ACUTE PAIN MANAGEMENT IN METHADONE MAINTENANCE TREATMENT

by

Mark Doverty

Department of Clinical and Experimental Pharmacology

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Adelaide University, South Australia

December, 2001
ABSTRACT

Pain is a very complex process and presents great challenges for modern medicine and pharmacology. There seems to be a general consensus that in the treatment of pain, patients with a prior history of substance abuse (particularly opioid dependent individuals) appear to be at increased risk for mismanagement problems. There are increasing numbers of people who are receiving opioids as substitution treatment for dependence. There have been many reasons postulated as to why this population is more likely to receive sub-optimal treatment, with further ad hoc suggestions as to their opioid analgesic needs. There are discrepancies in the literature about the pain sensitivity of methadone maintenance patients. Further, there are few and conflicting data about the antinociceptive, physiological and subjective effects of additional opioids in these patients. This thesis had one broad aim, to produce data that would eventually help in the formulation of prescribing guidelines, improved policies, and more importantly help direct optimal acute pain management for methadone maintenance patients.

The first study compared the responses to pain induced by a cold pressor test and electrical stimulation in 16 methadone maintained patients and 16 drug-free healthy volunteers. It reconciled the discrepancies in the literature by ascertaining that the relative pain sensitivity of methadone maintenance patients is determined by the nature of the nociceptive stimulus (e.g., cold pressor test vs. electrical stimulation), the concentration of methadone (trough vs. peak plasma concentration), and whether thresholds are determined for detection of pain or pain tolerance. Methadone maintenance patients are hyperalgesic to pain induced by the cold pressor test but not electrical stimulation. This hyperalgesia is particularly pronounced at times of putative trough plasma methadone concentrations. A low pain tolerance to detection ratio was highlighted as a marker of this hyperalgesia in methadone maintained patients.

In the second study, intravenous morphine was administered on two separate occasions to 4 methadone patients and 4 healthy volunteers to determine the antinociceptive effects. The data showed that methadone patients are cross-tolerant to the antinociceptive effects of morphine up to plasma concentrations of approximately 60\text{\textmu}g/mL. They are hyperalgesic to a cold pressor test but not electrical stimulation, confirming the findings of the first study. A low pain tolerance to pain detection ratio for the cold pressor test was confirmed as a sensitive marker of hyperalgesia in this patient population. These findings suggest that plasma morphine concentrations, which have previously been reported as being adequate for minimal to severe post-surgical pain relief, are likely to be ineffective in managing episodes.
of acute pain amongst this patient group, and that large doses of morphine may be required to manage episodes of severe acute pain amongst individuals maintained on methadone. Further research is urgently needed to determine whether other drugs are more effective than morphine in managing acute pain in this patient population.

Data from the first and second studies were combined to determine the physiological and subjective effects of methadone alone, and in combination with morphine. These data indicate that methadone patients have a significantly lower respiratory rate compared with healthy control subjects. Further, additionally administered morphine produced no clinically significant cardiovascular or respiratory effects in the methadone patients. The data also suggest that in the context of acute pain management, methadone patients are unlikely to experience a classic “high” from the administration of additional opioids.

The final study investigated the antinociceptive effects, physiological and subjective effects, of (+)-S-ketamine alone and in combination with morphine in a sample of methadone patients and healthy volunteers. The data indicate that low dose (+)-S-ketamine alone, or in combination with low dose morphine is likely to be ineffective in managing episodes of acute pain in methadone maintenance patients. Despite a lack of antinociceptive effects, the findings show that even at very low doses (and plasma concentrations), (+)-S-ketamine produces pronounced subjective effects amongst methadone patients, and is likely to have high abuse potential in this patient group.

It was concluded that these data consistently show that methadone maintenance patients are hyperalgesic to pain induced by a cold pressor test but not electrical stimulation; methadone maintenance patients are cross-tolerant to the antinociceptive effects of conventional doses of morphine. In addition, low dose (+)-S-ketamine, alone, or in combination with low dose morphine, did not produce any significant antinociceptive effects amongst this patient group. Further research is urgently needed to determine whether other drugs such as gabapentin, tramadol, clonidine, or non-steroidal anti-inflammatory drugs, alone or in combination with morphine, are effective in managing acute pain in this patient population. Clinicians should aggressively treat complaints of pain amongst patients in this population, remembering importantly to treat the pain not the addiction.
TABLE OF CONTENTS

DECLARATION ii
ACKNOWLEDGMENTS iii
ABSTRACT iv
LIST OF FIGURES xiv
LIST OF TABLES xvii
LIST OF ABBREVIATIONS xix
LIST OF PUBLICATIONS FROM THIS THESIS xx

CHAPTER ONE
Introduction and literature review 1-1
1.1 GENERAL INTRODUCTION 1-1
1.2 BACKGROUND: SETTING THE SCENE 1-1
1.3 METHADONE MAINTENANCE TREATMENT 1-3
1.4 OPIOIDS AND PAIN SENSITIVITY 1-4
1.4.1 Pain sensitivity of opioid addicts 1-4
1.5 PAIN MANAGEMENT NEEDS OF METHADONE PATIENTS 1-11
1.5.1 Factors affecting the pain management needs of methadone patients 1-11
1.5.1 Methadone patients' responses to analgesics 1-14
1.6 PAIN MANAGEMENT IN OTHER OPIOID TOLERANT PATIENTS 1-17
1.7 PAIN: DEFINITIONS AND TERMINOLOGY 1-18
1.8 PHYSIOLOGY AND PHARMACOLOGY OF PAIN 1-20
1.8.1 Ascending pain signal transmission mechanisms 1-20
1.8.2 Physiological effects of noxious stimuli 1-22
1.8.3 Pain mediators 1-23
1.8.4 Descending pain modulation 1-24
1.9 TYPES OF PAIN 1-28
1.9.1 Transient pain 1-28
1.9.2 Acute pain 1-28
1.9.3 Chronic pain 1-28
1.10 EXPERIMENTAL PAIN 1-29
1.10.1 Experimental pain induction 1-30
1.10.1.1 Cold pressor test 1-30
1.10.1.2 Mechanical pressure 1-31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16.1.3</td>
<td>Electrical stimulation</td>
<td>1-31</td>
</tr>
<tr>
<td>1.10.1.4</td>
<td>Ischaemic pain</td>
<td>1-32</td>
</tr>
<tr>
<td>1.10.1.5</td>
<td>Radiant heat-induced pain</td>
<td>1-32</td>
</tr>
<tr>
<td>1.11</td>
<td>INDICES OF PAIN ASSESSMENT</td>
<td>1-32</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Visual analogue scales</td>
<td>1-32</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Pain thresholds</td>
<td>1-33</td>
</tr>
<tr>
<td>1.12</td>
<td>OPIOIDS</td>
<td>1-34</td>
</tr>
<tr>
<td>1.12.1</td>
<td>Historical perspective</td>
<td>1-34</td>
</tr>
<tr>
<td>1.12.2</td>
<td>Endogenous opioid peptides and receptors</td>
<td>1-35</td>
</tr>
<tr>
<td>1.13</td>
<td>OPIOID CLASSIFICATIONS</td>
<td>1-38</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Pure agonists</td>
<td>1-38</td>
</tr>
<tr>
<td>1.13.2</td>
<td>Partial agonists</td>
<td>1-39</td>
</tr>
<tr>
<td>1.13.3</td>
<td>Agonist-antagonists</td>
<td>1-39</td>
</tr>
<tr>
<td>1.13.4</td>
<td>Antagonists</td>
<td>1-39</td>
</tr>
<tr>
<td>1.13.5</td>
<td>Relative potency and equianalgesic doses</td>
<td>1-39</td>
</tr>
<tr>
<td>1.14</td>
<td>OPIOID PHARMACOKINETICS</td>
<td>1-40</td>
</tr>
<tr>
<td>1.14.1</td>
<td>Factors affecting opioid pharmacokinetics</td>
<td>1-40</td>
</tr>
<tr>
<td>1.14.2</td>
<td>Morphine</td>
<td>1-42</td>
</tr>
<tr>
<td>1.14.2.1</td>
<td>Absorption and metabolism</td>
<td>1-42</td>
</tr>
<tr>
<td>1.14.2.3</td>
<td>Distribution and excretion</td>
<td>1-43</td>
</tr>
<tr>
<td>1.14.3</td>
<td>Methadone</td>
<td>1-44</td>
</tr>
<tr>
<td>1.14.3.1</td>
<td>Absorption and metabolism</td>
<td>1-44</td>
</tr>
<tr>
<td>1.14.3.2</td>
<td>Distribution and excretion</td>
<td>1-45</td>
</tr>
<tr>
<td>1.15</td>
<td>PHARMACODYNAMIC EFFECTS OF OPIOIDS</td>
<td>1-46</td>
</tr>
<tr>
<td>1.15.1</td>
<td>Analgesia</td>
<td>1-46</td>
</tr>
<tr>
<td>1.15.2</td>
<td>Respiration</td>
<td>1-47</td>
</tr>
<tr>
<td>1.15.3</td>
<td>Sedation</td>
<td>1-48</td>
</tr>
<tr>
<td>1.15.4</td>
<td>Cough suppression</td>
<td>1-48</td>
</tr>
<tr>
<td>1.15.5</td>
<td>Nausea and vomiting</td>
<td>1-48</td>
</tr>
<tr>
<td>1.15.6</td>
<td>Cardiovascular effects</td>
<td>1-49</td>
</tr>
<tr>
<td>1.15.7</td>
<td>Constipation</td>
<td>1-49</td>
</tr>
<tr>
<td>1.15.8</td>
<td>Pruritis</td>
<td>1-50</td>
</tr>
<tr>
<td>1.15.9</td>
<td>Miosis</td>
<td>1-50</td>
</tr>
<tr>
<td>1.15.10</td>
<td>Mood</td>
<td>1-50</td>
</tr>
<tr>
<td>1.15.11</td>
<td>Micturition</td>
<td>1-50</td>
</tr>
</tbody>
</table>
CHAPTER TWO
An investigation of pain sensitivity in methadone maintenance patients

2.1 INTRODUCTION 2-1
2.2 PAIN SENSITIVITY OF METHADONE PATIENTS 2-1
2.3 AIMS OF THE STUDY 2-2
2.4 METHODS 2-3
2.4.1 Patient and control subjects 2-3
2.4.2 Procedures and measures 2-4
2.5 PAIN INDUCTION 2-4
2.5.1 Electrical stimulation 2-4
2.5.2 Cold pressor test 2-5
2.6 PLASMA METHADONE CONCENTRATIONS 2-8
2.7 DATA ANALYSIS AND STATISTICS 2-8
CHAPTER THREE

Antinociceptive effects of intravenous morphine in methadone maintenance patients

3.1 INTRODUCTION
3.1.2 Analgesic needs of methadone maintenance patients
3.1.3 Aims of the present study
3.2 METHODS
3.2.1 Patients and control subjects
3.2.2 Study design
3.2.2.1 Morphine administration
3.2.3 Procedures and measures
3.2.3.1 Pain induction
3.2.4 Plasma morphine concentrations
3.2.5 Plasma methadone concentrations
3.2.6 Data analysis and statistics
3.3 RESULTS
3.3.1 Plasma morphine concentrations
3.3.1.1 Plasma morphine glucuronide concentrations
3.3.2 Plasma methadone concentrations
3.3.3 Cold pressor test
3.3.3.1 Pain detection
3.3.3.2 Pain tolerance
3.3.3.3 Plasma morphine concentrations and responses
3.3.3.4 Pain tolerance to detection rates
3.3.3.5 Duration of effect post-infusion
CHAPTER FOUR

Physiological effects of methadone, alone, and in combination with intravenous morphine in methadone maintenance patients

Study 1: Physiological effects of methadone in methadone maintenance patients

4.1 INTRODUCTION
4.2 Aims of the present study
4.3 METHODS
4.3.1 Patients and control subjects
4.3.2 Procedures and measures
4.3.3 Physiological measures
4.3.3.1 Pulse rate
4.3.3.2 Blood pressure
4.3.3.2 Pupil diameter
4.3.3.4 Respiration rate
4.3.3.5 Pulse oximetry
4.4 Plasma methadone concentrations
4.5 Statistical and other analyses
4.6 RESULTS
4.6.1 Pulse rate
4.6.2 Blood pressure
4.6.3 Pupil diameter
4.6.4 Respiration rate
4.6.5 Pulse oximetry
4.7 DISCUSSION 4-12
4.7.1 Physiological responses 4-12

STUDY 2: Physiological and subjective effects of intravenous morphine in methadone maintenance patients

4.8 AIMS OF THE PRESENT STUDY 4-15
4.9 METHODS 4-15
4.9.1 Patients and control subjects 4-15
4.9.2 Study design 4-15
4.9.2.1 Morphine administration 4-15
4.9.3 Procedures and measures 4-16
4.9.3.1 Physiological and subjective effects measures 4-16
4.10 Data analyses and statistics 4-17
4.11 RESULTS 4-18
4.11.1 Respiratory rate 4-18
4.11.1.1 Plasma morphine concentrations and responses 4-20
4.11.2 Pupil size 4-21
4.11.2.1 Plasma morphine concentrations and responses 4-23
4.11.3 Pulse rate 4-24
4.11.3.1 Plasma morphine concentrations and responses 4-26
4.11.4 Blood pressure 4-27
4.11.5 Sedation scores 4-30
4.11.6 MBG scores 4-31
4.11.7 MG scores 4-33
4.11.8 Pulse oximetry 4-35
4.12 Adverse events 4-36
4.13 DISCUSSION 4-37
4.13.1 Physiological effects 4-37
4.13.2 Subjective effects 4-41
4.13.3 Summary 4-42
CHAPTER FIVE
Antinociceptive, physiological and subjective effects of (+)-(S)-ketamine alone, and in combination with morphine, in methadone maintenance patients

5.1 INTRODUCTION 5-1
5.1.1 Aims of the present study 5-3

5.2 METHODS 5-3
5.2.1 Patients and control subjects 5-3
5.2.2 Study design 5-4
5.2.2.1 Drug administration 5-5
5.2.3 Procedures and measures 5-5
5.2.3.1 Pain induction 5-6
5.2.3.2 Physiological and subjective measures 5-6
5.2.4 Plasma (+)-(S)-ketamine concentrations 5-6
5.2.5 Plasma morphine concentrations 5-7
5.2.6 Plasma methadone concentrations 5-7
5.2.7 Statistical and other analyses 5-8

5.3 RESULTS 5-9
5.3.1 Plasma (+)-(S)-ketamine concentrations 5-9
5.3.2 Plasma morphine concentrations 5-11
5.3.3 Plasma methadone concentrations 5-12
5.3.4 Cold pressor test 5-14
5.3.4.1 Pain detection 5-14
5.3.4.2 Pain tolerance 5-17
5.3.4.4 Pain tolerance to detection ratios 5-20
5.3.5 Electrical stimulation 5-21
5.3.5.1 Pain detection 5-21
5.3.5.2 Pain tolerance 5-24
5.3.5.3 Pain tolerance to detection ratios 5-27
5.3.6 Physiological and subjective responses 5-28
5.3.6.1 Respiratory rate 5-28
5.3.6.2 Pupil size 5-31
5.3.6.3 Heart rate 5-33
5.3.6.4 Blood pressure 5-36
5.3.6.5 LSD scores 5-38
5.3.6.5.1 Subjective comments related to drug administration 5-40
5.3.6.5.1.1 S-ketamine only session 5-40
5.3.6.5.1.2 S-ketamine plus morphine session 5-41
5.3.6.6 MBG scores 5-43
5.3.6.7 MG scores 5-45
5.3.6.8 Pulse oximetry 5-47
5.4 Adverse events 5-48
5.5 DISCUSSION 5-48
5.5.1 Antinociceptive effects 5-49
5.5.2 Physiological effects 5-51
5.5.3 Subjective effects 7-54
5.5.4 Conclusions 5-57

CHAPTER SIX
General summary and discussion
6.1 Summary and conclusions 6-1
6.2 Clinical and Research Implications 6-8

REFERENCES 7-1
LIST OF APPENDICES 8-1
APPENDICES 8-2
PUBLICATIONS FROM THIS THESIS