CROSSHOLE ELECTRICAL IMAGING OF AQUIFER PROPERTIES AND PREFERENTIAL FLOW PATHS AT THE BOLIVAR ASR SITE

A Ph.D. Thesis

by

Jingping Zhe

B.Sc (Jiaotong University, China), M.Sc (The Flinders University of SA, Australia)

Department of Geology and Geophysics
The University of Adelaide
SA 5005, Australia

Submitted in fulfillment of the requirements for
The degree of Doctor of Philosophy

April 2002
CONTENTS

Abstract ...VI
Statement ..VIII
Acknowledgments ...IX

Chapter 1 ...1
INTRODUCTION ..1
1.1 Basic Principle of the Resistivity Method1
1.2 Applications of the Resistivity Method to Hydrogeology2
1.3 Aquifer Storage and Recovery ..4
1.4 Surface and Crosshole Resistivity Methods4
1.5 Resistivity Modelling And Inversion6
1.6 Resistivity Physical Modelling ...7
1.7 Objectives Of The Thesis ..8
1.8 Thesis Outline ...8

Chapter 2 ..10
BASIC THEORY OF THE RESISTIVITY METHOD10
2.1 The Basic Equations of the DC Electrical Resistivity Method 10
2.2 The Formulas for Calculating the Apparent Resistivity and the Geometric Factor 11
2.3 2.5-D Approximation ...15
2.4 Different Electrode Arrays in Surface Resistivity Surveying 16
2.5 Different Electrode Arrays in Borehole Electric Resistivity Surveying 18

Chapter 3 ...21
2.5-D AND 3-D NUMERICAL RESISTIVITY FORWARD MODELLING 21
3.1 Introduction ...21
3.2 The Galerkin Solution of the Finite Element Method22
3.3 2.5-D Resistivity Modelling ...23
3.3.1 Derivation of Formulas ...23
3.3.2 Creating the Shape Functions for the Whole Calculation Mesh............. 24
3.3.3 The Final Formulas for 2.5D FEM Resistivity Modelling with FEM............. 27
3.3.4 Inverse Fourier Transformation to Obtain the Potential....................... 29
3.3.5 2.5-D Modelling Examples.. 29
3.4 3-D Resistivity Modelling.. 40
3.4.1 Derivation of Formulas.. 40
3.4.2 Gridding the Model Area.. 41
3.4.3 3-D Resistivity Modelling Examples...................................... 47

Chapter 4.. 56
INVERSION OF RESISTIVITY DATA.. 56
4.1 Introduction... 56
4.2 Forward Modelling... 58
4.3 Inversion Objective Functions.. 58
4.4 Solutions of the Objective Functions.. 59
4.5 Calculation of the Frechet Derivatives...................................... 61
4.6 A Fast 3-D Resistivity Imaging Method...................................... 63
4.7 Approximate Numerical Resistivity Imaging Experiments................. 64
4.7.1 Horizontal and Vertical Interface Models...................... 64
4.7.2 Discontinuous Conductor Models................................. 66
4.7.3 Approximate Imaging Conclusions..................................... 66
4.8 Numerical Resistivity Inversion Experiments............................... 67

Chapter 5.. 72
3-D AUTOMATED LABORATORY ELECTRICAL MODELLING SYSTEM.............. 72
5.1 Introduction... 72
5.2 Objectives and Design Criteria for the 3D Physical Resistivity Modelling System.. 73
5.3 Mechanical Design... 76
5.4 3-D Automated Movement of all Four Electrodes.......................... 81
5.5 Current Source Design.. 84
5.6 The Design of the Acquisition Box.. 89
5.7 The Design Of The Central Control Box.................................... 89
5.8 Summary and Further Work Required....................................... 92
Chapter 6
BOLIVAR ASR EXPERIMENT
6.1 Introduction
6.2 Geology and Well-Log Information at the ASR Test Site
6.3 Why Use Electrical Imaging?
6.4 Electrical Monitoring Strategy
6.5 Other Time-Lapse Measurements
6.6 Pumping Operations
6.7 Resistivity Instrumentation used in All Tests

Chapter 7
PRELIMINARY RESISTIVITY EXPERIMENTS BEFORE WATER INJECTION
7.1 Introduction
7.2 Surface Soundings
7.3 Surface-To-Borehole Resistivity Surveys
7.3.1 Survey 1 – Surface-to-Borehole Horizontal Profiling
7.3.2 Survey 2 – Surface-to-Borehole Vertical Profiling
7.4 The Cross-Borehole Resistivity Surveys
7.4.1 Crosshole Electrical Survey 1 – Configuration Experiments
7.4.2 Crosshole Electrical Survey 2
7.5 Conclusions

Chapter 8
MODELLING AND INVERSION OF WATER INJECTION: EXPECTED TIME-LAPSE RESISTIVITY RESULTS IN PHASE I
8.1 Introduction
8.2 Numerical Cross Well Resistivity Modelling Experiments for the Chord Configuration
8.2.1 Model Set 1 – Three Layer Aquifer, All Layers Equally Permeable
8.2.2 Model Set 2 – Three Layer Aquifer, One Layer Impermeable
8.3 The Inversion Experiments On The Crosshole Resistivity Modelling Data For The Chord Configuration
8.4 Conclusions
Chapter 9

MODELLING AND INVERSION OF WATER INJECTION: EXPECTED TIME-LAPSE RESISTIVITY RESULTS IN PHASE II

9.1 Introduction

9.2 Numerical Cross Well Resistivity Modelling Experiments for The Radial Configuration

9.2.1 Model Set 1 – Three Layer Aquifer, All Layers Equally Permeable

9.2.2 Model Set 2 – Three Layer Aquifer, One Layer Impermeable

9.3 The Sensitivity Distributions of the Two Different Electrode Separation Configurations

9.4 The Inversion Experiments On The Cross Well Resistivity Modelling Data For The Radial Configuration

9.5 Conclusions

Chapter 10

RESISTIVITY SURVEYS AND INTERPRETATION - PHASE I

10.1 Introduction

10.2 Data Acquisition

10.2.1 Survey Configuration

10.2.2 Survey Data

10.3 Interpretation

10.3.1 What Resistivity Change Do We Expect After Higher Resistivity Water Is Injected into the Aquifer?

10.3.2 Direct Method

10.3.3 3-D Imaging Method

10.3.4 2-D Inversion Method

10.4 Conclusions

Chapter 11

RESISTIVITY SURVEYS AND INTERPRETATION - PHASE II

11.1 Introduction

11.2 Data Acquisition

11.2.1 Survey Configuration

11.2.2 Survey Data
ABSTRACT

This PhD project is a comprehensive application of crosshole resistivity tomography to image aquifer properties and preferential flow paths at the Bolivar ASR site, north of Adelaide. This site is being used to demonstrate the possibility of artificial recharge and recovery operations from a 50m thick aquifer, 100m below ground surface. The project involved consideration of hydrology, well logging, resistivity surveying, electrical modelling and inversion, data processing and interpretation, and, designing and building a 3-D physical resistivity modelling system.

I have derived all formulas for 3-D numerical resistivity modelling and developed a 3-D resistivity modelling program. I also modified 2.5-D numerical resistivity modelling and inversion programs for speeding the calculation, handling large size inversions and filtering out artefacts in the inversion results. These programs had very important roles in numerical resistivity modelling and inversion for interpretation of synthetic data as well as real field data.

The project has entailed significant experimentation and testing of numerical resistivity modelling and inversion to simulate the field surveys and some special model effects, such as the water effect in a crosshole survey and the possibility of inverting a vertical contact of two layers between two wells. These experiments are very helpful in interpreting the field surveys, especially for the Bolivar time-lapse crosshole resistivity surveys. These experiments also disclosed some very interesting features, such as turning points in an apparent resistivity profile and stacked profile patterns.

I built multi-electrode cables and collected 10s of surface, surface-to-borehole, and borehole-to-borehole electrical survey data at the Bolivar Test Site as a part of the ASR trial project. Specifically, seven time-lapse crosshole resistivity surveys at different stages of fresh water injection partly reveal the injected water flow direction. I processed all survey data and interpreted them with the aid of the above numerical resistivity modelling and inversion experiments.

I designed a fully automatic 3-D physical resistivity modelling system with a large water tank. To obtain high efficiency for modelling, the system was designed to be fully automatic, which includes automatic positioning of electrodes, automatic current injection
(on and off) and automatic data logging. Unfortunately, I did not completely finish building the system due to the lack of technical support. The intention to complete it is a late (post-doctoral) project.