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Abstract

The practice of speciffing stimulus representations using measures of similarity holds

some status in cognitive modelling. Formal theories of cognitive processes such as gen-

eralisation, categorisation, identification, and recognition often employ these representa-

tions, and therefore rely on theories of stimulus similarity. With this reliance in mind, it

is important to limit stimulus representations to those justified by observations of human

thought and behaviour, rather than engaging in the questionable practice of specifiTing

stimulus representations on the basis of introspection.

Over the last 50 years) psychologists have developed a range of frameworks for sim-

ilarity modelling, along with a large number of numerical techniques for extracting men-

tal representations from empirical data. This thesis is concerned with the psychological

theories used to account for similarity judgements, as well as the mathematical and sta-

tistical issues that suround the numerical problem of finding appropriate representations.

Specifically, the thesis discusses, evaluates, and further develops three widely-adopted

approaches to sirnilarity modelling: spatial, featural, and tree representation.

The spatial approach locates each stimulus in a multidimensional co-ordinate space,

and assumes that the similarity between two stimuli is a function of how close they

are to one another. Tree models represent stimuli as the terminal nodes in an acyclic

graph, like a genealogical or taxonomic tree. The similarity between two stimuli is

considered to be inversely related to the length of the unique path that connects them.

Featural representations describe stimuli in terms of a set of characteristics that they

either possess or do not possess. Featural similarity is assumed to be increased by

shared features and decreased by distinguishing features.

This thesis develops three major themes. The first, discussed in detail in Chapter 3

but reiterated throughout, regards the imporlant question of how to evaluate a represen-

tation. Any representation can be considered to be a model purporting to explain the set
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of observed similarities, and should be evaluated as such. It is argued that the represen-

tation must not only provide a good fit to the data, but do so in the simplest possible

manner, and should satisfy such qualitative constraints as interpretability and psycho-

logical plausibility. This thesis uses a Geometric Complexity framework to provide an

appropriate trade-off between data-fit and model complexity. In doing so, expressions

for the statistically principled Geometric Complexity Criterion are derived for several

classes of similarity models. Furthermore, an extended investigation ofthe analytic prop-

erties of these measures for featural and tree models is presented, in order to provide an

understanding of what makes one representation more complex than another, A briefer

discussion of these issues with regard to spatial representations is also provided.

The second main aspect of this thesis is the discussion of featural representation

in Chapter 4. Four theories of featural similarity are considered: the common features

model, the distinctive features model, Tversky's seminal Contrast Model, and a new

theory called the Modified Contrast Model. The Modified Contrast Model differs from

Tversky's by assuming that each individual feature is declared to be a commonality or a

distinction, rather than a weighted sum of both. These four theories are evaluated with

regard to their psychological assumptions, their analytic properties, and their performance

when applied to several empirical data sets. In addition to applying these models to pre-

existing data, three new data sets are collected in this evaluation. These investigations

suggest that the Modified Contrast Model may combine the common and distinctive

elements required by a featural theory in a more plausible manner than Tversky's model.

The third theme to this thesis, discussed in Chapter 5, is the development of an

approach to spatial representation that allows a single point to represent multiple stim-

uli. Based on the prototype theory of categorical structure, this approach enables a set

of protofypes to be directly inferred from similarity data. The effectiveness of three

"prototype scaling" algorithms are evaluated, and the best algorithm is then applied to
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several data sets in order to illustrate the potential of the approach.

Overall, it is argued that the different representational frameworks are each best suited

to different domains, and that it is therefore important to oonsider their assumptions, and

seek to fit models that are appropriate to the context. As discussed in Chapter 6, future

work in this regard might treat similarity judgements as decision processes. Finally, no

matter which similarity theory is adopted, the measure of a model should take account

of its data-fit, its complexity, and its interpretability.
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1. Prelude

Cognitive psychology is in part the science of understanding how cognitive processes

operate, and one tool for achieving this goal is the specification of formal models of

these processes. It is common for these models to describe processes that act on stimuli:

accordingly, a fundamental issue in cognitive modelling regards how to appropriately

encode these stimuli. An infotmational structure that describes a stimulus is called a

stimulus representation, and the issue at hand can therefore be stated simply: what kinds

of stimulus representations are appropriate for a model of human cognition?

As argued by many authors (e.g., Brooks, 1991; Komatsu, 1992; Lee, 1998), it is

important to constrain representations to those justified by empirical data, and avoid

the questionable practice of specifuing representations "by hand". One well-established

technique for pinning down mental representation is to obtain measures of the similarity

between all pairs of stimuli for the domain of interest (e.g., Kruschke, 1992; Nosofsky,

f992b; Shepard & Kannappan, I99I). The assumption underlying this approach is that

the process in operation when the measurements are obtained is sufhciently simple that

the resulting data can be considered to reflect the underlying rnental representation to

a large extent. While this is not without theoretical difficulties (e.g., Goodman, 1972;

Goldstone, Medin, & Halberstadt, 1997), it is superior to the alternative apploach of

hand-tuning representations, which may not reflect human representational structures in

any regard.

This thesis addresses the matter of deriving mental representations by modelling



similarity judgements. This chapter begins the account by giving a general overview

of mental representation and a background to similarity, Chapter 2 focusses on the

psychological theories used to explain similarity judgements and the techniques used to

extract representations from data. The chapter also provides a number of original analy-

ses of existing data sets to examine the various representational frameworks. Chapter 3

addresses the important question of how to choose between alternative representations,

taking into consideration the issue of model complexity, and giving an account of what

makes a representation more or less complex. Next, in Chapter 4, four approaches to

the influential featural representation framework are evaluated. The psychological im-

plications of these models are considered, their anal5,tic properties examined, and the

models are applied to several empirical data sets, both pre-existing and new, Chapter 5

proposes a new representational formalism based on the spatial approach, that aims to

represent categorical information about a set of stimuli in a multidimensional space, and

applies it to several data sets. The notion of modelling similarity as a decision process

is canvassed in Chapter 6, followed by concluding remarks in Chapter 7.

1 . I The Very ldea of Representation

Psychological models tend to be functionally oriented. Rather than attempting to work

out what each part of the brain does (which is more the domain of neuropsychology

and neuroscience), cognitive psychologists try to understand how a particular type of

behaviour could be produced. Psychological models do not necessarily refer to neu-

rophysiological structures, but rather to logical structures. The two approaches are

complementary'. a neural-level description must produce psychological phenomena, and

psychological models should be consistent with the neural substrate on which the mind

rests. This thesis is psychological, not neurological, and so the representational models

developed do not refer to literal, neurophysiological structures. When a psychological

2



model is inferred, it is not assumed that there exists any specific neural circuitry devoted

to producing it: instead, it is suggested that people behave as iJ such a thing existed.

The functional nature of psychological models, including mental representations,

requires that one assess their validity by looking at the assumptions they entail, their

explanatory power, their generalisability and so on. This matter of speciflingappropriate

representations is a major theme in this thesis, discussed in detail in Chapter 3 but

reiterated throughout. For the moment, however, it suffices to observe that the very

idea of mental representation deserves examination: to justify psychological theories of

human mental representation, one should start with a discussion of what a representation

is, and how representations frt into the enterprise of modelling cognition. Therefore, this

section discusses mental representation in general terms, attempting to provide a broad

view of what the term means in different contexts. In doing so, it draws upon three

different philosophical ideas about how cognition should be modelled: the classical,

connectionist, and dynamical approaches.

1. 1. 1 Classical Theories

The first approach is the classicql theory, also known as the computational theoryl,

which attempts to provide an account of cognition in terms of the operation of rule-

governed processes on discrete symbols (e.g., Fodor, 1983; Haugeland, 1985; Newell,

1980, 1990; Pylyshyn, 1984). Therefore, the classical theory is based on the metaphor

of the mind as a computer, or symbol processor. Obviously however, the metaphor

should not be pushed too far: the brain does not closely resemble a personal computer,

and neuroscience is not computer science. Modern classical theories (e.g., Calvin,1996;

| "Computation" is a slippery concept. In a widely used sense, computation refers to any operation that

can be performed by a Turing machine, and it is in this sense that the classical theory is computational.
However, the intuitive notion of computing can be much broader, and can encompass any mathematical
or numerical operations. Therefore, to avoid possible disagreements over what kinds of models are

computational, the term "classical models" is used here.
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Fodor, 1983; Minsky, 1986; Pinker, 1998) tend to treat the mind more as an arbitrary

number of machines working in parallel than as a single serial processor.

The classical theory assumes that a stimulus is represented by a symbol, or set of

symbols, activated directly when the stimulus is encountered, or by proxy when the

stimulus is recalled, A symbol is considered to be a manipulable token that bears an

arbitrary relationship2 to the stimulus or concept it represents. Mental representation is

crucial within the classical theory, according to which the task facing mental representa-

tion research is to discover the symbols used in cognition and determine their structure,

That said, it is difficult to state precisely what it is that makes a set of symbols count as

a representation. Markman and Dietrich (2000a,2000b) emphasise the role of a mental

representation as an information bearer. That is, a state is a representation by virtue of

the fact that it embodies some knowledge about the stimulus being represented. They

suggest that, in addition to being discrete, symbolic information bearers, classical men-

tal representations should be enduring (rather than transient) states, as well as abstract

(rather than perceptual) states, They should also have a compositional structure (i.e.,

they can be combined with one another), and be acted upon by rules.

Several caveats attach to this definition. Firstly, it disregards the fact that the repre-

sentations employed by people are tailored to context (Barsalou, 1989; Hofstadter, 1985,

1995). Although some long-term representations may change slowly (or not at all), other

representational structures (e,g., those used in working memory) are transient in nature.

Furthermore, Barsalou (1999) has argued that some mental representations at least are

modality-specific perceptual states, and not abstract conceptual structures. Examples of

such representations would be the sensory homunculi that represent the various sensory

surfaces in the brain (see Kolb & Whishaw, 1996 or Kandel, Schwartz, & Jessell, 1995

2In this context "arbitrary" simply means that there need not be any particular relationship between
stimulus and symbol: the mental symbol for a cat, for example, need not be cat-shaped, cat-coloured, or
cat-like in any regard. This does not, however, preclude the symbol from carrying information about the
shape or colour of a cat.
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for example). Another key element missing in their definition is the fact that repre-

sentation can occur at a number of levels, ranging from representations of raw sensory

information to information about the categories to which a stimulus belongs,

1 . I .2 Connectionist Theories

A more recent alternative approach to cognitive science is the connectionist paradigm

(McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986). Connectionist mod-

els are built from networks of interconnected nodes, in which processing occurs by

passing activation from one node to another. In this manner, the environmental infor-

mation given to the model is transformed into an appropriate response by virtue of the

number, type and strength of connections between nodes, Representation in connection-

ist systems does not take the form of classical symbols (Smolensky, 1988; but see Fodor

& Pylyshyn, 1988): instead, it is implicit in the pattern and strengths of the connections

between nodes.

One distinction made within connectionist approaches is between localist and dis-

tributed representations. In localist representations, a single node represents a single

stimulus and vice versa, whereas in distributed representations, each stimulus is denoted

by a pattern of activation across many (possibly all) of the nodes (Hinton, McClelland,

& Rumelhart, 1986). Distributed representations are often less easily interpreted than

localist representations. However, a well-structured distributed representation can re-

semble a localist representation constructed at multiple levels of generality. Consider

a model such as the schematic processing model proposed by Rumelhart, Smolensky,

McClelland, and Hinton (1986) in which various household rooms are represented by

patterns of activation across nodes, each of which denotes a single object or feature that

might be found in the room. However, it is highly plausible that the cognitive represen-

tation of the individual objects could also be distributed over a host of microfeatures.
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For instance, the representation of a coffee cup could be a part of the representation of

kitchen, but itself be distributed over such microfeatures as "cylindrical", "has a handle",

"filled with coffee", and so on (Smolensky, 1988). Thus the representation can be spec-

ified at a lower level of generality than the phenomenon of interest, at the "subcognitive

level" that Hofstadter (1985) regards as crucial to explanations of cognition.

This discussion of classical and connectionist models suggests that representation

is a key issue for both approaches. To some extent, the concerns regarding what con-

stitutes a representation in one theory overlap with the corresponding concerns in the

other. For instance, one prominent representational formalism describes stimuli in terms

of defining characteristics or features (Tversky, 1977, discussed in detail in Section 2.3

and Chapter 4). The theory is classically framed, in that features are treated as symbols

that denote external objects and can be operated on as tokens in a rule-governed system

(such as computational psychological models), However, the framework is easily applied

in connectionist architectures, by establishing a correspondence between features and

nodes. In fact, it is this kind of correspondence that enables some models to be equally

expressible as classical or connectionist systems. For instance, the highly successful

ALCOVE model of category learning was originally formulated by Kruschke (1992)

as a three-layer connectionist network employing spatial representations. However, Lee

and Navarro (2002) developed an extension of the model that allows it to accommo-

date featural representations, and framed the model in terms of rule-governed processes

(similarity-to-exemplars followed by a decision rule), In short, although the classical

and connectionist theories adopt quite different perspectives on what representations are

and how they are used, they can often be encompassed by the same representational

formalism. In this instance, it is observed that spatial and featural representations are

applicable to both classical and connectionist models.
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I . I .3 Dynamical Theories

Dynamical explanation (e.g., Beer, 2000; van Gelder & Port, 1995) constitutes the other

main approach to cognition, and is the newest of the three main frameworks. The

essence of dynamical theories is the emphasis on the evolution of a cognitive system

over time. Given some system which may incorporate both the individual and aspects

of their environment, a dynamical model specifies a set of states in which the system

may be, called the state space, and some function that describes how the state of the

system changes over time.

Dynamical theories rarely, if ever, propose classical representations of the kind de-

scribed by Markman and Dietrich (2000a, 2000b). For example, consider the dynamical

explanation of infant reaching behaviour proposed by Thelen (1995). She proposes that

the infant's arm can be modelled as if it were a mass-damped spring (a spring with a

weight attached to the end, which acts to dampen any motion) with a regular forcing

function (a function that introduces force to the spring, causing motion). This theory

does not refer to representational states internal to the infant. Nevertheless, dynamical

cognitive theories are consistent with the notion of an information bearing state, inas-

much as information passes through the individual and shapes their behaviour within the

environment: if they were not consistent in this manner, they would not be psychological

theories at all. Returning to the damped-spring reaching model, Thelen observes that

the parameters of the model change over time as the infant learns to control his or her

movements and that these parameters depend on the internal states of the infant. In a

loose sense, these states can be thought of as representational, though not necessarily in

the classical sense.

The interplay between different cognitive paradigms as well as the sense in which

dynamical systems can be representational are evident in Elman's (1995) treatment of

language as a dynamical system. Using the backpropagation of error method (Rumelharl,



Hinton, & Williams, 1986), he trained a recurrent neural network to predict the next word

in a series of sentences, and then examined the word representations that the network

had learned. Though the word vectors were high dimensional, the variability between

them was representable in a low dimensional metric space using principal components

analysis (related to multidimensional scaling, discussed in Section 2.2). He argues that

lexicon is spatially represented, and that linguistic rules define the dynamics on that

space: that is, given an input word, the network moves to a new state in the space

according to these rules. A sentence, therefore, is a trajectory in the lexical state space.

This approach is consistent with spatial representations (indeed it depends on the spatial

representability of the lexicon).

| .l .4 Summary

Mental representation plays an important role in classical, connectionist and dynamical

theories of cognition, though in a different manner for each. Furthermore, psychological

approaches to mental representation (e,g., spatial or featural) cut across the divide be-

tween the three types of cognitive models, suggesting that they have broad applicability

as models of human mental representation.

1.2 Types of Similarity

"Similarity", in an intuitive and dictionary sense, refers to some measurement of "like-

ness" or "resemblance" (though these terms are hardly more informative). Contrastingly,

a single technical definition of similarity is difficult, if not impossible, to provide, as the

term has been used in a wide range of contexts. Psychological similarity is a complex

phenomenon, involving both bottom-up and top-down factors, and it is perhaps more

useful to focus on the various kinds of similarity that have been discussed, rather than

engage in a fruitless attempt to define a word whose meaning is commonly understood.
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| .2 . I Perceptual and Conceptual Similarity

In the bottom-up sense, variously referred to as perceptual similariry (Rips, 1989),

surfoce similarity (Vosniadou & Ortony, 1989) or physical similarily (Brewer, 1989)

two stimuli appear alike by virtue of low level processes. An example of this type of

similarity would be the similarity between a human being and a mannequin. Although

humans and mannequins are conceptually very different, and belong to very different

categories, in a simple perceptual sense they are quite similar. According to this kind of

similarity process, two stimuli are related through the operation of concrete, low-level

processes.

Perceptual similarity is contrasted against the kind of top-down similarity which

has been labelled conceptual or deep similarity. Conceptual similarity invokes a more

abstract knowledge about the world and the stimuli being compared. In this sense, two

objects that are members of the same category or otherwise conceptually related are

more likely to be judged more similar because of the understanding that they belong

to the same class of thing. For instance, while a mannequin looks more like a human

than does a chimpanzee, a chimp is conceptually more like a human, because of the

understanding that chimpanzees and humans belong to many of the same categories

(primates, intelligent animals, etc.), whereas mannequins share few such similarities

with humans.

Of course, it seems highly unlikely that similarity is either wholly perceptual or

wholly conceptual. Perception flows into cognition, and cognition shapes and directs

perception (Hofstadter, 1995). Accordingly, similarity judgements employ perceptual and

conceptual likenesses as the context demands. Although it is implausible to think that

the kind of similarity that makes freedom like liberty is much like the kind of similarity

that makes koalas look like teddy bears, both types of similarity may be employed at

different times. Indeed, Medin and Ortony (1989) argue that the development of concepts
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(and hence conceptual similarity) may initially be based on more concrete perceptual

similarities

1.2.2 Global and Dimensional Similarity

A different distinction is made by Smith (1989), who refers to global similarity, in which

stimuli are considered in terms of an overall or holistic impression, and dimensional sim-

ilarity, in which two objects are viewed in terms of a set of analysable characteristics

or dimensions, She argues that global similarity is a developmental precursor to dimen-

sional similarity, in that until infants and children learn to carve up the world according

to perceptually and conceptually relevant dimensions, their impressions of the "likeness"

of two things is necessarily holistic. It is worth noting that this distinction is related to

that made between integral and separable dimensions (e.g., Garner, 1974; Shepard,lggl;

see Section 2 .2). Smith's theory suggests that dimensional similarity does not replace

global similarity, but overlays it, Accordingly, there should be evidence that the same

stimulus may sometimes be evaluated in a holistic (integral) manner, and sometimes in a

dimensional (separable) manner, Smith argues that this is the case, though this remains

an unresolved question.

1,2.3 Summary

This discussion makes it clear that similarity is not a monolithic, homogeneous entity,

being composed of several types of likeness that may interact with one another in various

ways. Given this, a pragmatic view of similarity is adopted here. Similarity is not treated

as a cognitive primitive: rather, similarity is understood to be the result of processes that

act on mental representations.
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I .3 Is Similarity Indeterminate?

A philosophical criticism of the use of similarity as an explanatory principle (Goodman,

1972) claims that similarity is indeterminate, since it is always possible to deftne an

infinite number of characteristics shared by a pair of stimuli. For example, both an

elephant and a neutron star have the characteristic of "weighing more than a tonne".

According to this argument, by defining such a feature shared by both, their similarity

should increase. Since the number of features thaf can be defined in this manner is limit-

less, the similaritybetween all pairs of things should be inhnite. However, this is based

on a psychologically implausible notion of how stimuli are compared, in that irrelevant

characteristics do not enter into the process. As Medin and Ortony (1989) and Hahn

and Chater (1997) argue, similarity judgements are made using some representation: "A

first step is to define similarity not in terms of all logically possible shared predicates

but in the more restricted sense of shared represented predicates. For example, both

tennis balls and shoes share the predicate not having ears, but it is unlikely that this

predicate is part of our representation of either tennis balls or shoes." (Medin & Ortony,

1989, pp, 180). Furthermore, if the representation employed is influenced by the de-

mands of context (e.g., Barsalou, 1989; Goldstone et al.,1997; Hofstadter, 1985, 1995)

then similarity should be expected to vary accordingly. Crucially, however, it should not

be expected to vary arbitrarily. Unless prompted by some highly contrived reasoning,

no-one seriously believes that a neutron star is very much like an elephant.

1 .4 The Role of Similarity in Cognition

Similarity has been employed as an explanatory device in a number of areas in cognitive

modelling. Although this thesis is primarily concerned with representational explanations

of similarity, it is instructive to consider how these notions of similarity are relevant
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within the wider context of the study of cognition

I .4 .l Identification

The Similarity Choice Model (Luce, 1963; Shepard,1957) of stimulus identification was

proposed to predict the probability with which people misidentiSr a stimulus. Formally,

the probability that stimulus ri is identifìed as stimulus j is given by,

puli)::til-
Ln ot"s¿k

where s¿¡ denotes the similarity between stimuli i and j, and b¡ is a response bias

parameter for stimulus j such that 0 < b¡ l7 and f¿ bn: \. The SCM is also discussed

by authors such as Nosofsky (1986, 1992b) and Getty, Swets, Swets, and Green (lg7g).

Importantly, Nosofsky (1986) observes that this model requires the similarities to be

constrained by some theory of similarity: otherwise, the model has more free parameters

than data points. In particular, he argues that the spatial approach employed by Shepard

(1957) is a simple and effective way to do so, but there is no a priori reason why other

representational fonnalisms should not be appropriate for this purpose.

1.4.2 Generalisation

In a now-classic paper, Shepard (1987, see also Myung & Shepard, 1996) formulated

the "universal law of generalisation", which predicts the probability with which an or-

ganism will assume that a novel stimulus 7 has the same environmental consequences

as a previously encountered stimulus i. This law emerges from a rational analysis of the

structure of psychological spaces. In particular, Shepard argues that - for evolutionary

reasons - a stimulus space is structured so that stimuli with the same real-world conse-

quences will be near one another in the space, Correspondingly, a set of stimuli with the

same consequences fonn a "consequential region" in the space. Shepard demonstrates

l2



that, with little knowledge about the size of the consequential region that contains e, the

probability that 7 is also in the region is given by an exponential decay function of the

distance between them, d,a¡. That is,

gjlù o exp(-á¿¡).

Although Shepard's theory is inherently spatial in nature, Russell (1986) has argued

that the same law should emerge from appropriately formulated featural representations.

Furthermore, the extension to the theory proposed by Tenenbaum and Griffiths (2002a)

shows that featural representations can be accommodated in this way.

1.4.3 Categorisation

Categorisation is an area in which similarity has been widely employed. In fact, stimulus

similarity is so fundamental to the prototype and exemplar views of conceptual struc-

ture that both have been labelled "similarity" or "resemblance" views (Komatsu, 1992;

Medin, 1989; Rips, 1989). According to the exemplar view, typified by models such

as ALCOVE (Kruschke, 1992; Lee & Navarro, 2002) and the General Contrast Model

(GCM; Nosofsky, 1986), a category is represented by a set of past instances ("exem-

plars"). When assigning a stimulus to a category, ALCOVE and the GCM both calculate

the (attention-weighted) similarity of the presented stimulus to each stored exemplar as

a means of estimating the similarity to each category. ALCOVE allows exemplars to

have ambiguous category memberships: that is, a single exemplar may be associated

with multiple categories, indicatingthat ALCOVE does not "know" which category it

belongs to. The category assignment is made using the SCM-rule.

According to the prototype view (see Rosch & Mervis, I975 for example), a category

is represented by the typicality or central tendency information about its instances. In

formal models the similarity between a stimulus and a category is calculated by com-

paring the stimulus representation to the prototype representation (see Nosofsky, 1992a
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for an overview). For example, Nosofsþ (1992a) notes that Massaro and Friedman's

(1990) Ftrzzy Logic Model of Perception (FLMP) can be characterised as such a model,

using a multiplicative distance metric.

1.4 .4 Recognition

Nosofsky, Clark, and Shin (1989) also provide a similarity-based account of recognition.

If C¿ denotes the set of stimuli belonging to the kth category, and m¡ denotes the strength

with which the 7th stimulus is stored in memory, then the familiarity of the ith stimulus

is given by,

l(i,): t t mjs¿j.
k j<Cx

This rule is related very closely to the scM-rule used by ALCOVE and the GCM, but

differs in that the SCM-rule is a relative measure, whereas the recognition rule is an

absolute measure (Nosofsky, 1992b).

I .5 Summary & General Discussion

The importance of similarity as an explanatory tool in psychology is highlighted by the

extent and effectiveness with which it has been used. At a fundamental level, the ability

to observe that "this thing is like that thing", and use that information appropriately is

crucial to intelligent behaviour, and may even lie at the core of cognition itself (Hofs-

tadter, 2000). If so, it is crucial to understand how similarity operates. As philosophers

such as Goodman (1972) have pointed out, it is not suffrcient to assume that similarity

is cognitively primitive, in the sense of having no constituent structure itself. Psycho-

logical theories of similarity are required: similarity may not be taken as an assumed

thing. Two things are similar for a reason, not'Just because". Throughout this thesis,

it is these theories of similarity that are evaluated. It is important to realise that when
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collecting and analysing similarity measures, the resulting representations can only ever

reflect the information used by participants when the experiment took place. Similarity

measures are always contextually bound, and the representations derived should never

be taken as the entirety of a participant's knowledge. Nevertheless, an understanding of

the information that they did use when making some similarity judgement goes a long

way towards providing psychologically appropriate theories of similarity.
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2. Theories of Similarity

The previous chapter introduced similarity and mental representation in general terms.

In this chapter the discussion turns to the specifrc psychological theories proposed to ac-

count for similarity judgements. The task of similarity modelling can be stated succinctly,

as follows: given an n x n matrix of similarity judgements S : ["0¡] (or dissimilarity

judgernents D : [d¿r]), what underlying representation most probably gave rise to the

data? Goldstone's (1999) recent review identifies four main approaches to similarity

modelling: spatial, featural, alignment-based, and transformational. To these four trees

and networks might also be added. Therefore, this chapter is structured as follows: sev-

eral sets of similarity daTa are described, which are used to provide concrete examples

throughout the thesis, and then each of these six approaches to sirnilarity rnodelling are

reviewed. Special emphasis is placed on spatial, tree and featural representations, as

these are the most fully developed approaches and are the focus of the research reported

in Chapters 3,4 and 5.

2 . 1 Similarity Data Sets

As the concern in this thesis is the analysis of similarity data, it is useful to have data

sets to analyse. Three sets of empirical similarity data are collected in this thesis (all

in Chapter 4). Additionally, several data sets collected by other researchers are used

to make a range of theoretical points. This section briefly describes these data sets.
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Where possible, precision estimates have been made: that is, estimates of the inherent

uncertainty associated with the data. Precision estimates are important when analysing

data sets, as noisy data do not warrant as detailed a model as highly precise data (Lee,

2001a). The aim when modelling similarity data is to represent the structure in the data,

not the noise, Noisy data provide less evidence about the underlying or "true" similarity,

and are therefore less able to support elaborate representations (see Chapter 3).

2.1.1 Risks

Johnson and Tversky (1984) investigated people's perception of risks using a number

of tasks, one of which was to rate the similarity of one risk to another. The domain

they looked at was the risk of death from 18 causes: stroke, heart disease, stomach

cancer, lung cancer, leukaemia, toxic chemical spills, nuclear accidents, war, terrorism,

homicide, airplane accidents, traffic accidents, accidental falls, floods, tornados, fire,

lightning and electrocution. Each of their 245 participants were presented with all pairs

of stimuli and asked to rate their similarity on a nine-point scale ranging from "very

dissimilar" (l) to "very similar" (9). The similarity matrix is presented in their paper,

but empirically derived precision estimates are unavailable. Analyses of this data set are

presented in Section 2.4 and 5 .5.

2.1.2 Colours

In a classic experiment Ekman (1954) asked 31 participants with normal colour vision

to rate the similarity of 14 colours, produced by placing various coloured filters in front

of a light source. These filters transmitted light of wavelengths 434,445,465,472,490,

504,537,555, 584, 600, 610, 628,657, and674nm. The five-point rating scale ranged

from "no similarity at all" (0) to "identity" (4). Again, empirical precision estimates are

not available. An analysis of this data set is presented in Section 2 . 2.
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2.1.3 Drug Use

Huba, Wingard, and Bentler (1981) conducted a large scale study of the patterns of

drug use of 1634 students in grades 7 through 9 in the greater Los Angeles area. Each

participant was asked the frequency with which they used each of the following drugs:

cigarettes, beer, wine, liquor, cocaine, tranquilisers, prescription medication (for recre-

ational use), heroin (and other opiates), marijuana, hashish, inhalants (glue or petrol),

hallucinogenics (LSD, psilocybin or mescaline) and amphetamines. The rating scale

ranged from "never tried" (1) through "only once" (2),"a few times" (3), "many times"

(4) and "regularly" (5). A measure of the similarity between the patterns of use for

two drugs is obtained through the correlation between responses for the two drugs. No

empirical precision estimate is available. Analyses of this data appear in Sections 2 . 2,

2.3 and 2.4.

2.1.4 Arabic Numerals

Shepard, Kilpatric, and Cunningham (1975) collected similarity data for the numbers 0

through 9, using four participants. They presented the numbers in a variety of ways,

including Arabic and Roman numerals, regular polygons with different numbers of sides

and spoken words. Participants responded on a continuum, but the responses were then

binned into a 21-point scale, Section2.3 re-presents Tenenbaum's (1996) analysis of

the Arabic numerals data. No empirical precision estimate is available.

2.I.5 Kinship Terms

Rosenberg and Kim (1975) measured the similarity of l5 English kinship terms: aunt,

brother, cousin, daughter, father, granddaughter, grandfather, grandmother, grandson,

mother, nephew, niece, sister, son and uncle. The similarity values were based on a

sorting procedure performed by six groups of 85 participants, where each kinship term

19



was placed into one of a number of groups, under various conditions of instructions to

the participants. Following Lee (2001a), the empirical precision of this data set was

estimated by calculating, for each stimulus pair, the sample standard deviation of their

similarity values for the six groups. The overall precision was estimated at 0.09 by

taking the average of these sample standard deviations. This data set is analysed in

Section 4.6.

2.1.6 Plants, Animals and Colours

This data set, reported by Cooke, Durso, and Schvaneveldt (1986), consists of the

following set of 25 concepts: living thing, animal, mammal, hairs, dog, deer, bats,

blood, bird, feathers, robin, chicken, antlers, hooves, frog, plant, leaves, tree, cottonwood,

flower, rose, daisy, colour, green and red. Participants were asked to judge the relatedness

of pairs of concepts on a lO-point scale (from 0-9). The individual subjects'ratings are

not available, so empirical precision estimates cannot be obtained for the data. This data

set is analysed in Section 5 . 5.

2.1.7 Animals

O'Doherty and Lee's (2002) "animals" data set consists of the following 21 stimuli,

presented pictorially and in written form: koala, chimpanzee, elephant, camel, cow,

zebra, horse, lion, cat, dog, chicken, eagle, bat, dragon, snake, scorpion, butterfly, bee,

frog, shark and goldfìsh. Participants were asked to rate similarity on either a 5-point

or ll-point scale (the scale manipulation did not affect the overall similarity estimates,

so the data is aggregated across the conditions), The empirical precision estimate for

the written form stimulus data which is analysed in Section 5 .5 was obtained by taking

the standard deviation of the individual participants' similarity ratings for a given pair

of stimuli, and then averaging across the pairs to yield the estimated precision of 0.18.
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2 . 2 Spatial Representation

The origins of spatial representation lie with the notion of a stimulus dimension, in which

a number of stimuli are ordered according to some criterion, This idea of assigning a

value to each stimulus on a dimension is one fundamental to measurement theory, and

has attracted some attention over the years (e.g., Stevens, 1946; Michell, 1986; Krantz,

Luce, Suppes, & Tversky, 1971). An example of a stimulus dimension that applies to the

perception ofpeople is "height". One can assign to each person a height-value, and use

the distance between people on the height-dimension when making judgements. Spatial

representation incorporates this notion of a stimulus dimension, but allows stimuli to

be assigned values on multiple stimulus dimensions (e.g., "height", "weight", "age",

"intelligence" and so forth). Multiple dimensions yield a space in which stimuli are

represented by a point: spatial representations of similarity data therefore rnodel the

dlssimilarity between two stimuli as a function of the distance between them in the

psychological space, As a result, spatial representations are subject to the metric axioms:

minimality (àno:0), symmetry (à¿¡ : d"¡o), and the triangle inequality (do* I àn¡ * d¡*).

Examples of spatial representations are displayed in Figures 2.1 and 2.2. Note that the

issue of dimensionality determination (and corresponding concerns in other similarity

theories) involves a trade-offbetween data-fit and model complexity. Though disregarded

in this chapteq the matter is discussed in detail in Chapter 3.

2.2.1 Distance in Psychological Spaces

Early work on spatial representation highlighted the importance of choosing an appro-

priate distance metric. Attneave (1950) provided evidence that the "city block" metric

provided a good account of certain data sets. Under a city-block metric, the separation

between two points is measured by
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ãn¡ :Ðlp* - p¡xl,
h

where p¿¿ denotes the value of the ith object on the kth dimension, and d,¿¡ refers

to the dissimilarity estimate predicted by the model, Contrastingly, Torgerson (1958)

highlighted the utility of the familiar Euclidean metric,

ì," (no* - p¡¡)'
k

Attneave observed that the city-block metric implies a unique set of axes, whereas the

Euclidean metric is unaffected by arbitrarily rotating the axes, and argued that the city-

block makes sense when the uniquely specified axes conespond to easily identifiable

stimulus dimensions. Torgerson in turn acknowledged this property of the city-block

metric, but observed that the Euclidean metric is appropriate when the stimulus di-

mensions are not so obvious. Gamer (1974) refers to "obvious" dimensions as being

"separable" (in the sense that they may be attended to separately from one another), and

dimensions that cannot be separately attended to as "integral". As it is often acknowl-

edged (e.g., Garner, 1974; shepard, l99l; Torgerson, 1958) that dimensions may be

partly separable, it is commonplace to use one of the Minkowski r-metrics,

^ / \*
do¡ : lDlpnr - p¡nl') tz rl\; /

where r : 1 yields the city-block metric and r :2 gives the Euclidean metric. Metrics

lying between these extremes (i.e., 1 < r < 2) correspond to dimensions that are

only partly separable. While Shepard (1991) observes that metrics with r < t have a

psychological interpretation as dimensions that compete for attention, there is no obvious

correspondence with metrics where r ) 2, since it is unclear what "more than totally

integral" means (Lee, 2001a).
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Shepard (1991) provides a powerful theoretical justification for the identification of

integral and separable dimensions with Euclidean and city-block metrics. In his theory

of generalisation (Shepard, 1987), stimuli are considered to belong to natural kinds that

correspond to connected, "consequential" regions in the psychological space. Individuals

will therefore tend to treat two stimuli as more similar according to the probability

with which they are assumed to belong to the same consequential region. Shepard

(1991) therefore argues that if two dimensions are perfectly positively correlated in the

environment - that is, a value on one dimension exactly predicts the value on the other

dimension - people will assume that the consequential regions have the same extension

in the psychological space. If so, the generalisation gradient - and therefore contours of

equal similarity in the space - will be circular in shape, which is the characteristic of the

Euclidean metric. Accordingly, if the two dimensions are assumed to be uncorrelated,

the generalisation gradient becomes diamond-shaped, which is the signature of the city-

block metric. Similarly, the assumption of an intermediate positive correlation implies

an intermediate metric, and a negative correlation yields a "competitive" metric (" < 1).

The numerical problem of extracting a spatial representation from similarity data is

known as multidimensional scaling (MDS; see Cox & Cox, 1994; Borg & Lingoes, 1987;

Davison, 1983; Carroll & Arabie, 1980 for overviews), which will now be discussed.

2.2.2 Classical MDS

Although it is the oldest of the multidimensional scaling techniques, classical scaling

(Young & Householder, 1938; Torgerson, 1958) is of some interest as it is still widely

used, and is less computationally-expensive than most MDS approaches. lf D : ld¡¡]

denotes the proximity matrix, then classical scaling works by "doubly centering" D'D :

ldu2.] (subtracting the row and column means from each element in the matrix, then adding

in the grand mean), to obtain the matrix of scalar products B : [bo¡1, where
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Figure 2,1: Best fitting two dimensional configuration for Ekman's (1954) colour data,
explaining 81.3% of the variance. This representation was found using a gradient descent
approach to multidimensional scaling, and is an original analysis, though it closely
resembles other MDS analyses of this data set.
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Note that this double centering technique, introduced by Torgerson (1958), is useful in

the analysis of proximity matrices containing noise, since the centroid is less likely to

be perturbed than any individual point (because the centroid moves as a function of

the mean perturbation of all points, and is thus less sensitive to random error). If B is

positive semi-definite, then D can be perfectly represented in a Euclidean space (young

& Householdea 1938). Eigenvalues of B are calculated by singular value decomposition,

yielding B : uvu'. The co-ordinates are given by the nxr matrjxp : [p¿n): uvå,
where r is the rank of B. The rn-dimensional solution is found by retaining only the
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Figure 2.2: Best frtting one (right panel) and two (left panel) dimensional confìguration
for the drug use data (Huba et al., 1981), explaining 81.6% and94.0o/o of the variance
respectively, Again, this representation was derived using a gradient descent approach
to multidimensional scaling.

largest m eigenvalues during decomposition rather than all r eigenvalues, yielding an

n x rn matrix P.

In many cases it is preferable to assume only interval scale data (Stevens, 1946),

although the technique detailed above requires ratio scale data. Thus the model implies

that the observed dissimilarities differ from the true dissimilarities by a positive constant

c, called the additive constant, as well as the measurement error. One approach to the

additive constant is to choose the smallest value for c that makes B positive semi-definite,

for which there exists an analytic solution (see Cox & Cox, 7994 for details).

2.2.3 Least Squares Scaling

Least squares scaling (e.g., Greenacre &, Underhill, 1982; Lee, 1999) is a more recent

development in metric multidimensional scaling, in which an error measure is defined
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taking the form,

EoI(oo,-à0,)'.
i<j

This relates to the commonly used Variance Accounted For (VAF) measure of data fit,
2

VAF: 1 -
\-. .Lx<:l dn¡ - dn¡

Dn.¡ (an¡ - a)

where d denotes the mean of the observed dissimilarities. Least squares algorithms

generally distribute the co-ordinates randomly in the multidimensional space, and then

minimise an effor measure (or correspondingly, maximise some data fit measure such

as the VAF) using numerical optimisation techniques. Gradient descent methods (e.g.,

More, 1977; Powell, 1977) have generally been used for this purpose, but there is no

reason in principle why other methods such as trust region optimisation or quasi-Newton

methods (see Nocedal & Wrighf, 1999, for instance) could not be used. However, as

a continuous optimisation problem, metric multidimensional scaling represents a com-

paratively simple task, and most optimisation methods yield reasonable solutions. An

exception to this rule occurs when there is only one dimension: therefore, unidimen-

sional scaling requires that the ordering of the stimuli along the dimension be treated

as a discrete optimisation problem, separate to the continuous problem of finding co-

ordinates (Hubert, Arabie, & Meulman,1997). Least squares scaling can accommodate

an additive constant by redef,rning the error measure as

EoI (on,-(an¡+"))'.
x<J

This modification allows an optimal value of c to be recovered.

2 .2 .4 Non-Metric Multidimensional Scaling

The rationale for non-metric multidimensional scaling, and a great many non-metric

procedures besides, is provided by an analysis of the process of data collection. If one
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assumes that the underlying psychological representation of a given domain is spatial,

the relationship between the distances in the space and the dissimilarities in the asso-

ciational data is not immediately obvious (Shepard, 1962a). Although Shepard (1987)

has provided good theoretical grounds for assuming an exponential relationship between

distance and dissimilarity, he also observes that the data-gathering process may involve

other transformations to the data (Shepard, 1962a). In short, in a number of situations

one may wish to represent only the ordinal information present in the data. Non-metric

multidimensional scaling is a term referring to the collection of techniques available for

deriving spatial representations that fit only the ordering of the dissimilarities, not the

magnitude of the differences. That is, if dij < d,¡"¿ then a model is only required to

ensure that d"¿¡ < d"nt to achieve a perfect fit,

Given that monotonicity is the aim of non-metric scaling techniques, it is no longer

appropriate to measure fit in terms of the Variance Accounted For, which uses metric

information in the data. The frrst measure of departure from monotonicity was proposed

by Shepard (1962a, 19626). If the dissimilarity ratings and spatial distances are rank

ordered, the match between the two orderings can be calculated, as follows: let z7 denote

a pair of objects that gave rise to the dissimilarity rating d,¿¡ and let r denote its rank.

Furthermore, let ij denote the stimulus pair with spatial distance that also has rank r

(which may not be the same pair as ij), Shepard's measure is then given,

)y,*\-t¡¡z (¿0, - ¿r,)'
n(n - 7)

One difficulty with this measure is that, although it measures the departure from monotonic-

ity, it uses the metric information in the empirical dissimilarities to do so (Kruskal,

1964a). That is, the error is proportional to do¡ - dí¡, and is not merely ordinal. How-

ever, the scaling procedure proposed by Shepard (I962a) did not use this error function

to minimise the departure from monotonicity, but only to terminate the procedure. In
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broad terms, Shepard's algorithm distributes the stimulus locations as an n - 1 dimen-

sional simplex (the higher dimensional analogue of a tetrahedron), perturbs them slightly

to provide a perfect account of the ordering of the observed dissimilarities, and attempts

to force the points into a coplanar set without unduly disturbing the ordering, thereby

minimising the dimensionality of the solution,

Although the technique proposed by Shepard (1962a) established the qualitarive

criterion of monotonicity and a procedure for achieving it in a space of minimal dimen-

sionality, it is the work of Kruskal that is generally considered to have established a

solid foundation for non-metric multidimensional scaling. In the first of a pair of papers

(Kruskal, 1964a), he proposed an explicit measure of the goodness of a non-metric MDS

representation, analogous to the VAF, known as stress. The stress of a configuration can

be intuitively understood by consideration of Figure 2.3, which plots a hypothetical set

of dissimilarities against the corresponding distances in an MDS configuration (depicted

by stars). It is clear from looking at the stars that the relationship between distances and

dissimilarities is not monotonic. There exists a set of numbers r¿¡ thaT one could substi-

tute for the distances so that Dn.i (d,¡ - "n¡) 
is minimal, providing that the relationship

is monotonic (this substitution is depicted by the plotted circles). Leaving aside for the

moment the method by which the monotonic numbers r,¿¡ ãre calculated, it is clear that

the discrepancy between these numbers and the configuration distances á¿¡ represents a

measure of the extent to which the relationship between the observed dissimilarities d¿¡

and configuration distances d,¿¡ departs from the ideal of perfect monotonicity, In order

that the stress be invariant under dilation of the space, the measure Kruskal proposed is

given by,

Ð0.¡ (åu¡ - ,o¡)
îc

L;<¡ d'i,
stress : min

T
such that z¿¡ satisfies monotonicity,

and is the most commonly used non-metric measure of fit. Simple algorithms for finding
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Figure 2.3: Scatterplot of a hypothetical set of dissimilarities against the corresponding

distances in an MDS configuration (*). The set of monotonic points used for calculating
the stress of this configuration are also shown (o). Based on Kruskal (7964a, fig. a).

the distances d¿¡ that minimise the stress, along with the monotonic numbers rij are given

by Kruskal (1964b). Briefly, Kruskal's scaling algorithm distributes the co-ordinates

randomly in a space of some dimensionality, and then uses gradient descent optimisation

(e.g., Powell,1977) to minimise the stress in the same manner that least squares scaling

minimise the sum squared error.

The adoption of non-metric measures such as stress introduces substantial changes to

the properties of the models. Importantly, the representation need not predict that simi-

larities (or dissimilarities) satisfr the triangle inequality. In fact, the ordinal information

in any proximity matrix can always be perfectly accommodated by an r¿ - 1 dimensional

space. However, it has been suggested that non-metric spatial representations should still

satisf, (or closely approximate) two constraints known as intradimensional subtractivity

and interdimensional additivity (Beals, Krantz, & Tversky, 1968; Tversky & Krantz,

29
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1970). Intradimensional subtractivity requires that the dissimilarity between two stim-

uli i and j be approximated by some monotonically increasing function of the distance

between them on the m dimensions. That is,

d¿¡ x f (lpo, - p¡tl,lp¿z - p¡21,. . .,lpo^ - p.¡^l)

where / is the same function for all stimulus pairs. Correspondingly, interdimensional

additivity implies that the dissimilarity between two stimuli is a function of the sum

of each dimensional component, denoted ó(pou,p¡¡,) (where ó(pou,p¡n): lpn* - pinl it

intradimensional subtractivity is satisfied). Therefore,

d¡¡xf \,ó(n;*,nix)
k

Such requirements act as basic representational assumptions that may be empirically

tested when evaluating a non-metric spatial representation.

As a final remark regarding non-metric MDS, Shepard's (1974) observation is im-

portant, that non-metric methods are more subject to local minima problems than metric

methods. Furthermore, he notes that when the stress of a representation is very low,

non-metric representations suffer from degeneracy problems: that is, the optimal solu-

tion is non-unique, Therefore there may be many representations that have equivalent

and minimal stress but involve different stimulus configurations, If these confìgurations

are substantially different, it may be possible to draw quite different conclusions from

these equally good representations.

2.2.5 Other Scaling Techniques

As MDS is a widely-used technique, there are a wide variety of techniques available,

only some of which are discussed in detail here. Other approaches allow for spaces

with different topologies, such as spheres (Cox & Cox, 1991) or circles in the unidi-

mensional case (Hubert et al., 1997). Alternatively, Lindman and Caelli (1978) argue
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that Riemannian spaces with constant curvature may provide psychologically appropriate

models in some circumstances, and detail an algorithm for deriving such representations.

Finally, in some circumstances it may be appropriate to take individual differences into

account. Carroll and Chang (1970) describe a metric MDS model called INDSCAL that

extracts both a stimulus space and a subject space. The similarity estimate for a pair of

stimuli i and j and the rth participant is given,

Q.
"z:lr Ðr,*lpo* - p¡*l'

1

lr

where w,¡ is the co-ordinate value for the rth participant on the kth dimension. The

subject space, therefore, gives the weightings applied to each dimension for each partici-

pant. It is thus possible to characterise the INDSCAL model as one in which there exists

a single spatial representation, in which allowance is made for different attention-weights

for each individual.

2 .3 Featural Representation

Under a featural approach to mental representation, a stimulus is described by a set of

attributes or characteristics that it possesses. For example, the features that describe a

building might include "tall", "topped by spires" and "has crosses on roof', suggesting

it is a church rather than an igloo. Classically, features are treated as all-or-nothing

properties: that is, a stimulus either possesses the feature or it does not (e.g., Tversky,

1977). However, some approaches allow features to take on continuous values (e.g.,

Shiina, 1988), in a manner that resembles dimensions in multidimensional scaling.

Although all the features in the previous example are perceptual in nature, there is no

reason why featural stimulus representations cannot incorporate conceptual characteris-

tics. Following the church example, it makes sense to think that a feature such as "place

of worship" could form part of people's mental representations of a church, even though
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this feature more closely resembles a categorical judgement than a perceptual regularity.

As outlined in Chapter 1, this pragmatic view of similarity is acceptable so long as it

is acknowledged that, to the extent that it involves high-level processes, similarity is

neither cognitively primitive nor a unitary phenomenon.

2.3.1 Notes on Notation

Since there is no standard notation for the mathematics underlying featural representation,

a consistent feature notation has been used here, Throughout the thesis, F denotes a set

of features: algebraically, F is an n x m matrix whose i,lcth cell is one if the ith stimulus

possesses the kth feature. By adopting this standard, it is convenient to denote the set of

features possessed by the ith stimulus as f¿, indicating that this refers to the zth vector

of F. Correspondingly, fi¡ denotes a scalar quantity that is I if the ¿th stimulus belongs

to the kth cluster, and 0 if it does not. This system of nomenclature is a useful way of

keeping track of a feature structure. In various places w is used to refer to the vector

of feature saliency weights, ta¡" to refer to a specific saliency weight, and the Greek

letters d, P, 0 and p to refer to hyper-parameters. In keeping with the nomenclature

used elsewhere, Tn and n denote the total number of features and stimuli respectively.

The subscripts z and j generally denote an arbitrary stimulus, and k usually denotes an

arbitrary feature.

One source of conflict with this notation is that is common to refer to the functional

forms of various models using / and g. In order to avoid any potential confusion,

this convention has been abandoned. Lower case Greek letters are avoided for similar

reasons. Since there is some relationship between the hyper-parameters a, p, 0 and p

and these functional forms, there is a weak case to be made in favour of using uppercase

Greek letters for the functions, This is in fact the approach adopted, using ,A and T for

this purpose, but the true reason for this is that these symbols are visually distinct from
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the other symbols used to denote featural representation.

2.3.2 Featural Similarify Models

Tversky (1977) proposed two general featural models that describe the similarity between

two stimuli in terms of the features they share (common features) and the features that

distinguish between them (distinctive features). If fiafj denotes the features common

to the ith and jth stimuli, and f¿ - f¡ denotes the features possessed by the ith but not

the jth stimulus, then the first of these models, known as the Contrast Model, is given

by

iì¿¡ : ?l\(f¿n fr) - aÄ(f¿ - fi) - PL(fj - fi), (2.2)

where Â is a monotonically decreasing function and 0, a, and B are non-negative pa-

rameters that assign weights to each of the terms. The Contrast Model assumes that

similarity is a linear function of the common and distinctive features components. Tver-

sky's Contrast Model is discussed in some detail in Chapter 4, and a Modified Contrast

Model is considered, that has some advantages over Tversky's. Alternatively, Tversky

proposed the Ratio Model,

ê : ^(f,nfi) o?\"q - L(f¡ n fj) + a.A.(f¿ - f) + Blr(fi - f¡)' \-'")

in which similarity is given by the ratio of the common features term to the sum of the

cornmon and distinctive features terms. However, neither the Contrast Model nor the Ra-

tio Model are generally employed by the clustering algorithms used to analyse similarity

matrices. Some clustering algorithms do not explicitly fit any well-specified psycholog-

ical model, whereas others implement special cases of Tversky's models. The following

sections discuss hierarchical clustering methods and additive clustering algorihms.
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2,3 .3 Hierarchical Clustering

A large number of clustering procedures exist for fìnding hierarchically organised feature

structures (see Hartigan, 7975 or Johnson, 1967, for instance), In these representations,

any two clusters are either disjoint (do not have any common stimuli) or nested (one is

a strict subset of the other). It is a simple matter to demonstrate that this is sometimes

an unduly restrictive constraint. For example, the features of "red" and "big" are both

psychologically plausible, yet are clearly neither disjoint nor nested: there are big red

things, small red things, big non-red things and small non-red things, However, hier-

archical clustering procedures are less computationally expensive than non-hierarchical

procedures, Furthermore, there are many situations in which the hierarchical constraint

is highly plausible (discussed shortly with regard to trees).

Most hierarchical clustering procedures begin by assigning each stimulus to a triv-

ial "cluster" to which it is the sole member. At each stage of the algorithm the two

most similar clusters are united. This process continues until only one cluster remains,

containing all of the stimuli. The hnal clustering solution consists of all the clusters

found during the procedure (excluding the trivial clusters containing one stimulus). The

difference between the various procedures regards how the similarity between two clus-

ters is calculated. In single-link clustering (Sneath, 1957; Sokal & Sneath, 1963), the

similarity between two clusters is given by the greatest similarity of any member of one

cluster to any member of the other cluster (a maximum similarity rule), Contrastingly, in

complete-link clustering (see Johnson, 1967) the similarity between two clusters is equal

to smallest similarity between stimuli in different clusters. Other hierarchical clustering

schemes use the average or median similarity between stimuli in different clusters (see

D'Andrade, 1978; Hartigan, I975).
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2.3 .4 Additive Clustering

Additive clustering (Shepard &, Arabie,1979) is a framework for deriving featural repre-

sentations in which the similarity between two stimuli is given by the sum of the weights

of their shared features. That is,

s¿¡:Dwxf¿*f¡n, (2.4)
k

where f ¡¡ is a binary-valued cluster membership variable and tu¡ is the cluster weight.

If S: [.4¿¡] denotes the n x n matrix of similarity-estimates under the model, F: [/,*]

denotes the n x m matrix whose binary valued cells indicate which objects belong to

which clusters, and W is an n x n matrix whose main diagonal entries contain the cluster

weights *: {rr,'ti)2t...,w*} and whose other elements are zero, then the additive

clustering model can be written,

where F/ denotes the matrix transpose of F. The framework has considerable status as

a model of human conceptual structure as a special case of Tversky's (1977) Contrast

Model, namely a common features model (0 : I, t : þ: 0) with an additive functional

form for Á..

Additive clustering differs from hierarchical clustering in that there is no requirement

that the cluster structure be nested. This flexibility affords representational possibilities

that hierarchical clustering schemes lack, as demonstrated in the two additive clustering

representations shown in Tables 2.1 and2.2. In both tables the Variance Accounted For

(VAF) is reported. When analysing similarity matrices, this takes the form,

F,.WFs

VAF : 1 -D¿'¡ 
(s¿¡ - s¡¡)-2 

.

Do.¡ (s¿, - s)" '
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Table2.l: The six-feature additive clustering representation of the drug use data (Huba
et al., l98l) preferred by the Stochastic Complexity measure (see Section 3. l) for most
reasonable precision assumptions. This representation was found using a stochastic
hillclimbing algorithm resembling Lee's (in press) approach, and is an original analysis.

Feature Weight

Cigarettes, Beer, Wine, Liquo¡ Marijuana, Hashish

Beer, Wine, Liquor

Cocaine, Tranquilizers, Medication, Heroin, Marijuana, Hashish, Inhalants,

Hallucinogenics, Amphetamines

Tranquilizers, Hashish, Hallucinogenics, Amphetamines

Cigarettes, Beer, Wine, Liquor, Tranquilizers, Marijuana, Inhalants, Amphetamines

Liquor, Cocaine, Tlanquilizers, Heroin, Hashish, Inhalants, Hallucinogenics,

Amphetamines

Additive Constant

0.257

0.1 75

0.151

0.1 38

0.122

0.073

0.026

Variance Accounted For 92.2%

where s denotes the arithmetic mean of the empirical similarities. Both of these rep-

resentations account for most of the variance in the data, which is made possible by

allowing the features to overlap arbitrarily. For example, five of the eight features in

Table 2.2 capture magnitude-related characteristics of the ten numbers (e.g., "big num-

bers", "small numbers", etc.). The remaining features capture mathematical properties,

such as "powers of two" and "multiples of three". However, in order to represent these

two types of characteristics, the features must overlap arbitrarily since, for instance,

the powers of two are neither disjoined from nor nested within the magnitude-related

features.
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Table 2.2: The eight-feature additive clustering representation of the Arabic numeral
domain (Shepard et al., 1975) data reported by Tenenbaum (1996).

Feature Weight

Iz

012
0.444

0,345

0.331

0.291

0.255

0.216

0.2t4

0.172

0.148

4

369
6189

23456

8

135
r234

7 9

45678
Additive Constant

Variance Accounted For 90.9%

ADCLUS

The original additive clustering algorithm (ADCLUS; Shepard & Arabie, 1979) em-

ployed a heuristic method to reduce the space of possible cluster structures to be searched.

Shepard and Arabie observed lhat a subset of the stimuli in the domain is most likely

to constitute a feature if the pairwise similarities of the stimuli in the subset are high.

They define the s-level of a subset, C, to be the lowest pairwise similarity rating for two

stimuli within the subset. Further, the subset C is elevated if and only if every larger

subset that contains C has a lower s-level than C. The ADCLUS algorithm consists

of two distinct stages. In the first step, all elevated subsets are found. In the second

step, the saliency weights are found and the subset further reduced. The weight initially

assigned to each potential cluster is proportional to its rise, defined as the difference

between the s-level of the subset and the minirnum s-level of any subset containing the
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original subset. The weights are iteratively adjusted by using the first partial derivatives

of the VAF with respect to each elevated subset, denoted ffi, und given by the formula,

õu _ nDx¡,rcr Go¡ - 3o¡)

ô.r:' D*¡tu_ 
'where C¿ denotes the set of all pairings of the objects that comprise subset k. At each

iteration a small step is taken in the direction of ffi, which is then updated. Deletion

of subsets also occurs iteratively, where any subset whose weight falls below a preset

criterion is removed from the list of candidate clusters. This iterative process continues

until the length of the gradient vector falls below a specified level.

Although the elevated subsets heuristic has become unnecessaty due to advances in

computing technology, it is interesting to observe that the ADCLUS algorithm performs

fairly well in comparison to modern algorithms, and produces reasonable solutions to

overlapping clustering problems.

MAPCLUS

The MAPCLUS algorithm (Arabie & Canoll, 1980) employs a mathematical program-

ming approach to the clustering optimisation problem, by embedding the discrete opti-

misation in a continuous one. The cluster membership matrix F is initially allowed to

assume continuously varying values, rather than the binary membership values required

in the final solution. An error function is defined as the weighted sum of two parts, the

first being the sum squared error and the second being a penalty function designed to

push the elements of F towards 0 or 1. MAPCLUS requires the number of features to

be specified in advance.

Exp ect ation Maximis ation

A statistically principled approach suggested by Tenenbaum (1996) is Expectation Max-

imisation (EM). Under this probabilistic approach, the observed similarities are assumed
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to be drawn from Gaussian distributions with a common variance ø. The EM algorithm

for additive clustering requires the number of clusters to be specified in advance, and

consists of an alternating two-step procedure. In the E-step, the saliency weights are held

constant, and the expected sum squared error is estimated, with the aim of calculating

the "energy function",

_-jult,",, - s,,)'laul¿.jl

Since the observed similarities and the saliency weights are constant in the E-step, the

expectation is taken only over the elements of the feature matrix F. Furthermore, the

probability of a given feature matrix is proportional to

/ t, \
e"p I -- I('n¡ - so¡)' | .

\ "o'o< /
Therefore, as Tenenbaum (1996) observes, at small a values, only the more probable

feature matrices make a substantial contribution to the expected sum squared error. Using

the expected values for the cluster membership values that are calculated during the E-

step, the M-step finds a new set of saliency weights that minimise the expected sum

squared error. As the EM algorithm iterates, the value of o is reduced, and the expected

values for the cluster membership values /¿¿ converSe on 0 or 1, yielding a final feature

matrix F and saliency weights w.

Stochas tic Hillclimbing

Lee (in press) has proposed a simple stochastic hillclimbing algorithm that "grovr's" an

additive clustering model. The algorithm initially specifies a single-cluster representa-

tion, which is optimised by "flipping" the elements of F (i.e., Íon - 7 l¿ù one at

a time, in a random order. Every time a new feature matrix is generated, best-fìtting

saliency weights w* are found by solving the corresponding non-negative least squares

problem (see Lawson & Hanson, 1974), and the solution is evaluated. Whenever a
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better solution is found, the flipping process restarts. If flipping /¿¡ results in an infe-

rior solution, it is flipped back. If no element of F can be flipped to provide a better

solution, a local minimum has been reached. Since, as Tenenbaum (1996) observed,

additive clustering energy landscapes tend to be riddled with local minima, Lee's algo-

rithm allows the locally optimal solution to be "shaken',, by randomly flipping several

elements of F and restarting, in order to find a globally optimal solution. Once this

process terminates, a new (randomly generated) cluster is added, and this solution is

used as the starting point for a new optimisation procedure. Importantly, Lee evaluates

a solution using the Stochastic Complexity measure (Rissanen, 1996, see Section 3 . l),

which provides a statistically-principled method for determining the number of clusters

to include in the representation, since the Stochastic Complexity will deteriorate as the

representation becomes too complex.

2 .4 Tree Representation

Tree models of similarity judgements represent each stimulus by terminal nodes in a

connected, acyclic graph (see Figures 2.4 and 2.5, for instance) and measures the dis-

similarity between two stimuli by the length of the unique path that connects them. The

basic representational assumption made by tree models is that the stimuli are hierar-

chically organised. For instance, Pinker (1994, p. a6\ argues that human judgements

regarding natural kinds (e.g., plants and animals) are inherently hierarchical, reflecting

an adaptation to a hierarchical structure in the environment. Therefore, as Corter (1996,

p. 52) remarks, "any set of objects that has arisen through an evolutionary process of

'splitting' or successive differentiation is likely to be modeled successfully by some soft

of tree model".

Along similar lines, Tversky and Hutchinson (1986) defrne two measurements for a

similarity matrix, called centrality and reciprocity. Centrality is high when most stimuli
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Figure 2.4: Tbe four-node tree preferred by the BIC for the drug use data (Huba et al.,

1981) under reasonable precision estimates, explaining 86.8% of the variance. This

representation \¡/as found using Lee's (submitteda) successive differentiation algorithm

and is an original analysis.

share the same "nearest neighbour" (i.e., the stimulus that they are most similar to),

Reciprocity is high when the nearest neighbour relation tends to be symmetric (i.e., if

i is j's nearest neighbour, then 7 is i's nearest neighbour), They note that tree repre-

sentations typically display high centrality and low reciprocity, and argue that trees are

therefore appropriate representations for stimulus domains displaying the same pattern.

Finally, Pruzansky, Tversky, and Carroll (1982) suggest that additive trees appear more

appropriate for conceptual domains, whereas spatial models tend to be more suited to

perceptual stimuli.
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Figure 2.5: Best fiuing four-node tree for Johnson and Tversky's (1984) risk data, ex-
plaining 625% of the variance. This representation was found using Lee's (submitteda)
successive differentiation algorithm, and is an original analysis. Compare Lee's (1999)
five-node tree for the same data set.

2.4.1 Types of Trees

The simplest type of tree is the star tree, also called the singular tree. In a star tree, all

stimuli are represented as terminal, or leaJ, nodes connected to a single internal (stem)

node. The arcs connecting each stimulus to the stem node may be of any length. Star

trees satis|l the following relationship:

dn¡ ï à*, : d,¿n I â"¡, : d,u r à¡n. Vi, i,lç,1

Consequently, star trees are highly constrained, and rarely constitute useful models of
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mental representation. In contrast, ultrametric trees may include multiple internal nodes.

However, ultrametric trees are constrained so that every stimulus is equidistant from one

of the internal nodes, called the rool. The corresponding ultrametric inequality is given

ì"a¡ { max(d*,d,r) vi, i,k.

It is noteworthy that ultrametric trees are formally equivalent to hierarchical clustering

schemes, and therefore can be interpreted as common features representations according

to Tversky's (1977) Contrast Model (Corter & Tversky, 1986).

The most widely-used tree-based similarity model is the additive tree model (Sattath

& Tversky, 1977). Additive trees relax the ultrametric constraint, allowing stimuli to be

an arbitrary distance from the root node. Accordingly, additive trees are constrained by

the additive inequality (Buneman, l97l),

d¡¡ I dnL ( max{d¿¡ I d'¡t,d'¡n¡ d;L) Vi,i,k,,l. (2.5)

As Corter (1996) notes, this means that there is no longer any compelling justification

for the choice of any one point as "the" root for an additive tree. Arguably, additive

trees make more sense in an unrooted than a rooted form. Two examples of unrooted

additive tree representations are shown in Figures 2.4 and2.5,

Additive trees can also be interpreted as featural models, but in a different manner to

ultrametric trees. As observed by Corter (1996), the natural interpretation of an unrooted

additive tree is as a distinctive features model according to Tversky's (1977) Contrast

Model, by including distinctive features for every edge in the tree, with saliencies equal

to the edge lengths. As special cases of additive trees, one could interpret ultrametric

and star trees in the same manner. Alternatively, Corter notes that a rooted additive tree

with rn internal nodes can be treated as the sum of an ultrametric tree and a star tree.

If so, the ultrametric tree can be interpreted as m - t hierarchically organised common
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features, and the singular tree as n distinctive features each containing only the one

stimulus.

Two extensions of the additive tree model should be mentioned. Firstly, Cunningham

(1978) proposed a bidirectional additive tree model, in which some or all of the edges in

the tree may be asymmetric. That is, some of the edges may be longer going from A to B

than from B to A. This allows trees to accommodate asymmetric similarity judgements,

when s¿¡ I s¡;. If this approach is adopted, it is important to recognise that asymmetric

edges constitute two free parameters.

Secondly, Corter and Tversþ (1986) describe an extended tree model, which derives

an additive tree plus a set of common features. Some segments on the additive tree are

"marked" by a common feature: these segments do not count towards the dissimilarity

of stimuli that both possess the common feature. Although Corter and Tversky (1986)

demonstrate that this "tree plus exceptions" model can frt data that are inherently non-

hierarchical, it is not clear how the extended tree is to be interpreted psychologically,

If the tree is treated as a set of features, it is implausible to represent the distinctive

features by a different psychological structure (the tree) to the common features (the ex-

ceptions). It would be preferable to adopt a single representational framework (features)

that simultaneously captured common and distinctive components. It is worth noting that

Tversky's (1977) Contrast Model does not allow this, since it assigns a single weighting

of common and distinctive features applied to all features. However, in Chapter 4 a

featural model is introduced (the Modifìed Contrast Model) that allows for common

features and distinctive features to be extracted in the one representation.

2.4.2 Growing Additive Trees

Several different algorithms have been proposed for frnding tree structures in dissimilarity

data. This section outlines four ofthese approaches.
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ADDTREE

Sattath and Tversky's (1977) ADDTREE algorithm begins by linearly transforming the

observed dissimilarities, adding a constant to each dissimilarity large enough to ensure

that the triangle inequality is always satisfied. Then the "neighbourhood scores" are

calculated for all pairs of stimuli. The neighbourhood score .ly' for a pair of stimuli is

initially zero, but is incremented according to the following rule for all i,, j, k and I: if

d¿¡ I dnt 1 d¿n I d,y: d,u I cl¡n

then both N(i,, j) and 1/(k,l) are increased by two. However, if

d¿¡ I d'm 1d'¿t" I d4 < d'u I d'¡n

then.A/(ri, i) and ¡/(k,l) are increased by two, and l/(2, k) and N(i,I) are increased

by one. The simplest version of ADDTREE-style algorithm would "merge" two stimuli

if and only if they had the highest neighbourhood score. These stimuli would then be

attached to the same internal node on the tree, and the corresponding rows and columns

in the proximity matrix averaged. This process would repeat until all stimuli have been

connected to the tree. Both Sattath and Tversky's (1977) algorithm and Corter's (1982)

modification employ variants on this idea, but allow for multiple mergings on each

iteration. However, since Abdi, Barthelemy, and Luong (1984) and Barthelemy and

Guenoche (1991) have demonstrated that this approach generally performs quite poorly,

it is not discussed further.

Alternating Least Squares

The alternating least squares algorithm developed by Carroll and Pruzansky (1975, 1980)

uses the observation that an additive tree can be decomposed into a star tree and an

ultrametric tree. Accordingly, their algorithm initially fixes the lengths of the star tree
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arcs, and uses hierarchical clustering to find an ultrametric tree, In the next step, the

ultrametric tree is held constant and the star tree arc lengths are rescaled, These two

steps are repeated until the star tree and the ultrametric tree stabilise. The additive tree

is then recovered by adding the star and ultrametric trees.

Mathematical Pro gramming

A mathematical programming approach is adopted by de Soete (1983), treating additive

tree scaling as a continuous optimisation problem applied to the proximity matrix. The

optimisation function contains a badness-oÊfit error term and a penalty term designed to

push the derived matrix towards satisfying the additive inequality, The result, therefore,

is a matrix that satisfies the additive inequality but has as little discrepancy from the

raw data as possible. Once this is complete, the additive tree that perfectly accounts for

the derived matrix is recovered.

Successive Dffirentiation

Lee's (submitteda) successive differentiation algorithm initially finds the best-fitting star

tree, and adds internal nodes to the tree one by one. The goodness of any tree is

calculated using the Bayesian Information Criterion (BIC; see Section 3.1.2) which

provides a trade-off between data-fit and model complexity. As a result, the process of

adding nodes stops once the BIC starts to deteriorate. This deterioration occurs once the

improvements to data-fit no longer justify the increase in model complexity that occurs

when an extra node is added. Therefore, a tree is sought that optimises the BIC.

Nodes are introduced by a process of "splitting". Each internal node in the tree is

associated with an error E given by

E(k): t I
iÇck j+i
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where C* denotes the set of stimuli (i.e., terminal nodes) that are connected by an edge

to the kth internal node. When a new node is added, it is connected to the internal

node with the greatest associated error (the "old node") and some of the nodes (both

internal and terminal) that were connected to the old node are moved onto the new node.

A stochastic hillclimbing approach to combinatorial optimisation is used to determine

which nodes to move, with the aim of fìnding the confrguration with the best BIC value,

2 . 5 Network Representation

Network models of similarity data represent stimuli as nodes in a graph, connected to one

another by edges. Unlike additive trees however, network models may contain cycles,

but do not possess non-stimulus nodes. A graph is defined as a set of connections, and

thus describes a set of ways in which one can go from one node to another. It is therefore

possible to interpret a graph as describing a set of "cognitive paths". Graph-theoretic

models of similarþ data were first canvassed in a papeî by Harary (1964), which

considered the embedding of basic concepts such as adjacency, equivalence and between-

ness. The paper also proposed a fairly simple method for generating a representation,

by including a link between two nodes if their similarity is sufficiently high. However,

this method does not define any measure of fit, which makes it diflicult to evaluate the

representation. To the author's knowledge, this method has never been implemented.

A commonly adopted network similarity model is to assign a length to each edge in

the graph, and estimate the similarity between two stimuli by the length of the shortest

path that connects them (Klauer & Carroll, 1991). This "minimum path" similarity

model satisfies the triangle inequality (Hakimi & Yau, 1965; Goldman, 1966). This

model has been fit by a number of non-metric algorithms, such as Feger and Bien's

(1982) network unfolding algorithm, Orth's (1988) monotonic network analysis, and

Klauer's (1988, 1989) ordinal network representation, as well as Klauer and Carroll's
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(1989, l99l) metric MAPNET algorithm and Hutchinson's (1989) NETSCAL algorithm

that uses both metric and non-metric properties.

A representational assumption made by all of the network algorithms mentioned

above is that the derived graph must be connected. That is, for all pairs of nodes ,i

and j, there must be a path that connects the two. Psychologically, this amounts to

the assumption that the domain under examination is in some way homogeneous. For

instance, if the domain in question consisted of the concepts "red", "green", "blue",

"chaiÍ", "table", "stool", it does not make sense for the derived graph to be connected.

Logically, there should be two distinct connected graphs, consisting of colours on the one

hand, and furniture on the other. However, given that most domains that one considers

are likely to be homogeneous, this assumption will rarely cause problems.

2 .6 Alisnment-Based Similarity Models

Similarity is closely related to analogy, and it is from analogical reasoning, and the

idea of structure-mapping (Gentner, 1983) that the alignment-based approach draws

inspiration. It has previously been argued (Markman & Gentner, 1993) that similarity

judgements involve a process of finding correspondences between stimuli that satisfo

relational constraints. Therefore, an octopus' tentacle is more likely to be matched with

a human arm than with a gigantic udon noodlel, because the tentacle and the arm serve

similar functions, and are physically attached to an animal in a similar manner. Indeed,

Markman and Gentner (1993) and Goldstone (1998) report studies in which participants

appeared to prefer making similarity judgements on the basis of relational structure

rather than surface attributes, though they acknowledge the artificiality of the studies,

since - like perceptual and conceptual features - relational structures tend to correlate

with surface features in real-world environments,

lThough hopefully not if food is the topic of conversation.
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The notion of matching relational elements as well as perceptual attributes recalls

the distinction between perceptual and conceptual similarities, and indeed there is some

correspondence between the two. As Goldstone (1998) observes, one can posit featural

representations that include features for relational elements. However, he argues that this

approach can rapidly lead to a proliferation of features, and fails to make the fundamental

distinction between object components and their relational structure.

In the context of analogical reasoning, there are a number of models that take such an

approach, including the Structure-Mapping Engine (SME, Falkenhainer, Forbus, & Gen-

tner, 1989; Forbus & Oblinger, 1990) and the Analogical Constraint Mapping Engine

(ACME;Holyoak &Thagard,l989). In this tradition, Goldstone proposes a connection-

ist model called Similarity as Interactive Activation and Mapping (SIAM; Goldstone,

1994, 1998; Goldstone & Medin, 1994), which takes low-level representational objects

such as features and dimensions, along with the structural relations between them, and

attempts to map one stimulus onto another. The SIAM network is built up of a large

number of "hypothesis nodes": the activation level of a node represents the extent to

which the network "wants" to map one aspect of the ith stimulus onto another aspect

of the 3th stimulus. Connections between pairs of nodes are excitatory if the mappings

they denote are consistent, and inhibitory if they are inconsistent (e.g., if they map a

single aspect of i onto multiple aspects of j). Initial activation levels are set according

to the perceptual similarity of the low-level features.

One advantage of SIAM is that it explicitly considers the process by which similarity

judgements are made. However, it does specify highly elaborate representations on

the basis of intuitive reasonableness, rather than basing them on evidence supplied by

empirical data, which suggests some caution when evaluating the model. Furlhermore,

SIAM is justified by Goldstone (7994,1998) largely in terms datafft, without considering

issues such as model complexity, Overall, the alignment-based approach shows some
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merit, but is as yet less fully developed than other representational theories

2 .7 Transformational Similarity Models

The transformational approach to mental representation is perhaps the least clearly ar-

ticulated of the various frameworks. At its core is the notion, expressed by a number

of authors, that the relationship between two stimuli can be characterised by a set of

transformations that carry one stimulus into the other (e.g., Carlton & Shepard, 1990a;

Freyd, 1987; Hoffman, 1966; Lewin, 1936; Leyton, 1992; Vickers, 1996,2002), This

idea can be formalised in any number of ways, and there is substantial variation amongst

psychologists regarding how best to do so. Consequently, it makes little sense to refer to

"the" transformational approach, Furthermore, few transformational theories are simi-

larity models. Consequently, this discussion of transformational similarity is necessarily

speculative, resembling a sketch of a future modelling framework rather than a summary

of an existing one.

Empirical evidence favouring a transformational approach of some kind is provided

by Imai (1977, 1992), who presented participants with simple linear patterns such as

XXXooXoO or ooooOXXX. Their judgements demonstrated that the similarity of such

patterns is sensitive to reflections (e.g., oooooxxx --+ XXXooooo), inversions (e.g.,

xxxoooox ---+ oooxXXXo), phase shifts (e.g., ooxxoooo ---+ oooXXooo) and changes

of scale (e.g., OOXXOOXX --+ OXOXoXox), These findings are naturally interpreted by

supposing that people rate stimuli as more similar when they are related by simple,

psychologically plausible transformations of this kind. This claim lies at the heart of the

transformational approach. The difficulty lies in specif,ing transformations appropriate

to the circumstances, and fìnding a general formalism in which to express the idea.

In an ambitious and broad-reaching endeavour, Leyton (1986a, 1986b, 1992) pro-

poses a very general transformational theory of cognition. Central to this theory is the
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proposition that a stimulus is naturally perceived (i.e., represented) as having resulted

from a set of generative transformations applied to a basic object. These transformations

introduce asymmetries into the basic object: the representation of a stimulus, according

to Leyton, should capture these asymmetry-inducing transformations, called it's "causal

history". For example, a parallelogram is perceived as a bent rectangle, a rectangle as a

stretched square, a square as four rotated lines, and a line as a displaced point (Leyton,

1985). The underlying mathematics of Leyton's theory have been strongly criticised by

Hendrickx and Wagemanns (1999), so this discussion is restricted to broad qualitative

ideas.

Leyton (1989) generalises the notion of causal history to stimulus comparisons with

his theory of shape transformations, which describes the causal history of "blobby

shapes" (i.e., closed contours with no corners). This theory details a variety of trans-

formations such as protrusion, indentation and bifurcation by which one shape can be

morphed into another. The theory is intuitively plausible, although it only allows for

the sequential operation of processes. For example, in order to transform a circle into a

starfish-shaped blob, five protrusions must be produced. Leyton's theory requires them

to be introduced one by one, even though it is equally plausible to think that they grow

at the same time.

This qualification notwithstanding, the theory permits a transformational interpreta-

tion of similarity, It is possible to represent a set of blobs as nodes in a graph with

edges linking those shapes that differ only by single transformation (see Leyton 7992,

Figure 2,16, for instance). The dissimilarity between two blobs could be measured as

the number of transformations required to connect the two, emphasising the qualitative

signif,rcance of types of transformations. Alternatively, the length of each edge could

be specified by the "extent" of the transformation required to mutate one blob into its

neighbour, The dissimilarity between two blobs would then be given by the length of
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the shortest path connecting them (making it a network representation in the sense de-

scribed earlier). This approach emphasises "transformational distance" over the number

of transformations required, Furthermore, it is now possible to include three blobs that

differ only in the extent to which a transformation is applied (e,g., a circle stretches into

an ellipse, which in turn stretches into a more eccentric ellipse). Interestingly, as more

blobs are added to the stimulus set, the graph becomes more dense, forming a continuum

in the limit. The axes of the resulting spatial representation can therefore be interpreted

as transformations.

What metric should apply in this space? In Leyton's theory, transformations can only

be applied one at a time, and the edges in the graph therefore represent single transfor-

mations, The result of this independence is that the city-block distance is the natural

metric in the space. However, if transformations are permifted to occur simultaneously,

then the graph would contain edges that directly connect stimuli that are distinguished

by multiple transformations. The same co-ordinate space would result, but the Euclidean

metric would prevail.

Another spatial-based transformational approach can be found in Carlton and Shep-

ard's (1990a, 1990b) explanation of apparent motion: when a stimulus is displayed in

two different positions and orientations a short time apart, people perceive it as having

moved between the two locations along a path. Carlton and Shepard describe the loca-

tion of an object in terms of its location in three-dimensional Euclidean space (83), and

its orientation as co-ordinates on the surface of a three-dimensional sphere (^93). They

then observe that the path of apparent motion follows a geodesic path in the resulting

six-dimensional manifold (83 x 
^93).

Transformational ideas have the potential to inform representational theory in other

\'/ays. Hoffman's (1966, 1968, 1970, 1984, see also Dodwell, 1983 and Hoffìnan &

Dodwell, 1985) "geometric psychology" is a transformational approach based on group
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theory (see Armstrong, 1988 for instance), applied mainly to visual perception. The

theory is largely concerned with perceptual invariants such as size invariance (where an

object is perceived as being the same size regardless of how far away it is). The theory is

based on Lie groups, which are generated by infinitesimally-small transformations: for

example, any translation in the r-dimension can be produced by repeated applications of

the infinitesimal translation S. Taken together, $ and ft E"n"tut" a two-dimensional

space. However, a two-dimensional space is also generated by the rotation -Uf, + rft
and the dilation "fi + Uft. The difference between the two emerges when consid-

ering distance metrics. The city-block metric in the first space adds displacement in

z to displacement in y to calculate distance. In the second case, however, city-block

distance is calculated as by summing the length of the rotational arc and the length of

the dilation. As it happens, this corresponds to the distinction between using Cartesian

co-ordinates and Polar co-ordinates. The transformational approach highlights the im-

portance of considering the manner in which a spatial representation is generated, since

it can substantially affect the metric. Furthermore, if stimulus dimensions are subject to

an attention-weighting process (e.g., Kruscllke, 1992; Nosofsky, 1986), it is irnportant to

consider whether attention shifts from the r-dimension to the g-dimension, for instance,

or from the rotation component to the dilation component.

Another regard in which the choice of generating transformations is relevant is

demonstrated by Feldman's (1997) theory of perceptual categories. According to this

theory a single observed stimulus is considered to be a member of a category defined

by a consequential region in a psychological space in the sense referred to be Shepard

(1987). This region is described as the manifold that is generated using the smallest set

of transformations that can generate the stimulus. Therefore, people generalise from a

square to other squares, but not to all rectangles. Importantly, different transfotmation

sets yield different generalisations (see also Weiner-Erhlich, Best, & Millwood, 1980).
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The manifold of squares that is embedded in the space of rectangles will only emerge

as a natural generalisation if the dilation transformation rfi + A& is among the set

of transformations available. In fact, this theory suggests that a two-dimensional space

could well be characterised by many transformations, even though only two are required

to generate it.

This discussion of transformational similarity has largely been concerned with con-

sidering spatial (and to a lesser extent network) representations. However, it may be

possible to provide an account of featural representation in terms of discrete groups,

though this is not done here. It may be that transformational ideas have the potential to

provide a unified framework for modelling similarity, but at this stage such an account

has not been developed.

2 .8 Summary & General Discussion

Over the last 50 years or so, a wide variety of frameworks have been proposed for

modelling similarity. Spatial and featural approaches have been extensively studied. So,

to a lesser degree, have tree and network representations. In contrast, alignment-based

representation is a new approach to similarity modelling, and transformational ideas

have yet to be formalised as a modelling framework. Each of these approaches makes

different assumptions about the nature of similarity judgements, and it fair to say that

each has its strengths and weaknesses. Correspondingly, it makes sense to choose the

representational framework best suited to the problem at hand, rather than attempting to

apply a single approach on every occasion.
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3. On Representational Complexity

The psychological theories discussed in the previous chapter address an important ques-

tion, namely "What kinds of structures make sense as models of human mental represen-

tation?" In practice, however, a researcher who has just collected a set of similarity data

is faced with a somewhat different question, "'What is the specific representation that

most probably gave rise to this particular data set?" To anslùr'er this, the researcher must

address a psychological problem and a numerical problem. The psychological problem

requires the researcher to select a representational framework (e.g., featural representa-

tion) and a specific similarity model (e.g., the common features model used by additive

clustering).

Once a similarity model (say, common features) has been chosen, the numerical

problem is immediately apparent. The common features similarity model does not specifu

which set of features F to use, nor what saliency weights w to apply. Indeed, the number

of common features representations that might have given rise to the data is astronomical.

Thus the numerical problem, simply put, is the task of finding the best representation

from the set of all representations possible under the similarity model.

This problem has two aspects. The first part, which might be called the algorithmic

problem, involves finding an effrcient and effective procedure for searching through

the set of possible representations. This is an optimisation problem, and each similarity

model constitutes a different problem that may call for a different solution. Consequently,

there is little need for a general discussion of numerical optimisation techniques in this
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thesis. Instead, whenever a new optimisation problem arises, an algorithm is developed,

and an evaluation of its performance is presented.

The purpose of this chapter is to address the second aspect, the model selection

problem. Again, this problem can be succinctly stated: "What makes one representation

better than another?" The model selection issue has been discussed in general terms by

a number of authors (e.g., Collyer, 1985; Myung, 2000; Pitt, Myung, &, Zhang, 2002;

Roberts & Pashler, 2000), and although there is little consensus on the right way to

choose between models, there is considerable agreement on the wrong way to do so.

The practice, common in psychology, of selecting the model with the greatest data-fit

(e.g., the highest VAF), is almost universally condemned (though see the discussion

between Massaro, Cohen, Campbell, & Rodriguez,200l and Pitt, Kim, & Myung, in

press).

The essence of the argument against selection-by-fit arises from consideration of

the type of data prevalent in psychology. Inevitably, the data will contain noise, which

means that some proportion of the variability in the data is due to measurement error,

and is not the outcome of any psychologically relevant process. Correspondingly, a

model that gives a perfect account of noisy data should be regarded with suspicion,

since it is attempting to explain the error variation in terms of a psychological process.

Crucially, this error variation will be different if the experiment is replicated, but the

psychologically relevant variation should remain the same. Therefore, the goal of model

selection is to fìnd the model that explains only the psychologically relevant variation

in the data, not the noise. A model that fits the noise is guilty of the cardinal sin of

overfitting, and will generalise poorly to new data.

Replacing selection-by-fit vvith a more principled framework is important, but not

simple. The ideal model is of course the true one, but since the true model is never

known in advance, this criterion is of no practical use whatsoever. Instead, a model
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should be assessed with regard to a range of considerations. In broad, qualitative terms,

a good model should give a good account of the data (data-f,rt). It should generalise well

to new data sets. It should not be unnecessarily elaborate. It should make appropriate

psychological assumptions, and it should be interpretable: a computational model that

lacks a sound theoretical interpretation is not a psychological theory. See Myung and

Pitt (in press) for a related discussion.

These guidelines are not easily met, and some are not amenable to quantification.

In the end, there is no substitute for scientific judgement, Nonetheless, quantitative

measures can go a long way towards providing a solid foundation for model selection.

At the very least, it is certainly possible to improve on data fit as a selection criterion.

Therefore, this chapter discusses several quantitative approaches to model selection, and

then applies these ideas to similarity modelling. The goal is to provide well-founded

selection criteria that may be used by the extraction algorithms when fitting a similarity

model to empirical data.

3 . I Approaches to Model Selection

The model selection ideas discussed in this section come from a number of backgrounds,

including computer science, statistics, and probability theory. In each case, some of the

motivation, history and applicability of the criterion to similarity modelling is considered.

3. I . I The Akaike Information Criterion

Akaike's (1973, 1983) widely-used Information Criterion (the AIC) is an approxima-

tion to the Kullback-Leibler information (Kullback, 1968), which measures how closely

two distributions resemble one another, Suppose the data set D is the outcome of

a continuous random variable x whose probability density function (pdf) is given by

/(x). Furthermore, let g(xld) denote the density function generated by the model when
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the parameter values 0 : {0r 02, . . . , 0p} are substituted. Then the Kullback-Leibler

information is given by

KL : E [ln/(x) - lne(xlá)],

where the expectation is taken over the data variable x. Since x has pdf /(x), this

becomes

KL: I rØh/(x) o*- l/(x)lne(xlr')dx

Since / /(x) ln /(x) dx is constant with respect to g(xld), the first term is disregarded.

Furthermore, since f and g are both pdfs, the Kullback-Leibler information is minimal

when /(x) and g(xlá) are as similar as possible, That is, since

I /(x) ln g(xl?) dx: -E* [ln e(xl0)] ,

the model should be chosen that maximises .Ð [n9(xl0)], which is the expected log

likelihood of g(xl?), taken over the observed data, denoted p(xl?). If the data set D

is expressed as a sample of observations r¿ drawn from /(x), it can be shown (see

Bozdogan, 2000) that

lim \tnp(r,10.) /(x)lne(x10.) dx,
1

n I
n

i:ræn--+

where 0* are the parameter values that yield the maximum likelihood estimate. This

relationship states that, as the sample size becomes arbitrarily large, the mean of the log

maximum likelihood estimate gives the expected maximum log likelihood. However,

this mean log maximum likelihood expression is a biased estimate, in that,

"l:ätnp(r¿1l.) - | r f"l rne(xld.) al + o

It is diffrcult to find exact expressions for this bias in specific cases (Bozdogan, 2000),

much less the general case. However, assuming that the true distribution /(x) lies within
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the set of density functions described by g(xld), and that the parameters are independent

of one another, the bias reduces to f lekait<e, 1974), and therefore

AIC 2n \Inp(r¿\7.) +
i.:I

1

n Ð
: -2lnp(x10.) + zt

Recalling that x describes the data distribution, this is rewritten as

AIC: -2Inp(D10.)+zlc

The AIC can be considered to consist of the data fit lerm -2lnp(Dld.) and the com-

plexity penalty terrn 2k. However, it is important to recognise that the assumptions that

parameters are independent and that the true density belongs to the model family are not

always met.

3.1 .2 Bayesian Model Selection

Bayesian statistics can be traced back to 1763, when an essay written by Thomas Bayes

was published posthumously in the Philosophical Transactions of the Royal Society of

London. Bayes' essential insight was to state "the rules for finding the probability of

an event from the number of times it actually happens and fails" (Bayes, 1763,p. 394).

This rule, known as Bayes' Theorem, was applied to statistics by Jeffreys (1935, 1961),

who argued that if a set of data D is observed, a model M that assigns D the probabilify

p(DlM) has the following probability (called the posterior probability) of being true:

p(MlD):rfDlWIS

ln contrast to the frequentist approach to statistics, Bayesian statistics require the spect-

fication of the prior likelihood of the model p(M) and the data p(D). In the context of
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model selection, however, one is rarely concerned with finding the absolute probability

of a model being true (which, in all honesty, is generally zero), but rather which of a

number of competing models is more likely to be true (or "closer" to the truth). For

instance, when comparing two models M1 and M2, it is often useful to calculate the

ratio between the posterior probabilities of the two models:

The multi-model variant of the posterior odds ratio

p(M"lD)
Ðnp(MnlD)

e@lM1)p(M1)
p(DlM2)p(M2)

p(DlM¿)p(M¿)

Dxp(DlMn)p(Mr)

has also been applied in psychology (see, for example, Lee's submittedb analysis of

retention functions).

The posterior odds ratio has two important advantages. Firstly, the p(D) term, being

common to both posterior odds, disappears from the equation. Secondly, rather than

being required to specify the absolute prior probability of each model p(Mt) and p(M2),

one needs only to speci$ the relative probability ffi. ,n" remaining t"^, ffi,
is known as the Bayes factor, denoted Be, and its use has been advocated by authors

such as Kass and Raftery (1995) and Myung and Pitt (1997). The Bayes factor is

inherently interpretable, since it compares the probability of two events (or models).

Jeffreys (1961) provides a rough guide as to the standards of evidence that should be

applied, suggesting that a Bayes factor between 1 and 3 is "not worth more than a

bare mention", whereas 3 < Bn < 10 is positive evidence, l0 < Bn < 100 is strong

evidence and Bp > 100 is conclusive, It is important to note that Jeffreys was refering

to general standards in science, and these guidelines are not hard and fast rules. Raftery

(1995), for instance, replaces 10 with 20 in the guidelines, in order to provide a parallel

with the .05 significance level in null hypothesis testing.
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When a uniform model prior is chosen (i.e., all p(M¿) values are equal), the Bayesian

comparison between models reduces to the Bayes factor, and the best model is the one

that has assigns the highest marginal likelihood p(DlM) to the data. It is important to

distinguish the marginal likelihood used in Bayesian model selection from the maximum

likelihood used in many frequentist approaches. If M is a model containing free para-

meters with values given by the vector 0, then the likelihood function p(DlM,á) gives

the probability of the data under the model at the parameter values given by d. The max-

imum likelihood function is the maximum value of the likelihood function, occurring at

the optimum parameter values 0* . In other words, the maximum likelihood is given by

p(DlM,d.). In contrast, the marginal likelihood assigns to each 0 a prior likelihood,

p(0), and is given by

p(DlM): p(DlM,0)e(0) d0I
When p(9) is a uniform prior, the marginal likelihood reduces to the integral of the likeli-

hood function. Figure 3.1 demonstrates the difference between the maximum likelihood

and marginal likelihood under uniform priors for two hypothetical single-parameter mod-

els. Notice that, although model A has the higher maximum likelihood, model B has

the greater marginal likelihood. Importantly, since the marginal likelihood measures the

fit of the model to the data across the entire parameter space, it is a superior measure

of the adequacy of the model than the maximum likelihood (see Pitt et al., in press, for

a related discussion).

Since the marginal likelihood involves an integral, it can be a difficult measure for

which to obtain analytic expressions. However, when the likelihood function is unimodal

and the majority of the integral mass lies close to the mode (i.e,, the maximum likelihood

parameters 0*), it is often well-approximated by a multivariate Gaussian distribution.

This so-called Laplacian approximation to the marginal probability (de Bruijn, 1958;
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modelA

model B

Parameter value, 0

Figure 3.1: Likelihood functions for two single parameter models A and B. Note that,
although model A has the greater maximum likelihood, model B has the greater marginal
likelihood (under uniform priors).

Kass & Raftery, 1995; Tierney & Kadane, 1986) has been previously applied to similarity

models by Lee (2001b) and Navarro and Lee (submitteda),

Another Bayesian approach is the Bayesian Information Criterion (BIC), first intro-

duced by Schwarz (1978) as an approximation to the marginal probability. The BIC,

which has been applied by Lee (2001a,2001b) to multidimensional scaling and additive

clustering, is given

BIC : -2\np(DlM, 0*) + k tn _ð/,

where k denotes the number of free parameters in the model, and ,^rI is the number

of observations in the data (for similarity matrices, this is the number of unique and

unconstrained entries in S), The BIC has the advantage that it does not require the

specification of prior densities, and is simple to calculate. The BIC approximation to

the Bayes Factor is,

BIC1-BIC2=2lnBp

o
o-
Þoos
oY
=
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and Raftery (1995) notes that the error in this approximation is of the order O(1). ln

other words, even as Iy' ---+ oo the error remains constant. However, he also observes

that, in practice, the BIC is more accurate than this error term implies.

For comparative purposes, it is worth noting that Akaike (1983) provides a Bayesian

derivation for the AIC. Like the BIC, the AIC can used to approximate the Bayes

factor, but the AIC assumes that the amount of information conveyed by the prior is

comparable to that of the data itself (Kass & Raftery, 1995). Generally speaking, this

is not appropriate for data obtained in psychology. Data sets are usually collected when

little information is already known, and thus the prior knowledge is substantially less

than the amount of information in the data.

The difference between the two measures gives rise to different model selections.

The penalty term in the BIC rises proportionally to In lrl for a given number of pa-

rameters, whereas the AIC penalty remains constant. Consequently, the BIC favours

more parsimonious models in the presence of large quantities of data. Kass and Raftery

(1995) argue that the AIC overestimates the number of model parameters, though some

criticisms of the BIC's stronger parsimony are made by Findley (1991).

3. I .3 Stochastic Complexity

Stochastic Complexity (SC: Rissanen, 1984, 1986, 1996) is based on the Minimum

Description Length (MDL) principle, which originates from computer science. Un-

der the MDL approach, a data set D is characterised as the sequence of observations

{dt, dr, . . . , dn}, and the aim is to compress the sequence as much as possible. One of

the early statements of the MDL principle was given by Kolmogorov (1965), who de-

fined the MDL as the length in bits of the shortest program that prints D and then halts.

However, this length depends on the programming language used to code the sequence.

Fortunately, Solomonoff (1964a, 1964b) demonstrated that this concern is minor, since
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the difference between two programming languages for any sequence D is independent

ofthe length ofthat sequence.

Nevertheless, Kolmogorov's notion is not easily applied in practice, since it is not

always possible to speciff the program that gives the maximum data compression. In-

stead, the approach taken by Rissanen (1996, see also Grunwald, 2000) is to apply

some coding scheme C that, although not guaranteed to give maximum compression,

nevertheless provides a reasonable approximation, A coding scheme C is some rule

that encodes a data sequence D as a binary sequence (note that D itself need not be

binary), For instance, for a set of 5 data sequences D1, Dz, Dz, Dq, Ds, a particular

code C might yield C(D1) : 0, C(Dr) :7, C(Ds) :00, C(Da) : 01, C(D') : 70.

The description length for a sequence D, as given by some code C, is the length of

C(D), denoted Lc(D). As it happens (Grunwald, 2000), if non-integer code lengths

are allowed, then for any codel C there exists a probability density function p6r such

that ps(D) : )-Lc(D), and for every density function there exists a corresponding code,

Functionally speaking, a code denotes a probability distribution. That is, a statistical

model M with parameters d is equivalent to what the MDL nomenclature calls a model

class M consisting of a set of codes 0,

As Grunwald (2000) points out, this correspondence implies that

minL(DlM, d) : mrin (- log, e@1M,0))

which occurs when p(DlM,9) is maximised: that is, at the maximum likelihood pa-

rameter values 0*. As it stands, the MDL principle appears to state that one should

use maximum likelihood to select between models. However, although the "maximum

likelihood code" á* gives the shortest description of D,the MDL principle requires that

the code should compress all of the data sequences indexed by M to the maximum

extent. The aim is therefore to find a code that yields the shortest average description
rTo be precise, only those codes for which one can uniquely recover D fuom C(D)
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length for those sequences. This code is called the stochastic complexity code, and the

description length of D when this code is used is called the stochastic complexily of D

with respect to the model (class) M. Rissanen (1996) provides the following measure

of stochastic complexity, accurate up to O(1) error:

where I(d) is the Fisher information matrix and the integral is taken over the entire

parameter space of the model (or the set of codes indexed by the model class).

3. 1.4 Geometric Complexity

The Geometric Complexity Criterion (Myung, Balasubramanian, & Pitt, 2000; see also

Balasubramanian, 1997, 1997; Pitt et al., 2002) identifies a model with the set of

distinguishable probability distributions that it can generate under all parameterisations.

The rationale for counting only distinguishable distributions is that distributions that

remain indistinguishable as ly' ---+ oo should not be counted as separate distributions

for model selection purposes. This set of distributions forms a surface in the space of

probability distributions. Accordingly, they identifu two measures of interest: the volume

of the model manifold, denoted V(M), and a measure of the number of distributions in

the manifold that lie close to the true distribution, denotedV"(M). With this in mind,

they consider the complexity of a model to be given by the natural logarithm of the ratio

of V(M) to V.(M). In other words, the complexity of a model is related to (the inverse

of) the number of distributions indexed by the model that lie close to the truth. The

Geometric Complexity of a model is given by

sc: - tnp(DlM,o\ +tr (#) +h | 1f,{ryar.,

^(#ffi):*'(-{) +krl '(ffi) ,lt(0)ld0 +
1

2

where once again, I(0) is the Fisher Information Matrix, J(d) is the Hessian matrix of
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second-order partial derivatives, and the integral is taken over the entire parameter space

of the model. similarly, the Geometric complexity criterion (GCC) is given by

GCC: -rnp(Dlo"l +f;m(#).^ I lr(0)ld0 +
1

2
(3.1)

The GCC is invariant under reparameterisation of the model, and perhaps represents the

state of the art for quantitative model selection criteria.

Since the GCC is used as a selection criterion on a number of occasions in the

remainder of this thesis, it will be useful to have some guidelines for interpreting differ-

ences in GCC values, similar to those proposed by Jeffreys (1961) for interpreting Bayes

factors. As it happens, Balasubramanian (1997,1999) provides a Bayesian derivation

for the GCC, by choosing uniform model priors and choosing Jeffreys' (1961) priof for

the parameter values 0, and shows that the GCC is an expansion of the log posterior

probability. That is,

GCC1-GCCz=ln P(M'lD)
p(MzlD)'

which permits the use of Raftery's (1995) adaptation of Jeffrey's (1961) guidelines

displayed in Table 3.1. Alternatively, Myung et al. (2000) use the complexity terms to

compare the complexity of the two models directly. The choice of whether to use relative

probabilities or to compare complexities when evaluating models will, as always, depend

on the needs of the analysis.

2Balasubramanian provides a compelling justification for this choice, observing that Jeffreys' prior,

p(0) tnø lt f[@yae, corresponds to the assumption that each distribution indexed by the

model has equal prior likelihood.
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Table 3.1: Evidence provided by differences in GCC values.

GCC difference Bayes factor Evidence

0-2

2-6

6-10

>10

l-3

3-20

20-150

> 150

V/eak

Positive

Strong

Very Strong

3 . 2 Choosing an Additive Clustering Representation

In this section a GCC expression is derived for the conìmon features similarity model

âoj : Ðn-nlonÍ¡n * c used in additive clustering procedures (Shepard & Arabie, 1979).

Once this derivation is complete, the implications for featural representation are consid-

ered: the GCC expression allows a clear statement of what makes a featural representa-

tion more or less complex.

3 .2.1 GCC l)erivation

Before commencing the derivation, observe that the free parameters in an rr¿-feature

additive clustering representation are the saliency weights w : {t¿r,'tr2¡...,w-} and

the additive constant c. For the purposes of this analysis, it is convenient to treat the

additive constant as a mandatory extra cluster containing all of the stimuli. Therefore

an additive clustering model shall be said to contain mt feattres: if an additive constant

is included (as is customary), then mt : rrl * 1 and one of the clusters must contain all

of the stimuli; if for some reason no additive constant is included, then mt : Tn, and

there are no restrictions on cluster membership. This allows the similarity model to be

written 3n¡ : Dnw¡Í¿nÍ¡* without disregarding the additive constant.

The data set D is given by the similarity matrix S, and the nurnber of obseruations
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l/ is given by the number of unique and unconstrained entries in S, not the number

of judgements that gave rise to them. As a result, there ur" !þ) observations in a

syrnmetric matrix. using these observations, the GCC can be written as,

GCC.¿"'," : - rnp(sl r,*\+!^ (#).r/ ft{*¡a*+} r" (ffi)
The first term in this expression requires the maximum likelihood estimate p(SlF,w-)

for the model, Following Tenenbaum (1996), it is assumed that the observed similarities

s¡¡ ãÍe drawn from Gaussian distributions with mean .î¿¡ and common variance o. The

width of the distribution corresponds to the assumption made about the precision of the

data, so it is best to estimate a from the data. Under these assumptions, the likelihood

of a similarity matrix S given a feature matrix F and saliency weights w is

p(SlF, w)

ôlnp(SlF,w)
ô-,

#""o(-#þn¡-sn,)')
:II

i<j

1
exp

Therefore, the negative maximum log likelihood function is given by

(or/nr)"{"-rtt' ( *D*('0,-u,,,')

- lnp(slF, w*) : #ÐU,, - êî¡), +
n(n-7 t"("\/-2ù

2

The third and fourth terms of the GCC require expressions for the Hessian matrix J(w)

and the Fisher Information Matrix I(w). Therefore, the second-order partial derivatives,

ô2lnp(SlF, w)
)wow,

are required. The first-order partial derivative is given,

1

Ðz(tn, -,î,r)
i<j2o2
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- s¿i) ô*s¡i'
According to the common features rule under consideration, the similarity between the

ith and jth stimuli is given by the sum of the weights of shared features only. Therefore,

if the zth feature is not a feature shared by the zth and jth stimuli, then ô¿¡ will be

constant with respect to tu,, and have a partial derivative of 0. Correspondingly, if

the rth feature zs common to both stirnuli, then 3¡¡ : u, I Ðn7,w*1*Í¡* the partial

derivative is L Hence,

t (i,i - 'o¡),i<jlu.€C¿¡

where C;¡ denotes the weights of those features shared by the zth and jth stimuli. Grven

this, the second-order partial derivatives are

1ôlnp(S F,*)
ôw"

ô2lnp(SlF, w)
ôwow,

1

1

nõ'

a
), ^ (3n,-tn¡)

x7lec,¡ dua '

Sô
) 

-S;;.
^ òw", "'

x<J lur eui j Y

Again, the partial derivative of .î¿, with respect to tr.r, is either I or 0, Accordingly,

ô2lnp(SlF, w)
ôwr}w* D 1

1
n

i<jlu",ue€C¿¡

1

D, Í*Í¡"foul¡o
i<j

Using this result, the Hessian matrix J(w) : lj,r(*)] can be expressed by noting that

l,s(w)
ô2lnp(SlF, w)

I

ôurôw,

lrZÍ¿"f ¡,r¡ol¡a,
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and since this expression does not depend on w, it is trivial to note that this value

remains the same when the maximum likelihood parameter values w* are substituted.

Similarly, the elements of the Fisher Information Matrix I(w) : [r,r(*)] are given by,

i,o(*) _E ô2lnp(SlF, w)
ôusoôw*

E -iZh*li,r¡or¡a

f¿,Í¡, l¿, Í¡,

Again, this expression is constant with respect to w, so the substitution w : w* is hivial.

Consequently, J(w-) : I(w*), and the last term in the GCC reduces to ] ln 1 : 0.

The third tetm in the GCC requires the integration of the constant expression #(*t
over the parameter space of the model, Since it is customary to normalise similarity data

to lie between 0 and 1, Lee (2001b) has argued that 0 ( w¡ I 7 is the natural constraint

on the saliency weights for additive clustering models. If so,

1r-
o2 .4?<J

lI(*)l dw1du2 ... dnu^,-1d,u)^,

G

where G : lg*ol denotes themtxmt complexity matrix such that g,a : Dn., fi,f ¡"fnoÍ¡,.

In other words, the xyth element of G counts the number of pairs of stimuli that share the

zth feature and the grth feature. Main diagonal elements of G are given by the number

of pairs of stimuli that share a single feature: that is, g", reduces to D¿<j Í¿,Í¡,. This

complexity matrix is equivalent to the complexity matrix found by Lee (2001b), who

used the Laplacian approximation to the Bayesian posterior to estimate the complexity
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of additive clustering models. By extracting a factor of 4 from each of the mt rows of

lå ,, c¡, the expression become* (å)-' x lcl. Therefore,

r" / /rf*l a*

The GCC for common features representations is therefore given by

: 
] r" (r| cr)

: -m,tno + j rn c

GCCu¿"1,r"

which, after rearrangement, becomes

3The data constant does matter if two models cannot be tested on the same data set, and must be

evaluated on separate data sets that differ in ø or n. However, it would be highly unusual to find two
models, purporting to account for the same phenomenon, that are so incornmensurate that they cannot be

applied to the same data sets. Arguably, if bwo models cannot be compared using the same data set, then

one should not try compare them with the GCC either.

fiDa', - 3,¡)'+\^(+) _ m'tn" +;Lnrcl

n(n-L\ / -*'+rr'(aJit)

GCC,¿.,," : fi>,a,, - âo¡), +ln(W)+ ]r"¡c¡
n(n-I\ -*'Tt"('J2"). e.2)

The last term, the data constafi ?$Ðh(".,Eir), is invariant across models, though

not across data sets. However, since one generally evaluates models on the same data

set, the data constant makes no contribution to model comparison, and may be dropped3.

Therefore, it is often convenient to disregard the constant (e.9., Navarro & Lee, submit-

tedb), and treat the GCC as

GCC.¿"¡," : #Ð_þ0, - ôn¡)' +\n(W)* 1* lcl + constant (3.3)
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This measure is the sum of three terms, reading from left to right: the eruor, the

parametric complexity and structural complexity of a featural model. The error term

measures the extent to which the predictions made by the model depart from the observed

data, whereas the other terms measure the complexity of the model. Specifrcally, the

parametric complexity term penalises a representation for the number of features it

possesses, whereas the structural complexity terms measures the complexity that arises

from the pattern of overlap and encompassment of those features.

3.2.2 Data Precision and the GCC

Suppose a second experiment were conducted, yielding an identical similarity matrix,

but with different precision. What happens to the GCC for a featural representation?

The error term is proportional to j, so as precision increases (i.e., a decreases), the

error term grows quadratically. The parametric complexity term is proportional to h +,

so it rises logarithmically as o shrinks. The structural complexity term is independent

of a, and so is unaffected. Finally, the data constant, being proportional to ln a, shrinks

logarithmically with o.

The interpretation of these effects is straightforward. Firstly, since the data constant

is independent of the model, the shrinking constant will not cause the GCC to select

differently between candidate models, and may therefore be disregarded. Secondly,

since the error term grows much more rapidly than any other term, the major effect

of decreasing o is that the error term becomes more heavily weighted than the two

complexity terms. From a model selection standpoint, this means that as the data become

more precise, it grows more important for a model to provide a good fit than to have

low complexity, The trade-off between fit and complexity tilts further toward data fit

as the data precision rises, in line with the intuitive notion of what data precision is

intended to capture. Finally, as data precision increases, the relative importance of
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the two complexity terms shifts towards parametric complexity. As o2 shrinks, the

parametric complexity term grows, but the structural complexity term remains constant.

Correspondingly, the importance of lGl (which captures the inherent complexity of the

feature structure, F) diminishes relative to number of free parameters. Put simply, when

the data are highly precise, the number of features matters more than the manner in

which they are arranged.

3.2.3 Domain Size and the GCC

Suppose the data reflect the similarity of 10 tones with frequencies within the range

100- 1000H2. In this situation, it is easy to imagine that the domain could consist of 20

tones as easily as 10, and still be the "same" domain. Therefore, it worth investigating

the effect of increasing the "resolution" of the domain by raising the number of stimuli

n (assuming that precision and data fit remain constant), The error term counts the

squared discrepancy between data and model for all tþP pairs of stimuli. If each pair

of stimuli is associated (on average) with some fixed amount of (squared) enor, then the

error term increases quadratically with n. In contrast, the parametric complexity term

increases only logarithmically with n. The data constant rises quadratically with n, but

since it never differs for two models, is irrelevant.

The structural complexity term is also affected by increasing n, but ín a less straight-

forward fashion. To understand its behaviour, consider the example of the tones. Suppose

the initial stimulus set were 10 tones at frequencies of 100H2, 200H2,300H2, and so

on up to l000Hz, and that the expanded stimulus set consisted of the initial tones, plus

tlrose at l05Hz, 205H2 and so on. ln such a case, one could consider the relationship

between two complexity matrices G1 and G2, corresponding to two feature sfiuctures

F1 and F2 that have the same number of features and the same pattern of overlap.

However, each feature in F2 contains twice as many stimuli as its counterpart in F1 (as
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does every possible union or intersection of features). In a sense, each stimulus in F1

gets "split" into two stimuli in F2. If a given feature (or intersection of two features)

contains r stimuli, the corresponding entry in G1 is z(r -l)12.If this is doubled, then

the same cell in G2 is 2r(2r - I) 12, approximately four times the original entry. More

generally, if the n1 stimuli are split into n2 stimuli in this manner,

rnlG2l : t"lm"c'l
: 

'" [(H#+)-".r",r]
: *'r"(ffi) *'"¡",¡

Therefore, the structural complexity term should be expected to increase in a logarithmic

fashion as n increases.

Increasing the domain size causes all three terms to rise. Since the error term

rises most quickly, the effect is to weight data-fit more heavily than model complexity.

On a more general note, the resemblance between the effects of n and o may not

be entirely coincidental. In general terms, the precision value indicates how much a

given similarity value s¿, should be taken to constrain the model: precise data provide

stronger constraints. When the number of stimuli is increased, the number of empirical

similarities also increases, and therefore provides a shonger constraint on the model.

It is for this reason that the number of stimuli can be considered to be a "resolution

parameter".

3.2.4 The Structure of F and the GCC

In this section the discussion turns to the feature structure F itself, and the effect it has

on the cornplexity of the model. The only part of the GCC that is affected by F is
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the structural complexity term. Correspondingly, this section discusses the effect of F

on lGl. This complexity matrix has been previously analysed by Lee (2001b), so this

section briefly summarises and comments on his analysis (see also Navarro, submitted).

Notation þr the Complexity Matrix

Up to this point the inclusion (or exclusion) of the additive constant has not mattered

greatly. If an additive constant is included, one substitutes m' - rrL I 1 as the number

of parameters, and treats the additive constant as the last "cluster", which must contain

all stimuli. However, in discussing the behaviour of the complexity matrix, it is crucial

to be explicit about whether the additive constant is included, Therefore, to avoid any

confusion regarding these matrices, a complexity matrix that does not incorporate an

additive constant is denoted by the 7n x rn matrix G¡ and a matrix that includes the

additive constant by the (m+l) x (m* 1) matrix G+. Accordingly, G¡ can be written,

G"f :

Ð¿.¡ f¿tlt D¿.¡ fnl¡tf¡zf ¡z Ð¿..¡ fnf ¡tf¿^f¡^

l)¿.¡ f¿zÍ¡zfnlt Ð,i.¡ l';zf iz Ð¿.¡ f¡zf¡zf¡*f ¡^

D,¿.¡ fi^f¡*htf¡t Ð¡.¡ f¡^f ¡*f¿zf¡z D¿.¡ f¿*f¡*

and G+ is given by

G

where the scalar z is given AV fu? and the vector V : {h, ., ., U*)' contains the

main diagonal elements of G7: that is, Un : g,, : D¿.j l¿,Í¡". Whenever the term G

appears in the text, it applies to both G¡ and G+.

Summary of Lee's Conclusions

Lee demonstrates that for non-degenerate feature structures, the complexity matrix is

positive definite, and applies Hadamard's inequality (Bellman, 1970, pp. 129-130),
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which states that the determinant is less than or equal to the product of its main diagonal,

lcrl < III l¿,Í¡*
:x i<j

with equalify occurring when all off-diagonal elements of G¡ are zero4. From this

Lee argues that, for a fixed number of clusters, the most complex representation is a

partition, in which every stimulus belongs to precisely one cluster, since these models

have diagonal complexity matrices. There are two caveats to attach to this analysis: the

first regards diagonal complexity matrices, and the second regards the applicability of

Hadamard's inequality,

Regarding Diagonal Complexity Matrices

It should be observed that although all partitions have diagonal complexity matrices, not

all diagonal complexity matrices correspond to partitions. A diagonal complexity matrix

results whenever no two stimuli ever share two or more features. Therefore, so long

as every pair of clusters have no more than a single stimulus in common, G¡ remains

diagonal. A concrete example of this is illustrated by Figure 3.2, in which feature

structures A and B yield precisely the same (diagonal) complexity matrix. All features

have 3 stimuli and hence (B) : 3 stimulus pairs, and no two features are shared by any

two stimuli, even though only feature set A is a partition. Lee's analysis of diagonal

matrices was restricted to partitions. He argued that transferring one stimulus from a

smaller cluster to a larger one always reduces complexiry suggesting that the minimally

complex partition is the one in which all clusters save one possess only two stimuli,

and the rest encompasses all remaining stimuli, and furthermore that this result holds

irrespective of whether an additive constant is included (i.e., applies to G+ as well as

G¡). However, this result holds not just for partitions, but also for any feature structure
4Although Hadamard's inequality holds for G+ as well as G¡, it is impossible for G+ to be a diagonal

matrix. In any case, since the additive constant is not considered to be a true featu'e, a representation that
has diagonal G¡ could still be considered a partition even though G+ is not diagonal.
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Figure 3.2: Five feature structures for a nine-stimulus domain. Feature set A has a

partitioning structure, whereas B is an example of a non-partitioning structure that also
has a diagonal complexity matrix. In set C, each cluster still encompasses three stimuli,
but some overlap emerges. Feature structure D introduces a small amount of overlap at

the expense of increasing the size of one cluster, whereas the features in E are large and

overlap extensively. Two complexity matrices are given for each: G¡ is the complexity
matrix for the features shown, whereas G+ incorporates the additive constant,

that yields a diagonal feature matrix (the mathematics are given by Lee, 2001b, and it

is a small matter to observe that the logic holds for any diagonal feature matrix).

The broader notion of what makes for a "diagonal feature structure" invites a second

observation that (so long as the feature structure remains non-degenerate) complexity is

always reduced by removing a stimulus from a cluster. If there is no additive constant,

this is very easily observed, since the result is to reduce one of the elements in the product

ILD¡.¡ fr,f j,, and hence lowering lG¡1. Once an additive constant is included, the

story is slightly more complex. Nevertheless, consider the case when the first cluster

contains a ) 3 stimuli. In this case lG+l is given by

G,

=3430212727

0
1

3

3
,1

0

0
0
3

3
0
0

0
0
3

3
0
0

3003
0303
0033
33336

(c)

729729
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2A 21 21
21 2A 21
21 21 2A

21 21 2A
28 21 28
21 2A 2A
2A 2A 36

G'
3003
0303
0033
3 3 336

lc'l =

a(a-l m

lc*l :
2

xfr9*,x

G*

1

3113
'1 313
1166
33636

lc*l
2A
21

2A

224

(D)

a-
a(a - 7)

2 þ-,t*)
(3.4)

By removing one stimulus from this cluster, the deteminant of the cornplexity matrix

o

o

o

o

o

o

o

o

o

o

o

o

o
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becomes

(3.s)

So, the determinant lG+l is larger in Eq. 3.4 than in Eq. 3.5 when

which, after rearrangement, reduces to

a2(a-I) -(a-7)(a-2\2 !
2 - ----;-:!- + 2z + 2D s*, > o

and it is clear from inspection that since o ) 3, all terms on the left hand side are

positive, ensuring that the inequality holds.

To sumrnarise: for any feature structure that yields a diagonal complexity matrix,

with or without an additive constant, complexity decreases whenever one (a) transfers

a stimulus from a smaller cluster to a larger cluster, or (b) removes a stimulus from a

cluster. This is illustrated in Figure 3.3.

Regarding the Applicability of Hqdamard's Inequality

Hadamard's inequality indicates that, when clusters share pairs of stimuli without chang-

ing size, as in feature structure C shown in Figure 3.2,the determinant of the complexity

matrix decreases in accordance with Hadamard's inequality: lGyl for structures A and

B is 27, whereas lG¡l for structure C equals 21. If the additive constant is included, the

determinant of the expanded matrix G+ is 729 for A and B, and 62I for C. In general,

the more a pair of clusters overlap (in terms of stimulus pairs) the less complexity is

introduced, since the unique contribution each cluster makes to the overall complexity

is smaller.
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Figure 3.3: Six disjoint feature structures of varying complexity. Panels a, c and e illus-
trate the increase in complexity achieved by transferring stimuli from larger to smaller

clusters, whereas panels b, d and f show how complexity increases by enlarging features.
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The second caveat that attaches to Lee's discussion is that Hadamard's inequality

applies only if the product of the main diagonal elements remains constant: that is,

when the number of stimuli (and hence pairs of stimuli) in each cluster remains con-

stant. Hadamard's inequality does not indicate what happens to the model's complexity

as the number of stimuli in a cluster changes. Therefore, although Lee identifies encom-

passment and overlap as sources of model complexity, arguments based on Hadamard's

inequality only take overlap into account. In some situations, these two factors can be

varied independently: for example, a stimulus that does not belong to any cluster can be

added to one of them without causing any change in the off-diagonal elements of G¡.

Similarly, the comparison between feature structures A and C in Figure 3.2 involves

manipulating the overlap between clusters without changing their size. Nevertheless,

such independence is not the norm, and it is not immediately obvious what happens

to complexity when a feature is enlarged at the expense of introducing more overlap.

Consider feature structures A, D and E in Figure 3.2. Two of the features in A and D

are identical, but the third feature in D contains four stimuli rather than three, and shares

one stimulus pair with each of the other two features. As it turns out, D is the more

complex representation, with lG¡l : 44 and lG*l : 1224 (compared to 27 and729 for

A). Feature structure E involves larger clusters and more overlap, as there are 8 stimuli

in each cluster and 7 stimuli shared between all pairs of clusters, yielding lGi | :3430.

Once the additive constant is introduced, it is no longer possible to have larger features or

more overlap without including the same feature twice (which is degenerate), and lG+l

for this representation is 8232. In this example at least, representations with smaller

clusters are simpler than those with larger clusters, even though it comes at the expense

of reduced overlap.

It is also worthwhile to note that, for a fixed number of clusters the simplest rep-

resentation is one consisting only of clusters containing two stimuli. The complexity
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matrix for this representation is the identity, and therefore has determinant 1. Since

G is positive definite, its determinant must be positive, and since the elements of G

are integers, no complexity matrix can ever have a determinant smaller than 1. This

argument does not incorporate the additive constant, but it is heartening to note that a

representation of nine stimuli using three two-stimulus clusters has lG+l :33, making

it simpler than any of those displayed in Figure 3.2,

In order to see if cluster size is the dominant contributing factor to complexity in

the general case, the following brief evaluation was carried out. A random sample of

100,000 feature structures containing 6 features and 10 stimuliwere generateds, and their

structural complexity, average cluster size, and average overlap were measured. The size

of a cluster containing a stimuli was measured as the proportion of stimulus pairs that

\ryere encompassed by the feature, a(a - l) ln(n - 1) . Similarly, the overlap between two

features containing a > B stimuli, of which 7 are encompassed by both, was measured

as the number of stimulus pairs encompassed by both features, expressed as a proportion

of the maximum possible (i.e., the number in the smaller feature), l0 - l) lP@ - 1)

Figure 3,4 shows the relationship between size, overlap and complexity for a repre-

sentative subsample of 1000 of these feature structures. As previously suggested, size

and overlap tend to covary, but it is clearly evident from the figure that increase in com-

plexity due to size substantially outweighs the decrease due to increased overlap, ln fact,

the extent of the covariation between size and overlap makes it difficult to estimate the

independent effect of overlap from the hgure. Figure 3.5 plots the relationship between

overlap and complexity for 800 feature structures out of the 100,000 with a constant

average cluster size (=41.6%). Though the relationship is far from exact, it is evident

that, as expected, increased overlap between features decreases complexity.

5The reason for sampling so extensively was to ensure that a large number of feature structures in the

sample would have same average cluster size (see Figure 3.5).
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3 .3 Choosing an Additive Tree Representation

This section derives and interprets the GCC measure for additive tree representations.

Strictly speaking, the measure can be applied to bidirectional trees as well as additive

trees (see Section 2.4), thou,gh this discussion focusses on the latter. Applying the

measure to extended trees is straightforward, though it is not done here.
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Figure 3,5: Structural complexity (lnlG+l) for a sample of 823 feature strutures with

constant average size (=41 .60/o), and overlap varying from 47,7%ó to 81.7o/o.

3.3.1 GCC Derivation

Mathematically speaking, trees are a special case of featural representations (Corter,

1996), so it is hardly surprising that the derivation of the Geometric Complexity Criterion

for additive trees parallels that for additive clustering models. The free parameters in a

tree representation correspond to the lengths l: {lr, /.2,. .. ,In+n_t) of the edges in the

tree. Unlike additive clustering, no additive constant is required: in order to increase

all similarity estimates by c, one can increase the lengths of all terminal edges by i.

Additive trees have m I n - 1 edge lengths, though bidirectional trees may have up to

2(m + n - t). The number of data points l/ is given by the number of independent

entries in the proximity matrix D, which for additive trees is ry! but for bidirectional

trees (which use asymmetric proxirnity rnatrices) is n(n - 1). Note that for bidirectional
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trees, every instance of D¿<¡ should be replaced wtthl¿¡¡.

If T denotes the tree topology, then the GCC for additive trees is

GCC¡."" : - rnp(D lr, r\ +ryj= r" (w) .r / /¡1r¡ ar* j r" ( lJ(t.)l
lr(1.)l

p(Dlr, r) : arã", (-+, (on, - ¿,,)')

Assuming that the proximities d,;¡ arc drawn from Gaussian distributions with mean d,¿¡

and common variance o, the likelihood of the data is given by

1 *'(-# 
Ð(0,,-â,,)')(ot/zn)"t"-'tt'

Therefore, the negative log maximum likelihood is given,

-rnp(Dlr,l*) : ,#Z(on, - âi,)' *ryh(o\/-ò.
As with the additive clustering case, the second-order partial derivatives

ô2lnp(DlT,l)
at,ah

are required. The first-order partial derivative is given by,

9E#rÐ : - #Ð, (0,, - d,ò * (0,, - ¿0,)

_a,,t 
'(oo' 

- a') *(
,, à(oo, 

- â,ò *?â,,): -in(."-d')hâ"
It is useful at this point to observe that the proximity model for stimuli in an additive

tree can be written as

84



dn¡: Ð l*,
kÇP¿¡

where P¿¡ denotes the set of edges that make up the unique path between the zth and

7th stimuli. Correspondingly, the partial derivative of á)¡ with respect to l, is I if the

rth edge belongs to Pa¡, and 0 if it does not. Therefore,

ôrnp(Dlr,l) 
:, I Q,¡ 

_ d.i) .ôl* o', n.j7r*r,,, "'

The second-order pafüal derivatives are thus given by,

ô2lnp(DlT,l)
ahl"

1

o2

and by applying the same argument to fid'r¡,

ô2 lnp(DlT,I) 1

ôuah t

-+ t :, (ati - ¿,i)
o' o.¡7,*n, ô1, x- "

u.¡Ð.r,,&'"'

1

i<jll*,lo€P¡¡

It is therefore apparent that the elements of the Hessian matrix J(l) : [:"r(l)] are given

by,

l,r¡¡ ô2lnp(DlT,l)
ahah

t1
i<jll*,loePq

Likewise, the Fisher Information Matrix I(l) : [i,r(l)] becomes

1

02

i,o0) _E

1

ô2 tnp(DlT, l)
ôtaô1,

t1.
iljll",Is€Pt502
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As with additive clustering representations, both matrices are independent of l, making

the substitution l: l* trivial, Since I(1.) : J(l-) the fourth term of the GCC is again

0.

Again, the third term of the GCC requires the integration of ,Æ(tX over all para-

meterisations of the tree. Since dissimilarities are assumed to lie between 0 and l, the

natural parameter constraint is 0 < t* < T.Furthermore, since ,it(tX is constant with

respect to l, the integral is given,

r"//rtrlar : ,n 
Io' Io' Io' lr' ,f,rr¡¡otrdr2...dt^+n-zdr*vn-t

: -(m+n-L) lno* lr"¡C¡. (3.6)
2rr

In this case, G : lg,r] denotes the (m -f n - 7) x (m I n - L) complexity matrix for

additive trees, where 9øs counts the number of pairs of stimuli whose paths go through

both the rth and yth edge in the tree. This matrix can be written as,

1

2
1

2
1

2

ln lI(l)l

Dt.¡t'¡¡1

D;a¡tt¡2t¿¡1

Dta¡t¿¡ft¿¡2

D*¡ t¿¡2

Dt<¡ t4fiai*

D¿.jt¡jzt¿jrn

ln

ln

G-

where t¡¡¡is I if the lctharc isontheuniquepathlinkingobjects iand j,and0if itis
not, Thus, the GCC for additive trees is given by:

GCC¡,"" : -#2@,, - a,n¡)' * YiF," (**¡
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*å*lcl + rym(".,/-z',)
- #Ð,@o¡ - a,ni)' * r!= 

^ (W) . ; rn rcl

.rym("tn)
Reading left to right, it is again possible to view the GCC as the sum of an error term,

a parametric complexity terrn, a structural complexity term, and the data constant. As

in additive clustering, the data constant makes no contribution to model selection, and

may be ignored. The GCC may therefore be written as,

GCC1,"" : -JÐa,o¡ - dr¡)' +* + ! - r m(
2o't 2¡ 2 \

thus completing the derivation.

n(n - L)

) 
.;tn G rconstant,

4tro2

3 .3 .2 Precision and Domain Size

The resemblances between GCC¡."" and GCC"¿"1," nì€ân that the effect of precision and

domain size on GCCi."" are very similar to their effects on GCC,¿.1,". That is, as data

precision increases, the importance of a good fit increases relative to the importance of

a parsimonious model. Additionally, greater precision means that the complexity of the

model is evaluated more in terms of the number of edges in the tree, and less in terms

of the tree topology. An n increases, the error term rises quadratically, and the structural

cornplexity term rises logarithmically (as with additive clustering), but since there is an

n at lhe front of the parametric term, that term rises linearly rather than logarithmically.

Nevefiheless, the net effect is that as the domain size (or "resolution") increases, data-fit

becomes more irnportant than parsimony.

3.3.3 The Complexity of Tree Topologies

A third source of variation in tree complexity is the topology of the tree itself T, reflected

in differences in lGl. This section discusses the effect of T on complexity, providing
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analytic results for one and two node trees, and a numerical analysis of more general

tree structures

Star Trees

It is instructive to ftrst consider the single-node (m : l) star tree (see Figure 3.6, left

panel) in the first instance, since it has the property that all n - 1 edges in the tree are

terminal arcs. The terminal edge that connects the ith stimulus to the tree must belong

to each of the n - I paths that connects the ith stimulus to another stimulus, but will

not belong to any other path. Hence every element of the main diagonal of G is n - 1.

Recall that an off-diagonal element of G counts the number of pairs of stimuli whose

unique connecting path passes though both the rth and gth edges, Suppose that the path

between stimuli i, and j meets this criterion. This implies that the path must terminate in

both the ith and 7th stimuli, and hence that the criterion will only hold once. Therefore,

all off-diagonal elements are 1, and the nxn complexity matrix for a star tree is

n-1
1

1

1

n-l
1

1

1

1

1

1

G"t.r :

111

n,-I

-1
2n-3

-1

n-I

which has inverse

2n-3

-1

-1

-1
-1

2n-3 (3.7)

-1
-1
-1

-1 -1 -1
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Figure 3.6: A star tree (left) and an additive tree containing non-terminal edges (right).

There can only ever be one pair of stimuli whose path contains any given pair of terminal

nodes.

Although it is of little use from a model selection standpoint to have an analytic ex-

pression for the complexity of star trees, since for any n there is only a single one, this

result will be of use shortly in considering other trees.

2-Node Trees

Before considering more general tree structures, it is helpful to consider trees containing

a single internal edge (rn : 2). Once again, there are (" - 1) paths that pass through a

terminal edge, and there is only ever a single path passing through two different terminal

edges. Indeed, this will be true of any tree structure, because the number of paths that

pass through a terminal edge (or pair of such edges) is not affected by any internal edges

that might lie between them, which is visually apparent from inspection of Figure 3.6.

Therefore, G can be written as

G- G"tt, Y

zv'

where z counts the number of paths that pass through an internal edge, and y is the

column vector {yt A, . . . A*}' such that gi counts the number of paths that pass through
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Figure 3.7: The two possible trees containing six stimuli and one internal edge.

both the single intemal edge and the ith terminal edge. Therefore, the determinant of

the complexity matrix is given by

lGl : lG"-l(r-y'G;l.y)

For the momen! consider the simplest case, in which one non-terminal edge is added

to a star tree containing 6 stimuli. There are exactly two non-equivalent non-degenerate

possibilities, shown in Figure 3.7. The tree on the left divides the stimuli into two

goups of three. Each of the 3 x 3 : 9 paths that cross from one group to the other

involve the internal edge, so in this case z : 9. Each terminal edge shares with the

internal edge all paths starting at that terminal edge and cross from one side of the

tree to the other, so in this case y : [3 3 3 3 3 3]'. Substituting these numbers gives

z - y'G;r:,Y : 9 - 5.4 : 3.6. Similarly, when considering the tree on the right,

z:2 x 4:8,y: 12 2 2 2 4 4]t, and z - y'G;Ly:8 - 5.6: 2.2. The tree on the

right is less complex.

More generally, when splitting the star tree to include an internal edge, one divides

the rz stimuli into two groups, one containing r and the other containing n, - r stimuli.

The number of paths that pass through the new edge is z: r(n - r). Furthermore, the
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value of the first r elements of y is n - r and value of the remaining n - r elements

is r. Using the formula for G;1. given by F,q.3.7 the expression for z - y'G;l.y for

two-node trees is

2r(n - r) n: r(n-r) 1+ ("-1)("-2) n-2
lnspection of this expression reveals that z - y'GJl,y increases with r(n - r). This is

shown visually in Figure 3.8, which plots the value of z - y'GJ:*y as a function of n

and i.. It is important to recognise that, although the function is defined for all r and n,

and that for reasons of clarity the graph has been plotted as a continuous function, only

integer values of r and n have a meaningful interpretation as tree complexities. That

said, the f,rgure confirms the claim that the simplest configuration for a hee with a single

internal edge is achieved by minimising r(n - r). This is accomplished by producing

the maximum disparity in the size of the two groups without introducing a degenerate

structure. This minimum coffesponds to a tree in which two stimuli are grouped together

on one side of the new edge, and the rest of the stimuli form the other group.

General Tree Structures

ln order to discuss tree structures with multiple internal edges, it is again useful to

partition G. The (n*m - 1) x (nIm - 1) complexity matrix of any tree structure

can always be partitioned into

G-

The lower right submatrix Z is the (m - 1) t (* - l) matrix whose rows and columns

correspond to internal edges, and whose elements represent the interaction between pairs

9t

G.tu. Y

Y,Z
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Figure 3,8: The value of the scaling factor z -y'G;r:,y for two-internal node trees as
a function of the number of stimuli n and the proportion of those stimuli that belong to
one of the two subgroups 

_r.

of internal edges. Similarly, the off-diagonal matrix Y denotes the n x (* - t) matrix

with rows corresponding to terminal edges and columns colïesponding to internal edges,

and whose elements represent interactions between terminal and intemal edges. Because

G"1u, is invariant across trees with the same number of stimuli n, the determinant

lGl : lG"-l.lZ - y,c;l.y1

is dependent only onY andZ.

The following evaluation was carried out to demonshate the effect of tree topology

on complexity: all possible tree structures with 5 to 10 internal nodes were generated,

such that all internal nodes were connected to either 2,3 or 4 stimuli. The value of ln lGl

was then calculated for each tree. For a given number of internal nodes, it was found
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Figure 3.9: Structural complexity (ln lGl) for all possible 10-node additive trees with 3

stimuli per node, plotted against mean links per path. Trees with short paths traversing
them are simpler than trees with long paths: the correlation between complexity and

average path length is 0.98.

that lnlGl increased linearly with the average number of edges in the paths connecting

stimuli, though the relationship was not exact. The shape of the relationship was not

affected either by the number of internal nodes, or the number of stimuli per node,

Figure 3.9 shows the relationship for lO-node trees with three stimuli per node. The

correlation between path length and ln lGl was never less than 0.97 in this evaluation.

It appears that trees with longer path lengths are more complex: the most and least

complex lO-node trees with 3 stimuli per node are shown in Figure 3.10.
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a

b

Figure 3.10: Topologies for the most complex (a) and the least complex (b) of the trees
displayed in Figure 3.9.

3. 4 Choosing a Spatial Representation

As discussed in Section 2.2 the similarity model for metric spatial representations typi-

cally assumes that the dissimilarity between two stimuli is given by the distance between

their co-ordinates in the appropriate psychological space. It is usual to measure this dis-

tance using one of the Minkowski metrics,

d¿j Ðlpoo - p¡nl'
lc

1

*c,

where p¿¡ denotes the co-ordinate value of the rith stimulus on the kth dimension, r

denotes the choice of metric (with r : 2 corresponding to the Euclidean metric and

r : 1 corresponding to the City Block distance), and c is an additive constant. The free

parametersofaspatialrepresentationaretheco-ordinatevaluesp: {ptr, pzt,...,pn*)

and the additive constant c. However, since distances under the Minkowski metrics are

translation-invariant, the first point can be fixed at the origin. An zn-dimensional spatial

representation of n stimuli therefore contains m(n - 1) + 1 parameters, and the GCC
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measure takes the form,

GCC-a" : -lnp(Dlp-) +Y9]!r" ("("- t)¡' 2 "'\ 4n )

+kr I/urnxan* ]r" (ffi)
Finding expressions for I(p) and J(p), as well as the integral lßføa, proved to

be difficult. Numerical approximation to the GCC for spatial representations yielded

problematic results. Further investigations in this area may be warranted.

3 .5 Summary & General Discussion

The aim in this chapter has been to apply statistically well-founded model selection ideas

to the field of similarity modelling. The purpose of this endeavour is to allow represen-

tational modelling to proceed with an understanding of what makes one representation

more or less complex than another, and to extract representations that account for the

data in a parsimonious manner. In doing this, expressions for the Geomekic Complex-

ity Criterion have been derived for additive clustering and additive tree representations.

Analyses of these measures has shed light on the nature of representational complexity

within these frameworks, though further analysis is certainly possible. The diffrculties

experienced in accounting for spatial complexity are troubling, and this remains an area

for future work. Finally, although this point is hopefully obvious, it should be kept in

mind that although the GCC is a superior measure to data-fit or simple criteria such as

the BIC, it should be treated as an aid to scientific judgement, ruther than a substitute for

it. The GCC does not incorporate all of the criteria by which a model should be judged,

and should therefore be used as a guide rather than an inflexible rule. Nevertheless, the

GCC is a highly effective quantitative measure, and has the potential to guide similarity

modelling in a principled manner.
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4. Featural Representation

As discussed in Section 2.3, featural representation involves describing a stimulus in

terms of a set of discrete characteristics. If these characteristic features are perceptual

in nature, then the representation can be thought of as a description of the stimulus in

terms of its constituent parts. If they are more conceptual in nature, the representation

may look more like a list of categories to which the stimulus belongs. Alternatively,

some features may be perceptual and others conceptual, a state of affairs that probably

reflects the norm, and need not present a theoretical difficulty.

This chapter considers this notion of featural representation on a number of frontst.

The rnost fully developed featural model, as far as deriving representations from simi-

larity data is concerned, is the additive clustering model. The majority of this chapter

is taken up developing three other feafural models to a comparable level, and providing

a detailed evaluation of all four candidate models. While two of the "new" models

have been considered by other authors, they have not previously been used as clustering

models, whereas the third model is completely novel. The evaluation of these models

involves fitting pre-existing data, two Monte Carlo studies and two experimental studies.

The remainder of this chapter is devoted to the discussion of other classes of featural

models besides the four models evaluated here,

lMuch of the work in this chapter appears in Navarro and Lee (2001, in press, submittedb).
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4.1 
^ 

Menagerie of Featural Models

While discussing the topic of featural representation, it is useful to distinguish between

the psychological problem of featural similarity and the numerical problem of frnding

features. The psychological problem is a similarity modelling problem: given a set of

features' how should similarities be estimated? In contrast, the numerical problem is

a data fitting problem: given a set of data, and assuming a particular psychological

model, what set of features most probably gave rise to the data? For the moment,

the numerical problem is disregarded, and the discussion focusses on the psychological

issues. Therefore, this section presents four candidate models that express similarity as

a function of a set of binary features.

The appropriate place to begin is with the common features model and the distinctive

features model (Sattath & Tversky, lgBT), which complement one another. under a

commonfeatures model, the similarity between two stimuli is a monotonically increasing

function Ä ofthe features that they share. That is,

li¡¡ : /\(f¿of¡) + c. (4.1)

where f¿ denotes the set of features possessed by stimulus i, and c is a non-negative

constant added to all similarity estimates. The distinctive features model assumes that

two stimuli become more dissimilar as a function of the number of features possessed

by only one of them. This model takes the form,

'tnj:"-T(f,; -f)- T(t-f,) (4.2)

where T, like Ä, is monotonically increasing. The distinctive features model was orig-

inally proposed by Restle (1959) who refered to it as the symmetric distance metric,

and used it as a psychologically plausible distance metric for sets. It is closely related
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to discrete multidimensional scaling (e.g., Clouse & Cottrell, 1996; Rohde, in press).

Sattath and Tversky (1987) present a proof that any set of data generated by a

common features model can also be generated by some distinctive features model, and

vice versa, Their discussion focussed on dissimilarity rather than similarity, but the

argument does not rely on this point. The essence of the proof is to show that if a set of

features F1 produces a similarity matrix S under one model, then there exists a second

set of features F2 that produces S under the other model. Consequently, they argue that

there is nothing inherent in the data to distinguish between common features models and

distinctive features models.

Nevertheless, there are two elements of the proof that deserve close examination

and suggest caution in interpreting the result. Firstly, the proof requires that for each

stimulus i, there exists a complementary feature 1¿2 that is possessed by all stimuli

except z. This can be achieved by adding "dummy" features to F1, obtained by taking

the intersection, union or complement of existing features. Thus, although the extended

feature set F2 consists of the original features F1 plus the new complementary features,

no free parameters are introduced (that is, F2 has the same rank as F1).

The second important feature of the proof is that it relies on being able to define

different functional forms for A and T (if 
^ 

: T the proof fails). The relationship

between Â. and T is trivial for all similarity ratings that do not involve the complementary

features in F2, but involves a substantial change for ratings that do involve these new

features. The consequence of these properties is that although F1 and F2 have the same

number of free parameters, the difference in functional form implies that complexity may

nevertheless differ, providing a quantitative means to distinguish between a common

features model and distinctive features model, even given their equivalent data fìt, as

2A brief note on nomenclature: f¿ has been used to refer to the set of features possessed by the ith
stimulus (which is a column in F). However, f¿ denotes a feahue possessed by all stimuli except the ith
(and is hence a row from F).
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discussed in Chapter 3. Therefore, there remain quantitative differences between the

common features model and the distinctive features model.

On a separate but equally important note, the proof is difficult to interpret in psy-

chological terms. Consider a building that possesses the characteristics "dome shaped"

(f¿o-") and "made of ice" (f¡."), both of which are denoted by elementary features in

F. This building's complementary feature would be something along the lines of "not

made of ice and not dome shaped" (fao*" a fi*). The problematic aspect is that in order

to derive equivalent common features and distinctive features models, decisions made

using "not made of ice and not dome shaped" must use a different rule than decisions

made using "dome shaped" or "made of ice". There is no compelling reason to believe

that composite features are evaluated in a manner that is fi.rndamentally different to those

features of which they are composed. Furthermore, since most features can be viewed

as a composite of lower level features, it is unclear which features should be evaluated

according to which rule,

Looking beyond the two models considered so far, there is some evidence to suggest

that some combination of the common features approach and the distinctive features

approach is warranted. A series of studies (Gati & Tversky, 1987,1987; Ritov, Gati, &,

Tversky, 1990; Tversky, 1977; Tversky &, Gati,l978) investigated the contributions of

common and distinctive features in a number of ways. One such method was to take

a pair of easily manipulated stimuli (such as schematic drawings of faces) and add a

feature (such as a pair of glasses) as either a common feature or as a distinctive fea-

ture, and measured the effect on similarity ratings. Unsurprisingly, they found that both

common features and distinctive features affected the similarity judgements. Letting

C(f) denote the impact of some feature f when introduced as a common feature, and

D(f) denote its effect as a distinctive feature, they measured the relative impact of f as

W(f): q#O and were able to measure W$) for a range of different features. It
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is important to recognise that such studies are required to use contrived stimuli so that

the researchers are able to know (or assume) in advance what the underlying featural

representation is, Although this is not unproblematic (e.g., Brooks, 1991; Goodman,

1972; Komatsu, 1992), measures of independence provide some protection against un-

warranted assumptions, and the sheer number of experiments (30 in the list of papers

cited above) is reassuring.

Such concerns notwithstanding, the results suggest W(f) is quite variable, although

this variation is to some extent orderly (see Shannon, 1988). For instance, Gati and

Tversky (19S4) found reliable differences inW(f) for stimuli presented in written form

and stimuli presented pictorially. In all written-stimulus experiments the median value

for l4z(f) was greater than L, ranging from .56 to .87. Experiments using pictorial

stimuli elicited a very different pattern, with the median W(f) ranging from.06 to

.35. It appears that people judge the similarity of verbal stimuli using a combination of

common and distinctive features that draws more heavily on the conìmon features model,

whereas the pictorial stimuli were judged using a model biased more towards distinctive

features. Although it could be argued that this effect results from other causes, Ritov

et al. (1990) present experiments that provide some evidence against such explanations

(but see Keren, 1990).

There is some evidence that when shown two highly similar objects - that is, objects

with many coÍrmon features and few distinctive features - people "tend to take the

shared features for granted and to focus on the distinctive features. On the other hand,

in the comparison of dissimilar objects, . . . people tend to take the differences for granted

and to focus on the common features" (Ritov et al., 1990, pp 30-31). This was directly

measured by Gati and Tversky (1984), by adding multiple common features or distinctive

features, and comparing the results to those obtained by adding a single feature. The

results suggested that a feature had less impact as a second addition than as a sole
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addition. This could be explained as a shift of attention from common features to

distinctive features (and vice versa), or alternatively as evidence that Â is subadditive

(i,e. Â(a + ó) < Â(ø) + 
^(b)). 

It is not the objective here to resolve the issue, merely to

observe the possibility that increasing or decreasing similarity may itself influence the

weighting of common and distinctive features.

One general framework for assessing featural similarity that accounts for common

and distinctive features is Tversþ's Contrast Model (Tversky, 1977; see also Gati &

Tversky, 1984). The Contrast Model consists of three terms in a weighted sum: the

common features term, f¿ o f7, and the two distinctive features terms f¿ - f¡ and f¡ - fr.

Thus the similarity estimate is given,

s¿¡ : îl\(f¿. f¡) - oT(f¿ - t) - þT(f¡ - f¿) + 
",

where Â and T are monotonically increasing functions and 0, a, and B are non-negative

hyper-parameters that assign weights to each of the terms. This version of the Contrast

Model, used by Gati and Tversþ (1984), does not require the common features compo-

nent to have the same functional form as the distinctive features component. However,

Tversky's (1977) original formulation did impose this restriction, and the model becomes

!ì¿¡:01\(f¿ nf¡) - alr(f¿-f) - p\(fj -fò +". (4.3)

It has already been argued that setting À : T provides an important psychological and

quantitative constraint on featural representations. If a particular feature can be used

as both a common and a distinctive feature, it is intuitive to assume that the same

function would be used for both. In short, it makes sense to evaluate common features

and distinctive features using the same functional form. If nothing else, Sattath and

Tversky's (1987) proof demonstrates that without this axiom, the Contrast Model is

underspecif,red, with each of its components able to substitute for the other. It is for this
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reason that Tversky's (1977) original model is the one used in this chapter.

Tversky's Contrast Model is committed to the assumption that the balance between

common features and distinctive features is invariant across features, since the weighting

hyper-parameters á, a and B are applied equally to all. This presents an intuitive

difficulty with the theory, in that it seems unlikely that all features are evaluated in

the same manner. Fortunately, this model is not the only plausible way of striking a

balance between common and distinctive features. One method by which to address this

concern might be to assign parameter values for each feature. The problem with such an

approach is that it would lead to a proliferation of free parameters, which is undesirable.

Instead, a more parsimonious similarity model is proposed, according to which a feature

is declared to be either a common feature (which increases the similarity of pairs of

stimuli that both possess it) or a distinctive feature (which decreases the similarity of

a pair of stimuli if one has it and the other does not). This Modified Contrast Model

takes the form,

s¿¡: l\(fï nfr:) -^(f,o -frg) -^(frg -fnd) +c (4.4)

The f" and fd terms refer to the set of common features and the set of distinctive features

respectively.

Psychologically speaking, the argument is that a feature embodies some kind of

regularity about the world, which may be that a set of stimuli all have something in

common, or alternatively, that two groups of stimuli are in some way different from each

other. A common feature instantiates the idea of "similarity within", whereas a distinctive

feature represents the notion of "difference between". Gender is a good example of a

distinctive feature: two people are not necessarily more alike because they are of the

same gender, but they are less similar if they are of different genders. In contrast, hair

colour makes sense as a common feature: two people with the same hair colour look
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more alike (e.g., two people with blonde hair look more similar), but differences in hair

colour are less important (e.g., someone with brown hair need not look dissimilar to

someone with blonde hair). While it may be the case that the saliency of a feature can

change, a commonality does nol suddenly become a distinction, nor vice versa. In the

Modified Contrast Model, the overall balance between commonality and distinctiveness

emerges as a function of the relative number and saliency of common and distinctive

features, rather than being specified by the parameter p, as it is in Tversky,s model.

That is, where Tversky's Contrast Model assumes that common and distinctive features

are weighted during the decision process, the Modif,red Contrast Model considers the

commonality or distinctiveness of a feature to be a regularity inherent in the environment,

and so embeds it in the representation itself. In this way, the Modified Contrast Model

assumes that featural regularities can be either commonalities or distinctions, but never

a bit of both. When a group of stimuli have both common and distinctive aspects, the

Modified Contrast Model treats these two aspects as two distinct featural regularities.

4 .2 Clustering Models

The psychological models discussed so far are quite general in scope. Returning to

the matter of finding plausible models of similarity that can be used by a clustering

algorithm, it is easy to see that the additive clustering model

3¿r:Iw¡f¿¡f¡¡"*c (4.s)
Ic

is an example of a commonfeatures clustering model, in which each feature is assigned a

saliency weight, and Á. denotes the sum-of-saliencies (plus an additive constant) function.

Given that there is good reason to assume T : Ä, the corresponding distinctive features

clustering model is
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3¡j : -;+wt"l¿t" (r - Í¡*) - ++.* (r - lu*) l¡n. (4.6)

Regarding Tversky's (1977) Contrast Model, the same functional form is applied, but

there is the additional matter of the three hyper-parameters a, B and 0. Since this

discussion of similarity is restricted to s¡nnmetric data (i.e. s¿¡ : s¡r), it is safe to

assume that a : þ. Moreover, it may be assumed without loss of generality that

0 + a I 0 : L, since the saliency weights derived during clustering are automatically

scaled to maximise data-fit. Allowing the hyper-parameters the freedom to sum to an

arbitrary number merely leaves the clustering model underdetermined. Therefore, by

setting 0 - p and a : þ : f such that 0 I p 1 1, an appropriate clustering model

based on Tversky's Contrast Model is given by

1 ^ l_^
3¿¡: pD-rÍo*Í¡*- +D-*lorÍ- f¡ù - --+Drr(r- 

lor)f¡x+c. Ø3)
t"izk

Since it is based on the Tversþ's Contrast Model, it is referred to as Íhe Tverslqt

Clustering Model (TCM). Note that the additive clustering model results when p : 1,

and the distinctive features clustering model results when p : 0. ln the TCM, p denotes

the overall balance between common and distinctive features, and is a direct analogue

of the empirical I4l measure used by Gati and Tversky (1984, 1987).

Finally, the same functional form is applied to the Modified Contrast Model. The

resulting Modified Clustering Model (MCM) is thus given by,

3¿, : I wxl¡nf ¡* - * f wnr¿x(r- l¡r)- i f .*(r- Íu,)Í¡t +",
" ,t€DF " k€DF

(4.8)
/c€CF

where k e CF implies that the sum is taken over the common features, and Ic € DF

means that only distinctive features are considered. It is irnportant to note that the status
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of a feature as a common feature or a distinctive feature is not a free parameter in the

MCM: it is a fixed structural property of the model, like the elements of the feature

matrix F. The additive clustering model results when all the features are common and

the distinctive features model results when all the features are distinctive.

4.3 Geometric Complexity Criteria

The derivation of GCC expressions for the four featural similarity models discussed

in this chapter is identical in form to the derivation for additive clustering models in

Section 3 .2, exceptthat the value of 3å rtdifferent for each of the four models, though

it always constant with respect to w, Since every featural representation considered in

this chapter has an additive constant, the GCC formula is

'l

ccc : -#p,ßoi - 3o¡), *!!#^(W) .;rn lcl

.oþ;Ih (",/2^)
1 

- ^ m,I7 /n,(n,-1\\ 1: - 2",1(,oi - êo¡)' .ry#m(W) . ;h lcl * constant

irrespective of whether the clustering model is the common features model, the distinctive

features model, the TCM or the MCM. The difference between the four models lies in

the expression for the (m + 1) x (rn + 1) complexity matrix G : lg,o), where

¡ 6âtj .. ôio¡ \
.4", : )ì f

,< \ôr" ^ ô-")

Ignoring the additive constant c for the moment, consider the common features model,

which assumes that similarity is the sum of shared saliencies. Therefore, the only term

that is not constant with respect to u;, is the rth term of the sum, w*f¡rf ¡,, so the partial

derivative is
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ôsij
ðw,

: fnf¡,

Tuming to the distinctive features model, the same logic eliminates all but the uth tetms

of the two sums, and therefore

ô3', 1 1.

ffi: -j\,"{t - Í¡,) - ;O - T*)f ¡,.

The partial derivative for the TCM is given by

AÊ¡j

ôw,
: Pl¿,Íi,-7r*rr_ r¡") -|O- r¿")Í¡",

whereas for the MCM it is

l¿, I ¡,

-ïlo,(t- Í¡*) - ått - fu)r¡*

For the TCM, H t" a weighted sum of the additive clustering and distinctive features

clustering expressions for ffi, and for the MCM, ffi always reduces to either the

additive clustering expression or the distinctive features expression. It should be noted

that if the parameter happens to be the additive constant c (rather than one of the saliency

weights), then the expression ? i. always 1, inespective of which clustering model is

used.

4 .4 Algorithms for Fitting Featural Models

The algorithms used to derive representations in this chapter are based on the additive

clustering algorithm proposed by Lee (in press, see Section 2.3.4). These algorithms

examine potential representations one at a time, and search through the space of possible

representations for the one that minimises the GCC. Therefore, they maintain a feature

matrix F for the representation currently being considered. In the case of the MCM, a

r07

A3¿j

0w,

if r is common

if r is distinctive



binary-valued vector of "feature types" is also maintained, denoting which features are

common and which are distinctive.

The algorithms initially speci$, a single-cluster representation, which is optimised (in

the sense of finding the representation with minimum GCC) by employing the stochastic

hillclimbing procedure described in Section 2.3 .4. In the case of MCM representations,

the elements of the feature types vector as well as the feature matrix are optimised by

the stochastic hillclimbing. Once this process terminates, a new (randomly generated)

cluster is added, and this solution is used as the starting point for a new optimisation

procedure, As features are added, the representations become increasingly more complex.

Therefore, at some point the increased data-fit achieved by adding features will no longer

justifl the increased complexity, and the GCC will start to deteriorate. The algorithms

terminate once the GCC of the best representation with r features is sufficiently (e.g.,

l0 points; see Table 3,1) worse than the GCC of the best representation encountered

during the entire search, where z is the number of features that have been added so far.

The representation returned is the one with the best GCC.

Note that the TCM algorithm requires p to be specifìed in advance, because it not

considered to be a parameter of the representation. The p-values for the TCM were found

by running the algorithm across the full range of possible p-values (i.e., by gridsearch).

This is consistent with the view that the underlying representation consists of the feature

structure F and the saliency weights w, and that p relates to the decision process,

It would be a small matter to modifo the algorithm to automatically derive the most

appropriate p-value, though if p is considered to be a model parameter, then the GCC

derivation should accommodate this.

108



4. 5 Monte Carlo Study I: Do the Algorithms Work?

Prior to the use of any algorithm for the analysis of empirical data, it is general practice

to demonstrate its ability to recover known structures from artificial data containing some

level of noise. Therefore a small Monte Carlo study was undertaken to demonstrate that

the GCC-driven stochastic hillclimbing algorithms developed in the previous sections

do recover known representations from artificial data. However, such an investigation

deals only with the numerical "representation recovery" problem, not the psychological

"similarity modelling" problem. It is easily possible (perhaps commonplace) to have

good algorithms fitting an inappropriate psychological model, or to fit a good model

using poor algorithms. The purpose of this section is to check that the algorithms used

in this chapter are good ones, in order to discuss the validity of the psychological models

in subsequent sections. In order to differentiate between psychological models, this sort

of Monte Carlo evaluation is next to useless. The true test of a model is how it deals

with real data: the psychological evidence provided by Monte Carlo studies is minimal.

4 .5 .1 Method

Eight similarity matrices were used for this evaluation, by adding Gaussian noise (p : 0,

o : .05) to the similarity values generated by an underlying "true representation", subject

to the constraint that 0 ( s¿; < 1. The saliency weights w* and additive constant c were

non-negligible in magnitude (> .2) but otherwise random. Two feature structures were

used for each of the four similarity models, one with four features and the other with

six. The representations incorporate features with variable patterns of encompassment

and overlap, as shown in Figure 4.1. None of the representations is degenerate, since

the complexity matrix G for each representation has full rank. However, the value of

In lGl varies slightly across the four similarity models, as would be expected given their

different functional forms. It is imporlant to recognise that this presents no diffìculties
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for this study, as the purpose is not to compare similarity models, The aim is to verifu

that the algorithms serve their intended purpose of extracting appropriate representations,

no more.

Each of the eight similarity matrices was analysed by using the appropriate algorithm

to extract a representation (with l0 restarts). Since the intent was not to compare

similarity models, an algorithm that uses one model \ryas never to frt to data generated

under another. Each procedure was repeated l0 times.

4.5.2 Results

Figures 4.2 through 4.5 display the VAF and GCC values for solutions obtained by the

additive clustering, distinctive features clustering, TCM (p : 0.5), and MCM algorithms

respectively. The dotted lines represent error bars, showing one standard error above

and below the mean. No dotted lines are visible when all l0 runs yielded the same

result, Note that, though the error bars are symmetric, the samples in question are

not. When the runs yielded different results, the sample of GCC or VAF values typically

consisted of several instances of the optimal representation, and a few suboptimal results.

Nevertheless, inspection of the figures reveals that the GCC selected the representation

with the appropriate number of features in 7 out of 8 cases. The exception is the six-

feature TCM data, where a four-feature representation is preferred. Table 4.1 displays

the number of "hits" for each data set, defined as the number of occasions when the

true representation was recovered (if not preferred).

The apparent "failure" of the GCC to prefer a six-feature representation for the

six-feature TCM data is easily explained. The five-feature representation (GCC:34,S)

recovered 9 times out of l0 from the six cluster data, as well as the four cluster represen-

tation (GCC:35.1) recovered on all 10 occasions both had slightly lower GCC-values

than the "true" representation (GCC:36.6). These representations are both identical to
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Table 4.1: Number of times out of 10 that the algorithms recovered the "true" represen-
tation.

Four Features Six Features

Common Features Model

Distinctive Features Model

TCM

MCM

9

l0

9

9

6

8

l0

7

the true one except for the omission of one or both of the two smallest clusters (the ones

containing only two stimuli each). It may be that these features do not make enough of

a unique contribution to the data to warrant modelling. However, the difference in GCC

between these representations is less than two, which is classified as "weak" evidence in

Table 3.1 (or, "not worth more than a bare mention" to use Jeffreys' 1961 terminology).

In short, this data set does not discriminate between these three representations.

4.5.3 Discussion

Not only do the algorithms recover the right number of clusters in most cases, but the

correct feature structure is the one generally returned. The fact that the lowest-GCC

representation for the six-cluster data for the TCM omitted one of features is not a cause

for concern. As previously noted, the difference in GCC is very slight. Furthermore,

there is an argument that if a feature does not make a substantial contribution to the

model, then it ought not be included, and it may be that the omitted feature(s) did

not make a suffrcient contribution (see Kass & Raftery 1995 for a similar argument

regarding model recovery). In any case, this study indicates that the algorithms are

capable of recovering known feature structures from noisy data. This does not imply

that they will always recover the right representation from real data: empirical data
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tends to present a much more difficult recovery problem. Nor does the study provide

any support for the psychological models presented earlier. It does, however, demonstrate

that the tools meet a minimum necessary level of effectiveness to justify their use in the

following sections.

4. 6 Representations of Kinship Terms

The GCC derivations and algorithm validations in the previous sections provide the tools

required to evaluate the four featural similarify models. In this section each of these

four models are used to extract representations from Rosenberg and Kim's (1975, see

Section 2.1) data on the similarity of English kinship terms. Of the 15 terms included

in the data set, 14 denote specific, gendered relationships (the exception being the word

'cousin'). In order to examine the manner in which each of the four similarity models

represents the concept of gendeq 'cousin' is excluded.

The first model applied to the data was the common features model. The GCC-

driven algorithms extracted the ten-feature representation displayed in Table 4.2. The

representation is by and large a sensible one, containing simple, interpretable features

such as sibling (brother, sister) and parent (father, mother), and accounting for 93.1%

of the variance. The only substantial shortcoming in this representation is that it re-

quires two features to represent gender: the sixth feature contains the female terms and

the seventh feature contains the male terms. The fact that these two features are the

complement of one another, and have virtually identical saliency weights suggests that a

more compact representation of gender is possible. Indeed, the eight-feature distinctive

features representation shown in Table 4,3 contains a single feature that distinguishes the

male terms from the female terms. This single distinctive feature accounts for as much

variance as the two common features, and is just as interpretable. However, although

this representation accounts for 94.7Yo of the variance and has a lower GCC than the
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Table 4.2: Common features representation of the kinship data.

Feature Weight

Brother, Sister

Father, Mother

Granddaughter, Grandfather, Grandmotheq Grandson

Aunt, Uncle

Nephew, Niece

Aunt, Daughter, Granddaughter, Grandmother, Mother, Niece, Sister

Brother, Father, Grandfather, Grandson, Nephew, Son, Uncle

Aunt, Nephew, Niece, Uncle

Brother, Daughter, Fatheq Mother, Sìster, Son

Daughter, Granddaughter, Grandson, Son

Additive Constant

0.305

0.290

0.288

0.286

0.283

0.223

0.22t

0.219

0.193

0.128

0.226

Variance Accounted For

Geometric Complexity Criterion

93.t%

59.6

contmon features representation, it fails to capture the simple, interpretable features that

appear inTable 4.2.

If the common features model cannot represent gender by a single feature, and the

distinctive features model does not capture the concepts of sibling or parent, then some

combination of common and distinctive features is required, The preferred TCM repre-

sentation contains seven features with p : 0.2, and is shown in Table 4.4. Inspection

of this representation reveals substantial problems with interpretation. The simple com-

mon features such as sibling do not emerge, and gender still requires two features. The

common features do not emerge because of the low p, but since p > 0 a single feature

cannot account for gender. If there were a single feature containing all the female terms,

then the distinctive features component would rnake the male and female terms less
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Table 4.3: Distinctive features representation of the kinship data.

Feature Weight

Brother, Father, Grandfather, Grandson, Nephew, Son, Uncle

Aunt, Brother; Nephew, Niece, Sister, Uncle

Aunt, Brother, Daughter, Father, Mother, Sister, Son, Uncle

Aunt, Granddaughter, Grandfather, Grandmother, Grandson, Uncle

Aunt, Daughter, Granddaughter, Grandson, Nephew, Niece, Son, Uncle

Aunt, Father, Mother, Nephew, Niece, Uncle

Brother, Daughter, Fatheq Granddaughteq Grandson, Mother, Sister, Son

Brother, Granddaughter, Grandson, Sister

Additive Constant

0.451

0.249

0.242

0.238

0.213

0.203

0.164

0.091

0.902

Variance Accounted For

Geometric Complexity Criterion

94.7%

50.5

similar to each other, but the common features component would make the female terms

more similar to one another without having a corresponding effect on the male terms.

This asymmetry means that a second feature is required, containing all the male terms.

Therefore, although the TCM allows a compromise between comrnon features concerns

and distinctive features concems, the trade-off may not be to the advantage of either.

The ten-feature MCM representation shown in Table 4.5 adopts an interpretable

compromise between common and distinctive features. The four distinctive features

distinguish the male terms from the female terms, the once removed terms (aunt, nephew,

niece, uncle) from those not once removed, the extreme generations (granddaughter,

grandfather, grandmother, grandson) from middle generations, and the nuclear family

(brother, daughter, father, mother, sisteq son) from the extended family. The six conìmon

features represents simple, interpretable concepts such as sibling, parent, grandparent
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Table 4.4: TCM representation of the kinship data with p: .2.

Feature Weight

Brother, Daughter, Father, Mother, Sister, Son

Brother, Granddaughter, Grandfatheq Grandmother, Grandson, Sister

Daughter, Father, Granddaughter, Grandfather, Grandmother, Grandson,

Mother, Son

Aunt, Daughter, Granddaughter, Grandmother, Mother, Niece, Sister

Brother, Father, Grandfather, Grandson, Nepheq Son, Uncle

Brother, Daughter, Granddaughter, Grandson, Nephew, Niece, Sister, Son

Aunt, Brother, Father, Mother, Nephew, Niece, Sister, Uncle

Additive Constant

0.392

0.250

0.220

0.219

0.2t3

0.1 68

0.t23

0.679

Variance Accounted For

Geometric Complexity Criterion

91/%

50.4

and grandchild. Importantly, these concepts are appropriately declared to be common

features, since, for example, a brother and sister have the similarity of being siblings,

but this does not make those who are not siblings, like an aunt and a grandson, more

similar.

The four analyses of the kinship data raise three interesting observations. Firstly,

the similarity data appear to reflect the operation of common features and distinctive

features. Nevertheless, the TCM's reliance on the decision variable p prevents it from

accommodating this. However, by declaring featr-ues to be either conìmon features or

distinctive features, the MCM is capable of doing so. Secondly, the common features

and MCM representations suggest that there are many commonalities in the domain,

yet the balance between common and distinctive features in the TCM is highly biased

toward distinctive features. It may be that the common feafures component introduces

120



Table 4.5: MCM representation of the kinship data.

Feature Weight

DF: Brother, Father, Grandfather, Grandson, Nephew, Son, Uncle

CF: Aunt, Uncle

CF: Nephew, Niece

CF: Brother, Sister

CF: Grandfather, Grandmother

CF: Father, Mother

CF: Granddaughter', Grandson

DF: Aunt, Nephew, Niece, Uncle

DF: Granddaughter, Grandfather, Grandmother, Grandson

DF: Brother, Daughter, Father, Mother, Sister, Son

Additive Constant

0.4s2

0.298

0.294

0.291

0.281

0.276

0.274

0.230

0.1 90

0.1 87

0.660

Variance Accounted For

Geometdc Complexity Criterion

935%

56.1

more complexity than the distinctive features component, and therefore the GCC favours

a lower p. Evidence in favour of this suggestion is provided by observing that the

distinctive features component is constrained by the triangle inequality, but the coÍìmon

features component is not. Furthermore, Navarro and Lee (2001) have demonstrated that

common features representations can accommodate distinctive features data substantially

better than vice versa. Thirdly, the TCM and distinctive features representations have

the lowest GCC values (50.5 and 50.5 respectively), followed by the MCM (56.1) and

then common features (59.6) representations. Using the standards shown in Table 3.1,

there is no evidence to choose between the TCM and distinctive features representations,

though there is "positive" evidence to suggest that the MCM performs less well than

these two, and positive evidence that the comrnon features representation is worse again.
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Despite these differences, the MCM representation is arguably the best: although the

GCC provides a well-founded trade-off between ht and complexity, it does not account

for interpretability. The arguments made in this section regarding the interpretability of

the four models favour the MCM over the other three, and the difference in GCC does

not seem sufficiently extreme to justif, choosing an uninterpretable representation over

a meaningful one.

4.7 Monte Carlo Study II: Complexity

The previous section indicated that common features representations may be more com-

plex than distinctive features representations. If so, it is worth examining the manner in

which the TCM and MCM interpolate between the two, This section presents a Monte

Carlo study investigating the complexity of the four featural similarity models.

4.7 .1 Method

The study involved 100 representations of 15 stimuli, each containing l0 features. The

features were assigned to stimuli at random, subject to the constraintthat the representa-

tions avoid degeneracy (F had full rank in all cases). In this way, the feature structures

were guaranteed not to be biased towards unusually simple or unusually complex struc-

tures. The complexity matrix G was then calculated for every feature structure, using a

range of featural similarity models. For the TCM, p was set to 0, 0.1, 0.2,. . ,, 1, thus

moving from a distinctive features model to a common features model. A corresponding

transition was achieved for the MCM by randomly declaring 0, l, 2, ..., l0 of the

features to be common.
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4.7 .2 Results

Figure 4,6 plots the value of the structural complexity component of the GCC, lnlGl,

as a function of the balance between common and distinctive features employed by the

similarity model. The distinctive features model (left side) is clearly the simplest, and

the common features model (right side) the most complex. The solid line plots the

change in complexity as the TCM moves from the distinctive features model (p : 0) to

the common features model (p:7), whereas the dashed line shows the same transition

for the MCM as the proportion of common features in the model goes from 0 to l.
Apart from the endpoints, where the TCM and MCM both reduce to the common and

distinctive features models, the TCM is always the simpler of the two.

4.7 .3 Discussion

The speculation in the previous section appears to be borne out: the common features

model is more complex than the distinctive features model, and the MCM is more

complex than the TCM. Specihcally, the complexity of MCM representations appears

to increase linearly with the proportion of common features, whereas the complexity

function for the TCM is clearly convex. In general, it is likely to be the case that any

plausible featural model can provide a good account of most data sets in a parsimonious

manner. However, the results here suggest that representations derived using the TCM

will very likely be less complex, and if so, they will perform better on measures such

as the GCC. Consequently, the onus is on the MCM to provide a more interpretable

account of similarity judgements. The analyses of the kinship data suggest this to be the

case, but further investigations are certainly warranted,
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4. I Experiment I: Faces

The first experiment involved an artificial domain consisting of a several cartoon faces.

The faces were constructed in such a way as to present participants with a variety of

features with different real-world base rates and social connotations. For these reasons,

although the stimulus domain is simply designed, it need not be trivial'

4.8. 1 Method

Participants

Participants in the study were 10 university students (six female, four male) aged24 to

49, with a median age of 26.

Stimulus Domqin

A set of 10 cartoon faces were designed, varying in hairstyle (male or female), hair

colour (brown, black, burgundy, grey or bright blue), glasses shape (square or round)

and glasses colour (dark blue or pink). These faces are shown in Figure 4.7, and

described briefly in Table 4,6.

Procedure

Participantswereshown(viacomputer)all(Lo):4Spairsoffacesinarandomor.

der, and asked to rate the similarity of each pair on a seven-point scale, ranging from

"completely different" (1) to "completely identical" (7).

4.8.2 Results

The similarities shown in Table 4.7 were calculated by averaging across participants

and normalising the data to lie between 0 and 1. Following Lee (2001a), a precision

estimate ã¡¡ was calculated for each stimulus pair, by taking the standard deviation of
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Figure 4.7'. The ten cartoon faces used as stimuli in Experiment I. Faces vary in hairstyle
and sunglasses only.

Table 4.6: Verbal description of the faces stimuli.

Face a:

Face b,

Face c:

Face d:

Face e:

Face I
Face g:

Face h:

Face i:

Face j:

Female with burgundy hair and round pink sunglasses

Female with brown hair and round blue sunglasses

Female with black hair and round blue sunglasses

Female with burgundy hair and square blue sunglasses

Female with blue hair and square blue sunglasses

Male with grey hair and round pink sunglasses

Male with black hair and round blue sunglasses

Male with brown hair and square blue sunglasses

Male with grey hair and square blue sunglasses

Male with blue hair and square blue sunglasses
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the participants' ratings for that pair. These precision estimates are shown in Table 4.8,

and range from 0.ll to 0.22 with standard deviation 0.03. The consistency of these

estimates allows the median value to be used as the overall precision estimate for the

data,yieldingâ:0.16.

Each of the four similarity models was used to extract representations from the data.

The stochastic hillclimbing algorithms were applied five times (with l0 restarts each)

for all four similarity models, and representations were evaluated using the GCC. All

VAF or GCC plots shown in this section display the best results from the five runs.

Figure 4.8 displays the Variance Accounted For by the common features representations,

as well as the trade-off between data-fit and model complexity as measured using the

GCC. The GCC strictly preferred a representation containing two features: however,

because the GCC deteriorates by only 2.2 (see Table 3.1) when a third feature is added,

and that the three feature representation allows a far richer interpretation of the data, the

subsequent discussion considers this three feature model, The GCC for the distinctive

features model (see Figure 4.9) also preferred a two feature model. Once more the

rise in GCC is small (1.6) when a third feature is included, and for similar reasons

of interpretability this representation is used shortly. The Variance Accounted For by

TCM representations is displayed in Figure 4.10, and the GCC in Figure 4.11. It is

clear that the GCC favours p:0, making the TCM equivalent to the distinctive feature

model. Accordingly, the p : 0 TCM representations are identical to the distinctive

features representations, and the three feature model is subsequently discussed. Finally,

the MCM shows the same pattern (see Figure 4.12), with the deterioration being 1.8

when a third feature is included.

The common features representation displayed in Figure 4.13 contains features con-

sisting of the male faces and the female faces. The third feature captures the'ordinary'

faces, as it consists of those faces with more conservative hair colours and sunglasses.
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Table 4.7: Similarities between all pairs of faces.

abcdefghij
a

ó 0.83

c 0.64

d 0.63

e 0.60

"f 0.60

s 0.43

h 0.41

i 0.40

j 0.37

0.70

0.70

0.53

0.54

0.36

0.63

0.40

0.33

0.70

0.sl

0.43

0.54

0.37

0.30

0.26

0.71

0.40

0.30

0.56

0.53

0.44

0.36

0.31

0.50

0.47

0.61

0.67

0.66

0.67

0.59

0.53

0.67

0.47

0.83

0.74 0.74

Table 4.8: Precision estimates for the similarities between all pairs of faces.

abcdefghij
a

b o.Is

c 0.19

d 0.18

e 0.12

f 0.18

g 0.13

h 0.20

r 0.15

j 0.n

0.16

0.17

0.18

0.17

0. l3

0.16

0.t7

0.r4

0.15

0.20

0.17

0.17

0.l8

0. l6

0.12

0.16

0.t2

0.19

0.16

0.20

0.t2

0.t2

0.19

0.16

0.t4

0.t7

0.17

0.17

0.14

0.16

0.22

0.20

0.t4

0.r4

0.14 0.12
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Figure 4.8: The GCC and VAF values for common features representations of the faces

data. The GCC strictly prefers two features, though the three feature representation is

subsequently discussed.
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Figure 4.9: The GCC and VAF values for distinctive features representations of the faces

data. The GCC strictly prefers two features, though the three feature representation is
subsequently discussed.

5

t29



100o/o 100o/o

50%
LL

50To
tL

0%

100o/o

50o/o

1 Feature

3 Features

5 Features

0%

100%

50%

2 Features

4 Features

0 0.5
p

0.5

01 0.5
p

LLLL

0o/o 0o/o
00 0.5

pp

LL

100o/o

50o/o

0%o
0 0.5 1

p

Figure 4.10: The VAF values for TCM representations of the faces data. Each panel
contains the same five plots of VAF values as a function of pi each plot corresponds to
representations with a particular number of features, Each panel highlights one of the
plots: the highlighted plot is identif,red by the number of features indicated by the text
in the bottom right corner of each panel.
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the plots: the highlighted plot is identifred by the number of features indicated by the

text in the bottom right corner of each panel. The GCC strictly prefers two features and

p:0, though the three feature representation is subsequently discussed.
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Figure 4.12: The GCC and VAF values for MCM representations of the faces data. The
GCC strictly prefers two features, though the three feature representation is subsequently
discussed.

The distinctive features and TCM representation displayed in Figure 4.14 contains a

gender distinction, a distinction between the square and round sunglasses, and a distinc-

tion between pink and blue sunglasses. Finally, the MCM representation displayed in

Figure 4.15 captures the distinctive features corresponding to gender and glasses shape,

and the common feature consisting of the 'ordinary' faces.

4.8.3 Discussion

Despite the simplicity of this experiment, the data set turns out to be useful in evaluating

the four featural models under consideration. The gender and glasses-shape aspects of the

domain make sense only as distinctive features, and a common features representation can

capture the regularities only by having two common features with the same weights. This

data set also demonstrates why allocating two common features to model a distinctive

feature is a poor representational strategy. The use of a principled model selection

criterion demonstrates that the complexity of fitting models is strongly constrained by
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the precision of the data. In this domain, it appears that only two or three features

are justified by the data. Therefore, the common features model, which requires four

features to account for gender and glasses-shape, performs poorly.

The distinctive features model, the TCM, and the MCM all account for the domain

well, capturing the two most prominent regularities (gender and glasses-shape) with only

two features. Since the VAF and GCC do not distinguish between these representations,

the models can be judged only by the interpretability of the third feature. However,

the glasses-colour distinction made by the distinctive features and TCM representations

is a reasonable feature, as is the 'ordinary faces' common feature found in the MCM

representation. It is perhaps sufficient to note that only the MCM is capable of simulta-

neously accommodating the common feature 'ordinary' and the two distinctive features.

This is important because, while two ordinary things are likely to be similar to each

other, two unusual things need not be. For example, people may judge two 'ordinary'

Western faces (e.g., Al Gore and Tom Cruise) to be more similar to one another than

two 'unusual' Western faces (e.g., Sid Vicious and John Malkovich). Correspondingly,

the concept of an ordinary face is necessarily a common feature rather than a distinctive

one. Capturing commonalities as well as distinctions is typical behaviour for the MCM:

the TCM cannot do this under any (hyper-)parameterisation.

4. 9 Experiment II: Countries

Although artificial stimuli may be useful in demonstrating theoretical points, it is often

more informative to examine the behaviour of models when applied to more natural

domains. Therefore, the second experimental test of the four similarity models employed

natural stimuli. Inspired by Tversky and Gati's (1978) work on common and distinctive

features, the domain consisted of a set of 16 nations. Tversky and Gati presented their

participants with a pair of well-known (prominent) nations and a pair of less well-known
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(non-prominent) nations. In one condition participants were asked to choose which of

the two pairs of nation were more similar, and in the other condition, they were asked

to select the more dissimilar pair. They recorded the proportion of participants choosing

the prominent pair as more similar, as well as the proportion choosing the prominent

pair as more dissimilar, and found that the sum of the two was greater than l. From this

they concluded that the balance between common and distinctive features shifts from

common to distinctive as the task is switched from a similarity to dissimilarity,

This suggested a simple experimental design, in which both similarity and dissimi-

larity judgements were collected for a set of stimuli 16 nations identified by name. The

nature of the task, however, made it less than satisfactory to present people with a pair of

countries and ask them to provide arating of similarity. It seems likely that this would

be ambiguous, in that the initial impulse of participants may be to ask, "Compared to

what?". Even if the level of similarity (or dissimilarity) between a pair of nations is

obvious to a participant, they are unlikely to bring to this task a preexisting numerical

scale of nation-similarity upon which to rate it. An alternative approach is to provide

the participants with a context in which to make judgements, and so avoid this difli-

culty3. Consequently, the task involved presenting people with a list of four countries,

and asking them to select from that list the pair of nations most similar to (or most

different from) one another, For instance, if presented with "Italy, Jamaica, Nigeria and

3As an aside, one might ask whether this difficulty arises with regard to any similarity task involving
a rating scale. As Goldstone et al. (1997) have argued, a similarity judgement takes the form "-4 is
like B (in some respect, ,R)", where rR is determined by the context. A rating scale provides very little
context fol the decision, so participants are required to discover (ol provide) the context themselves, by
finding a number of respects R: {Ãl , Rz, ..., rB¡} with which a judgement could be made. By asking
people to assess similarity without providing a suitable context, the researcher is implicitly requiring them

to average across a wide range of "potential contexts" in which the stimuli might be encountered. In a

simple perceptual task such as the faces experiment (Section 4.8), this is unlikely to be difficult. Even for
a domain such as O'Doherfy and Lee's (2002; see Section 2. 1) animals data, it may not be too strenuous

to provide a sufficiently diverse set of contexts to make a reasonable decision. However, this may not
be the case for the nations domain, so it seemed prudent to provide a more constrained "local context".
Consequently, participants only needed to find a set of lespects appropriate to the local context, and not

to every possible context in which one might need to compare two nations.
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Zimbabwe" as a list, a participant might select Zimbabwe and Nigeria as the two most

similar nations.

The TCM assumes that the balance between common features similarity and distinc-

tive features similarity is the same for every feature, although it may vary according to

the nature of the task. In the (unlikely) event that dissimilarity judgements are straight-

forward reversals of similarity judgements, one would expect similar feature structures

to emerge in the two conditions, but with different values for p. Alternatively, since the

MCM declares features to be either common features or distinctive features, one would

expect the saliency of common features to go down and the saliency of distinctive fea-

tures to go up as the task shifts from similarity to dissimilarity. One aim of this study

was to see if this phenomenon is observable in the derived representations. However, in

a broader sense, the aim was to examine the structures that emerge from the two data

sets under the different models.

4.9 .1 Method

Participants

Participants in the study were 30 university students (ll male, 19 female) aged 17 to 49,

with a median age of 24, who took part in the experiment for course credit. Sixteen of the

participants provided similarity judgements and 14 provided dissimilarity judgements.

Stimulus Domain

The list of nations was: China, Cuba, Germany, Indonesia, Iraq, Italy, Jamaica, Japan,

Libya, Nigeria, Philippines, Russia, Spain, United States, Vietnam and Zimbabwe. They

were chosen to suggest a variety of possible classification schemes (e.g., political system,

geographical location), and vary in overall saliency (e.g., Italy and Germany were better

known to most of the participants than Zimbabwe and Nigeria).
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Procedure

The participants were randomly assigned to one of two conditions. On any given trial a

list of four countries was displayed (via computer) to the participant, who was asked to

select the two countries most similar to or most different from each other, depending on

the condition to which they were assigned. The 16 nations yield (116) : L20 distinct pairs

of nations, and a total of (T) : 1820 possible lists of four. Given that similarity ratings

were sensitive to all four presented stimuli, it was important to exhaust the set of 1820

quadruples exactly. To that end, the 1820 items were partitioned into 20 subsets of 91

quadruples in both conditions. Most participants provided responses to one such subset,

though a few provided responses to multiple subsets. No participant provided both

similarity and dissimilarity judgements. Since each quadruple involves the presentation

of 6 of the 120 pairs of nations, each pair appeared a total of 1!## : 91 times across

the entire data set.

4.9 .2 Results

Calculaling Similarity and Dissimilarity

The natural measure of stimulus similarity for choice data is the probability with which

two stimuli are chosen. lf þ¡¡ represents the "true" similarity between the ith and jth

stimulus which were chosen k times out of n (n being 91), then the similarity value

indicated by the choice data is given by the expected value of ö¿¡. That is,

S;; E lþa,lk,nl

lo'
Ó¿¡P(Ó¿¡lk,n) dþ¡¡

Using Bayes theorem, the posterior probability p(ó,¡ lc,n) is given by
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P(Ór¡lk,n)
p(k,"|ó¿¡)p(óo¡)

p(k,n)
p(k, 

"ló¿¡)p(óo¡)
li p&, rlóu¡)p(óo¡) dóo¡

If a uniform prior distribution p(S¡¡) is chosen for Q¿¡, this reduces to

P(ó;¡lk,"l:E##*. Ø.s)

Using a standard result in Bayesian statistics (Gelman, Carlin, Stern, & Rubin, 1995,

p. 31), the expectation of this probability yields the similarity value s¿¡ : #. An

equivalent argument yields the dissimilarity value d¿j # i" the other condition.

The similarity and dissimilarity values calculated according to this rule are displayed in

Tables 4.9 and 4.10 respectively.

Estimating Precision

Estirnating the precision of this data set requires a different approach to that used when

analysing the faces data. The nahre of this experiment required 1820 unique trials: ide-

ally, each participant would have responded to every item, yielding a balanced similarity

matrix for each participant, allowing an estimate to be made of the between-subject

variability in responses. Since it was not feasible to have each participant provide 1820

judgements, this is not a viable approach. Nevertheless, it is possible to use the individ-

ual participants' data to make a best estimate of what the individual similarity matrices

would have looked like, again using Bayesian posterior probability to calculate similar-

ity. However, since the pairs appeared with different frequencies n for each participant,

the confidence in these estimates is quite variable. It may sometimes be assumed that

individual similarity estimates are arbitrarily precise (Lee, 2001a), but in this case it is

inappropriate to do so. This is evident in Figure 4.16, which displays the posterior prob-
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Table 4.9: Pairwise similarity estimates for the similarity-condition data set.

Chi Cub Cer Ind Ira lh Jm Jap L¡b Nig Phi Rus Spo USA vìe Zin

Chino

Cub¿
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Indones¡â

lraq
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Table 4.10: Pairwise dissimilarity estimates for the dissimilarity-condition data set.
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Figure 4,16: Probability distributions for / for all participants for the Germany-Cuba
and ltaly-Spain response options in the similarity condition. These two pairs have
similarityvalues of 0.04 and 0.90 respectively, and precision estimates of 0.19 and 0.21
respectively.

ability distributions for all participants for the Germany-Cuba and Italy-Spain response

options in the similarity condition. The variation in the individual density functions

highlights the importance of distributional information for these data. It is worth not-

ing that the disagreement is in part an artifact of the experimental design: that is, the

underlying variation in n. Nevertheless, experimental design ¡s a source of potential

imprecision, and must be taken into account when estimating precision.

The appropriate approach is to use the choice data to find, not just the expected

probability Eló¿¡lk,n] with which each participant chose the ith and jth stimuli, but

the full probability distribution for the response probability þ¡¡. A given participant

may have been presented with n trials that contained a particular pair of nations, and

chosen that pair k times, yielding the posterior probability distribution for þ¿¡ described

by Eq. 4.9. A simple way to estimate precision is to calculate the average squared

deviation from s¿¡ of scores drawn from the set of all individual distributions. This
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can be done numerically by drawing a sample from each individual distribution, and

calculating

Ð[, ("' - 3n¡)'

¡/-1

where r, is the rth obseruation and l/ is the total number of obseruations overall, The

advantage of this measure is that since âa¡ is a standard deviation estimatea of the vari-

ation around êi¡, it preserves the underlying probabilistic similarity model (Tenenbaum,

1996), and accounts for the noise arising from differences between participants as well

as the variability in n due to the experimental design. It is reassuring to observe that

the precision estimates for the similarity data (Table 4.ll) and the dissimilarity data

(Table 4.I2) do not display much variability, suggesting that the assumption of common

variance is not violated. Given this, the median of these estimates is taken to be the

overall precision estimate, yielding õ : 0.22 for the similarity condition and ã : 0.24

for the dissimilarity condition.

Simil arity C ondilion Repres entations

Featural stimulus representations \ryere extracted from the similarity-condition countries

data for each of the four sirnilarity models. The stochastic hillclirnbing algorithms were

applied five times (with 10 restarts each) for all four similarity models, and represen-

tations were evaluated using the GCC. All VAF or GCC plots shown in this section

display the best results from the five runs. For the coÍrmon features model, Figure 4.17

displays VAF and GCC values as a function of the number of features. Keeping in

mind the standards of evidence advocated in Table 3.1, this figure suggests that some-

4Note that normalising by l/ - 1 gives an estimate of the population standard deviatioll, whereas

normalising by N gives the sample standard deviation. Ordinalily, a Bayesian approach does not use

population estimators in the same way that a frequentist approach does, relying instead on the properties

of the observed data. However, in this case, the ø values are nol the empirical data, but are (in theory)

drawn frorn the same distribution. Thus the population estimate is applied, even though it is a frequentist

measure rather than a Bayesian one. In practice, the point ìs largely irreÌevant, since N is large.

o¡j :
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Table 4.11: Precision values for each pairwise comparison in the similarity-condition
data set, estimated using posterior probability distributions for each participant.
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where befween four and seven features are justified. In contrast, the GCC displays a

clear preference for a five feature representation when the distinctive features model is

applied (see Figure 4.18). When the TCM is applied, as shown in Figures 4.19 and

4,20, the GCC favours a four to six feature model with p between 0.5 and 0.7. Finally,

though the GCC for the MCM reaches a minimum at four features (see Figure 4.21), a

representation containing up to seven features is acceptable.

The representations displayed in Figures 4.23 through 4.24 are those with the most

features within the acceptable range for each similarity model. In quantitative terms, the

TCM representation (p:0.7) performs somewhat better than the other three ("positive"

evidence according to Table 3.1). Otherwise the GCC does not discriminate between

the representations, However, the qualitative characteristics of the four representations

are illuminating, and allow a substantial comparison of the four similarity models. Each

of these representations is discussed in turn.

The common features representation shown in Figure 4.22 contains seven features

that explain 78.1% of the variance in the data. The features are highly interpretable,

identif ing geographical features containing western European nations (Italy, Spain, Ger-

many), Caribbean nations (Cuba, Jamaica), southern African nations (Nigeria, Zim-

babwe), Asian nations (China, Japan, Vietnam, Philippines, Indonesia), and Middle

Eastern nations (Iraq, Libya). The feature shared by the Philippines and Indonesia iden-

tifies a salient subset within the Asian nations, while the feature shared by Germany,

Russia, the United States, China and Japan has a 'world powers' interpretation. It is

also possibleto give an alternative interpretation of the feature shared bylraq and Libya

in political terms, corresponding to 'rogue states'.

The distinctive features representation shown in Figure 4.23 contains five features

that explain 71.0% of the variance. The top-weighted feature distinguishes between the

developed nations (Italy, Spain, Germany, Russia, United States, China, Japan) and the

143



tr
.9 ¿e
oË

3ouxg
+44
È
oo
.9 42
o
E
840o

ql

-1.0,

oo

oo
o
tr

o
CL
.11

o

100%

75o/o

50%

25%

0%012

01

38
345678
Number of Features

10I

Figure 4.17: GCC (solid line) and VAF (dashed line) for common features representations
of the similarity-condition countries data. Four to seven features are preferred.
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each plot corresponds to representations with a particular number of features. Each panel

highlights one of the plots: the highlighted plot is identified by the number of features

indicated by the text in the bottom right corner of each panel.
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Table 4,13: TCM representation of the similarity-condition countries data, employing a
moderate common features bias (p : 0.7).

Feature Weight

Italy

Germany, Italy, Spain

Nigeria, Zimbabwe

China, Indonesia, Japan, Philippines, Vietnam

Indonesia, Philippines

China, Germany, Japan, Russia, United States

Iraq, Libya, Nigeria, Zimbabwe

additive constant

0.682

0.495

0.453

0.374

0.316

0.288

0.236

Variance Accounted For

Geometric Complexity Criterion

80.8%

369%
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Figure 4.24: .}dCI|l4 representation of the similarity-condition countries data, accounting
for 8l .2Yo of the variance (GCC:a|,0).

developing nations (Zimbabwe, Nigeria, Cuba, Jamaica, Vietnam, Iraq, Libya, Philip-

pines, Indonesia). Interestingly, the GCC deteriorates only marginally (by 1.8) when

China is placed among the developing nations rather than the developed nations, which

may be appropriate given China's status as a rapidly developing nation. The next two

features capture geographical distinctions: one distinguishes the African and Middle-

Eastern nations (Iraq, Libya, Nigeria and Zimbabwe) from the rest of the world, and the

other divides the nations into Asian (China, Japan, Vietnam, Philippines, Indonesia) and

non-Asian nations. Unfortunately, the remaining two features appear not to reflect any

interpretable structure.

Table 4.13 displays the six feature TCM representation with p : 0.7, explaining

80.8% of the variance. The high p value indicates that commonalities are weighted

more heavily than differences, as might be expected in this experimental condition. All

of the features in Table 4.13 appear in eitherthe common features or distinctive features

representations, which is not surprising. Each of the identified subsets is interpretable,
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but it is difficult to see what it means for a feature to be p : 0.7 common and (I - p) :
0.3 distinctive. Crucially, the 'developed vs developing' distinction does not appear in

this representation.

The MCM representation shown in Figure 4.24 explains 81.2Yo of the variance,

and contains six common features and a single distinctive feature. The geographical

common features corresponding to western Europe, the Caribbean, southern Africa, and

Asia are all present, as is the political 'world powers' feature. The remaining common

feature consists of Cuba, Iraq, and Libya, and has a political interpretation as 'rogue

states'. Finally, the model also includes the 'developed vs developing' regularity from

the distinctive features representation.

Dissimilarity Condition Representations

The dissimilarity data shown in Table 4.10 were converted to "similarity" scores5 by the

simple linear transformation tnt : | - d¿¡. The stochastic hillclimbing algorithms were

employed to extract representations for each of the four similarity theories, in the same

manner as for the similarity-condition data. Despite having roughly the same precision as

the similarity-condition data, none of the models were able to extract much structure from

the data set. The distinctive model and both contrast models favoured a representation

containing a single feature, as shown by Figures 4.25,4.27 and 4.28, whereas additive

clustering did not find a representation superior to a "null" model (containing only

the additive constant, explaining 0%o of the variance). As it happened, the distinctive

features model, the TCM and the MCM all extracted the same representation, shown

in Figure 4.29. The sole feature in this model is the same 'developed vs developing'

5As highlighted on page 136, it is unlikely that similarity and dissimilarify are simple inverses of one
another. So the "similarities" produced in this manner might be more accurately described as "antidissim-
ilarities". Accordingly, the representations derived in this section are representations of antidissimilarity
data, not similarity data. Among other things, this experiment demonstrates that antidissirnilarity is not
the same thing as similarity.
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Figure 4.25: GCC (solid line) and VAF (dashed line) for distinctive features represen-

tations of the dissimilarity-condition countries data, A single feature is preferred.

feature that appears in the distinctive features (Figure 4.23) and MCM (Figure 4.24)

representations of the similarity-condition data.

4.9 .3 Discussion

Regarding the Similarity Models

The similarity-condition data provides a rich source of information about the four similar-

ity models. The common features model and the MCM both extract several interpretable

commonalities from the data, Similarly, the distinctive features and MCM representa-

tions demonstrate at least one important distinction in the domain, namely the 'developed

vs developing nations' feature. Given that the TCM preferred a common features bias

(p : 0.7), and that six of the seven MCM features were declared to be common, it

appears that the domain is more heavily influenced by common features than distinctive

features.

Regarding the distinctive features model, it is a problem that two of the five features
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lack an obvious interpretation. It may be that these two features partition the stimulus set

into a set of plausible groupings without the features themselves being meaningful. For

instance, Italy, Germany and Spain are the only nations that are both "in" the two features.

These three nations are better understood as possessing a common 'western Europe'

feature. The distinctive features representation can mirror this structure, though in a less

convincing manner, Psychologically speaking, it is undesirable to recover uninterpretable

features. Furthermore, it may be argued (see Lee & Navarro, 2002 for instance) that a

feature should capture a regularity that may be attended-to individually, and therefore

be separable in Garner's (1974) framework. The distinctive features approach does not

allow the western Europe regularity to be attended-to separately from the other groupings

that emerge from these two features.

The failure of the TCM representation to include the 'developed vs developing'

distinction is revealing, arising as it does from the value of p. Since the data set is

dominated by common features, the TCM is required to employ a common features bias.

Ho'wever, the 'developed vs developing' feature does not make sense as anything but a

purely distinctive feature, since any common features component makes one half (either

developed or developing) more salient than the other. The TCM is therefore incapable

of expressing this distinction while still capturing the common features that predominate

in the data.

The MCM, on the other hand, expresses the common features and the distinctive fea-

tures in an interpretable fashion. It is interesting to compare the 'world powers' common

feature to the 'developed vs developing' distinctive feature. As previously suggested, the

'developed vs developing' feature is inherently distinctive: two developed nations need

not be similar, but a developed nation and a developing nation are necessarily different,

In contrast, two nations are more alike if they are both major world powers, but this has

no implications regarding two nations that are not. It is precisely this kind of structure

155



that the MCM was designed to capture,

Regarding the Two Conditions

Although the dissimilarity condition provided very little evidence on which to distinguish

between similarity models, this by itself raises an interesting issue. Despite having

roughly the same precision as the similarity-condition data, only a single feature could be

extracted, Therefore, either the dissimilarity-condition data encodes very little structure,

or the structure that exists cannot be effectively modelled by any of the featural similarity

models considered here. Given that over 70% of the variance remains unexplained the

latter seems more probable. Whichever is the case, it is evident that the two conditions

are not simple inverses of one another. It is therefore appropriate to ask why the two

conditions differed so fundamentally.

In terms of informal feedback, difficulties with the dissimilarity task were reported

far more frequently than with the similarity task. This may reflect the domain and the

structure of the task. For instance, consider the four nations Japan, Iraq, Italy and Ja-

maica, no two of which may appear particularly alike. In order to make a response,

a participant must seek some basis upon which to make a decision. In the similarity

condition, a single commonality allows a decision (e.g., that Japan and Italy were both

part of the Axis in World War II). However, it is more difficult to find a simple decision

rule in the dissimilarity task, or rather, there are too many such rules (e.g., Japan is

industrialised, whereas Jamaica is not; Iraq is Islamic, whereas Italy is Christian), Iron-

ically, because there are always more differences than similarities between countries, a

commonality is more decisive than a distinction. Correspondingly, commonalities play

a more important role in the decision-making process, and the similarity task becomes

the easier of the two.

A second relevant factor is the presentation of countries in lists of four. Suppose
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for the moment that a particular participant attempts to make all decisions based on

geographical knowledge, and is presented with ltaly, Spain, Nigeria, and Zimbabwe, If

asked to select the most similar nations, the geographical features reduce the potential

responses to 'Italy & Spain' and 'Nigeria &, Zimbabwe'. However, in the dissimilarity

task, the other þur options are left. In general, any individual piece of knowledge will

most likely be more helpful in the similarity task than the dissimilarity task,

4.10 Ratio Models: The Road Less Travelled

The four similarity models tested in this chapter are not the only ways of constructing

a featural model. An alternative approach is to base clustering models on Tversky's

(1977) Ratio Model,

Although it is easy to speci$' a summed saliencies functional form for A it is not

irnmediately obvious how best to choose values for the parameters a and p. For instance,

choosing a : þ: j yields the model employed by Eisler and Ekman (1959)

uor:rÃ#fu

Therefore, the corresponding clustering model would be,

. I¡. unÍ¡nl¡*
"oj - Dr.,kU** l¡n)'

according to which similarity is given by dividing the common features saliency by the

saliency of the first stimulus plus the saliency of the second. Alternatively, Gregson

(1975) employed a model corresponding to a : þ : I,

'A'(f¿ n f

^(f¿ 
u fj)

t57

sij :



The clustering model yielded under a summed saliencies function is

.0.. _ Dnwnf¿nf in-or 
Ðnwnmax(f¿¡, f¡¡)'

which compares the common features saliency to the sum of the saliencies of the features

possessed by at least one stimulus. As a third possibility, Bush and Mosteller (1951)

employed the asynmetric model that results when a :0, þ : I,

The resulting clustering model,

normalises the common features saliency by the saliency of one of the two stimuli.

This model happens to correspond to the probability of generalising from stimulus i to
stimulus j under Tenenbaum and Griffiths' (2002a) Bayesian theory of generalisation.

Each of these three models makes sense in its own right. That being said, the

plausibility of these three cases does not imply that the Ratio Model itself is a good

model. After all, the findings presented here suggest that, even though t'¡¿o special

cases of Tversþ's Contrast Model are interpretable psychological models (the common

features model and the distinctive features model), the Contrast Model is problematic. As

Arabie (1994, p101) observes in a different context, "[a] generalization is not necessarily

more elegant than its special cases". To illustrate this, substituting a : ] and 0 : B

yields the model,

s¡j ^(f, 
n fj)

Â(fn n fj) + å^(f, - fj) + 3{f, Jil
which lacks a natural interpretation. In short, there may be good reason to adhere to the

special cases of the ratio model.
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4 .ll Summary & General Discussion

Four featural theories of stimulus similarity - the common features model, the distinc-

tive features model, Tversky's Contrast Model, and a Modified Contrast Model - were

evaluated in this chapter. Concrete versions of each general theory were produced, and

applied to several sets of empirical data using the stochastic hillclimbing algorithms and

Geometric Complexity Criteria. Of the stimulus domains, the kinship terms and the

countries are best regarded as conceptual stimuli, whereas the cartoon faces are largely

perceptual in nature. The kinship terms and faces stimuli are both highly constrained

stimuli, in that the kinship terms all refer to very specific relationships and the variation

in the faces was fairly limited, In contrast, the countries domain is highly naturalistic

and require more general knowledge. Furthermore, the collection methodologies differed

across domains: the kinship data involved a sorting task, the faces were judged on a

ratings scale, and the countries data were obtained using a forced-choice decision task.

Given this diversity, it is difücult to attribute consistent findings to domain-specific or

methodological factors.

In general, the four models all lead to representations that provide a good fit to

the data in a relatively parsimonious manner. While there are systematic differences

in the complexity of the four models, the major difference between them lies in the

interpretability of the representations, and the ability to capture important qualitative

characteristics of the data. The common features model and the distinctive features

model discover important but different regularities in the data sets, confirming the notion

that both are required in a featural model of similarity. The TCM, however, fails to

include important features such as the 'developed vs developing' feature in the similarity-

condition countries representation, or the gender distinction in the kinship data. This

shortcoming can be seen to result from the reliance on the decision variable p which is
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applied uniformly to all features. The success of the MCM in capturing precisely such

aspects occurs because it embeds the commonality or distinctiveness of a feature within

the representation, and allows individual features to differ in this regard. It may not be

too strong to claim that the MCM constitutes something like best of both worlds, where

the TCM is closer to the worst.
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5. Prototype Space Scaling

This chapter pursues a variant of multidimensional scaling (MDS, see Section 2.2) that

allows a single point to represent any number of stimuli. Accordingly, the dissimilarity

between two stimuli represented by the same point is given by the additive constant: in

all other regards the similarity model is identical to MDS. This similarity model is math-

ematically appealing, as it limits the number of free parameters in the representation.

This advantage notwithstanding, it is more important to introduce a solid psychological

foundation for this representational rnodel. The model disrupts the correspondence be-

tween stimuli and points, so it no longer makes sense to refer to the derived space as a

stimulus space. Instead, the natural interpretation of a point that stands for a number of

stimuli, even though those stimuli differ, is a kind of thing, a class or a category.

Rosch (1978) provides a useful conceptualisation of categorical structure, in terms

of a horizontal dimension and a vertical dimensionr. The vertical dimension describes

the level of generality of a category. For example, since chairs are a type of furniture,

the category of "furniture" is more general (and hence higher up) than the category of

"chair". The horizontal dimension describes the internal structure of categories at the

same level of generality, such as "table" and "chair". Together, these two dimensions

yield a taxonomy of categories, as illustrated in Figure 5.1.

In what has become known as the prototype view of categorisation, Rosch and others

lThe word "dimension" should not be taken too literally: the two dimensions rnerely denote qualita-

tively different regards in which two categories may differ.
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Figure 5.1: Rosch's vertical and horizontal dimensions of categorical structure.

have argued that the internal structure of a category (the horizontal dimension) can be

characterised in terms of a single, idealised instance of the category, the prototype (e.g.,

Rosch, 1975, 1978; Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976; Mervis & Rosch, l98l; Smith & Medin, 1981). The prototype view has

several desirable features: for example, it predicts the observations that categories do not

have clear-cut boundaries (Wittgenstein, 1953), that some members are better examples

than others (e.g., a robin is a better example of a bird than a penguin; see Rosch, 1975

and Rosch & Mervis, 1975), and that better examples are processed faster (see Mervis &

Rosch, l98l). Although the prototype view does have drawbacks, it remains a powerful

tool for understanding categorical structure (see Komatsu, 1992 for an overview).

As Rosch (1978) observes, this qualitative account of prototypes provides some

constraints on the representation of categories, but does not restrict such representation
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to a single formalism. The spatial approach developed in this chapter can be seen to

be an example of a prototype representation: several stimuli are represented by a single

point, which may be labelled a prototype2. It is for this reason that the representations

derived under this model are referred to as prototype spaces, and the techniques for

extracting these spaces as prototype scaling. Nevertheless, it is important to recognise

that this is merely one way of instantiating these ideas.

5. I Dissimilarity Between Prototypes

Irrespective of the manner in which prototype scaling algorithms are developed, it is

important to formulate the prototype dissimilarity model appropriately. Prototype scaling

involves partitioning the stimulus set into a number of mutually exclusive categories,

and therefore requires a psychologically plausible measure of the dissimilarity between

categories.

From a numerical standpoint, Gordon (1999) observes that when partitioning a set

of objects into classes, one could either minimise the heterogeneity of the classes or

maximise their isolation. In this sense, a heterogeneity measure is a measure of the extent

to which the members of a class differ from one another, and an isolation measure is a

measure of the extent to which two classes differ from one another. These two goals are

broadly compatible. There are examples of isolation and heterogeneity measures that are

genuine inverses, so that - for a fixed number of classes - optimising one necessarily

implies optimising the other, However, this situation is the exception rather than the

rule: usually, there is some difference between a heterogeneity measure and an isolation

measure

From a psychological standpoint, it is argued that maximising isolation is the ap-

2A note on terminology: the term "prototype" is used here to refer to the typicality information
represented by a point in the space, whereas the words "cluster", "class" or "category" generally refer to

the set of stimuli denoted by such a point.
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propriate framework for prototype scaling. Since it is the between-category structure

that is modelled by prototype scaling, the measure to optimise should be a measure of

between-cluster variation (i.e., isolation), however moot the point may be from an algo-

rithmic standpoint. Furthermore, one may wish to remain open to the suggestion that

within-category structure differs fundamentally from between-category structure (see, for

instance, Barsalou, 1989). This point is significant inasmuch as one may subsequently

wish to analyse the internal structure of the categories using other tools (such as trees).

Hence it makes sense to (in theory) leave this internal structure of the categories alone,

and work only with the between-category variation.

Two candidate measures for prototype dissimilarity are considered. These measures

are based on two models of inter-class similarity considered in papers by Osherson,

Smith, wilkie, Lopez, and Shafir (1990) and Tenenbaum and Griffiths (2001). In the

first, the empirical similarity between fwo categories is the mean similarity between stim-

uli in different categories (the average similarity model), and in the second, the similarity

befween two classes is given by the similarity of their two most similar members (the

maximum similarity model). If similarity and dissimilarity are assumed to be linearly

related (i.e., s¿i : c - d,¿¡ for some sufftciently large constant c), the mean similarity

model is also a mean dissimilarity model, and the maximum similarity model becomes

a minimum dissimilarity model. These two models are referred to by Gordon (1999)

as cut distance and split distance respectively. Formally, the dissimilarity between two

groups of stimuli X and Y under a mean dissimilarity model is

Å--- t t\-d,,.ux, - 
"""t kut,""'

where ny aîd ny represent the number of stimuli in each cluster. Contrastingly, the

cluster dissimilarity is

mln
i€X.i€Y
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if a minimum dissimilarity model is used. On the whole, the two measures are quite

similar, and may yield similar results, but differences can occur. The mean suggests

"distance between centers", whereas the minimum suggests "distance between edges".

The difference between the two measures is illustrated in Figure 5.2, in which the dotted

line shows the mean distance between three (spatially represented) categories, and the

unbroken line shows the minimum distance between them. For the mean measure, the

three distances are ordered a > b > c, but for the minimum distance, the ordering

becomes C > A > B. For the mean measure, a is only marginally longer than ó, but

both are substantially longer than c. For the minimum measure, A and B differ only

slightly, but C is substantially longer. So, with this in mind, the orderings might be

better expressed as axb ) c and C > A = B. This possibility is just as imporlant as

the first, since it suggests that, for both measurements, one proximity estimate is quite

different to the others, but in one case it is larger, and in the other it is smaller.

Are the squares in Figure 5.2 closer to the circles and triangles than they are to each

other, or are the squares further away? Returning to the original notion of categories, it is

possible to argue for either. Suppose the categories represented mammals (circles), birds

(triangles) and dinosaurs (squares). If asked to compare a typical mammal to a typical

bird and a typical dinosaur, one might compare a dog, a robin, and a tyrannosaurus

rex, and conclude that dinosaurs lie a long way from the other two (i.e., a x b > c).

Alternatively, by making edgewise comparisons, one might compare an ostrich to a

velociraptor, a triceratops to a rhinoceros, and a bat to a sparrow. In this case, the

dinosaurs could end up closer to the other two categories than they are to each other

(i.e., C > A x B). The crucial feature of this example is the fact that c x C: the

prototypical comparison between birds and mammals (in this example) is not far different

to the edgewise comparison, whereas for comparisons involving dinosaurs, this is not the

case (a > A, b > B). The dinosaur category in this example is far more heterogeneous
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Figure 5.2: Mean (dotted line) and minimum (unbroken line) distances between three
spatially displayed categories, coresponding to the circular, square and triangular mark-
efs.
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than the mammal or bird category, and so can have outliers quite close to the mammal

and bird categories while still having its centroid some distance away. This phenomenon

does not rely on the categories having different shapes: the same phenomenon would

occur if all three were circular, but the dinosaur category had a much larger diameter.

These matters notwithstanding, there is a practical justification for adopting the aver-

age similarity model in a prototype scaling context: the maximum similarity model does

not satisfy the triangle inequaliry and is therefore not a distance metric. In cases when

the average similarity model is inappropriate due to violations of the triangle inequality,

it makes sense to represent the data using some other representational formalism (e.g.,

featural representation). Hence, the analyses presented in this chapter use the average

dissimilarity model, and the prototype spaces are interpretable as representations in which

typicality information about mutually exclusive categories is spatially represented.

5.2 Prototype Scaling Algorithms

Having developed a psychological theory for prototype spaces, this section introduces

three algorithms for prototype scaling. Again, the distinction is emphasised between the

psychological model and the fitting algorithm (e.g., Kruskal, 1964b; Shepard & Arabie,

1979): the psychological implications of these algorithms are minimal.

5.2.1 HEAPS

The first approach to prototype scaling is the most computationally expensive: it is

therefore referred to as a Highly Expensive Algorithm for Prototype Scaling (HEAPS).

It starts with a single cluster to which all stimuli belong, embedded as a single point

in a one-dimensional space (which, allowing for an additive constant, explains 0% of

the variance). There are two nested loops within HEAPS, the inner one adding clusters,

the outer one adding dimensions. For a given number of classes rn and dimensions k,
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HEAPS uses a stochastic hillclimbing approach to search through the set of possible

partitions. That is, it maintains a vector assigning each stimulus to a cluster, and "flips"

stimuli into different clusters in search of a better partition, restarting whenever a bet-

ter one is found, and accepting the best seen partition after a certain number of local

minima (10 in this case). The adequacy of a partition is assessed by performing a multi-

dimensional scaling on the dissimilarities between the m classes. Since every candidate

partition is evaluated using MDS, this procedure is very expensive computationally, and

will not be viable for large problems.

5.2.2 LEAPS

The second algorithm, called LEAPS (a Less Expensive Algorithm for Prototype Scal-

ing), also treats the partitioning and scaling as a single optimisation problem. Like

HEAPS, LEAPS starts with a one cluster, one dimensional solution and adds clusters

and dimensions. For a given partition, LEAPS finds the best MDS solution, and then

for these co-ordinates finds the best partition. If the new partition differs from the old

one, the process repeats. A local minimum results when neither the co-ordinates nor the

partition changes, and the process continues for an arbitrary number of local minima (10

in this case). LEAPS is less computationally expensive than HEAPS, but may be more

likely to become permanently stuck in a globally suboptimal local minimum.

5.2.3 CAPS

The third approach to frtting prototype models, CAPS (which is a Cheap Algorithm for

Prototype Scaling), uses the raw proximities to find the partition, then scales the result-

ing prototypes using MDS. This approach has the advantage that, since the two aspects

are separate from one another, only one MDS is ever performed, so the computation re-

quired is greatly reduced. In the analyses presented in this chapter, the partition is found
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using a modification of average-link clustering (Hartigan, 1975). As with average-link

clustering, the two existing classes that are most proximal to one another (calculated

using the mean dissimilarity measure) are merged at each step of the clustering. This

process is carried out for n-rn iterations, at which point there exist r¿ disjoint clusters.

Those remaining clusters constitute the average-link partition. This average-link parti-

tioning method maximises the dissimilarity between the two most similar clusters. If one

wished instead to maximise the average cluster dissimilarity (or squared dissimilarity),

the average-link partition could be used as an initial solution for a stochastic hillclimbing

process, flipping stimuli in and out of clusters until an optimum is reached. However,

this approach is substantially more expensive computationally: since the average-link

approach produces reasonable solutions to the problems considered in this chapter, this

complication is not introduced here.

5.3 Monte Carlo Study III: Culling the Weak

This section presents a Monte Carlo evaluation of HEAPS, LEAPS and CAPS. The

aim of this study was simply to compare the performance of the three algorithms on

a straightforward task, in order to eliminate candidates that fail to perform sufficiently

well.

5.3. I Design

The demonstration involves a data set of 25 items that properly belong to one of five

mutually exclusive categories. The stimuli can be represented perfectly in a two di-

mensional space, shown in Figure 5.3. The simulation involved adding Gaussian noise

(lt : 0, o : .05) to the data, and then attempting to recover the five categories and the

locations of their prototypes in the space. This procedure was repeated 15 times, since

each of the three algorithms has a stochastic element (though in the case of CAPS, this
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Figure 5'3: The toy data set used in the Monte Carlo study. Each of the 25 stimuli
belongs to one of 5 categories.

is purely for the scaling component)

5.3.2 Results

This analysis considers only the performance of the three algorithms at finding an appro-

priate two-dimension five-cluster solution. HEAPS produced solutions with an average

vAF of 64.5% (std dev : 3.lyo), providing slightly superior fits to LEAps, with a

mean VAF of 6l.9% (std dev : 1'l%o). Neither, however, produced solutions as good as

CAPS, with a mean of 79.9% (std dev < L0-7yù. However, these numbers should be

interpreted with some caution. The partition-finding procedure within CAPS is deter-

ministic, and in this case finds the correct partition. The low standard deviation results

from the fact that with the partition correctly identified, the problem is reduced to a
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5-point MDS in two dimensions, which is easily accomplished. Neither HEAPS nor

LEAPS managed to partition the data set correctly on any of the 15 trials. Since the

average-link procedure used by CAPS produced the correct answer in a deterministic

fashion, CAPS made no misclassifications on any trial. After finding the optimal corre-

spondence between derived clusters and true categories, it was found that HEAPS made

between 6 and 11 misclassifications, with a mean of 8.35 (std dev: 1.36), whereas

LEAPS made 9 misclassifications on every trial.

5.3.3 Discussion

This demonstration suggests that neither HEAPS nor LEAPS perform sufficiently well to

merit further consideration as useful approaches to prototype scaling. Although treating

the partitioning and scaling aspects as a single optimisation task has the intuitive appeal

of allowing the partition and the spatial solution to co-evolve (and potentially achieve

superior solutions), in practice the combined problem appears to be a difficult one, and

more vulnerable to local minima problems. So, although the approach embodied by

CAPS may cause it to become permanently stuck in a suboptimal partition, it appears

that in practice it suffers from this problem far less than HEAPS or LEAPS, On the

basis of the results of this evaluation, it is argued that neither HEAPS nor LEAPS

represent sufficiently promising algorithms to warrant further investigation. Both are

computationally expensive and neither fits the data as well as CAPS. Given that the

problem lies with local minima, and that local minima problems may be more severe

with real data than artifìcial data, this difference is likely to be more pronounced in

practice. Consequently, subsequent analyses use only the CAPS algorithm.
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5. 4 Complexity, Precision and Categorical Information

In the previous section the appropriate number of prototypes and the dimensionality of

the embedding space were already known. This is not the case when modelling empirical

data, so some means of speci$ring the number of prototypes and dimensions is required.

Once again the tools of precision and model selection are employed. Given that the

Geometric Complexity Criterion is not easily specifred for spatial representations (see

Section 3.4), the Bayesian Information Criterion (BIC, see Section 3.1.2) is used to

guide model selection in prototype scaling. Fortunately, Lee (2001a) has argued that the

number of free parameters is a reasonable approximation of model complexity for spatial

representations. If rn denotes the number of prototypes and k denotes the number of

dimensions, the first point is f,rxed at the origin (without loss of generality for translation-

invariant metrics such as the Minkowski family), and the number of free parameters is

k(* - 1) + 1, Therefore, the BIC for any given prototype space is given by,

where n is the number of stimuli and s denotes the precision to which the data is to

be modelled, If a small value is chosen for s, more clusters and dimensions will be

preferred by the BIC.

When setting s, two factors require consideration. Firstly, it is inappropriate for s

to denote a level of precision greater than that of the data itself, a. For instance, if the

estimated data precision ô is measured at 0.05, then s should not be set below 0,05.

In previous chapters the modelling precision s has been assumed to be identical to the

data precision estimate ô because the aim has been to model all of the regularity present

in the data but not the noise. In the case of prototype scaling, this may not always

be true. Prototype scaling is concerned with capturing and representing categorical or

prototypical information about stimuli. Since it will frequently be the case that the data
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reflect information about individual stimuli as well as categorical information, it will

sometimes be useful to set s > õ. To return to Rosch's (1978) notion of horizontal

and vertical dimensions (see Figure 5.1), it may be useful to think of a prototype space

as a representation of the horizontal dimension, and some particular level of generality

(vertical dimension) specified by s,

5 . 5 Three lllustrative Applications

In this section CAPS is applied to three sets of similarity data, in order to discuss the

implications of the derived representations for prototype scaling. Given the very high

consistency of CAPS across runs, the results displayed in this section reflect only a

single run, though informal investigation suggested that these results are grossly typical

of the behaviour of CAPS on these data sets.

5.5. 1 Risks

The fìrst data set analysed is Johnson and Tversky's (1984) risk similarity data, described

in Section 2 . 1. CAPS was applied to the data, with the number of clusters ranging from

I to l8 (a full stimulus space), and the embedding space ranging from I to 4 dimensions

(using the Euclidean metric). The Variance Accounted For by each of these solutions

is shown in Figure 5.4. Without the raw data, empirical precision estimates could not

be obtained, but Figure 5.5 shows the trade-off between fit and complexity assuming

modelling precision values s of 0.05,0.10,0.15 and 0.20. Withthis in mind, Figure 5,6

shows the six cluster two dimensional representation preferred when s : 0.10, which

explains 57.9yo of the variance. The "diseases" category contains the stomach cancer,

lung cancer, heart disease, leukemia and stroke stimuli; the "accidental falls" category

contains only the accidental falls stimulus; "vehicle accidents" contains traffrc and air-

plane accidents; toxic chemical spills and nuclear accidents make up the "environmental
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Figure 5.4: Variance Accounted For by prototype space representations of Johnson and
Tversky's (1984) risk data, The number of prototypes rn ranges from I to 18, and
the number of spatial dimensions k ranges from I to 4. The number of dimensions is
marked adjacent to the plots.

damage" category; war, homicide and terrorism count as "acts of violence"; and "natural

disasters" include fire, lightning, tornados, floods and electrocution,

The corresponding two dimensional stimulus space is shown in Figure 5.7, and

explains 66.1% of the variance. Five of the six categories correspond to connected,

bounded regions in the space, in line with Shepard's (1987) identification of such regions

with natural kinds. The vehicular accidents category may be disjoint because of the

association between airline accidents and things like lightning and terrorism, as well as

the link between traffrc accidents and toxic chemical spills.
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diseases

vehicle accidents

violent acts

environmental damage

accídental falls

natural disasters

Figure 5.6: The six prototype, two-dimensional representation prefered by the BIC at a
modelling precision of s : 0.10, explaining 57.9Yo of the variance.
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Figure 5.7: The two dimensional stimulus space representation of Johnson and Tversky's
(1984) risk data, explaining 66.1% of the variance. Five of the six categories in Figure 5.6

form bounded and connected regions in this space.
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5.5.2 Animals

The second data set examined was the unpublished data collected by O'Doherty and Lee

(2002; see Section 2.1for details) on the similarity of 2l animals (â:0.18). The data

were analysed using CAPS, with the prototype space ranging from a null model (m: L)

to a full stimulus space (rn : 25), and the number of dimensions ranging from I to 4

using the Euclidean distance metric, The VAF and BIC values (using s - o) for the

prototype scaling algorithms are shown in Figure 5.8, The preferred representation has

one dimension and four categories, though the five category representation explaining

57.9% of the variance is shown in Figure 5,9. This representation contains classes that

might be labelled "mammals", "birds", "other flying things", "reptiles" and ,,wet things,,

(the four category representation is obtained by merging "reptiles" with "other flying

things"), The one dimensional stimulus space which explains 60.5% of the variance

produces the following stimulus dimension: Koala (0.17), Chimpanzee (0.18), Elephant

(0,20), Camel (0.20), Cow (0.20), Zebra (0,20), Horse (0.20), Lion (0.20), Cat (0.20),

Dog (0.20), Chicken (0.29), Eagle (0.32), Bat (0.35), Dragon (0.36), Snake (0.37),

Scorpion (0,40), Butterfly (0.41), Bee (0.42), Frog (0.44), Shark (0.46) and then Goldfrsh

(0.47), Therefore the categorical information extracted in this representation groups

neighbouring items in the stimulus space into the same category.

5.5.3 Plants, Animals and Colours

The third data set was reported by Cooke et al. (1986, see Section 2 . l) and, consists of a

set of 25 concepts. Once again, data were analysed using CAPS, with the prototype space

ranging from a null model (m : l) to a full stimulus space (rn : 25), and the number

of dimensions ranging from I to 4 using the Euclidean distance metric. The Variance

Accounted For by these representations is shown in Figure 5.10. The three dimensional

model with m: 25 explainingT6%o of the variance is indistinguishable from the MDS
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representation reported by Cooke et al. (1986). Figure 5.11 displays the BIC values for

each of the CAPS-derived representations, assuming s-values of 0.05, 0.10, 0.15 and

0'20. A precision value of 0.05 corresponds to a high modelling precision, and the

preferred representation is a full stimulus space with at least four dimensions, At this

level of precision prototype scaling reduces to MDS, At more moderate levels of precision

(s : 0.10 and s : 0.15), category-level information emerges, with these precision

levels favouring two-dimensional spaces with 19 and 6 categories respectively, explaining

6l.l% and 45.4Yo of the variance. The six prototype representation is displayed in

Figure 5.12. For comparative purposes, the two-dimensional stimulus space for this data

set is displayed in Figure 5.13. Once again, it is evident that fìve of the six categories

form bounded and connected regions in this space.

Category labels for the representation shown in Figure 5.12 might be assigned as

follows: category I is "mammals", category 2 is "red things",'car.egory 3 is "birds",

category 4 is "things specific to deer", category 5 is the exemplar "frog" and category 6

is "plants". However, a number of somewhat arbitrary category assignments seem to have

been made. For example, "colour" and "green" have been placed in the same category

as the plants, but "red" has not. It seems likely that the requirement that categories be

mutually exclusive is unwarranted for this data set. This suggests that another approach

should be used to represent these data; for instance, a featural approach such as those

discussed in Chapter 4.

5. 6 Summary & General Discussion

The research presented in this chapter is preliminary in nature. The psychological ba-

sis of prototype spaces was discussed, and a procedure for deriving these spaces \rr'as

tested. The application of these ideas to three data sets indicates that the approach

has merits, though remains largely undeveloped. Future work in this area might con-
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53

1

4

Figure 5,12: The six prototype, two-dimensional representation preferred by the BIC at
a modelling precision of s : 0.15, explaining 45.4Yo of the variance. The prototypes
plotted consist of the following stimuli: Category 1 consists of "living thing", "animal",
"mammal", "hairs", "dog", "deer" and "bats"; Category 2 consists of "bloodt'and "red";
Category 3 consists of "bird", "feathers", "robin" and "chicken"; Category 4 consists
of "antlers" and "hooves"; Category 5 consists of "frog", and Category ó consists of
"plant", ttleaves", "tree"r ttcoffonwood", "flowgr", "rose", t'daisy", ttcolour" and t'green".
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Figure 5.13: The two-dimensional stimulus space (MDS) representation of the domain,
explaining 66.6% of the variance. Five of the six categories displayed in Figure 5.12
can be characterised as connected, bounded regions in the space, and are depicted by
boxes enclosing a goup of stimuli,
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sider distributing the representation of stimuli over several prototypes. Inasmuch as

concepts such as 'green' and 'tree' do not belong in the same space, a single prototype

space could be replaced with multiple category spaces. Alternatively, the prototype ap-

proach could be combined with other representational theories. For example, once the

stimulus set has been represented in a prototype space, the individual categories could

be represented as trees. Psychologically, such an approach would treat categories as

hierarchically-organised structures, but assumes that the relationship between categories

is better characterised by a "proximity" relationship.

185





6. Similarity as 
^ 

Decision Process

Most of the similarity models discussed in this thesis share a conìmon philosophy. They

assume that the decision process involved in making a similarity judgement is sufficiently

simple that it makes little or no contribution to the data (though see Goldstone, 1994).

Conespondingly, similarity judgements are assumed to reflect a response based primarily

on some underlying informational structure: the representation. This has proven to

be a highly successful research strategy, and an argument can be made to the effect

that well-founded representational models of similarity afford an understanding of the

principles that govem human similarity judgements (see Tenenbaum & Griffiths, 2002b,

for a similar argument regarding generalisation), Without in any way disregarding the

strengths of this approach, it is equally interesting (even complementary) to examine

the decision processes involved, and consider the manner in which human cognition

approximates rational ideals. This chapter outlines just such an approach, though the

work is purely theoretical, and is restricted to considering candidates for a similarity

decision model.

The models developed in this chapter were motivated by an examination of the task

involved in the countries experiment (Section 4.9), in which participants chose one

response from a fixed set of alternatives. Therefore, they are most naturally suited to an

experimental methodology of this kind, where there is a limited set of discrete responses,

known to the participant in advance. Furthermore, the decision process is assumed to

operate on a set of discrete environmental cues. In this respect, these decision models
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can be regarded as extensions of the featural approach to similarity modelling. However,

there is no reason in principle why the models cannot be extended to account for other

sorts of tasks, or to other representational structures, though this is not done here.

6. I Heuristic Decision Models

Gigerenzer and Todd (1999) introduce a framework for modelling human decision mak-

ing that draws heavily on the ideas of Egon Brunswik and Herbert Simon. Brunswik

(1943),like Gibson (1979) after him, argued that an understanding of human decision

making required an understanding of the structure of real world environments (though

unlike Gibson, Brunswik did not limit investigation solely to environmental structure).

People, he observed, are sensitive to inter-correlations between environmental cues, and

exploit arange of cues to make accurate decisions. In a similar vein, Simon (1956,1972)

assumes that naturalistic decision making involves the exploitation of the non-arbitrary

structure of the environment, though his "bounded rationality" approach incorporates the

information processing limitations of the organism when making decisions.

In developing their approach, Gigerenzer and Todd (1999) argue that using small

numbers of environmental cues rs rational. If real environments possess a correlated

cue structure, then the return on investment for examining large numbers of cues is

minimal. They therefore assume that the limitations on human information processing

are a rational, evolved adaptation to real environments, enabling people to make fast and

accurate decisions using a minimum of information. Therefore, they claim that people

adopt simple heuristics to make decisions, and their research programme investigates

these heuristics and the kinds of environmental structures in which such heuristic decision

making is rational. Indeed, despite the speed and simplicity of the models, there is

evidence to suggest that, in a range of real environments, heuristic models can be just

as accurate as decision rules that use all available information (Czerlinski, Gigerenzer,
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& Goldstein, 1999),

The combination of speed, simplicity and accuracy is a formidable one, and suggests

the idea of a fast and frugal similarity model. Such a model needs to describe how

people use a set of features sparingly to make quick and accurate decisions. Therefore

the two elements of a heuristic similarity model are a limited information search and a

decision rule to end the search.

6. I . I Feature Sampling Processes

One of the principles introduced by Gigerenzer and Todd is that real-world decision

making involves a search for information, either through memory or through external

sources. Very rarely does the stimulus itself provide the information required. For

example, in the countries experiment, participants had to search through memory to

recall information about the various nations. Even when all the information required

is present in the stimulus, as often occurs when using artificial stimuli, an argument

can be mounted to the effect that people examine that information serially when making

decisions about the stimulus. Therefore, this process is most naturally characterised as

a search through the feature set F one feature at a time, until a decision can be made.

Leaving the decision rule aside momentarily, consider the three candidates for this

search process proposed by Gigerenzer and Goldstein (1996, 1999): The Minimalist

(MIN), Take The Last (TTL), and Take The Best (TTB). These heuristics were designed

to model two-choice decision tasks, like trying to pick the larger of two cities. They

assume that people examine environmental cues one by one until some cue allows a

decision to be made. The MIN heuristic is the simplest, in which cues are drawn

randomly without replacement from the feature set. The TTL procedure starts with

the cue that allowed the most recent decision to be made, then the cue that made the

decision before that (unless it is the same cue), and so on. Cues that have never made a
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decision are drawn last, in a random order. TTB assumes that there exist some validities

that provide information on which are the better cues, and draws the cues in order of

decreasing validity (breaking ties randomly).

These strategies can be imported without modification into a similarity model, by

substituting the word "feature" for the word "cue". If no cue validity information exists,

then the MIN or TTL strategies can be employed. However, since TTB relies on cue

validities, some notion of feature validity is required. The most plausible candidate for

the role of cue validity are the saliency weights w, since a highly salient feature has a

larger effect on similarity than a less salient one,

6. I .2 Decision Procedures

The decision procedure for a binary-choice task such as those discussed by Gigerenzer

and Goldstein (1999) is fairly simple. Cues are considered to have some evidence value,

in that they may support one, both or neither of the two possible answers. Therefore, if

a cue provides evidence for only one of the answers, then that answer is given and the

search process is terminated. To state this more concretely, imagine asking an American

whether Melbourne is bigger than Brisbane. They may have only a sketchy knowledge

of Australian cities, and employ a TTB heuristic in the following manner, The first cue

they think of might be "Is it Sydney?", since Sydney is Australia's largest city. However,

although this cue provides positive evidence in favour of Sydney, it does not help with

Melbourne or Brisbane. However, the next cue might be "Has it hosted an Olympics?",

which has a positive value for Melbourne but not Brisbane. The search stops at this

point and the person answers "Melbourne". Making decisions in this manner works

because things like hosting the Olympic Games correlate fairly well with city size. In

contrast, imagine the same person was asked whether Whyalla is bigger than Mount
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Gambierl. It is quite likely that no cue that they recall would enable a rational decision,

and a random answer would be expected.

The same decision rule applies to similarity decisions. Imagine instead that the (now

somewhat harassed) American were asked whether they thought Sydney is more like

Melbourne than Berlin is like St Petersburg. Again there are two responses, though

the question now requires a similarity decision. It is again plausible to assume that a

heuristic search such as TTB is employed. The theoretically important question involved

in modelling the decision rule is to state when a feature provides evidence favouring a

particular response. Motivated by featural theories of similarity, three psychologically

plausible decision rules are suggested, called the Common FeaÍures (CF) rule, the Dis-

tinctive Features (DF) rule, and the Contrast Model (CM) rule. The CF-rule states that

if two cities share the feature, then the feature provides similarity evidence in favour of

that response: if only one city has that feature, or neither feature does, then no evidence

is provided. In contrast, the DF-rule says that a feature provides evidence if both cities

have the same value on the feature (if they both have it or both do not), but not if

only one city has the feature. The CM-rule assumes (like the Modified Contrast Model

proposed in Chapter 4)that some features are commonalities and others are distinctions.

Therefore, the CM-rule generalises the CF and DF approaches by stating that the CF-rule

should be applied to commonalities, and the DF-rule to distinctions,

These decision rules become slightly more complicated when more than two response

options are available. It is highly unlikely that there exists a single feature that provides

evidence in favour of only one response, particularly when there are a large number of

potential responses. One possible solution to this difficulty is suggested by the Cate-

gorisation By Elimination model (Berretty, Todd, & Blythe, 1997; Berretfy, Todd, &

Martignon, 1999), as well as Tversky's (1972) Elimination By Aspects and the fast

lThe two largest regional centers in South Australia. Both have around 25,000 people.
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and frugal E-mail prioritisation algorithm proposed by Lee, Chandrasena, and Navarro

(in press). Suppose that a feature has been drawn using some search procedure (be it

TTB, TTL, or MIN). If the feature provides no evidence for any of the options, then

the cue is discarded and a new one is drawn. If it provides evidence for one or more

of the response options, then all other options are eliminated, and a new cue is drawn.

This process continues until only one response option remains, at which point the search

terminates and the last remaining option is chosen as the response. If there are still

multiple response options left once all the cues have been drawn, one of the remaining

options is chosen randomly.

In order to provide a concrete example of how this multi-choice similarity decision

is assumed to operate, consider the task involved in the countries experiment, Suppose

a participant were asked to select the two most similar nations from a list consisting of

Spain, Italy, Germany, and Zimbabwe. Furthermore, suppose that the cues available to

them are those present in the common features representation displayed in Figure 4.17.

Given this, it makes sense to adopt the TTB search heuristic, and employ the CF decision

rule. The first cue drawn would be the southern Africa feature (Nigeria, Zimbabwe),

which does not provide evidence for any of the response options. However, the second

cue drawn would be the western Europe feature (Italy, Germany, Spain), which provides

evidence for three of possible responses'Italy &, Germany', 'Italy &, Spain', and'Ger-

many & Spain'. The other three possibilities (those involving Zimbabwe) are eliminated,

and the search continues. Inspection of Figure 4.17 shows that none of the other features

will provide evidence for any of these three over the other, so one of these would be

chosen at random, Therefore, this TTB-CF heuristic predicts that these three options are

equally similar, which happens to be the same prediction made by the common features

model.

Formalising these heuristics is simple enough. Suppose there are r possible re-
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sponses, denoted r : {rr,r2,. . ., r"}, where ro denotes the response corresponding to

the pth pair of stimuli. If there aÍe Tn features belonging to the feature matrix F, the

Tn x r evidence matrix E - l"*o] can be specified, such that e¡", is 7 whenever the kth

feature provides evidence for the pth stimulus pair, -1 whenever it provides evidence

against that pair, and 0 if it does neither. So, if the pth stimulus pair consists of the ith

and jth stimuli, the CF-rule states that
(
| 1 if lik: li*: I

ekp: \
[ 0 otherwise

whereas the DF-rule states that

"*o:
Í
I

-1 if f¿*: f¡n
0 otherwise

If the CM-rule is applied, then those rows of E that correspond to common features are

specified by the CF-rule, whereas the distinctive features rows will be described by the

DF-rule. Thus, using some search heuristic (e.g. TTB), one examines the rows of E one

by one, eliminating response options with lower evidence values, until only one option

remalns

6.1.3 Non-Compensatory Environments

In the previous example the TTB-CF heuristic made the same prediction as the common

features model. It can be seen that these two models will make the same predictions

when saliency weights are non-compensatory. If the weights are ordered such that w1>

wz ) . . . ) 't1)rn, then they are non-compensatory if u¡" > D!*+t'u;¿, Correspondingly, if

the cues are examined in order of decreasing saliency, there is never any point to continue

examining cues after a good one is found: even if all remaining cues suggested another

response, their combined saliency would still be less than that of the frrst good cue.

Martignon and Hoffrage (1999) make precisely this argument with respect to Gigerenzer

and Goldstein's (1999) original formulation.
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Nevertheless, although feature saliencies vary in the real world, it is fair to say

fha| strictly non-compensatory environments are not universal, so these heuristic models

are certainly distinguishable from the representational models discussed elsewhere. For

example, the feature weights displayed in Figure 4.17 are not strictly non-compensatory.

If the task \ /ere to choose the most similar nations from Cuba, Jamaica, China, and

Japan, the heuristic and representational models make different predictions. Cuba and

Jamaica share one feature, which has a weight of 0.505, whereas China and Japan share

two features with weights of 0.262 and 0.371, No other pair shares any feature. The

common features model predicts a choice of China-Japan, since 0.262+0.371 > 0.bgb,

whereas a TTB-CF heuristic would predict a choice of Cuba-Jamaica, since the feature

they share would be drawn first. The MIN heuristic would choose China-Japan two

times out of three, and Cuba-Jamaica the other third. Note that this feature set was

derived according to the common features model, so it is unfair to draw any conclusions

from this comparison. The important observation in this regard is that heuristic models

and representational models can be empirically distinguished.

6. I .4 Summary

Using Gigerenzer and Todd's (1999) heuristics framework as a guideline, a number

of possibilities exist for fast and frugal featural similarity models. These models in-

volve two elements: a search heuristic and a decision rule. Plausible candidates for the

search heuristic are the TTB, TTL, and MIN approaches, Suggested decision rules em-

ploy the same approach as Categorisation By Elimination, where the evidence provided

by any particular feature is given by the cF-rule, the DF-rule, or the cM-rule. rn a

non-compensatory environment, the TTB heuristic is indistinguishable from the corre-

sponding representational model, although no such guarantee exists for TTL or MIN.

In any event, there are certainly environments in which the saliency weights are not
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non-compensatory.

6.2 Sequential Sampling Models

The heuristic decision models presented in the previous section rely on the notion of

"one good reason". As soon as any evidence is found favouring one alternative over

another, the unfavoured alternative is immediately discarded. If the environment is

strictly non-compensatory and the search heuristic is TTB, the first evidence discovered

will always be sufÍìcient to support a rational decision, However, saliency weights are

not always (or even often) strictly non-compensatory. Furthermore, there is an argument

to be made suggesting that at different times people will use more or less evidence to

make decisions. Therefore, inspired by models of simple decision making, this section

develops the idea of a similarity decision model that integrates evidence from multiple

sources, but need not examine every available feature.

The similarity models proposed in this section are based on the Sequential Sampling

Models (SSMs) of simple decision tasks (see Luce, 1986 for an overview). These

theories were originally proposed to model simple two-choice tasks. For instance, an

experiment might present participants with two lines A and B, and ask them to select

the longer of the two lines, The central idea is that when people examine the lines, they

collect a sample of observations about the difference in length A - B . S SMs assume that

stimulus representations are noisy, so there is some variability in the sample of A - B

observations. Some models assume that the sampling is discrete, and others assume

that the sample evolves in continuous time. Since similarity evidence is considered to

be provided by a discrete sample of cue validities, this discussion will consider only

discrete time SSMs.

The two main classes of discrete-time SSMs are random walk models and accumu-

lator models. Random walk models (e,g., Laming, 1968; Wald, 1947) keep a single
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signed tally: every time an A- B difference is observed, the evidence (given by the size

ofthe ,4 - B discrepancy) is added to the total. So if A > B for the current observation,

the magnitude of the discrepancy (that is, lA - B) is added to the tally, but if B > A,

then 1,4 - Bl is subtracted. Once the tally reaches a certain threshold value, a decision

is made, The major assumption made by random walk models is that evidence for A is

exactly the same as evidence against B. However, as Vickers and Lee (199S) observe,

the difficulty with this is that it is not easy to extend random walks to multi-choice

scenarios, and it is rarely tried,

Accumulator models maintain separate unsigned totals, one counting the amount of

evidence favouring A > B and the other counting the evidence favouring B > A.

In the recruitment, or simple accumulator model developed by La Berge (1962), the

totals only count the number of observations favouring each alternative. That is, every

time .4 is observed to be longer than B, the A > B tally increases by l However,

in the generalised accumulator model proposed by Vickers (1979), the magnitudes of

the differences 1,4 - Bl are added to the tallies, The appeal of accumulator models in

this context is the ease with which they may be extended to the kinds of multi-choice

decisions that are involved in similarity judgements2. Therefore the models developed

here adopt an accumulator approach rather than a random walk approach.

6.2.1 Recruitment: A Multi-Cue Minimalist

Suppose that no information about the individual saliency is known, If so, a recruitment

modef has an intuitive appeal, since every observation is assumed to add the same

amount of evidence. The recruitment model is a natural extension of the MIN heuristic,

in the following sense. The MIN heuristic draws cues at random from an underlying

2Historically, the other major strength of the generalised accumulator model has been the ability to
account for the confidence with which people make decisions (e.g., Vickers, 1979; Vickers & Packer,
1982; Vickers, Smith, Burt, & Brown, 1985). However, conhdence is not traditionally measured in
similarity tasks.
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distribution of cues with unknown evidence values, and decides in favour of the first

response option to have a single positive cue value. The recruitment model samples from

an unknown distribution of A - B values, and accumulates evidence in the form of the

number of observations favouring one response or the other. Therefore, the recruitment

model is the natural multi-cue version of the MIN heuristic. The similarity recruitment

model maintains a counter for each response option that initially starts at zero. Like the

MIN heuristic, the recruitment model samples features at random \¡/ithout replacement.

Whenever a feature is drawn, the tallies for each response option that have positive

evidence values on that cue are incremented by L At any given moment, the counters

reflect the number of features that have provided evidence in favour of a particular

response. The decision process terminates when one of the counters reaches a pre-

specified threshold. If two or more response options reach the threshold simultaneously,

then one might either raise the threshold by one and draw a new cue (a bit like reaching

deuce in tennis), or eliminate the options below the threshold, and then draw a ne'w

cue to in order to eliminate more cues (i.e., revert to the Categorisation By Elimination

mechanism), If the cues run out before a clear winner appears, one could respond

randomly, though this seems undesirable. An alternative approach would be to "top up"

the counters until one reaches the threshold, either by resampling cues, or by adding

increments to all counters.

6.2.2 The Accumulator: Taking The Best Few

V/hen saliency weights are known, it makes sense to assume that each feature provides

an amount of evidence in proportion to its saliency, and to draw the cues in order of

decreasing validity, in the manner of TTB. However, if the saliency weights are not

strictly non-compensatory, or in the extreme case uniformly distributed, it is poor policy

to look at only one feature. The natural solution to this problem is to recast TTB as a
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similarily accumulator model. As with the recruitment model, a counter is maintained

for each option, initially set to zero. However, when a feature provides evidence for a

response option, its saliency is added to the total. Thus, more salient cues are weighted

more heavily in the decision process, Once again, as soon as one tally exceeds the

threshold value the search process terminates and a decision is made. Ties are less

likely to occur under an accumulator than under a recruitment model, but if they do the

same options are available for breaking them.

Varying the response threshold allows the accumulator model to interpolate smoothly

between TTB and a representational theory of similarity such as the common features

model' If the threshold is set arbitrarily low, then any evidence at all will send a tally

over the threshold, and the model reduces to TTB. If the threshold is set arbitrarily

high, then the threshold will never be reached. Since some response must be made, the

sensible strategy is to select the response closest to the threshold, so the model reduces

to the corresponding representational model (e,g., common features, distinctive features,

etc'). Importantly, intermediate thresholds also yield principled models. For example, a

moderate threshold might indicate that one very salient feature is sufflrcient evidence for a

decision, but otherwise it will take several lesser features. There is nothing inappropriate

about saying that one very good reason is sufhcient to make a decision, but in its absence,

many less compelling reasons may be required.

6.2,3 Summary

One reason for applying SSMs to similarity decisions is that they have proven to be

remarkably successful models of simple decision tasks, The similarity accumulator

in particular has a compelling theoretical appeal as a natural generalisation of heuristic

models and representational models. The ability to integrate multiple sources of evidence

is important in a decision model, as is the ability to terminate the search for evidence
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in a principled manner. Furthermore, the SSM approach to modelling similarity makes

predictions regarding response times and confidence. It is for these reasons that the

similarity accumulator represents an interesting direction for future research.
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7. Epilogue

Similarity has been an extensively researched topic in psychology, with a wide range

of similarity theories proposed over the years, The six frameworks identified in this

thesis - spatial representations, tree structures, featural representations, network models,

alignment models, and transformational models - have been developed to different de-

grees. For instance, spatial representations have a 50 year history have been applied in

a wide range of situations, and can be derived using many different procedures, whereas

transformational representation is barely more than a sketch of an idea backed by a few

experiments.

The research presented in this thesis addresses a number of issues related to similarity

modelling. Broad issues regarding theories of similarity were discussed in Chapters I

and 2. The important issue of evaluating a representation in terms of data-fit, model

complexiry and theoretical interpretability was discussed in Chapter 3, and an approach

developed for applying these ideas to similarity modelling. Chapters 4 and 5 examined

the featural and spatial approaches, though in somewhat different regards. Several

featural models, including the new Modified Contrast Model (MCM) were evaluated at

some length in Chapter 4. ln contrast, Chapter 5 makes a more modest contribution,

introducing the notion of representing prototypical information in a multidimensional

space. Finally, in Chapter 6, an approach is outlined for modelling the decision process

underlying similarity judgements. In this last chapter, a brief survey is made of the state

of the field, and some suggestions are made about directions for future research.
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7. 1 similarity Theories: Representations and Decisions

Most theories of similarity are representational theories, inasmuch as they speci$, infor-

mational structures (e.g., features, dimensions, etc,) that shape similarity and generali-

sation, Accordingly, representations can be taken to reflect the principles that underlie

similarity judgements, irrespective of how the judgement was made. Representational

models therefore permit an explanation of similarity judgements in these principled

terms, and shed light on the basic knowledge structures by which people understand

their environment.

Each of the representational theories has different strengths and weaknesses. It has

frequently been argued that spatial representations are most appropriate for low-level

perceptual stimuli, whereas featural representations are better suited to high-level con-

ceptual domains (e.g., carroll, 1976; Tenenbaum,lgg6; Tversky, 1977). Nevertheless,

real-world environments will frequently involve perceptual and conceptual elements.

Therefore, there is some merit to the idea of combining continuous and discrete ele-

ments into a single representation. As Carroll (1976, p. a6l argues: ,,Since what is

going on inside the head is likely to be complex, and is equally likely to have both

discrete and continuous aspects, I believe the models we pursue must also be complex,

and have both discrete and continuous components". This could be achieved by allowing

for "general representations" consisting of spatial dimensions and discrete features. Al-

though preliminary investigations of this kind of similarity model suggests that the idea

has some promise (l{avarro &. Lee, submitteda), it remains largely unexplored territory.

The alternative approach, based on Gigerenzer and Todd's (1999) notion of fast,

heuristic decision making, is to examine the cognitive processes by which people use an

informational structure to make a similarity judgement, and therefore develop decision

models of similarity. It is clear that the two approaches are complementary: representa-
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tional models implicitly assume that some decision process is in operation, and decision

models rely on underlying representations. The historical focus in similarity modelling

has been the representational approach. Inspired by models of analogical reasoning,

Goldstone's (1994) SIAM model represents a step towards a developing decision mod-

els in this field. The sequential sampling models discussed in Chapter 6 may also be

interpreted in this light. Importantly, the sequential sampling models provide a theoret-

ically interpretable framework for interpolating between heuristic decision models and

representational similarity models.

7.2 Similarity Modelling and Geometric Complexity

Pinker (1998) has argued that "[p]inning down mental representations is the route to

rigor in psychology" (p. 85). Cognitive process models frequently rely on stimulus

representations in order to account for observed phenomena. With this in mind, it is

important that these informational structures are themselves plausible accounts of mental

representations. A cognitive model that employs hand-specified representations is a bit

like a house built on quicksand. No matter how soundly built it is, a house is useless if

the foundations are sinking.

If the study of similarity affords psychologists the opportunity to specify mental

representations in a principled manner, it is crucial that the analysis of similarity data

be based on sound principles of scientific inference. As argued in Chapter 3 and by

many other authors (e.g., Collyer, 1985; Myung, 2000; Pitt et al., 2002; Roberts &

Pashler, 2000), it is bad practice to assume that a theory is a good one simply because it

provides a good frt to the data. Choosing between similarity models should be based on

quantitative properties such as data-fit and model complexity, and qualitative properties

such as theoretical interpretability and psychological plausibil ity.

The Geometric Complexity Criterion (GCC) employed in this thesis is perhaps the
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state of the art for quantitative model selection. By measuring model complexity in

terms of the proportion of distinguishable probability distributions indexed by the model

that lie close to the true distribution, the GCC enables a principled trade-off between frt

and complexity. GCC expressions were derived in Chapters 3 and 4 for several classes

of featural models, as well as additive trees. The additive clustering and additive tree

frameworks were analysed in some detail, in order to provide an understanding of how

the model parameters interact to make a representation more or less complex,

This approach can be extended in fairly obvious ways. Though attempts to find

a GCC expression for spatial representations have thus far been unsuccessful, it may

not be impossible. Even if analytic methods fail, GCC values can be approximated

using numerical methods. Such an approach would be too computationally expensive

to employ in a multidimensional scaling context, but numerical evaluations of various

spatial representations may enable conclusions to be drawn about the complexity of

spatial models generally. Furthermore, it is natural to look for GCC expressions for

other representations, such as network or alignment models. In particular, it would be

interesting to compare the highly structured SIAM model (Goldstone, 1994) to other

approcches by using the GCC. Similarly, if the sequential sampling models proposed

in Chapter 6 can be shown to give a good account of empirical data, they could be

examined using the GCC as well.

7. 3 On Using Representations

As outlined in Chapter 1, similarity-based representations are employed by models of

identification, recognition, and categorisation. When employing representations in this

regard, it is important to observe that derived representations reflect only the information

relevant to the experimental task, For example the feature "cricket playing nation" could

only emerge in the countries experiment if more than one such nation (Zimbabwe) were
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included in the domain, Correspondingly, it is imporlant to design methodologies that

elicit the appropriate information from the data.

Note that a "soccer playing nation" feature did not emerge either, despite the fact that

eight of the sixteen nations reached the finals of the 2002 World Cup (Italy, Germany,

Spain, Russia, United States, China, Japan, andNigeria). This feature maynot have been

sufficiently salient to make a large contribution to participants' decisions, particularly

since it correlates strongly with other, more salient features. For the purposes to which

the countries data were put, this is not a problem. It howeveq one subsequently used

this representation in a model of categorisation required to classif, nations as "soccer

nations" or "non-soccer nations", caution is required. If participants are explicitly asked

to classifu in this regard, then the saliency of any soccer-related knowledge willrise very

sharply. Correspondingly, since similarity always involves some context (e.g., Goldstone

et al., 1997; Goodman, 1972), it may not be appropriate to apply a representation derived

from a soccer-neutral similarity context to a soccer-related classification task,

Similarity modelling serves a dual purpose, in that representations can be employed in

models of other cognitive processes, but are also informative in their own right. A theory

of similarity makes a number of assumptions about the nature of mental representation,

and so every test of the theory should inform psychologists about the structure of human

knowledge (even if only a little). By way of example, consider the extensive analysis

of the TCM and MCM presented in Chapter 4. Both of these theories treaf a feature

as some aspect of the world to which people are sensitive. Furthermore, if a particular

feature emerges in the representation of some data set, then that feature is something

people use when making decisions: it is a reason to make a decision. The TCM treats a

feature as an abstract grouping of stimuli, and permits a feature to denote a commonality

or a distinction as the task demands. However, this reliance on task demands implies that

features cannot be treated differentially, since there is nothing intrinsic to the feature that
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dictates how it relates to the environment. In contrast, the MCM assumes that features

are intrinsically commonalities or distinctions. The feature itself dictates how it should

be used: commonalities only justifu a decision when two stimuli share the properfy,

and distinctions justif, a decision when two stimuli differ in that regard. The superior

performance of the MCM suggests that the type of regularity embodied by a feature is

a central aspect of representational structures. Therefore, even though neither the MCM

nor the TCM can lay claim to being a complete account of similarity, by proposing and

testing these theories, it is possible to learn something about the nature of conceptual

structure.

7. 4 Similarity and the Blue Sky of Cognition

Similarity may be uniquely justifiable as a tool for understanding basic mental structure,

in that the sense that "this thing is like that one" is central to cognition. Even an act as

"simple" as inferring that "this thing is a chair" is fundamentally reliant on similarity.

No two chairs that a person encounters will ever be precisely identical, so in order

to identifu and categorise a novel object, some generalisation (or "slippage',, to use

Hofstadter's 2000 term) from the encountered object is required. Therefore, despite the

observed differences between the various chairs a person encounters, something about

them is identified as being "the same", Given the ubiquity and necessity of this process,

the words of William James are appropriate: "This sense of Sameness is the very keel

and backbone of our thinking" (James, 1890, p. 459).

Why should this be? Intelligent behaviour relies on the ability to determine when to

treat two things alike, despite observable differences between them. Since it is crucial

for any organism to discover the regularities that govern its environment, it is logical to

assume that the internalisation of that environment should map the physical world in a

manner that supports appropriate generalisation from one stimulus to the next (Shepard
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1981, 1984, 1987, 1994). Therefore, two stimuli should appear more alike to an organism

if they are more likely to entail the same consequences. It is therefore appropriate to

assume that internal representations reflect such psychophysical mappings, and provide

insight into basic cognitive architecture.

The study of similarity is necessarily complicated by the flexible manner in which

people perceive likenesses. People use different information to draw different analogies,

finding a variety of similarities depending on context. It seems likely that people build

a representation appropriate to the task at hand, pull it apart as needed, pack new things

into it, and discard irrelevant information. Current theories of similarity cannot account

for this process, but they do not claim to. Rather, they make a more modest claim,

providing an account of the "shape" of the representations that people use to make

simple decisions. If a theory of similarity does a good job, it can tell us something about

how information is structured, and provide some insight into how things are organised

in the mind.
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