Pigmentation of the nipple-areolar complex and its reconstitution in breast reconstruction

Thesis for the Degree of Doctor of Philosophy

Nicola Ruth Dean MB ChB FRCS (Eng)

Department of Surgery, Department of Anatomical Sciences and Co-operative Research Centre for Tissue Growth and Repair, The University of Adelaide

December 2002
ABSTRACT

Reconstruction of the nipple-areolar complex is the final step in the recovery of women who have undergone mastectomy for breast cancer. Reconstruction of breast shape has been an area of major developments in surgical techniques in recent times. Nipple-areolar reconstruction, however, has not reached the same stage of evolution and is not as widely practiced. Clinicians that do perform nipple-areolar reconstruction as an integral part of a breast reconstruction program, indicate that it is difficult to match the colour of the normal nipple-areola and that the colour of reconstructions fades over time.

The purpose of this research was to assess the quality of current methods of nipple-areolar reconstruction, with special reference to pigmentation and, if they were found lacking, to investigate the feasibility of producing an engineered pigmented skin substitute that could be used in this clinical context. The research falls into three main parts - a clinical study of patients who have undergone breast reconstruction, a histological study of normal areolar skin and a cell culture study.

Patients who had undergone nipple-areolar reconstruction (n=63) were found to be less happy with the colour of their nipple-areolar reconstruction than with the general attributes of the breast reconstruction as a whole. There was found to be a measurable colour mismatch between normal and reconstructed nipple-areolar complexes and a reduction of colour saturation (i.e. fading) of the reconstructed nipple-areolar complex over time.

Pigmentation of the nipple-areolar complex at a histological level has not previously been reported and was a logical area to study if improvements in the colour of nipple-areolar reconstructions are to be achieved. Melanin and melanocyte complements in breast and areolar skin of twenty patients were measured using
conventional histochemical staining, immunohistochemistry and image analysis. The melanin content of areolar skin was about twice that of breast skin. This could mainly be accounted for by the higher number of melanocytes in areolar skin but basement membrane convolution and higher amount of melanin per melanocyte also contributed.

Detection of all normal melanocytes present in sections of skin was not straightforward. Preliminary experiments were carried out with several different primary antibodies for immunohistochemical labelling. The antibody clone TA99 (also known as Mel-5) against Pigment Associated Antigen (PAA) was found to be the most sensitive and was used in the quantitative study of melanocytes in breast and areolar skin.

Production of a tissue-engineered skin construct with the pigmentedary characteristics of nipple-areolar skin is theoretically possible and could be used as an adjunct to current methods of nipple-areolar reconstruction. Production of such a construct for clinical use would have to be in an environment free of the toxins and potentially infective serum that are often used for *in vitro* cell culture.

It was possible to grow keratinocytes and melanocytes *in vitro* from adult surgical discard skin from the trunk (breast and abdomen). Initial cultures of melanocytes from this source in a serum-free medium were unsuccessful and culture of keratinocytes in serum-free medium was very slow. A subsequent series of experiments showed that melanocytes and keratinocytes can be grown successfully in the presence of autologous human serum and that the commonly used additives phorbol 12-myristate 13-acetate (PMA) and cholera toxin can be omitted from melanocyte culture medium if autologous human serum is used. Cells cultured in such a medium were used to produce new skin constructs by seeding them onto freeze-thawed human dermis.
TABLE OF CONTENTS

Abstract
Statement of originality
Acknowledgments
Ethics approval
List of abbreviations
Table of contexts
List of figures
List of tables

INTRODUCTION

CHAPTER 1 LITERATURE REVIEW

1.1 Nipple-areolar reconstruction
 1.1.1 The history of nipple-areolar reconstruction
 1.1.2 The issue of colour

1.2 Pigmentation of the normal nipple-areolar complex
 1.2.1 The mechanism of skin pigmentation
 1.2.1.1 Mechanism of skin pigmentation - cellular level
 1.2.1.2 Mechanism of skin pigmentation - sub-cellular level
 1.2.1.3 Mechanism of skin pigmentation - molecular level
 1.2.2 Early work on the normal pigmentation of human skin
 1.2.3 Electron microscopy in the development of understanding of skin pigmentation
 1.2.4 Histology of the nipple-areolar complex
 1.2.5 Endocrine effects on the pigmentation of the nipple-areolar complex
 1.2.6 Further work on the pigmentation of normal skin

1

2

15
1.2.7 Immunohistochemistry and the study of normal melanocytes

1.3 The evolution of pigmented skin equivalents

1.3.1 Production of skin components in vitro

1.3.2 Bilayered skin equivalents

1.3.3 Culture of human melanocytes in vitro

1.3.4 Advances in keratinocyte culture

1.3.5 Early pigmented skin equivalents and further advances in melanocyte culture

1.3.6 Clinical experience with cultured keratinocytes and skin substitutes

1.3.7 Further work on melanocyte culture in vitro

1.3.8 In search of normal pigmentation for skin substitute

1.3.9 The issue of safety in cultured skin substitutes

1.3.10 The influence of the dermis on melanocyte behaviour

1.3.11 Further clinical cases using transplantation of isolated melanocytes

1.3.12 Co-cultured melanocyte and keratinocyte sheets as a therapeutic option

1.3.13 Further developments in pigmented skin substitutes

1.4 Summary of literature review

CHAPTER 2 A STUDY OF NIPPLE-AREOLAR RECONSTRUCTIONS

2.1 Aims and objectives

2.2 Materials and methods

2.2.1 Patients
2.2.2 Method of review and questionnaires
2.2.3 Photography
2.2.4 Independent panel review
2.2.5 Computerised colour analysis
2.2.6 Scoring of questionnaires and statistical analysis

2.3 Results

2.3.1 Demographics
2.3.2 General information on breast reconstruction
2.3.3 Patients with nipple-areolar tattoos
2.3.4 Patients' perceptions of nipple-areolar reconstruction within the context of breast reconstruction
2.3.5 The influence of time on the colour of nipple-areolar reconstructions
2.3.6 Patients' comments
2.3.7 External observers' views and partners' views on outcome of nipple-areolar and breast reconstruction.
2.3.8 Colour analysis

2.4 Discussion

2.4.1 Justification for study methods
2.4.2 Population and study sample
2.4.3 The impact of nipple-areolar reconstruction on breast reconstruction as a whole
2.4.4 The quality of nipple-areolar reconstructions
CHAPTER 3 PIGMENTATION OF THE NORMAL FEMALE AREOLA

3.1 Aims and objectives

3.2 Materials and methods

3.2.1 Materials

3.2.1.1 Instruments and equipment

3.2.1.2 Disposables and glassware

3.2.1.3 Chemicals and solutions

3.2.1.4 Miscellaneous

3.2.2 Skin samples

3.2.3 Method for processing skin samples

3.2.4 Method for staining melanin

3.2.5 Image analysis for sections stained for melanin

3.2.6 Comparative immunohistochemistry for the detection of melanocytes

3.2.6.1 Introduction and basic method

3.2.6.2 Preliminary experiments

3.2.6.3 Optimising conditions for Mel-5 staining

3.2.6.4 Immunostaining of melanocytes for quantitative comparison of different primary antibodies

3.2.7 Final method of detecting melanocytes for quantitative study of melanocytes in parallel sections of areolar/breast skin

3.2.8 Image analysis for sections immunostained for melanocytes

3.2.8.1 Comparison of sensitivities of primary antibodies

3.2.8.2 Quantity of melanocytes in normal areolar skin

3.2.9 Method for electron microscopy
3.3 Results

3.3.1 Electron microscopy of areolar skin
3.3.2 Amount of melanin in breast skin vs areolar skin
3.3.3 Relationship between amount of melanin in skin and Fitzpatrick sun sensitivity skin type
3.3.4 Correlation of amount of melanin in skin and measured skin colour
3.3.5 Comparison of different primary antibodies for the immunohistochemical detection of normal melanocytes.

3.3.5.1 Results of preliminary experiments
3.3.5.2 Conditions for Mel-5 labelling
3.3.5.3 Immunostaining of melanocytes for quantitative comparison of different primary antibodies

3.3.6 Quantity of melanocytes, melanocyte to keratinocyte ratios and amount of melanin per melanocyte in areolar and breast skin.

3.4 Discussion

3.4.1 Introduction
3.4.2 Characteristics of areolar skin
3.4.3 Immunohistochemical labelling of normal melanocytes
3.4.4 Limitations and usefulness of the current study
CHAPTER 4 THE POTENTIAL FOR TISSUE ENGINEERED
NIPPLE-AREOLAR SKIN IN BREAST RECONSTRUCTION

PATIENTS

4.1.1 Introduction 155

4.1.2 Aims and objectives 155

4.2 Materials and methods 157

4.2.1 Establishing epidermal cell culture
 4.2.1.1 Skin harvest and collection
 4.2.1.2 Preparation of basal epidermal cells for in vitro
culture from adult surgical discard skin
 4.2.1.3 Growth of epidermal cells in standard culture
 media
 4.2.1.4 Separation of melanocytes and keratinocytes in
culture
 4.2.1.5 Immunostaining of in vitro cultured melanocytes

4.2.2 Investigating a culture medium safe for use in the clinical setting
 4.2.2.1 Comparison of cell culture media containing autologous
 human serum with other media for melanocyte growth
 4.2.2.2 Comparison of media with and without PMA and cholera
 toxin for melanocyte growth

4.2.3 Production of skin constructs
 4.2.3.1 Production of a skin construct from
cultured cells and preserved dermis
 4.2.3.2 Assessment of skin constructs
4.3 Results

4.3.1 Establishing epidermal cell culture
 4.3.1.1 Deriving basal epidermal cells from adult surgical discard skin
 4.3.1.2 In vitro culture of melanocytes and keratinocytes from adult surgical discard skin in standard culture media
 4.3.1.3 Separation of melanocytes and keratinocytes
 4.3.1.4 Immunostaining of cultured melanocytes

4.3.2 Investigating a culture medium safe for use in the clinical setting
 4.3.2.1 Comparison of culture media containing autologous human serum with other media for melanocyte growth
 4.3.2.2 Comparison of media free of PMA and cholera toxin with media containing PMA and cholera toxin for melanocyte growth

4.3.3 Skin constructs
 4.3.3.1 Production of skin constructs
 4.3.3.2 Assessment of skin constructs

4.4 Discussion
 4.4.1 Epidermal cell culture from adult surgical discard skin
 4.4.2 Culture media safe for use in a clinical setting
 4.4.3 Skin constructs
 4.4.4 Clinical application of skin constructs for nipple-areolar reconstruction

CHAPTER 5 CONCLUSION
APPENDICES

I Royal Adelaide Hospital Ethics Committee approval letter.
II North Western Area Health Authority Ethics Committee approval letter.
III Clinical Study Patient Information Sheet
IV Skin donation Patient Information Sheet
V Modified patient information sheet for patients donating skin
VI Letter inviting patients to attend clinical study
VII Consent form for participation in clinical study
VIII Feedback form
IX Patients' Aesthetics Questionnaire
X Demographics Questionnaire
XI Partners' Aesthetics Questionnaire
XII Panel Aesthetics Questionnaire
XIII Fitzpatrick Classification of Sunreactive Skin Types
XIV Questionnaire for patients donating skin specimens
XV Patient details for histology specimens
XVI Consent form for donation of skin
XVII Protocol for Masson-Fontana staining
XVIII Protocol for Immunohistochemistry of melanocytes

PAPERS

BIBLIOGRAPHY