MOTOR CORTICAL CONTROL OF
HUMAN JAW MUSCLES

A thesis submitted
for the Degree of

DOCTOR OF PHILOSOPHY

in

The Department of Physiology
The University of Adelaide
Adelaide, South Australia

by

Sophie Pearce, B.Sc. (Hons.)

October, 2002
MOTOR CORtical CONTROL OF HUMAN JAW MUSCLES

ABSTRACT

DECLARATION

ACKNOWLEDGEMENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

AIMS AND GENERAL INTRODUCTION

CHAPTER 1
Literature Review

1.1 The masseter muscle

1.1.1 Structure

1.1.2 Motor units and muscle fibre types

1.1.3 Nerve supply

1.1.4 Proprioceptors

1.1.5 Stretch Reflexes in the masseter

1.2 The motor cortex

1.2.1 Organisation of the motor cortex

1.2.1.1 Topographical organisation

1.2.2 The corticospinal and corticobulbar tracts

1.2.3 Techniques used to investigate the corticospinal and corticobulbar pathways

1.2.3.1 Neuroanatomical tracing
1.2.3.2 Lesions/inactivation ... 15
1.2.3.3 Neuronal recording studies ... 15
1.2.3.4 Electrical stimulation of the exposed motor cortex 16
1.2.3.5 Transcranial electrical stimulation 17
1.2.3.6 Transcranial magnetic stimulation (TMS) 18
1.2.4 Corticocortical neurones .. 26
1.2.4.1 Identification of CM cells .. 20
1.2.4.2 Role of CM cells ... 22
1.2.5 Branching of CM cells ... 25
1.2.5.1 Functional significance of branched CM projections
innervating multiple muscles ... 26
1.2.5.2 Identification of branched CM projections in awake human
subjects .. 26
1.2.6 Mirror movements ... 28
1.2.6.1 Recovery of CNS following stroke 29
1.2.6.2 Evidence for branched corticospinal axons in hemiplegic
patients with mirror movements .. 33
1.3 The cortical control of the masseter muscle 34
1.3.1 Anatomical investigations .. 34
1.3.2 Lesion studies ... 35
1.3.3 Single neuron recording .. 36
1.3.4 Surface stimulation of the motor cortex 36
1.3.5 Intra-cortical Micro-stimulation ... 37
1.3.6 Transcranial Electrical Stimulation in human 38
1.3.7 Transcranial Magnetic Stimulation in human 40

CHAPTER 2

Task-Dependent Control of Human Masseter Muscles
from Ipsi- and Contralateral Motor Cortex 48

2.1 Introduction .. 48
2.2 Methods ... 50
2.2.1 Apparatus and recording .. 50
2.2.2 Focality of TMS .. 51
2.2.3 Protocol ... 52
2.2.4 Data Analysis .. 54

2.3 Results .. 55
2.3.1 Performance of the biting tasks 55
2.3.2 Focality of TMS ... 56
2.3.3 Masseter MEPs during bilateral biting 56
2.3.4 Task-dependence of masseter MEPs during unilateral biting 63

2.4 Discussion ... 67
2.4.1 The nature of corticofacial projections to masseter motoneurons ... 69
2.4.2 Differences in the control of masseter motoneurons from each hemisphere ... 73
2.4.3 The role of the motor cortex in controlling movements of the hand vs. the jaw .. 77
2.4.4 The silent period ... 79
2.4.5 Conclusion ... 80

CHAPTER 3
Control of Masseter Single Motor Units from Motor

Cortex of Each Hemisphere .. 81

3.1 Introduction .. 81

3.2 Methods .. 82
3.2.1 Apparatus and recording .. 83
3.2.2 Protocol ... 84
3.2.3 Data Analysis .. 86

3.3 Results .. 87
3.3.1 Patterns of masseter single motor unit responses to TMS 87
3.2 “Late” increase in motor unit firing probability induced by TMS
3.3 Slowing of masseter motor unit discharge by TMS
3.4 Discussion
3.4.1 Corticomotor projections to human masseter
3.4.2 The nature of the excitatory response to TMS induced in masseter motor units
3.4.3 The late increase in discharge probability
3.4.4 The nature of the inhibitory response to TMS induced in masseter motor units
3.4.5 Functional implications
3.4.6 Comparison to digastric muscle
3.4.7 Conclusion

CHAPTER 4
Simultaneous Fluctuations in Size of Responses to Focal TMS in Multiple Muscles. I. Muscles of the upper limb
4.1 Introduction
4.2 Methods
4.2.1 Apparatus and recording
4.2.1.1 Electromyography
4.2.1.2 Transcranial magnetic stimulation
4.2.1.3 F-waves
4.2.2 Protocol
4.2.2.1 Effects of timing of dual TMS on MEP size
4.2.2.2 Trial-by-trial fluctuations in MEP size
4.2.2.3 F-waves
4.2.3 Data Analysis
4.2.3.1 TMS Thresholds
4.2.3.2 Effects of timing of dual TMS on MEP size
4.2.3.4 Regression analysis of trial by trial variation in size of F-waves simultaneously elicited in left and right FDI ...120

4.3 Results ..121
4.3.1 Effect of discharging two TMS coils in close proximity121
4.3.2 MEP thresholds ..121
4.3.3 MEP variability ...121
4.3.4 Tract-by-trial correlations in MEP size ...128
4.3.4.1 Between-limb comparisons ...128
4.3.4.2 Within-limb comparisons ...134
4.3.5 F-waves ...139

4.4 Discussion ...139
4.4.1 MEP variability ...141
4.4.2 MEP fluctuations in muscles on opposite sides of the body143
4.4.3 MEP fluctuations in upper limb muscles on the same side146
4.4.4 Conclusion ..148

CHAPTER 5
Simultaneous Fluctuations in Size of Responses to Focal TMS in Multiple Muscles. II. A case study in a patient with infantile hemiplegia and mirror movements ...149

5.1 Introduction ...149

5.2 Methods ..151
5.2.1 Apparatus and Recording ..152
5.2.1.1 Surface electromyography ...152
5.2.1.2 Single unit electromyography ...152
5.2.1.3 Transcranial magnetic stimulation ...153
5.2.1.4 F-waves ...153
5.2.2 Protocol ... 153
5.2.2.1 Trial-by-trial fluctuations in masseter MEP size ... 154
5.2.2.2 Trial-by-trial fluctuations in MEPs from upper limb muscles on the same, and opposite sides ... 154
5.2.2.3 F-waves ... 155
5.2.2.4 Synchronisation of motor unit discharge ... 156
5.2.3 Data Analysis ... 156
5.2.3.1 Regression analysis of trial-by-trial variation in size of MEPs elicited in pairs of muscles .. 156
5.2.3.2 Regression analysis of trial by trial variation in size of F-waves simultaneously elicited in left and right FDI .. 158
5.2.3.3 Correlations in motor unit firing times in left and right FDI 158

5.3 Results ... 159
5.3.1 Responses to focal TMS .. 159
5.3.2 MEP variability .. 161
5.3.3 Trial-by-trial correlations in MEP size .. 161
5.3.3.1 MEP correlations in left and right Masseter .. 161
5.3.3.2 MEP correlations in the upper limb – between-limb comparisons 164
5.3.3.3 MEP correlations in the upper limb – within-limb comparisons 171
5.3.4 F-waves .. 177
5.3.5 Synchronisation of FDI motor unit discharge ... 177

5.4 Discussion ... 177
5.4.1 The nature of MEPs elicited by focal TMS .. 180
5.4.2 Correlations in MEP fluctuations ... 182
5.4.2.1 Fluctuations in MEP size due to movement of the stimulating coil 185
5.4.2.2 Fluctuations in motoneuron excitability ... 185
5.4.2.3 There may be separate populations of contralaterally and ipsilaterally projecting CM neurons ... 186
5.4.3 Conclusions .. 187
CHAPTER 6
Simultaneous Fluctuations in Size of Responses to
Focal TMS in Multiple Muscles. III. Left and right
masseter muscles

6.1 Introduction ..189
6.2 Methods ...189
 6.2.1 Apparatus and recording191
 6.2.2 Protocol ..192
 6.2.3 Regression analysis of trial-by-trial variation in size of MEPs
 elicited in pairs of muscles192
6.3 Results ..195
 6.3.1 MEP variation ..195
 6.3.2 Trial-by-trial correlations in MEP size200
6.4 Discussion ...203
 6.4.1 Fluctuations in MEP size and parallel fluctuations in activity
 of both masseter muscles204
 6.4.2 Fluctuations in MEP size and movement of the stimulating coil205
 6.4.3 Fluctuations in MEP size reflect specific changes in the
corticomotor region supplying masseter rather than global
cortical excitability fluctuations206
 6.4.4 There may be separate populations of contralaterally and
 ipsilaterally projecting corticobulbar neuront207
 6.4.5 There may be a population of corticobulbar cells which branch
 to innervate the masseter motoneuron pools on both sides207
 6.4.6 Conclusion ..208
CHAPTER 7
Is The Long Latency Stretch Reflex In Human Masseter Transcortical? .. 210

7.1 Introduction .. 210

7.2 Methods .. 212

7.2.1 Apparatus and recording ... 213

7.2.2 Protocol ... 214

7.2.2.1 Conditioning-testing with stretch and TMS .. 215

7.2.2.2 Modulation of the masseter LLSR by prior instruction 216

7.2.3 Data Analysis ... 217

7.2.3.1 Conditioning-testing with masseter stretch and TMS 217

7.2.3.2 Modulation of the masseter LLSR by prior instruction 218

7.3 Results .. 218

7.3.1 TMS and muscle stretch .. 218

7.3.2 Modification of LLSR with prior instruction .. 224

7.4 Discussion ... 224

7.4.1 Summation of Rectified EMG averages .. 228

7.4.2 Alternative mechanisms for the LLSR .. 230

7.4.3 Modulation of the LLSR ... 232

7.4.4 Conclusion .. 233

CHAPTER 8
Concluding Remarks .. 234

BIBLIOGRAPHY ... 239

REPRINTS OF PUBLISHED PAPERS ASSOCIATED WITH THIS

THESIS ... 278
ABSTRACT

The human jaw muscles exhibit precise control during mastication and speech. By analogy with the limbs, this control is probably mediated from the motor cortex via corticomotorneuronal (CM) cells, however CM cells have not been unambiguously demonstrated for the trigeminal innervated jaw muscles, and their characteristics have not been described in detail. In this study I have investigated the existence, nature and function of CM cells innervating the human masseter muscle during voluntary movements and reflexes.

Masseter CM projections were examined by a) comparing motor evoked potentials (MEPs) elicited concurrently in the surface electromyograms (EMG) of both masseter muscles by focal transcranial magnetic stimulation (TMS) of one hemisphere of the motor cortex; b) comparing responses of individual masseter motoneurons to TMS of the contra- and ipsi-lateral motor cortex, and; c) examining co-variation in left and right masseter MEP size on a trial-by-trial basis, to identify branched CM neurons (an analysis first tested in two situations where branched CM projections were known to exist). Masseter CM cell function was examined by assessing CM cell involvement during a) bilateral vs unilateral biting and b) the masseter long latency stretch reflex (LLSR).

Two types of CM projections were identified in the control of human masseter. Larger MEPs were elicited in the surface EMG from the masseter contralateral to the TMS, and most low threshold motor units in masseter were excited at a monosynaptic latency. This suggested a population of CM neurons with exclusively contralateral projections to masseter motoneurons. However, bilateral masseter MEPs were elicited in the surface EMG following focal TMS and some masseter motoneurons were identified with
excitatory input from both hemispheres of the motor cortex. Co-variation in left and right masseter MEPs suggested that some CM neurons branch to innervate masseter motoneuron pools on each side.

CM cells from each hemisphere were shown to have distinct roles during the biting tasks; unilateral biting was associated with a reduced activity of CM cells in the contralateral, but not the ipsilateral cortex. By combining muscle stretch with TMS, I found no evidence for CM cell involvement in the masseter LLSR.