chromatography-mass spectrometry
2.3.2.1 Saturated hydrocarbons
2.3.2.2 Aromatic hydrocarbons
2.4 SOURCE ROCK EVALUATION
2.4.1 Cooper Basin
2.4.1.1 Terrevena Sandstone
2.4.1.2 Patchawarra Formation
2.4.2 Organic richness
2.4.3 Source quality
2.4.4 Maturity
2.4.5 Source rocks

2.4.1.2.1 Poolawana Formation
2.5 PHYSICAL PROPERTIES OF OILS
2.5.1 API gravity
2.5.2 Saturated and aromatic hydrocarbon fractions of oils
2.6 MATURITY OF SOURCE ROCKS AND OILS BASED ON AROMATIC HYDOCARBONS
2.6.1 Cooper Basin source rocks
2.6.1.1 Terrevena Sandstones
2.6.1.2 Patchawarra Formation
2.6.2 Horrowan Basin source rocks
2.6.2.1 Poolawana Formation
2.7 OIL-SOURCE CORRELATIONS BASED ON MPI AND MBP-DERIVED MATURITY
2.7.1 Cooper Basin oils
2.7.1.1 Mertensile Formation
2.7.1.2 Terrevena Sandstones
2.7.1.3 Patchawarra Formation
2.7.2 Horrowan Basin oils
2.7.2.1 Poolawana Formation
2.8 ALTERNATIVE MATURITY CALIBRATIONS BASED ON MEI AND MBP
2.8.1 Rock extracts
2.8.2 Oils
2.8.3 Maturity and oil-source rock correlations based on DNR
2.8.3.1 Source rocks
2.8.3.2 Oils
2.10 MATURITY AND OIL-SOURCE ROCK CORRELATIONS BASED ON TNR
2.10.1 Source rocks
2.10.2 Oils
2.11 OIL-SOURCE AND OIL-OL CORRELATIONS BASED ON (C/JUCAULACCEAN)

AROMATIC HYDROCARBON BIOMARKERS
2.11.1 Cooper Basin source rocks
2.11.1.1 Terrevena Sandstone
2.1.1.2 Patwayne Formation
2.1.2 Eromanga Basin source rocks
2.1.2.1 Poelewanna Formation
2.1.3 Coopee Basin Oils
2.1.3.1 Merringle Formation
2.1.3.2 Tiwana Sandstone
2.1.4 Poelewanna Formation
2.1.4.1 Poelewanna Formation
2.1.5 Oil-source and oil-oil correlations based on trimethanes
2.1.5.1 Source rocks
2.1.5.2 Oils
2.1.5.3 Oil-source and oil-oil correlations based on hopanes
2.1.5.4 Source rocks
2.1.5.5 Oils
2.1.5.6 Oil-source and oil-oil correlations based on steranes
2.1.5.7 Source rocks
2.1.5.8 Oils
2.1.5.9 Oil-source and oil-oil correlations as a combination source and maturity parameter
2.1.5.10 Secondary migration of coopee basin oils
2.1.6 This problematic source affinity of the Poelewanna oils
2.1.7 Synopsis

Chapter 3
Source rock distribution in the Eromanga Basin, South Australia, and the petroleum geochemistry of its western sector

3.1 SUMMARY
3.2 INTRODUCTION
3.3 SAMPLE SELECTION AND PREPARATION
3.4 EXPERIMENTAL
3.4.1 Organic petrology and Rock-Eval pyrolysis
3.4.2 Solvent extraction and liquid chromatography
3.4.3 Gas chromatography-mass spectrometry of aromatic hydrocarbons
3.4.4 Gas chromatography-tandem spectrometry of saturated hydrocarbons
3.5 SOURCES ROCK DISTRIBUTION AND MATURITY
3.5.1 Eromanga Basin
3.5.1.1 Poelewanna Formation
3.5.1.2 Western sector
3.5.1.3 Eastern sector
3.5.2.1 Hutton Sandstone
3.5.2.2 Birkehead Formation
3.5.2.3 Western sector
3.5.2.4 Mineral matric effect
3.5.2.5 The Eribega trough of the far western Eromanga Basin
3.5.2.6 Western sector
3.5.2.7 Ador Sandstone
3.5.2.8 Westbourne Formation
3.5.2.9 Numar Sandstone
3.5.2.10 McKinley Member (basal Manta Formation)
3.5.2.11 Meria Formation
3.5.2.12 Cotesa-shale Formation
3.5.2.13 Budley Shale
3.5.2.14 Western sector
Chapter 4
Comparison of maturity parameters and estimation of vitrinite reflectance suppression in potential hydrocarbon source rocks from the Araratuna, Pedirka, and western Brimanga Basins by FAMM (Fluorescence alteration of multiple markers)

4.1 SUMMARY
4.2 INTRODUCTION
4.3 SAMPLE SELECTION AND PREPARATION
4.4 EXPERIMENTAL
4.4.1 Preparation of polished blocks
4.4.2 Vitrinite reflectance
4.4.3 FAMM (Fluorescence alteration of multiple markers)
4.4.4 Geochemical analysis
4.4.4.1 Sample preparation, screening and extraction
4.4.4.2 Gas chromatography-mass spectrometry
4.5 RESULTS AND DISCUSSION
4.5.1 Source potential and maturity estimated by Tmax (Rock-Eval, pyrolysis)
4.5.1.1 Permian, Archangina Basin
4.5.1.2 Mt. Tongaring Formation
4.5.1.3 Upper Cretaceous, Brimanga Basin
4.5.1.4 Pedirka Formation
4.5.1.5 Riding Formation
4.5.1.6 Algebuckina Sandstone
4.5.2 Measured vitrinite reflectance and petrographic observations
4.5.2.1 Permian, Archangina Basin
4.5.2.2 Permian, Pedirka Basin
4.5.2.3 Jurassic, Brimanga Basin
4.5.2.4 Boorowa Sands Formation
4.5.2.5 Riding Formation
4.5.2.6 Algebuckina Sandstone
4.5.3 FAMM-derived maturity
4.5.3.1 Permian, Archangina Basin
4.5.3.2 Permian, Pedirka Basin
4.5.3.3 Jurassic, Brimanga Basin
4.5.4 Discussion
4.5.4.1 Summary
4.5.4.2 Conclusions
Chapter 5

Petroleum geochemistry and organic petrology of the Incestrine Murta Formation

5.1 SUMMARY 111
5.2 INTRODUCTION 112
5.3 STRATIGRAPHY AND DEPOSITIONAL ENVIRONMENT 113
5.4 RESERVOIR AND SOURCE ROCK LITHOFACIES 115
5.5 SAMPLING PROCEDURES 116
5.6 ANALYTICAL METHODS AND PETROGRAPHIC ANALYSES 116
5.6.1 Petrographic analyses 116
5.6.2 Photography 117
5.6.3 Rock-Eval pyrolysis 117
5.7 PETROLEUM GEOCHEMISTRY 117
5.8 ORGANIC FACIES 120
5.8.1 Moppa-coonoo-Murrundie and Moomba Blocks, South Australia 122
5.8.1.1 Murta Formation 122
5.8.1.2 Namur Sandstone 124
5.8.2 Noorkuninga area, Queensland 125
5.8.2.1 Murta Formation 125
5.8.2.2 Caipiba-owe Formation 125
5.9 PETROLEUM GENERATIVE POTENTIAL 125
Chapter 6
Eromanga oil pools as products of multiple source rocks and in-reservoir mixing: evidence from aromatic hydrocarbon signatures

6.1 SUMMARY
129
6.2 INTRODUCTION
129
6.3 EXPERIMENTAL
131
6.3.1 GC chromato graphy
131
6.3.2 GC chromatography-mass spectrometry
152
6.4 RESULTS AND DISCUSSION
133
6.4.1 n-Alkanes distribution
132
6.4.1.1 Cooper Basin
132
6.4.1.2 Eromanga Basin
134
6.4.2 Base South Australia
134
6.4.2.1 Cooper Basin
139
6.4.2.2 Eromanga Basin
139
6.4.3 Prismane/C17 and phytane/C18 ratios
143
6.4.3.1 Cooper Basin
143
6.4.3.2 Eromanga Basin
145
6.4.4 Araracuara biomarkers
145
6.4.4.1 Methylphenanthrenes and trimethylphthalalenes
145
6.4.4.2 Dimethylnaphthalenes and recent
148
6.4.4.3 Glycolge Field
148
6.4.4.4 Queensland
149
6.4.5 Which maturity parameter is used?
150
6.4.5.1 Methylphenanthrene ratio and methylnaphthene index
150
6.4.5.2 Dimethylnaphthylene and trimethylphthalalene ratios
155
6.4.6 Mixing of Cooper and Eromanga Basin oils
157
6.5 SYNOPSIS
158
Chapter 7
Regional analysis of oil migration and mixing

7.1 SUMMARY
7.2 DETAILED INTERPRETATION OF OIL MIXING CURVES
7.2.1 South Australia
7.2.2 Queensland
7.3 OTHER AROMATIC HYDROCARBON DATA
7.3.1 Aromatic hydrocarbons in rock extracts: Implications for palaeogeographic reconstruction and stratigraphic correlation
7.3.1.1 Birkenhead Formation
7.3.1.2 Poolrawnna Formation
7.3.2 Aromatic hydrocarbons in oils
7.3.2.1 Data of Michaelides et al. (1995)
7.3.2.2 Data of Boreham and Summons (1999)
7.4 DISCUSSION: DISTRIBUTION OF HYDROCARBONS WITH RESPECT TO SOURCE ROCK MATURITY AND OTHER FACTORS
7.4.1 South Australia
7.4.2 Queensland
7.4.2.1 Nuccullah-Jackam Ridge
7.4.2.2 Boodiba South areas
7.4.2.3 Island areas
7.5 DISCUSSION: THE ISOTOPE MODEL OF BOREHAM AND SUMMONS (1999)
7.5 SYNOPTIC

Chapter 8
Conclusions

8.1 COOPER BASIN SOURCE ROCKS AND OILS
8.2 EROMANGA BASIN SOURCE ROCKS AND OILS
8.3 MIXING OF HYDROCARBONS IN THE EROMANGA BASIN

Bibliography

APPENDIX 1
a Aromatic hydrocarbons and bicyclic sesquiterpenoids
b Triaromatic biomarkers
c Steroid biomarkers

APPENDIX 2 Tables
APPENDIX 3 (Microfiche) Laboratory manual — Organic Geochemical Procedures
APPENDIX 4 Publications
Geochronological and petrographic techniques have been used to investigate genetic relationships between potential source rocks and hydrocarbon accumulations in the Cooper (Late Cretaceous–Tertiary) and Eromanga (Jurassic–Cretaceous) Basins of central Australia.

The liquid hydrocarbons trapped within the Cooper Basin were generated at varying maturation levels from terrestrial organic matter, principally within the Patchewarra Formation (Early Permian). The condensate-phase Family 1 oils (46–50°API) which are exceptionally mature (R₀ ≥ 0.95%; reorganized hopanes ≫ 17α-hopanes) are presently reservoired in the northern Patchewarra Trough (South Australia) where the maturity of the Patchewarra Formation is ≥ 1.0% R₀. Commercially produced crude oil from the Tirawarra Sandstone in the Tirawarra, Fly Lake and Moorooduc/Weebilla Fields belong to this family. Masking reorganized hopane distributions in Cooper Basin oils is evidence that these high maturity oils were predominantly derived from local coals (via short-range migration), rather than shales which have a more conventional hopane distribution. The latter is a feature of the heavier Family 2 oils (34–38°API) which are reservoired along the western and northern margin of the Cooper Basin within various reservoirs at Dimondale, Griggina, Mulgoona and Stuart (R₀ ≤ 0.54%; reorganized hopanes < 17α-hopanes) where the Patchewarra Formation is less deeply buried and less mature (R₀ = 0.75–1.0%).

Both Family 1 and Family 2 oils have penetrated into the superjacent Eromanga Basin, but loose pure Permian oils have survived herein. Notable exceptions in the South Australia sector include hydrocarbons trapped within the Hutton Sandstone (Family 1 affinity) at Reg Sprigg, and a very small pool trapped within the Murrta Formation (quasi-Family 2 affinity) at Garinoole. In Queensland, the Hutton Sandstone oils at Coogee and Nuecoolly South also represent pure Permian hydrocarbons and are related to Family 1.

The Birkenhead Formation (Middle–Late Jurassic) is the major hydrocarbon source unit in the Eromanga Basin where its best source facies comprise coals containing Type II kerogen. It has contributed to Eromanga-reservoired oils over a wide area of the southern Cooper Basin. The Murrta Formation early Cretaceous reservoirs appear to be solely Jurassic, and most Jurassic-derived oils migrated from their source rocks at the threshold of the conventional oil window (R₀ = 0.7 MPa × 0.22 = 0.5–0.6%). Murrta oils with low R₀ values include those trapped along the Mernerree Ridge (South Australia) and the southeast extension of the Nucn coch-lachar Ridge (Queensland). Notable exceptions are the Murrta crude oils at Big Lake (R₀ = 0.74%), Murrumala (R₀ = 0.75%) and Griggina (R₀ = 0.66%) for which higher maturities (and deeper source beds) are indicated. A predominant Jurassic (Birkenhead Formation) source is implied for these oils. In contrast to coals from the Murrta Formation and Nucn coch Sandstone, those in the Birkenhead and Hutton reservoirs generally have maturities that indicate they were expelled from their respective source rocks at somewhat higher maturation levels (South Australia: R₀ = 0.50–1.22%; Queensland: R₀ = 0.61–1.08%).

A novel combination of aromatic source and maturity parameters has enabled the recognition of multiple petroleum systems, instances of migration from Permian kitchens into Jurassic and Cretaceous reservoirs, and Eromanga traps which have received charges from both Permian and Jurassic/Cretaceous source rocks. As such, mixing of Permian and Jurassic/Cretaceous hydrocarbons can be quantified using the biomarker ratios 2-MPh/1-MP and 1-MPh/9-MP. Two mixing curves are defined for oils in South Australia and a single mixing curve for coals in Queensland. Regional analysis of oils of mixed origin has allowed the mapping of migration paths of Permian hydrocarbons into the Jurassic/Cretaceous sequence, thereby demonstrating long-distance lateral migration (> 50 km) of Cooper Basin hydrocarbons into the Eromanga succession and highlighting the potential of Eromanga-Birkenhead source–reservoir complexes beyond the margins of the Cooper Basin.

The prospectivity of the Eromanga Basin beyond the Cooper Basin "zero edge" is further enhanced with the recognition of significant and widespread vitrinite reflectance suppression in resinite-imregnated coals of the Birkenhead Formation as indicated by fluorescence alteration of multiple minerals (P-AMM). Widespread (but not severe) vitrinite reflectance suppression in organic-rich lithologies of the Pooldawarra and Murr Formations is also inferred.