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Abstract

The performance of a multiprocessor greatly depends on the effectiveness of its
interprocessor communication. Shared memory and message passing are two major
communication architectures for multiprocessors. In shared memory systems,
processors communicate by writing to and reading from a common memory. In
message passing architectures, nodes communicate by passing messages through an
interconnection network using send and receive commands. Both systems have their
advantages and disadvantages. This study aims to explore the feasibility of using

multiport memories for interprocessor communication based on message passing.

The individual ports of a multiport memory provide independent access to memory
cells and can be used as communication links. In the communication structure proposed
in this study, several nodes connected to a multiport memory can communicate in
parallel without the overhead and delay of the bus architecture, or the interconnection
network of a typical shared memory system. The small number of ports on multiport
memory is a limiting factor that restricts the number of nodes connected to this

structure.

The proposed structure can be scaled by using a hierarchy in which the nodes that are
not connected directly can communicate through network controllers and other

available multiport memories. In this structure, shared memory is used as a link for
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message passing. In contrast to other shared memory systems, the small shared memory

in this structure is exclusively used for communication purpose.

The first stage in evaluating the proposed structure was the design and implementation
of a small multiprocessor called MultiCom. In this prototype system, four nodes were
interconnected by a 4-port memory. The memory management of MultiCom could
prevent the nodes from interfering with each other using static and dynamic allocations.
In particular, dynamic allocation used fewer but larger buffers that could be assigned to
any communication on demand, and full memory utilization was possible. It could also
handle multicasting and broadcasting very efficiently. As dynamic allocation required a
lock mechanism for allocating the buffers, in the absence of hardware locks on
multiport memories, two new software locks for controlling the ownership of the
multiport memory were designed and successfully tested. Using a basic communication
protocol for MultiCom, the measured communication rate was 4.2 times faster than a
system using serial links, 11 times faster than a system using dual-port memories, and
14 times better than a bus-based system. In addition, compared to a system using dual-

port memories, the system enjoyed a four-fold reduction in cost.

A simulation model was designed to evaluate the performance of the scaled structure.
The model showed that the structure was scalable for small systems in which all of the
nodes were connected as a group using a single multiport memory. It also confirmed
that the structure only required small amount of shared memory for message passing.
However, the performance of the cluster structure in the original proposal in which
several groups were connected using a network controller was not desirable. The
communication rate dropped considerably under high inter-group message transfers
because of the overloaded network controller. To overcome this problem, the cluster
structure was modified and separate network controllers were used for each group. In
addition, an extra multiport memory was used to interconnect the network controllers.
With this modification, the performance of a cluster was significantly improved and
overloading of the network controllers was considerably reduced. The structure of a
network of clusters was also improved to accommodate the modified cluster structure,
and other measures were implemented to reduce the load of network controllers. The

improved structure can be used for medium to large-scale systems.
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CHAPTER 1

Introduction

his thesis makes the case for the use of multiport
memories for = interprocessor communication in
multiprocessors. In this introductory chapter, the
background and the motivation for the research
undertaken are presented briefly and the objective and
scope of the study are outlined. In addition, the
contributions made by the study are put forward. Finally,
the structure of the thesis including a short explanation of

the contents of each chapter is presented.
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CHAPTER 1 Introduction

1 Background and motivation

Interprocessor communication is one of the major activities in a multiprocessor system.
There is a frequent demand for interaction and exchange of data among nodes and a
high communication bandwidth is required. Interprocessor communication can be
regarded as the dominant component affecting performance in multiprocessors. An
efficient communication scheme requires high bandwidth and reliability with minimal

cost and software/hardware overheads.

Two major communication structures for multiprocessors are shared memory and
message passing. In shared memory systems, processors have access to a common
memory and communication is performed implicitly by memory load and store
instructions. One processor can write a message in the shared memory and other nodes
can receive the message by reading it. Sharing a conventional single-port memory
among nodes using a bus is one method to realize this concept. In this method, the
nodes need to take turn in using the shared memory and only one node can use it at a
time. Because of the limited bus bandwidth, this method is only useful for small
number of processors. Examples of this structure can be found in [Tabak 90], [Culler+

98], and [Patterson+ 98].

In an interleaved memory structure, various blocks of memory are shared among
several nodes using different techniques. Nodes can access different memory banks
simultaneously; however, only one access per bank is allowed. Multiple bus or crossbar
switch can provide non-blocking connection of nodes to memory banks at high cost.
Multistage networks reduce the cost, but full connection of processors to the memory
banks may not be possible because of the blocking nature of the network. Memory
interleaving is useful for medium-size systems and it has been the basis of many

multiprocessors. Several examples can be found in [Tabak 90] and [Gajski+ 83].

In message passing systems, the nodes are interconnected by a communication network.
Nodes communicate with each other by explicit send and receive commands. A low to
medium number of nodes can be interconnected using topologies such as ring or mesh.
For larger systems, hypercube is a better topology and some massively parallel
216

processors have used this structure to interconnect up to nodes [Hennessy+ 94]. In
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these topologies communication is performed through serial links. The required wiring
for connecting nodes in a network of this size is a challenging task. In addition, the slow
nature of a serial link that sends data bit by bit is a limiting factor to achieve high

communication rates.

Message passing through dedicated parallel links has been also investigated by
researchers. For example, [Tuazon +85] suggested the use of first-in, first-out (FIFO)
buffers between two nodes. The transmitting node had to write the message into the
FIFO, and the receiving node could retrieve it from there. Similarly, [Su+ 92] proposed

the use of FIFO RAMSs to act as a communication buffers between nodes.

Developments in dual-port memory structure have initiated new methods for
interprocessor communication. Dual-port memories allow two devices to have
independent and simultaneous access to the memory cells. The nodes connected to a
dual-port memory can communicate in both directions using two separate ports. As the
overhead of bus is eliminated, higher communication rate can be achieved. Several
structures have been proposed for interconnecting a limited number of nodes in
[Jagadish+ 89], [Khan+ 94], and [Campbell+ 96]. With only two ports to access the

memory, this approach is restricted to small systems.

Multiport memory offers a better structure for interprocessor communication. Several
nodes can share a multiport memory using independent ports and they can
communicate directly by writing and reading the shared memory concurrently. This
structure is much simpler than other shared memory structures such as multiple bus or
multistage networks and it does not have the overhead and the delay associated with
these structures. The limiting factor is the small size and low number of ports on
multiport memories. This restriction makes the design of communication structures for
large systems very challenging. The structure proposed in this study is based on limited
number of ports, and the shared memory created by multiport memory is used as a link
for message passing. Unlike other shared memory systems, the shared memory in this
structure is exclusively used for communication purpose and as explained later, a small

memory size is adequate for this purpose.
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As explained in Chapter 3, the concept of using multiport memory for interprocessor
communication has not been deeply explored by researchers and only very few
structures for basic communication have been proposed in [Handy 90] and [Varshneya+
94]. No evaluation of the proposed structures has been performed. Hence, this is an
open research area and the challenging nature of it, together with the expected benefits

and outcomes are some of the incentives to undertake this research.

2 Objectives and scope of the study

The main objective of this study is to demonstrate that interprocessor communication in
multiprocessors can be performed efficiently through multiport memories. Suitable
structures can be designed in which multiport memory with limited port count and

capacity can be used as a link for message passing.

This study covers the following:
e Designing a basic structure for using multiport memory for interprocessor
communication with a limited number of ports and capacity
» Developing strategies for the management of multiport memory
» Developing the required communication protocols
» Designing structures to connect a large number of nodes in a network

» Developing support facilities for multiport memories

3 Contributions

This study explores the possibility of using multiport memory for interprocessor

communication. Contributions claimed by the author are the following:

¢ Communication structure

Multiport memory management

+ Communication protocols

Support circuits for multiport memory
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Each one will be discussed briefly in the following sections.

3.1 Communication structure

The concept of using dual-port memory for interprocessor communication has been
explored by some researchers and successful outcomes have been reported. However,
the use of multiport memory for this purpose has not been examined in depth and apart
from a couple of proposed structures as presented in Chapter 3, there has been no
significant work in this area. Furthermore, no work has been carried out to evaluate the

proposed structures.

This study proposes a novel structure for interprocessor communication using multiport
memory and supports the proposed structure by evaluating it with a hardware prototype
and a simulation model. The hardware prototype tests the functionality and
effectiveness of the structure under real conditions, and the simulator provides further
in-depth tests of the expanded structure for conditions that cannot be tested easily on
real systems. The hardware prototype was also used to calibrate the simulator to
produce more reliable results when expanded. After several revisions of the structure
based on the results obtained from the simulation model, the final structure presented in

Chapter 7 was devised for medium to large-scale systems.

Compared to a system using dual-port memories, this structure offers a considerable
increase in performance, and a remarkable decrease in the cost of the system as
presented in Chapter 5. In addition, it enjoys a much simpler design and reduced
number of links. It also shows much better results compared to bus-based systems or

systems using serial links.

3.2 Multiport memory management

The proposed structure relies on conflict-free flow of data through multiport memory.
As each node is connected to a multiport memory through an individual port, the
possibility of a conflict between nodes is very high. The memory management of the
multiport memory requires hardware support facilities or software-driven mechanisms

for removing the conflicts or avoiding them. Because of the lack of hardware supports
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on multiport memories, the memory management developed in this study was based on
software methods. In particular, two newly devised algorithms for implementing a lock
mechanism for multiport memory were successfully implemented and tested on the
hardware model in Chapter 5. These locks were used in dynamic allocation of the

memory buffers to the requesting nodes.

3.3 Communication protocols

In order to effectively control the communications in the hardware prototype, a basic
communication protocol was developed and tested on MultiCom in Chapter 5. The
simulator designed in Chapter 6 was used to evaluate the scaling of the communication
structure in several stages and the communication protocol was gradually modified to
support the requirements of the expanded system. More improvements were applied to
the communication protocol to meet the requirements of the improved communication

structure in Chapter 7.

3.4 Support circuits for multiport memory

As discussed in Chapter 5, support circuits such as semaphore logic facilitate the use of
dual-port memories. If similar facilities are not available on multiport memories,
software approaches need to be developed for memory management and overhead will
increase. This reduces the usefulness of multiport memory in a system design. In the
Appendix, several new support circuits for multiport memories are proposed and
designed. In particular, the new circuit designed for multiport semaphore logic
considerably simplifies the management of multiport memory and makes the use of this
type of memory more convenient. The designed circuits are practical and have been

tested by hardware design tools.

4 Thesis structure

This thesis is divided into eight chapters and one Appendix. Each chapter is discussed

very briefly in the subsequent sections.
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4.1 Background

Chapter 1 presents a brief introduction and the motivation for the research undertaken.
The objective and scope of the study are discussed, the contributions claimed by the

author are presented, and the structure of the thesis is explained.

4.2 Interprocessor communication

Chapter 2 presents the literature review for interprocessor communication. Shared
memory and message passing as two major communication architectures in
multiprocessors are explained and different approaches for designing each method are
presented. For shared memory, single-bus and interleaved memories are discussed and
the use of multiple bus, crossbar switch or multistage networks for connecting several
nodes to memory banks is illustrated. For message passing systems, the use of serial
links in topologies such as ring, mesh or hypercube is discussed and other structures
that can create a dynamic link between two nodes on demand are reviewed. In addition,
the use of parallel links for message passing is explained and generating such links

using FIFOs or dual-port memory is discussed.

4.3 Multiport memory for interprocessor communication

Chapter 3 describes the research proposal for this study. In the literature review
presented at the beginning of this chapter, the achievements in multiport memory cell
design are explored and some of the applications of multiport memories in system
design are reviewed. Then, a structure for interprocessor communication using
multiport memories is proposed and the expansion of the structure to cover more nodes
in a network is presented. The proposed structure is based on multiport memories with
limited number of ports and small capacity in which shared memory is used as a link for

message passing.

4.4 Hardware model

Chapter 4 discusses the structure and implementation of MultiCom, a small
multiprocessor designed as a hardware prototype to verify the efficiency of the

proposed communication scheme on small scale. The node processors and the 4-port

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors y/



CHAPTER 1 Introduction

memory used in this design are explained and a basic memory management method
called static allocation is introduced. Finally, the performance of this system is

compared to serial systems.

4.5 Memory management

Chapter 5 introduces dynamic allocation as an advanced memory management scheme
and discusses the required communication protocols. Dynamic allocation can provide a
better memory utilization, but requires a sophisticated lock mechanism to eliminate
shared memory conflicts. Two new software locks devised for the control of multiport
memory are explained and the efficiency of the communication in MultiCom is

measured and compared with other methods.

4.6 Simulation model

Chapter 6 presents the design of a simulation model for the evaluation of larger
systems. First, a model for MultiCom is generated and its performance is matched to
that of MultiCom. Then, the simulation model is expanded to include more nodes in a
cluster and the performance of the system is evaluated. The expansion of the model to
encompass more clusters in a network is also explained and the communication

bottleneck detected by the simulation model is discussed.

4.7 Improved communication structure

Chapter 7 describes the modifications required for the communication structure. Based
on the results obtained from the simulation model, a modified structure for nodes
connected in a cluster is presented and an improved structure for connecting several
nodes in a network is explained. Several issues on scaling the communication scheme

are also discussed.

4.8 Further directions

Chapter 8 is the conclusion. The steps undertaken in designing, evaluating, and

improving the structure are described and the achievements are discussed. In addition,
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several possibilities to improve the structure and further directions in pursuing this

study are presented.

4.9 Structure of multiport memory

The Appendix presents the evolution of single-port memory cells to dual-port and
multiport memory cells. The control logic used on dual-port memory chips is explained
and several issues in the design of multiport memory chips are discussed. In addition,

new circuits for the control of multiport memory are proposed and designed.
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Communication

nterprocessor communication in multiprocessors is a very
important task and requires a high bandwidth. In the
literature review presented here, first, shared memory and
message passing as two major communication structures
for multiprocessors are explained and different methods to
realize each method are presented. In the shared memory
structure, nodes can communicate with memory load and
store instructions and different techniques such as single
bus or interleaved memory can be used to create it. In
message passing, nodes communicate with explicit send
and receive: commands using an interconnection network,
which is generally based on- serial links and can be
organized using different topologies. Next, the use of dual-
port memory as a communication medium bet\;veen two
nodes is discussed and different communication structures
based on dual-port memories are explored. Finally, shared
memory using a multiport memory is introduced and some
of the unresolved issues in designing large-scale multiport

memories are presented.
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1 Introduction

Multiprocessors enhance the capability and performance of computer systems by using
parallelism. Several interconnected processors can process different parts of a workload
in parallel and finish it faster. Workload sharing demands close cooperation and
frequent exchange of data between processors. Hence, interprocessor communication is
a very important task in multiprocessors. In [Almasi+ 89], a parallel computer is
defined as “a collection of processing elements that communicate and cooperate to
solve large problems fast”. In [Culler+ 98], parallel architecture is viewed as “the
extension of conventional computer architecture to address issues of communication
and cooperation among processing elements”. Both of these definitions highlight the
importance of communication in multiprocessors. For a high performance

multiprocessor, the communication structure should provide a high bandwidth.

The communication architecture of the majority of multiprocessors falls within the

following categories:

« single address space or shared-memory

e message passing

In shared-memory architectures, processors share a single memory address space and
communicate through the shared memory. In message passing systems, processors
exchange data and other information by sending and receiving messages to each other.

Both are discussed briefly in the subsequent sections.

2 Shared memory

This class of multiprocessors uses a single memory address space that is shared among
processors. Processors still can have private or local memories, but part of their memory
space is mapped to a common physical memory that is accessible by all processors.
Communication is performed implicitly through shared memory using conventional
load and store instructions. Shared memory can be implemented in many ways and two
popular methods for implementing it using a single bus and interleaved memory are

discussed here.
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2.1 Shared memory with a single bus

In this method, a conventional single-port memory is shared among several processors
by a single bus, which has a fixed bandwidth. Implementing this bus is straightforward
and processors can be added to the bus or removed from it if required, although the bus
speed will be limited if the bus is long and/or many devices are connected to it. Because
of the nature of the shared bus, only one request for the memory can be handled at a
time and other requests have to wait for their turn. A control circuit such as arbitration
logic is required to resolve simultaneous requests to memory. Under heavy bus demand,
the limited bandwidth of the bus can create a bus bottleneck and consequently, this
structure is only applicable when the number of processors is relatively low. The
maximum number of processors on a bus depends on the bus bandwidth and the traffic

per processor. Figure 2.1 illustrates the overall structure of a single-bus shared memory.

Local
Memory

CPU1| |CPU2| [CPU3 CPUn

R I

@ BUS

Shared Memory

Figure 2.1 Simple shared memory

A conventional single-port memory can be used as a shared
memory by using a bus. Only one request on the shared
memory can be processed at any time.
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As a consequence of working in parallel, processors frequently work on shared data and
need to coordinate their access to shared variables. As only one processor should be
able to modify a shared variable, synchronization mechanisms such as locks or
semaphores should be implemented to avoid memory conflicts. Semaphores will be

discussed in detail in Chapter 5.

Shared memory structure has a long history, dating at least to precursors of mainframes
in the early 1960s, and today it has a role in almost every segment of the computer
industry. An example of earlier shared memory systems is IBM System 370. Supports
for multiprocessor configurations including atomic memory operations and
interprocessor interrupts were the key extensions in the evolution of the 360

architecture to System 370 [Culler+ 98].

Commercial examples of single-bus architecture are ELEXSI System from ELEXSI
Corporation which features up to 12 processors connected to a single bus system called
“Gigabus” [Tabak 90], and Compaq ProLiant 5000 from Compaq Corporation

connecting four Pentium Pro processors [Patterson+ 98].

2.2 Interleaved shared memory

Memory interleaving is a method used for allowing several concurrent accesses to
memory. In this method, the memory is divided into blocks or banks and an
interconnection network is used to connect memory banks to the processors. Several
processors can access different banks simultaneously; however, only one connection
per bank is possible at a time. If more than one access to a particular bank is requested,
only one of them can proceed while the others have to wait. Figure 2.2 demonstrates an

interleaved memory structure.

Interconnection networks can be implemented using multiple busses, crossbar switches,
or multistage networks. Each one will be discussed briefly.
2.2.1 Multiple-bus shared memory

In multiple-bus structures, processors and memory banks are connected to all of the

available buses as shown in Figure 2.3. There are several redundant paths from each
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Local
Memory ¢

CpU1| |[CPU2( [CPU3 °e° CPUn

IR I

Interconnection Network

....................................................

Figure 2.2 Interleaved memory

The shared memory is composed of several memory
banks and they are connected to different processors
using an interconnection network.

processor to a memory module. Each processor can use any of the available buses to
access a memory bank. Each bus can be used with only one processor at a time to
access a memory bank, but several processors can access different banks
simultaneously using separate buses. The cost and complexity of multiple-bus is very
high. In addition, a complex bus arbiter is required to control the bus traffic. [Mudge+

87] analyses multiple-bus structures in detail.

2.2.2 Crossbar switch

A crossbar switch can also provide full connection of memory banks and processors. As
shown in Figure 2.4, in a matrix of switches, processors are connected to the rows and

memory banks to the columns. Crosspoint switches are placed in the intersection of
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node 1 node 2 ces node n

BUS 1

0

BUS 2

I

BUS b

Figure 2.3 Multiple-bus shared memory

Processors and memory banks are connected to dall
buses. Each bank can be accessed using any bus. There
are several redundant paths for each connection.

rows and columns and they can route each processor to a memory module. Crossbar
switches scale well, but their cost is also high. For example, for N processors and N
memory modules, N2 crosspoint switches are required. Moreover, for accessing
memory bits in parallel, each bit should be routed by a separate switch. A crossbar
switch is a nonblocking network and a connection between a processor and a memory
module does not block the access of other processors to other memory modules. The
structure in Figure 2.4 can be regarded as a multiple-bus system in which processors are
connected to all buses, but memory banks are connected to only one bus. Hence, there is

only one path from any processor to any memory bank.

An example of a commercial system using crossbar switches is [P-1 from International
Parallel Machines Incorporation in which eight 64-bit processors were connected to 8
memory modules through an 8x8 crossbar switch. The Alliant System from Alliant

Computer Systems Corporation also used a crossbar switch in its structure [Tabak 90].
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node 1 I_’JJ Crosspoint
Switch
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node 2 { ]
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. Shared -
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.............................. Ko o ammm e ==

Figure 2.4 Crossbar switch

Each memory bank is connected to a column line.
Nodes can be routed to a memory bank by activating
the appropriate crosspoint switch.

2.2.3 Multistage network

A multistage network can reduce the cost of a switching network to (N/2) log,N. As
shown in Figure 2.5, instead of directly routing a processor to a memory module,
several single-stage switches are activated in series to make the connections. Many
structures for the design of multistage networks have been proposed and investigated in
the literature. Examples are the omega, banyan, baseline, and delta networks. These are
blocking networks and an existing connection may result in conflicts in the use of
network and may block other connections. [Feng 81] presents a survey of

interconnection networks in detail.

The circuit required to build the interconnection network can be large, especially if the
number of nodes and memory blocks is high. In addition, as the circuit expands, the

delay associated with it increases.
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node 1| |node 2 node 3 SaS°E node n
single-stage R
switch

Bank 1| |Bank2| (Bank3| gpared |Bank mf:

Figure 2.5 Multistage network

The nodes are connected to different memory banks
using a multistage network. This structure is a blocking
network. For example, roufing node 1 fo bank 1, and
node 2 to bank 2 at the same time is not possible.

An example of a research machine using multistage networks is the “CEDAR” a large-
scale multiprocessor built in University of Illinois. It used a special switching network
called “Global Network” which provided redundant paths between processors and
memory modules for conflict avoidance and fault tolerance. It was designed to scale up
to 1024 processors [Gajski+ 83]. A commercial example of multistage network is the
BBN Butterfly from the BBN Advanced Computers, which could scale up to 256
processors, and the shared memory was accessible by all processors through the
system’s logarithmic, packet-switched communication network, the “Butterfly Switch”

[Tabak 90].
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3 Message passing

In this class of communication structure for multiprocessors, several nodes each
comprising a processor, an I/O system and private memory are interconnected by a
network. Communication between nodes is performed with explicit send and receive
commands. If a message is large, it is divided into several packets and each one is sent
independently. After receiving all the packets, the receiver can reassemble the original
message. Message passing is usually slower than shared memory, but it avoids memory

contention problems and scales very well.

Two general mechanisms for message passing are packet switching and circuit
switching. The packet switching method works in a store-and-forward manner,
analogous to the mail service. Each node stores the received message and then forwards
it to the next node. The minimum message latency depends on the number of hops and
the message length. In the circuit switching mechanism, a path from source to
destination is initially established and remains connected until the message is
transmitted in full [Gaughan+ 93]. This method is similar to a telephone switching

system.

Nodes of a message-passing system can be interconnected using several topologies as

explained in the next section.

3.1 Network topologies

The straightforward way to interconnect a number of nodes is to create a fully-
connected network in which a dedicated communication link is used between any two
nodes. The links are normally bidirectional and data can flow in either direction.
Between the high cost/performance of this network and the low cost/performance of a
bus, there are several other networks that constitute a wide range of trade-offs in cost/
performance. Network costs include the number of switches, the number of links on a
switch to connect to the network, the width or the number of bits per link, and the
length of the links on the physical machine [Patterson+ 98]. Network topologies can be
grouped into static and dynamic categories, depending on the type of links used in the

network. These are explained in the subsequent sections.
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3.1.1 Static topologies

In a static topology, links between two processors are passive and dedicated buses
cannot be reconfigured for direct connection to other processors [Feng 81]. Some of the

topologies in this category are discussed below.

In a ring topology as shown in Figure 2.6, each node is connected to two adjacent nodes
and several simultaneous transfers are possible. A message sent to a nonadjacent node
will require extra hops to go through intermediate nodes. The maximum number of
hops for N nodes is N/2. As the average message delay and message traffic density
increase with the number of nodes on the ring, this topology is only useful for small

systems.

= Y

Figure 2.6 Ring topology

In the ring topology, each node is connected to two adjacent
nodes and the end nodes are connected fogether.

In a mesh or grid topology as illustrated in Figure 2.7, the nodes are arranged in a two-
dimensional grid and each node is connected to the adjacent nodes. A node will have a
maximum of four direct links to adjacent neighbours. For N nodes, the communication
of two nodes located on two opposite corners will take 2(JN -1) hops. This is 30 hops
for N=256.

Nodes can be also arranged in a three-dimensional grid. In this topology, each node will

be connected to a maximum of six adjacent nodes.
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Figure 2.7 Mesh or grid topology

The nodes are arranged in a two-dimensional grid. Each node
in the middle is connected to four adjacent nodes, but the
corner nodes and boundary nodes are connected to two or
three nodes respectively.

In a ring-mesh topology, a combination of ring and mesh is used. The corner and
boundary nodes of a mesh structure are interconnected using several rings as shown in
Figure 2.8. For N processors arranged in a ring-mesh array of JN % AN, the longest
path between any two processors requires JN hops. This is 16 hops for N=256.

A three-dimensional grid can be also converted to a ring-mesh topology by connecting
the boundary nodes using several rings. This will reduce the number of maximum hops

required in the network.

A network of Transputers is a good example of the ring-mesh topology. Transputers can
be used as the main elements of a multiprocessor system and there are four serial ports
on each chip [Inmos 88]. Several Transputers can be interconnected using this topology
and the serial ports on each processor are fully utilized. A 4-cube topology as explained

below is also suitable for a network of 16 Transputers.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 20



CHAPTER 2 Interprocessor Communication

' ' '
| ' i " ! !
v ) . [ .

o -
- — — node |— - - +—
1 " ' '
' ' ' !
' ' '
- . e e | el -
ot r r 3
L ' | L .
' 1 | [ ' '
N ' 1 b
-~ e ——| — ] -
L} L} L} '
. '
i ()

Figure 2.8 Ring-mesh topology

A combination of ring and mesh is used in this fopology. Each
node is connected to four other nodes.

For a larger N, hypercube is a better topology where the number of links per node and
the number of hops are optimized. For N=2" nodes, each node should have n=log,N
links and the required hops to communicate from any node to another is the Hamming
distance between the node numbers [Bhuyan+ 84]. The longest distance is log,N, which
is nine for N=2°=512. The number of total links is (N/2)log,N, which is 2304 links for

512 nodes. This hypercube is called an n-cube.

Figure 2.9 shows a 5-cube configuration with all of its 80 links. Communication
between node X and node Y requires five hops. The arrows in the figure show one
possible path for this communication. Figure 2.10 shows a 6-cube, and Figure 2.11

illustrates a 9-cube configuration. Only some of the links are shown in these figures.

The design of a microprocessor-based hypercube system is explained in [Hayes+ 86].
The Intel iPSC (personal supercomputer) and iPSC/2 are examples of commercial

hypercube systems. They offer 5-cube, 6-cube, and 7-cube options. The iPSC uses
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Figure 2.9 32-node hypercube (5-cube) with all of its links

Each node in this hypercube is connected to its four neighbours through
serial links. The dofted arrow shows one possible way of connecting
node X to node Y.

]
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Figure 2.10 64-node hypercube (6-cube)

In a 64-node hypercube, there is a 3-cube in each corner of
a cube. Only some of the links are shown.
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Figure 2.11 512 node hypercube (9-cube)

A 9-cube is composed of a cube with a 6-cube in each corner. Only
some of the links are shown.

80286 processors with 80287 coprocessors and iPSC/2 is the 80386 version [Tabak 90].

Another example is the CM-2 supercomputer with pEe

processors. It is a massively
parallel machine from the Thinking Machines Corporation and uses a 12-cube
configuration for its interprocessor communication. Each node of the hypercube is a
cluster of 24=16 processors. There are also other dedicated links for communication

inside each cluster [Hennessy+ 94].

Other examples in static category are the star, tree, systolic array, and chordal ring

topologies [Feng 81].
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3.1.2 Dynamic topologies

In contrast to static topologies, the links in a dynamic topology are not fixed and can be
reconfigured. This can be done by setting the network’s active switching elements
[Feng 81]. Hence, when required, a dynamic link can be established between two nodes

for direct communication.

Dynamic links can be created using an interconnection network based on crossbar
switches, multistage switches, or ATM (Asynchronous Transfer Mode) switches. The
structure of an interconnection network using a crossbar switch is similar to the one
shown in Figure 2.4 with the exception that the memory modules are replaced with
nodes 1 to n. This implies that each node will have one input link and one output link
connected to the network. Hence, a direct path can be created between any two nodes
by setting the appropriate crosspoint switch. Similarly, by replacing the memory
modules with nodes, the multistage switch shown in Figure 2.5 can route a path for the
communication of two nodes. As stated earlier, this is a blocking network, but it costs

less than a crossbar switch network.

Some of the static topologies shown in previous section can be constructed using
dynamic links. For example, in the ring topology shown in Figure 2.12, each node is
connected to the ring using a switch [Patterson+ 98]. The switch is capable of isolating
the node from the ring, or connecting it the right or left side. With some restrictions,
several communications can be performed simultaneously. For example, the two nodes
on the right of Figure 2.12 can communicate with each other while the two nodes on the

left are also communicating.

Gy

node

Figure 2.12 Ring topology with dynamic links

Each node is connected to the ring using a switch. Limited
simultanecus communications are possible,
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An example of a commercial computer using dynamic links is the CM-5, a
supercomputer from the Thinking Machine Corporation, which is designed using an
advanced structure called “fat-tree” for its interprocessor communication [Hennessy+
94]. Another example is IBM SP-2, which is a scalable parallel machine constructed
essentially out of complete RS6000 workstations. The interconnection network is a

butterfly-like structure, constructed by cascading 8 x 8 crossbar switches [Culler+ 98].

3.2 Interconnection methods

An interconnection network can be implemented using serial links or parallel links.

Each one will be explained briefly in the subsequent sections.

3.2.1 Serial links

Communication using serial links is a well-established method where the message is
transmitted serially from one processor to another, one bit at a time. Serial
communication can be performed point-to-point, or on a network using multistage
switches. In the simplest form, the link is composed of a pair of wires that runs between
two nodes. The major disadvantage of this link is its low data rate, which is the result of
the serial nature of the communication that sends data bit by bit at usually low data
rates. Its advantage is that it significantly reduces the number of wires used in the
network. Another advantage is that as serial communication is normally performed
using independent modules, the main processor is not heavily engaged in the
communication and is free to perform other tasks while the communication is running

in the background.

3.2.2 Parallel links

Parallel links are capable of transferring several bits of data at the same time. For a data
transfer, the sender writes to the link and the receiver reads from the link. A simple
parallel link can be created by connecting an I/O port of a node to that of another node.
This method requires extensive handshaking between the nodes and each unit of data
needs to be signalled and acknowledged before sending others. The data bus of a
memory module can be also used as a parallel link for data transfer. [Tuazon +85]

suggested the use of first-in, first-out (FIFO) buffers as parallel links between two
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nodes. The transmitting node had to write the message into the FIFO, and the receiving
node could retrieve it from there. Similarly, [Su+ 92] proposed the use of FIFO RAMs
to act as communication buffers between nodes. [Culler+ 98] explains an early system
in which eight nodes were connected in a 3-cube structure and there were two sets of
FIFOs between two neighbours for sending and receiving. A total of 24 FIFOs were
used in this structure. Because of the limited size of FIFOs, a message sent to a FIFO

should be picked up by the receiver before sending another message.

The availability of dual-port memory in the second half of the 1980’s provided a better
solution than FIFOs because of its ability to work in both directions and many
structures were proposed on this basis. As the discussion of dual-port memory is vital to

the communication structure proposed in this thesis, it is covered in a separate section.

3.2.3 Dual-port memory

As shown in Figure 2.13, a true dual-port memory has two sets of address, data, and

control lines. Each memory location can be accessed through either of the ports.

Address_1 ~  Address 2
Memory

— a

| Cells |
[
2 < i > &
o )
[-% R

Control_1 Control Control_2
INTR] e = = = = e = = = - INTR2

Figure 2.13 Dual-port memory

A dual-port memory has two sets of address, data, and control buses.
The memory cells can be accessed from either port. The chip may
contain signalling facilities between the ports, like an interrupt line that
dlerts one side when data has been written by the other.
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Simultaneous read and writes are allowed, provided that they are performed on different
addresses. In order to achieve data integrity, two concurrent writes to a memory location
should be prevented. Similar prevention methods should be applied to a concurrent read

and write because this may produce changing data at the output of the read operation.

A typical dual-port memory has a size of 16 to 64 KBytes with the facility of preventing
undesired operations, as well as a mechanism to send an interrupt from the processor
connected to one of the ports to the processor connected to the other port. The interrupt

mechanism works by simply writing to a specific memory location. [Cypress 96].

Dual-port memory can be used as a register file inside a processor where two sets of
data are supplied to the ALU (arithmetic logic unit). By the use of simple latches at the
ALU inputs, the output of the ALU could be written back to the register file [Elliot+
89]. There are several other applications for dual-port memories such as digital video
cameras, data acquisition systems, displaying data on a monitor, and communication
between processors. The latter application is one of the major applications of the dual-
port memories [Wyland 88] [Pryce 89]. There is a preliminary report on the use of dual-
port memory for a cluster of four Transputers and a network controller in [Khan+ 93].
The next report from the same team discusses the detail of their design [Khan+ 94]. The

architecture used in this design is illustrated in Figure 2.14, in which there is a separate
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NC= Network Controller E

DPM= Dual-Port Memory BUS

G

15

Figure 2.14 Restricted Shared Memory (RSM) architecture for
communication through dual-port memories

In this structure, a cluster of four Transputers and a network controller are
interconnected using dual-port memories.
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link through a dual-port memory from any node to the network controller or the other
nodes. As seen in the figure, ten memory blocks were used in this architecture to

interconnect four nodes and a network controller.

Another work is cited in [Jagadish+ 89], in which dual-port memories were used to
interconnect eight nodes and a network controller. As shown in Figure 2.15, each node
in this design is located in a corner of a cube and has a separate link to three of its
neighbours as well as another link to a network controller. Only the dual-port memories
associated with node X and node Y are shown in this figure. The total number of dual-
port memory blocks required for this structure is 20. Even with this number of memory
blocks, the link between some nodes, such as nodes X and Y, must be established

through the other nodes or the network controller as shown by the arrows.

extension

NC Network Controller

DPM pual-Port Memory

Figure 2.15 Using DPM to connect nodes in a cube

The nodes are located in the corners of a cube and there is a dual-port
memory between any two nodes. A network controller can facilitate
the communication between non-adjacent nodes. Only DPMs
connected to nodes X and Y are shown. Arrows snow two possible
paths between X and Y.
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NC
DPM

NC

node

Figure 2.16 Extending the structure using DPMs to 64 nodes

In this structure, the network controllers of each cluster are
interconnected using DPMs in a similar manner as nodes of a cluster.
Only one DPM is shown, but the structure requires 180 DPMs

The authors have proposed that the structure could be extended to higher order cubes
such as 26=64 nodes (6-cube) as shown in Figure 2.16. The number of required memory

blocks would be 180.

Both the structure presented in this work and the RSM discussed earlier combine the
use of shared memory with message passing. In fact, similar to the structures using
FIFOs described earlier, shared memory is used as a link between nodes for message

passing.

The RSM architecture presented in [Khan+ 94] is similar to the structure used in
[Jagadish+ 89]. As shown in Figure 2.17, the structure of Figure 2.14 can be viewed as
a hypercube of order 2 in which four nodes are placed in corners of a square and each

one shares a DPM with each adjacent node. In addition, the diagonal nodes are
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DPM  Dual-Port Memory

it Node

Figure 2.17 Another view of RSM architecture

RSM structure can be viewed as a fully connected network for four nodes
using DPMs. In addition, each node has a link to a network controller.

interconnected using other DPMs and each node has a link to a network controller. With
the exception of the diagonal links, this structure is similar to the top part of the

structure shown in Figure 2.15.

With the contributions from one of the authors of [Jagadish+ 89], the continuation of
this research has been presented in [Campbell+ 96]. It was reported that a
multiprocessor called COMPS (COmmon memory Message Passing System) was being
developed in Curtin University of Technology in Perth, Australia and used a dual-port
memory as the communication link between two nodes. A five-node prototype system
was reported as being in its final stage and near completion. The results of this system

will be reviewed in Chapter 4.

4 Convergence

Shared address space and message passing are two clearly distinct architectures.
However, the evolution of hardware and software has gradually blurred the boundary
and substantial convergence has taken place [Culler+ 98]. Some of these are explained

below.

At the user level, most shared memory machines also support send/receive operations

used in message passing through shared buffer storage. In addition, a shared virtual
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address space can be established on a message passing system. A group of processes
can have a region of shared address space, but each process has access to its local pages.
When a non-local page is addressed, a page fault occurs and the operating system
initiates a message passing transaction to transfer the missing page and map it to the

user address space [Culler+ 98].

As explained in the previous sections, shared memory can be used as links for message
passing. Furthermore, with the advances in the design of scalable interconnect
networks, several machines, which may be shared memory in their own right, are
interconnected to operate as a parallel machine on individual large problems or as many
individual machines on a multiprogramming load [Culler+ 98]. Such systems can

utilize the advantages of both architectures.

The Stanford DASH multiprocessor (abbreviated for Directory Architecture for Shared
Memory) was designed to investigate the scalability issues for shared-memory
multiprocessors. As in message-passing machines, the main memory in DASH is
distributed among the processing nodes and a scalable interconnection network is used
to connect the nodes together. Unlike message-passing machines, however, the
processing nodes share a single global address space. The DASH architecture thus
combines the scalability of message-passing machines with the ease of programming

associated with single address space machines [Lenoski+ 91].

The FLASH multiprocessor (abbreviated for Flexible Architecture for Shared Memory)
also developed in Stanford supports distributed shared memory and message passing
while minimizing both hardware and software overhead. Each node in FLASH contains
a microprocessor, a portion of the machine’s global memory, a port to the
interconnection network, an I/O interface, and a custom node controller called
“MAGIC”. The MAGIC chip handles all communication both within the node and
among the nodes, using hardwired data paths [Kuskin+ 94].

The underlying machine structures for message passing and shared address space have
converged toward a common organization, represented by a collection of complete

computers, expanded by a “communication assist” connecting each node to a scalable
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communication network. Thus, it is natural to consider supporting aspects of both in a

common framework [Culler+ 98].

5 Shared memory using multiport memory

Multiport memories provide several ports for accessing the memory cells and each node
of a multiprocessor can be connected to one of the available ports exclusively. All the
nodes can simultaneously read from different memory locations. They can even read
from the same memory location concurrently. In contrast to reads, simultaneous
memory writes are only possible if different memory locations are used. If two or more

concurrent writes to a memory cell are requested, only one of them should proceed.

The use of multiport memory as in Figure 2.18 can improve the performance of a
shared-memory system significantly. This is because concurrent memory access is
possible without the overhead of the bus system or the interconnection network.
However, the main problem is that the available multiport memories have very few
ports (maximum 4 ports at the time of conducting this research) and small capacities (2-
4 KBytes for 4-ports) [I[Cmaster 99]. This small range is not sufficient to build a shared
memory suitable for a relatively large number of nodes. There are several issues in the
design of a large-scale multiport memory that need to be resolved before producing
multiport memories with large capacity and more ports. Some of these issues are the
complexity of the memory cells, the huge number of connections inside the chip, large
pinout required by the chip, and a preventing mechanism for avoiding concurrent

writes, or even concurrent read-write on the same memory cell.

The small port count and limited capacity of multiport memories make their use as a
shared memory a challenging task. As explained in Chapter 3, this area has not been
explored in depth, and only very few structures for interconnecting nodes in small
systems have been proposed. Furthermore, no work has been reported previously in
evaluating a communication scheme based on multiport memories and no attempt has
been made to design the required memory management and associated communication
protocol. Hence, the openness of the area, the challenging nature of it, and the expected

advantages over other methods make it an excellent research area.
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Multiport
Shared
Memory

Figure 2.18 Multiport shared memory

Each node can be connected to one of the porfs of an
ideal multiport memory. They can communicate with each
other through the shared memory.

As multiport memory is the focus of this thesis, its use in interprocessor communication
will be discussed in depth in Chapter 3. The proposed structure is based on multiport
memories with limited size and port count. A small shared memory is created for
interconnecting a small number of nodes. The memory is very small to be used as a
normal shared memory, but it is large enough for use as a communication medium for
message passing only. The scaling of the structure is performed by a network of
multiport memories in which data is exchanged among the nodes using message
passing. The structure of multiport memory cells and new circuits to resolve some of

the issues in designing multiport memories are presented in the Appendix.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 33



CHAPTER 2 Interprocessor Communication

6 Conclusion

Interprocessor communication is a vital task for sharing data among the nodes in
multiprocessors. Two major architectural techniques for sharing data in multiprocessors
are shared memory and message passing. In shared memory systems nodes have access
to a common memory using different techniques such as a single bus or interleaved
memories. The communication among nodes is implicitly performed by load and store

instructions.

A conventional single-port memory can serve as a shared memory using a single bus.
This structure is only useful for a small number of nodes. Interleaved shared memory
can provide higher memory bandwidth than a single-bus system and can be designed

using multiple-bus, crossbar switch, or multistage networks.

In message passing systems, the nodes are connected by an interconnection network
and they can share data by sending and receiving messages. Generally, there are explicit
send and receive commands for communication. The interconnection network can use
different topologies such as ring, mesh, or hypercube, and nodes can be connected
using either conventional serial links or dedicated parallel links. In the latter case, a
FIFO can be placed between two nodes and messages can be transferred in one

direction by writing to and reading from it.

The advent of dual-port memory introduced new methods for interprocessor
communication. A dual-port memory shared between two nodes can be used as a
communication medium and nodes can communicate simultaneously in both directions
using load and store instructions. Using appropriate structures, several nodes can be

interconnected with dual-port memories.

Multiport memory provides more ports for concurrent access of memory. Ideally, it can
be used as a communication medium for several nodes with very low overhead.
However, the small number of ports and the limited capacity of the multiport memory
make it less attractive. In the next chapter, a new structure for interprocessor
communication based on multiport memory with limited port-count and small capacity

will be presented in which shared memory is used as a link for message passing.
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Multiport Memory for
Interprocessor
Communication

ultiport memories can facilitate the interprocessor
communication in multiprocessors. Communication can be
performed in parallel streams by accessing a multiport
shared memory through independent ports. This method is
capable of increasing the performance and reducing the
size, cost, and the number of required components and
interconnections. In this chapter, first, the advances in
multiport cell design are explored and its applications in
system design are presented. Then, an interprocessor
communication scheme based on multiport memory is
proposed in which shared memory is used as a link for
message passing. For small systems, the nodes can
communicate directly in a group structure. Groups can be
connected in a cluster, and a network controller would
handle the inter-group messages. For expanded systems,
the network controllers of various clusters can be
interconnected by sharmg a multiport memory at the top of
the hierarchy. Finally, several issues related to multiport

memories are discussed.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 35



CHAPTER 3 Multiport Memory for Interprocessor Communication

1 Multiport memory: background and previous work

Multiport memory offers new communication methods for multiprocessors and can
provide high-speed communication using parallel streams. In a small-scale system
using this method, each node can use a separate port to access a multiport memory
shared among the nodes. One node can write data into the shared memory from one
port, and other nodes can read it from other ports. Nodes can communicate in parallel
and achieve high performance, provided that they do not interfere with each other. This
is achievable by proper memory management schemes. The limiting factor in scaling
this structure is the limited number of ports and the small size of true multiport

memories. Hence, special structures need to be designed for building larger systems.

A multiport memory cell is similar to a dual-port memory cell, but there are more than
two ports to access the cell. The block diagram of a 4-port memory is shown in
Figure 4.2 on page 57. The internal circuit and operation of multiport memory are

explained in detail in the Appendix.

The design of multiport memory and its applications are active research fields. Several
structures for memory cells have been proposed and tested, and it has been utilized in
many applications. More specifically, with its parallel paths, it is widely used in the
design of the datapath for high performance processors. Using it for interprocessor
communication for large systems is a challenging area that has not been explored much
before, and is the objective of this study. In the following subsections, the advances in
multiport memory cell design are explained and different structures proposed for
building it are presented. In addition, several applications based on multiport memory

including very few structures for interprocessor communication are demonstrated.

1.1 Multiport memory design

A multiport memory cell can be achieved by extending the structure of the dual-port
memory cell, which in turn is derived from the single-port memory cell. The operation
of single-port, dual-port, and multiport memories are explained in detail in the

Appendix. Several variations in multiport memory design have been investigated by
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researchers and different structures have been proposed and tested. Some of these will

be mentioned in this section.

Earlier versions of multiport memory had very small capacity and limited number of
ports. However, this was useful enough to enable datapath designers to group individual
registers into a register file, which could be implemented by a multiport memory. One
of the earliest use of multiport memory as a register file has been reported in [Dedrick
84]. It discusses the design of LFROS8, an eight 8-bit register file from Logic Devices
Incorporation with two read ports, two write ports, and one bidirectional port. The
paper shows that the use of this chip in a bit-slice architecture processor like Am2903 is
superior to the traditional approach. If used in pipeline processors, the reconfiguration
of registers can be simplified and data routing through the system can be controlled by

software.

[Maly+ 91] discusses the design of a memory chip for a 24-port global register file. A
chip with eight read ports and eight write ports with capacity of 256x2 bits was
fabricated as a base unit. In order to achieve the required 24 ports (8 write and 16 read
ports), two chips were used and the write ports of the chips were connected together,
but the read ports remained isolated. With this configuration, any write operation was
performed on both of the chips, so that the data in the chips was the same. As each chip
could be accessed by eight independent read ports, the number of effective read ports
was increased to 16. The required word size could be created by connecting several

memory chips in parallel. The base unit was fabricated using 2 pm CMOS technology.

In [Silburt+ 93], a family of modular memories was designed based on synchronous
self-timed architecture. For a 0.8 um BiCMOS process, nominal access time was 5.5 ns
for 64-Kbit blocks of 1, 2 and 4-port SRAMs. The cell for 4-port SRAM was three
times bigger than the cell for a single-port RAM. In [Lai+ 94], a new design
methodology for SRAM cell has been proposed that utilizes fewer bit-lines to perform
read/write access at lower cost. [Nii+ 95] reports a new proposal for cell design that
contributes to the operation at high speed and low voltage. A 3-port test chip was

fabricated in 0.5 um CMOS SOG (Sea-Of-Gates) and could operate with the access
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time of 4.8 ns at 3.3 volts. [Izumikawa+ 96] describes a sense circuit that can be applied

to a single-ended multiport SRAM to accelerate the memory access 3.2 times.

[Zhi+ 96] discusses a compact cell design for multiport register file with one write port
and three read ports for implementation in 0.8 wum CMOS technology. [Chin+ 96]
describes a 3-port register file fabricated in 0.6 um BiCMOS technology using a 3.3V
power supply. The pin-to-pin access time was measured as 1.3 ns. [Franch+ 97] also
reports a 3-port register file fabricated in 0.25 um CMOS technology with an access
time of 640 ps.

Other researchers have tried to automate the design of multiport memory to the
requirements of the user. [Hana+ 89] reports a multiport RAM compiler that can
generate user definable memories. Up to four read and two write ports with a capacity
of up to 128 words and word length of 64 bits can be designed. The compiler places and
routes various cells comprising the RAM, and generates a floor plan and a layout for
fabrication of the chip. A more powerful compiler is reported in [Shinohara+ 91], which
i1s more flexible in layout and port organization, and can generate faster chips. The
compiler is capable of designing read, write, or read-write ports with word lengths of up

to 72 bits, and memory size of up to 32 Kbits 3-port, or 16 Kbits 6-port.

The trend in multiport memory research is to design faster memory cells that occupy
less space and can be integrated more densely. In addition, successful attempts have

been made to use higher number of ports.

1.2 Innovative structures for multiport memory

Rather than designing true multiport memory, some researchers have used innovative
structures to build pseudo multiport memory with the efficiency of true multiport

memory. A few examples are given below:

[Endo+ 91] describes a pipelined time-sharing access (PTA) technique that can be used
for the construction of high-density multiport memories with a large number of ports. In
this technique, an N-port memory can be designed with N/2-port memory cells

resulting in a smaller chip size and wider operating margins. A 4-port memory with the

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 38



CHAPTER 3 Multiport Memory for Interprocessor Communication

capacity of 8 KBytes was designed and fabricated in 0.8 pm n-well CMOS technology
using PTA technique and had a cycle time of 16 ns. The chip area was only 1.2 times

larger than the equivalent dual-port memory.

A new approach for designing 4-port memories is presented in [Hirano+ 98]. The
multiport memory is called Shared DRAM (SHDRAM) and it uses four DRAM mats.
The data written to the sense amplifier of a mat is broadcast to the sense amplifiers of all
the mats by using special fast broadcast buses, and is written to the corresponding
memory cells of each mat. Hence, all the mats have identical data that can be accessed
by four separate ports. An 8-Kbit test chip was fabricated and tested successfully using

this technique.

[Landsberg+ 93] describes the modelling and design of a 6-port CMOS static RAM.
The cell is relatively large, but it can swing the bit-line very quickly. The memory
system is a true multiport memory and can be read and written independently and
simultaneously subject to consistency constraints. The model can be extended to

characterize general multiport memories.

1.3 Application of multiport memory

Researchers have utilized multiport memory to develop innovative structures for many
applications. The main use of multiport memory has been in the design of high
performance processors. It has been also used in the design of special purpose systems.
The other application area is the communication among processors, which is the focus

of this study. Some of these applications are explained below:

1.3.1 Processor design

Multiport memory plays an important role in the datapath of most high performance
processors. Designers use on-chip multiport memory to group the processor registers
into a register file. Various functional units within the processor can access different
registers simultaneously using separate read/write ports and high throughput is

achievable.
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Register files has been an integral part of almost every RISC or superscalar machine.
[Bakoglu+ 90] describes the hardware overview of the IBM RISC System/6000
processor, and [McGeady 90] discusses the structure of iI960CA superscalar processor

from Intel using a 6-port register file.

[Asato+ 95] discusses the design of a register file with 10 read ports and four write ports
and size of 116x64 bits. The access time of the register file is 3.8 ns and it was used in a

four-issue V9 SPARC-architecture superscalar processor operating at 154 MHz.

Multiport memory has been also used in the design of very long instruction word
(VLIW) processors. Examples can be found in [Labrousse+ 90] and [Nakamura+ 96].
Moreover, a data-flow CPU has been designed using an on-chip 3-port smart memory.
Beside conventional read/write operation, the smart memory had content addressability

and support for branch prediction and exception handling [Uvieghara+ 90].

In order to establish a connection from a register to a functional unit in different control
steps, registers should be assigned properly to the memory ports and interconnect
minimization becomes more important. [Ahmad+ 93] presents a design methodology
for datapath synthesis using on-chip multiport memories. The proposed technique can
be applied to scheduled algorithms to reduce the design space. This method can group
variables into a minimum number of multiport memories depending on the available
ports and the access requirements of the variables. The method also can minimize the
interconnection hardware such as buses, multiplexers, or tri-state buffers. Similar

techniques can be found in [Lee+ 95] and [Mandal+ 96].

Researchers have worked on efficient memory design techniques to fulfill high
bandwidth demand for the memory of fast processors. As explained in previous
sections, some researchers have designed faster cells with several read/write ports.
Others have developed special testing models to test the embedded multiport memory
using built-in self-tests (BIST). These models take into account the complex couplings
resulting from simultaneous access of memory cells to ensure very high fault coverage.

Examples can be found in [Castro+ 92], [Matsumura 95], and [ Yuejian+ 97].
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1.3.2 Special purpose systems

Before the availability of true multiport memory, researchers have designed systems in
which multiport memory was generated with innovative structures. [Shibayama+ 87]
reports a knowledge-based machine that was implemented using a memory system
called multiport page-memory (MPPM). [Strohman+ 89] describes the control system
for the Cornell Electron Storage Ring (CESR) that used a 16-port memory and could be
accessed by many computers. The multiport memory was built with conventional
DRAM, 16 FIFO buffers, and semaphore registers. [Litazie+89] explains the concept of
serial multiport memory and proposes a structure for designing a multiprocessor using
this concept. The serial multiport memory used a conventional memory that was
connected to several shift registers. Each node was connected to one shift register using
a high-speed serial link. [Mzoughi+ 93] reports the implementation of this

multiprocessor and discusses several design issues.

After the release of the first commercial true 4-port memory by IDT (Integrated Device
Technology), researchers have proposed innovated structures for the design of special
purpose systems. [Handy 90] proposed several architectures such as a pipelined FFT
processor, an array processor, and a multiported image memory. He claimed that
considerable speed increase could be achieved by the new architectures. [Nanduri 91]
explains how multiport memory can improve system bandwidth, data flow rate, and
system speed requirements. Various examples were presented to illustrate the potential
benefits of these devices in alleviating the bottlenecks and ensuring that a balance was
attained in the system. [Lin+ 96] describes the design of a matrix multiplication engine

for graphics and DSP applications using 4-port memories.

Multiport memory has been used in the design of multiprocessors for artificial
intelligence applications. In [DeMara+ 91], the design of a parallel architecture called
Semantic Network Array Processor (SNAP) is explained in which 4-port memories
were used for marker passing in the clusters. [DeMara+ 93] reports the implementation
of the first generation SNAP-1 system and evaluates its performance. [Zhang+ 95]
discusses the scalability of a parallel signal processing system using shared multiport

memory for neural networks.
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Moreover, some specific purpose multiprocessors have been designed using multiport
memory. For example, Aladdin is a distributed memory multiprocessor designed for
automatic target recognition and radar processing applications. The multimode memory
used in its design is an 8-port image memory with a variety of input and output scan
patterns. It is capable of simultaneously inputting 16-bit data to four ports while

outputting 16-bit data from other ports [Lum+ 92].

ATM switch design is another area in which researchers have recently focused on the
use of multiport memory. Novel switch architectures based on using multiport memory
as buffers have been proposed. Several switches were fabricated on this basis and tested

successfully with high efficiency and speed [ElGuibaly+ 96] [Kornaros+ 97].

1.3.3 Communication

Several communication structures have been proposed and implemented using dual-
port memories. Some examples were explained the in the previous chapter. However,
only very few structures for communication using multiport memories have been
proposed. [Handy 90] explains one of the earliest proposals. As shown in Figure 3.1,
the nodes and 4-port memories are arranged in a two dimensional array. Each node is
connected to four 4-port memories, and each memory is connected to four nodes.
Neighbouring nodes can communicate directly, but non-neighbouring nodes should
involve intermediate nodes for their communication. This architecture was termed a

Computing Fabric Hypercube.

An equivalent architecture has been also proposed in [ Varshneya+ 94]. This architecture
is almost identical to the previous one except that the boundary of the structure is all
nodes. The dotted square in Figure 3.1 illustrates this structure. Moreover, a similar
architecture based on 6-port memories was also proposed. In this structure, six nodes
arranged as a hexagon share a 6-port memory and several hexagons can be connected

together to create a two dimensional grid similar to Figure 3.1.

The above communication structures based on multiport memory were only on the
proposal stage. Hence, the detail of communication was not explored and no

performance evaluation was carried out in either of the proposals.
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@ Node

[] 4-port Memory

Figure 3.1 Communication in a grid with 4-port memory

In a two dimensional grid, each 4-port memory is surrounded by four
nodes and each node by four memories. Adjacent nodes can
communicate directly through 4-port memory, and non-adjacent nodes
should communicate using intermediate nodes. The dashed square
shows a similar proposal in which the boundary is all nodes.

2 Proposed structure for interprocessor communication

In this section, a new structure for interprocessor communication using multiport
memory is proposed. In this structure, shared memory is used as a medium for message
passing between the nodes. The proposal is presented in three stages: communication of
nodes in a group, communication in a cluster, and communication in a network. Each

stage is subsequently discussed in detail.
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2.1 Communication in a group

Multiport memory can be used to interconnect several nodes in a group. As shown in
Figure 3.2, each node is connected to a separate port of a multiport memory. The nodes

can communicate with each other directly in two steps:

1. The transmitting node writes the message in the shared memory.

2. The receiving node reads the message from the memory.

Data transfer between a node and its memory can be performed in 16, 32 bits or more
depending on the width of the node’s data bus. Because nodes can read from or write to
the memory using a single instruction, the rate of memory data transfer can be very high
and the nodes can communicate with each other very efficiently. Moreover, by using
appropriate memory management, several communications can be performed

simultaneously.

extension link

MPM Multiport Memory

16 or 32-bit link

Figure 3.2 Communication with multiport memory in a group

In a group, the nodes are connected to a common memory through a
separate port and they can communicate directly,. As an example of
communication using this structure, node X writes the message to the memory
and node Y reads it. The extension link is used to expand the sfructure.
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This structure is in fact a shared memory structure and can be compared to a system
using interleaved memory. Its design is much simpler than the multiple-bus, crossbar
switch, or multistage networks used in the interleaved memory systems and it does not
have the delay and overhead of such networks. However, this structure cannot be used
to create a true shared memory system because of the limited capacity of the multiport
memories. As mentioned before and will be explained later in more detail, this structure
uses multiport memory as a link for message passing and a small shared memory is
adequate for this purpose. Unlike other shared memory systems, the small shared

memory in this structure is exclusively used for communication purpose.

Compared to communication structures using dual-port memories discussed in the
previous chapter, this structure can increase the throughput and reduce the size, cost,

and the number of required components and interconnections as explained in Chapter 5.

The number of available ports in multiport memories is another limiting factor in
expanding the system and only a few nodes can be grouped together using this
structure. If more nodes are to be connected, another structure should be used in which
different groups are interconnected using extension links. The expansion of the

structure to cover more nodes is explained in two stages in the subsequent sections.

2.2 Communication in a cluster

The number of ports on the available multiport memories is very limited and the
memory capacity is small. This is because increasing the port count increases the size of
memory cell as well as the access time. In addition, with more ports, the complexity of
the internal wiring increases significantly and the area available for memory cells is
reduced. With advances in technology and achievements in cell size reduction, it can be
expected that memories with more ports will become available in the future. However,
as explained in the discussion section, the number of ports would be still limited and the
size of the memory would be small. This suggests that the number of nodes connected
in a group will always be a limiting factor and suitable structures are required to

overcome the restriction of limited port count.
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The structure of Figure 3.3 is proposed for the interconnection of a cluster of groups of
nodes. In this structure, the groups are connected to a network controller (NC) to form a
cluster. The network controller is a special processor that has permission to access the
shared memory of different groups. Its main task is to get a message from the sender in
one group and pass it to the appropriate receiver in another group. The nodes in
different groups communicate through the NC in two hops. In the first hop, the
transmitter sends the message to the NC. In the final hop, the NC reads the message and

transfers it to the shared memory of the group in which the receiving node is located.

-7 ~
-

24 hop - NC NetWofk Controller
Ve

16 or 32-bit link

| | MPM
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/ \
Node

Figure 3.3 Communication in a cluster

In a cluster, several groups are interconnected by a network controller. The nodes within
each group can communicate directly. If the receiver is in another group, the
communication takes place in two hops. First, the fransmitter (X) sends the message to
the NC through the MPM of its group. Then the NC delivers the message to the receiver
Y) by the way of the MPM in receiver group.
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The message can be collected by the receiver from the relevant shared memory. This

process takes longer than a direct communication within a group.

Several local shared memories have been used in a cluster structure and as the

mechanism of data transfer demonstrates, they are used as links for message passing.

If several nodes need to concurrently use the NC for inter-group communication, the
NC will be overloaded. In this case, the system performance will drop because of delays
in delivering the messages by the NC. Hence, the number of groups in a cluster should
be limited. It is anticipated that under heavy communication traffic, this structure might
be inefficient, especially if several groups are connected to the NC, or the request for
inter-group message transfer is high. Based on the results of simulations described in

Chapter 6, modified versions of the cluster structure will be presented in Chapter 7.

2.3 Communication in a network

A cluster can accommodate a limited number of groups. In order to interconnect a large
number of nodes, the structure of Figure 3.4 is proposed. In this structure, the NCs are
interconnected using an extra multiport memory in the upper level of the hierarchy. As
explained in the previous section, the nodes communicate directly within groups and
use the NC of the cluster for message passing to the other groups in the same cluster. If
the receiver is in another cluster, the message is handled by two network controllers in
three hops. In the first hop, the transmitting node sends the message to the NC of the
cluster. In the second hop, the NC sends the message to the NC of the receiver cluster
by transferring it to the multiport memory at the top level of the hierarchy. In the third
hop, the NC of the receiver cluster transfers the message to the multiport memory of the
group where the receiving node is located. The message can be collected by the

receiving node from this memory.

This introductory structure is useful for light traffic conditions. This is because the NCs
have limited communication capacity, and if they have to handle several messages, they
will be overloaded, resulting in delays in message delivery and inevitable performance
loss. After reviewing the results of simulations, an improved communication structure

will be introduced in Chapter 7.
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Figure 3.4 Communication in a network

In the proposed structure for a network, the clusters are interconnected by
sharing a multiport memory at the top of the hierarchy. An inter-cluster
message from node X to node Y should be sent in three hops. First X sends the
message to NC-1. Then NC-1 transfers the message to the NC-2 located in the

receiver cluster. Finally, NC-2 sends the message to Y by the way of the group
MPM.,
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3 Verifying the structure

Multiport memory has not been widely used for communication in large scale. As
explained in previous sections, only few structures have been proposed in this regard

and no evaluation on these structures has been reported.

The proposed structure in this thesis was verified in two stages. As a hardware model, a
prototype system was designed and constructed to check the feasibility of the structure
and to evaluate its performance. Based on the results of this prototype, a simulation
model was created to further assess the prototype itself and its expansion to larger
systems. Both models are briefly explained here, and they will be analysed in depth in

separate chapters.

3.1 MultiCom, a hardware prototype

In first stage of evaluating the proposed structure, a small multiprocessor called
MultiCom was designed and built. In this prototype, four nodes were interconnected
using 4-port memories as the communication medium. Chapter 4 describes the
hardware design and implementation of MultiCom and discusses its programming.
Chapter 5 discusses the memory management required for MultiCom and explains
different memory allocation schemes used to control the shared memory. The

communication protocols and the achieved results are also presented in Chapter 5.

3.2 Simulation model

MultiCom was a valuable device to characterize the behaviour of the nodes and
multiport memory used in the proposed structure. A software simulation model was
constructed on the basis of MultiCom. As described later in Chapter 6, initially the
model of MultiCom was created and its timing was fine-tuned to produce the same
results of MultiCom. Then the model was gradually expanded to simulate larger groups,
a cluster of groups, and several clusters in a large network. The simulation model
revealed that some modifications were necessary. Hence, the structure was improved

and re-evaluated in Chapter 7.
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4 Discussion

As multiport memory is the main component of the proposed structure, its availability
with large port count is discussed here and the requirement on the pinout is explained.
In addition, the effect of overloading a network controller in the proposed structure is

discussed.

4.1 Availability of multiport memory

The structure of multiport memory is explained in detail in the Appendix. The major
problems in designing a large multiport memory are the large size of memory cells, and
more importantly, the extent of internal wiring. If an extra port is added, more switches
must be used in the memory cell, and the cell size will increase. In addition, increasing
the port count increases the number of required internal buses, and distributing them
inside the chip increases the amount of internal wiring. This requires the use of large
connection matrices for routing vertical and horizontal lines. The connection matrices
occupy a large portion of the chip area and reduce the size of the area available to
memory cells that are already bigger in size. Hence, for a given chip area, increasing the

port count considerably decreases the capacity of the memory.

The feasibility of true multiport memories has been discussed in [Forsell 94]. The paper
concluded that true multiport memories were feasible and anticipated that they would
be available with larger port counts and greater capacity in the future. On the other
hand, the literature review presented at the beginning of this chapter indicates that
multiport memory is an active research field and many structures for cell design and
building multiport memories have been proposed. Successful prototypes with as many
as 16-ports (8 write, 8 read) have been fabricated, and faster cells with access time up to
640 ps for three ports have been designed [Franch+ 97]. In addition, several compilers

are available for automatic design of small multiport memories.

For some time, the largest multiport memory commercially available had four ports and
the capacity of 2 KBytes [IDT 95]. During the design of MultiCom, a newer version
with the size of 4 KBytes was released [IDT 96]. In fact, MultiCom was implemented

with the engineering samples of this product. The fastest 4-port memory available at the
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time of design of MultiCom had an access time of 20 ns. IDT released a dual-port
memory with a capacity of 32Kx36 bits and access time of 4.2 ns (equivalent to the
speed of 133 MHz) in 1999 [IDT 99]. It has been claimed that this product was 33%
faster than any other 36-bit offering. IDT has recently upgraded its 4-port memory to
64Kx 18 bits and access time of 5 ns [IDT 02].

The simulation model presented in Chapter 6 confirms that the proposed structure does
not require a large multiport memory. The capacity of 4 to 8Kx16 bits is adequate for
efficient operation of the system. As explained later, even a smaller capacity will be
adequate if a wider data path is used. Hence, the structure can be implemented using 9-
port memories, even with a small capacity. In the light of VLSI technology and with the
trend discussed earlier, the availability of large multiport memories is not far away. In
this author’s opinion, proposing suitable applications for large multiport memories will

boost their availability and increase their commercial production.

4.2 Pinout of multiport memory

In the proposed structure, groups and clusters require a memory chip with nine ports.
As explained in section 4.2 in Chapter 7, even the improved structure can be built using
8-port memories. As there are separate address, data and control buses for each port, the
number of pins can increase considerably for large memories. Simple calculation shows
that memory pinout is not a major problem. As shown in Figure 4.2 on page 57, in the
4-port memory used in MultiCom with a capacity of 4 KBytes, each port requires 23
lines (12 address lines, 8 data lines, and 3 control lines). With several power and ground
lines the chip is available with 108 pins. With similar calculation, a 9-port memory with
the same capacity would require around 240 pins, a 16-bit version around 320 pins, and
a 32-bit version around 480 pins. These requirements can be met by current packaging

technology.

Traditional packaging technology uses wires for interconnection between the die and
the substrate, but advanced packaging technologies use different approaches. For
example, the flip chip packaging technology used by Xilinx on its high-performance
FPGA chips utilizes conductive bumps that are placed directly on the area array pads of

the die surface. This technology offers excellent thermal performance, higher frequency
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switching, and higher I/O density. The packaging FF1517 (Flip-chip, Fine-pitch) used
by Xilinx accommodates 1517 pins in a 40x40 mm package with 1.0 mm pitch size

[Xilinx].

As far as pinout is concerned, advanced packaging technologies such as flip chip makes
it possible to package a 4Kx64, 9-port memory with around 850 pins, and a 128-bit
version with around 1500 pins. Although not required, one approach to reduce the
number of pins is to multiplex address and data buses, or low and high data buses at the
expense of slightly increased access time. In addition, memories with narrow data
widths can be used in parallel to achieve wider data widths. In this regard, using
innovative packaging technologies such as the ones offered by [DensePac] can be very

beneficial.

4.3 Overloading of network controller

The structure of a cluster relies heavily on the NC for inter-group communication.
Increasing the number of messages between the groups can overload the NC and reduce
the throughput. This point became more obvious after analysing the results of
simulations in Chapter 6. The structure of a cluster will be modified to reduce the
overloading effect of the NC in Chapter 7. Similar modifications should be applied to
the network structure as it uses the same cluster structure. It is worth mentioning that
the structures presented in this chapter are based on the original plan proposed at the

start of this research. The modified and final structure will be presented in Chapter 7.

5 Conclusion

In this chapter, a structure for interprocessor communication using multiport memory
was proposed. In this structure, the nodes can communicate by writing and reading the
message from a shared memory. As the number of ports available on multiport
memories is very limited, the structure should be arranged in a hierarchy for large
systems. A limited number of nodes can be connected directly to a multiport memory to
create a group; a network controller is used to interconnect different nodes in a cluster,

and several NCs are interconnected with a multiport memory to create links between
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the clusters. Several small shared memories have been distributed in the network and
they have been used as links for message passing. The evaluation of the structure will
be carried out with a hardware prototype and a simulator as explained in the subsequent

chapters.

Overall, as communication in the proposed structure is performed in parallel streams
with memory access instructions, it is expected that the system will achieve a high

performance.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 53



CHAPTER 4 MultiCom:
A Hardware Model

ultiCom is a small MIMD multiprocessor that has been
designed to check: the efficiency of interprocessor
communication through multii)ort memories. In this
prototype, four nodes are interconnected using 4-port
memories and the communication is performed by writing
and reading the memory in parallel streams. This chapter
discusses the structure and implementation of MultiCom
and explains the node processors, 4-port memory,
interface logic, and programming. For the memory
managemerit of the multiport memory, a primary method
called static allocation is introduced briefly, and the results
are compared to serial communication. More details of
static allocation, and more advanced memory management

schemes are presented in the next chapter.
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1 Hardware design

The first step taken to verify the validity of the proposed structure for interprocessor
communication was to build a prototype system with the nodes interconnected by
multiport memories. In this step, a small experimental system called MultiCom was
designed and constructed, and the communication scheme was tested on it. The
performance of this system was used to evaluate the effectiveness of the structure, and

the outcomes were used in modelling and designing larger systems.

MultiCom was based on four DSP processors from TI (Texas Instruments) as nodes,
and two 4-port memories from IDT as shared memory. The nodes could communicate
with each other through the shared memory simply by writing the information into the
memory from the transmitter side, and reading the memory from the receiver side. With
suitable memory management, all the nodes could read from or write to the shared
memory concurrently without interfering with each other. This section briefly describes
the nodes and the 4-port memory of MultiCom, and explains the block diagram of the

system and the interface circuit.

1.1 Nodes

The nodes of MultiCom were TMS320C50 DSP processors from TI. The main reason
for choosing them as nodes was their availability in small and cheap modules called
DSK (DSP Starter Kit). Each module was supplied with a TI assembler and debugger to
run on a PC connected as a host. Figure 4.1 shows the layout of DSK. Each module

consists of the following features [TI 96]:

o TMS320C50 16-bit integer DSP processor with 50 ns cycle time (20 MHz)

» modified Harvard architecture with separate banks for program memory, data

memory, and input/output
 4-stage pipeline with effective cycle of one or two per instruction
« 10Kx16 bits on-chip RAM, and 32 KBytes on-board boot ROM
+ one 16-bit timer and four external interrupts

e one full duplex serial port (5 Mbps) and one TDM (Time Division

Multiplexing) serial port useful for the multiprocessing environment
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Figure 4.1 DSK as nodes of MultiCom

TMS320C50 DSK with a 16-bit integer DSP processor
is used as nodes of MulliCom. It can be connected
to a COM port of a PC using RS232 link

TMS320C50 is based on the modified Harvard architecture. Internally it has two
separate buses for the program and data memories and can access both of them
simultaneously in different stages of its 4-deep pipeline. For example, fetching a new
instruction and reading an operand for another instruction can be performed on the
same cycle. However, the two buses are combined to create a single external bus for

accessing external program and data memories, or I/O ports.

For external memory, the write operation uses one extra cycle. This allows a smooth
transition between write and any adjacent bus operation. Hence, for an external memory

connected with zero wait states, a data read takes one cycle; however, a data write
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requires two cycles [TI 97]. This information will be used in the calculation of the

communication bandwidth for MultiCom in the next chapter.

1.2 Four-port memory

The 4-port memory used in MultiCom was IDT7054 from IDT with an access time of

35 ns and 108-pin packaging. As shown in Figure 4.2, the memory cells are organized

in a 4-Kbyte array. There are four independent ports with separate control, address, and

data lines. Each port is capable of performing independent and asynchronous access to

read from or write to any location in the memory. It is the user’s responsibility to ensure

data integrity when accessing the same memory location from different ports [IDT 96].
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Figure 4.2 IDT7054 four-port RAM

The memory array can be accessed through four
independent ports. No extra logic is implemented on the
chip to facilitate the shared memory operations.
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In general, there are two restrictions in using this chip [Stodieck 96]:

1. Simultaneous writes to the same location must be avoided.
2. Simultaneous read from a location that is being written could return incorrect

data.

For a reliable memory operation, these limitations must be considered in the design of

any system. As explained later, these issues were addressed in the memory management

of MultiCom by using static or dynamic memory allocation.

1.3 Interface and hardware block diagram

The hardware block diagram of MultiCom is shown in Figure 4.3. The four nodes of

this system were interconnected through 4-port memories with total capacity of 4Kx16
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Figure 4.3 The block diagram of MultiCom
In MultiCom, two 4-port memory chips were used to
interconnect four nodes. The host was a PC
connected to the nodes through the available COM
ports.
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bits. This memory size was generated by connecting two IDT7054 chips in parallel. The
interface circuit incorporated the required logic to connect the 4-port memory to each
node. An interrupt bus was also created for signalling among the nodes. Each node
could generate three interrupts for the other three nodes, and receive three interrupts
from them. As explained later, the interrupts were used as part of the required
handshaking for communication through the 4-port memory. Figure 4.4 shows the

board designed for MultiCom.

Figure 4.4 The board designed for MultiCom

Two 4-port memories were connected in parallel to achieve a
4Kx16 bits shared memory. Four nodes of MultiCom are shown on
each side and each one Is connected to one port of the multiport
memory.
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A PC was used as a host for all the nodes and each node was connected to one of its
COM ports. The host could program the nodes through RS-232 link, and it could
control or monitor the activities of the nodes using the debugger program. More details

are given in the next section.

2 Programming

The programming language for MultiCom was the assembly language for the
TMS320C5X series. The assembler program was supplied as part of the DSK module.

A debugger was also available to run and test the programs in assembly language.

For programming the nodes, first an assembly language program was written for all the
nodes in general. Then a program written in C was used to produce the local variables
and codes for each node. Finally, the assembler was invoked to generate an individual

executable file for each node.

The executable codes were downloaded to each node through the serial links of the
host. For each node, a debugger program was running on a separate window. This

window was used to control the nodes and transfer the results back to the host.

The on-chip timer of each node was used to measure the time spent on communication
of the node from the beginning until all the nodes finished. This measurement was the

basis of all the results. It will be explained in more detail later.

2.1 Synchronization

In order to get a correct time measurement, all the nodes must be synchronized to start
at the same time. The synchronization was easily performed with the aid of the shared

memory using the algorithm shown in Figure 4.5.

In this algorithm, one of the nodes is considered as the master node. Every other node
registers its presence by writing a unique ID in the shared memory when activated. The

master raises the sync flag when all the nodes are present. The details are as follows:
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Figure 4.5 Synchronization algorithm

a) The master node checks all the nodes and raises the SYNC
flag if all are ready. b) Other nodes refresh their IDs in the shared
memory and check the SYNC flag continuously.

» The master clears all the IDs and enters a delay routine to give the nodes time

to register their presence. After the delay, it checks the IDs. If all the nodes are

ready, the master activates the sync flag; otherwise, it clears the IDs and starts

over again.

o When activated, each node writes its ID in the shared memory and monitors

the sync flag in the synchronization loop. If the sync flag is not raised, the

node checks its ID. If it has been cleared by the master, the node writes it

again.

e Once all the nodes have registered their IDs, the master raises the sync flag

and starts its main program. Other nodes that continuously monitor the sync

flag also start their main program.
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The presence check of the nodes in this algorithm was performed dynamically as a
static presence check was not enough in practice. In some cases, before starting all the
nodes, a node that was already started was stopped for different reasons such as
performing a check or re-programming. In these conditions, which might happen
several times during a test, the static presence check could generate a false sync;
however, the dynamic check provided a correct sync. The order in which the master and
the nodes were activated, or the number of times they had been stopped and started

again was not important in the dynamic check.

2.2 Test program

In order to test the structure under heavy communication traffic, a simple program
based on all-to-all communication was tested on MultiCom. The all-to-all test program
creates contention on memory links and makes it possible to test the system
performance under worst-case traffic conditions. Because of the 16-bit node processors
in MultiCom, the word length is defined as 16 bits throughout this chapter and most of
other chapters. As shown in Figure 4.6, each node should send a message of 1792
words (700 hexadecimal) to the other three nodes through the shared memory. If a
message is large compared to the shared-memory buffer size, it is sent in several

packets.

Figure 4.6 All-to-all test program for MultiCom

Each node sends 1792 words to the other nodes. This
generates heavy traffic on the shared memory.
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At the start up, each node fills its transmit buffers with the data to be sent to the other
nodes and then enters the synchronization loop. After a successful synchronization,

each node starts its timer and executes the main loop.

In the main loop, each node checks the transmit buffers. If there is data to be sent, it
checks the status of the receiving node. If the node is ready to receive, the transmitter
allocates a buffer for transmission and writes the size of the packet in the buffer. Then it
transfers the data in the packet to the buffer and sends an interrupt signal to the

receiving node.

Upon receiving the interrupt, the following steps are performed in the receiver:

e The transmitter is identified.

e The receiver refers to the appropriate buffer in the shared memory and reads

the data count, which is the packet size.

o The data is transferred to the local memory and is appended to the previous

data received from the same transmitter if any.

» A flag in shared memory is activated to signal the transmitter that the receiver

is ready to receive more data from the same transmitter.

The handshaking between the transmitter and receiver is performed with the aid of an
interrupt from the transmitter side, and a flag in the shared memory from the receiver

side.

When all transmissions are complete, each node acknowledges the end of transmission
by writing a word in the shared memory and waits for the other nodes to finish. After
the entire communication is completed, each node stops its timer and writes the timer
value in the shared memory. The largest of the timer values written by the nodes is

chosen as the time spent on the overall communication.

As is apparent from the algorithm, there are several overheads in the communication
among the nodes, and each node spends some time in the management of the
transmission and reception of the data including checking the transmit buffers, checking

the status of the recipient nodes, allocation of a buffer for transmission, and interrupt
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overhead. In programming the system, every attempt was made to reduce the overhead

to a minimum.

3 Buffer allocation

Each node should be able to read from or write to the multiport memory independently.
Because of the concurrent activities of the nodes on the shared memory, they can easily
interfere with each other. A reliable communication protocol must consider the
restrictions in using multiport memory, and eliminate the conflicts among the nodes.
This can be achieved by the use of a proper memory management, and is the subject of
the next chapter. In order to complete the discussion of MultiCom, a primary method
called static allocation is briefly presented here. More detailed explanation and

advanced allocation methods are discussed in the next chapter.

In static allocation, the shared memory is divided among all the possible transmitters
and receivers, and a dedicated buffer is pre-allocated for each transmission. There are
four nodes in MultiCom and each node can send to three other nodes. Hence, 12 buffers
in the shared memory are required. With the available memory of 4Kx16 bits, the
maximum size of each buffer is 336 words. The leftover words are reserved for
administrative purposes such as the ready signal from the receiver to the transmitter.

The 1792-word message in the test program is sent in (1792/336=) 6 packets.

Static allocation removes the possibility of write-write and write-read conflicts, because
each active buffer is either written by a node, or read by another node. There is no
situation where more than one node can attempt to write into the same memory
location, or one node writes while the other node reads the same location

simultaneously.

4 Results and discussion

Static allocation was tested successfully on the system. Apart from other outcomes, it

confirmed that interprocessor communication with multiport memories was feasible
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and could offer a low-overhead communication. As shown in Figure 5.14 on page 102,
the best communication rate obtained was 45.5 MBytes/s, which showed 15% overhead
compared to the peak communication rate of 53.4 MBytes/s. The peak communication
rate is the bandwidth for the overall system, in which all the nodes communicate
through the memory with the maximum possible rate without any overhead (Refer to
“Details of data transfer” on page 100). The rate of 45.5 MBytes/s was obtained for the
buffer size of 336 words, which was the maximum buffer size for the shared memory of
4K words. Reducing the buffer size would increase the overhead and drop the

performance.

The results of static allocation will be discussed in more detail in the next chapter,

4.1 Comparison of results

In this section, the results of MultiCom are compared to a system that uses serial links
for communication of its nodes. Other detailed comparisons will be performed in the

next chapter.

To get a basis for comparison, it is assumed that the nodes of MultiCom are
interconnected using serial links in a 2-cube structure as shown in Figure 4.7. In
MultiCom, the TMS320C50 processors operate with a 20-MHz clock. The two on-chip
full-duplex synchronous serial ports operate at the maximum rate of 5 Mbps.
Synchronous links require the clock signal to be sent along the serial bits. In addition,
another signal for frame synchronization is also needed. This requires more connections
between the processors. On the other hand, the clock signal is not required for
asynchronous links and synchronization is achieved by sandwiching the serial data
between a start bit and one or more stop bits. Commonly, a parity bit is also sent for
error checking. In this method, the number of connections between processors is
minimum, but throughput is reduced because of the extra time required to send start and
stop bits. Using the on-chip serial ports for this hypothetical system will reduce its
throughput significantly because of the low transfer rate of 5 Mbps. In order to achieve
a more realistic result, it is assumed that the system is using two external asynchronous

serial ports operating at 20 Mbps, which is comparable to the processor speed.
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serial link

Figure 4.7 Serial communication of four nodes in 2-cube structure

Assuming no overhead, in the first time slot each node communicates with
two neighbouring nodes, as shown with solid arrows. In the second time
slot, each node communicates with non-neighbouring nodes, as shown
with dotted arrows. A total of 12x1792 words should be transferred.

Overdll, the minimum time for all-to-all communication is double that of the
time spent in sending from one node 1o another.

It is worth mentioning that a hypercube of order 2 with serial links is not a very suitable
structure for four nodes, and in practice, other structures can be used for this small

system. This hypothetical system was used only to get a basis for comparison.

Similar to the all-to-all test program of Figure 4.6, each node should send 1792 words
to all other nodes. As each of four nodes sends a message to other three nodes, this adds
up to 4x3x1792 words in total . In order to obtain the maximum performance for this

system, the following assumptions are made:

 Links are full duplex and messages are sent or received on separate lines.

 The intermediate nodes do not store the data. They pass it directly to the next

node.
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e An optimum communication protocol is used so that no node is idle at any
time, and no message is waiting because of a line being used for another
transmission, or a free line cannot be used because it has been blocked by

other communications.

» There is no overhead in sending or receiving and only the time spent on the

actual transmission is considered.

e The communication is asynchronous. For each byte, a total of 11 bits

comprising of 8 data bits, a start bit, a stop bit, and a parity bit is sent.

It is very unlikely that all of the above conditions are met for a realistic system. Hence,

the performance of a practical system would be lower to some extent.

The following steps can be taken to deliver all the messages in this system:

1. In the first time slot, each node communicates with the two neighbouring
nodes to send and receive the required data at the same time. All the
communication to the neighbouring nodes can take place in this slot as shown

by the solid arrows in the figure.

2. In the second time slot, each node communicates with a non-neighbouring
node through an intermediate node. The data is sent to the neighbouring node
and is immediately passed on to the destination. As the dotted arrows in the
figure show, all the remaining communication can be performed in this time

slot.

Using these steps, the overall communication would only take two time slots.
Considering the speed of serial ports (20 Mbps, equivalent of 0.05 us/bit), sending 11
bits for each byte will take 0.55 ps. Hence, sending 1792x2 bytes in each time slot
would take 1971.2 ps (i.e. 1792x2x0.55 ps). The size of the total message transferred
between the nodes is 12x1792x2 bytes and the effective communication rate can be

calculated as 10.9 MBytes/s (i.e. 12x1792x2 bytes/2x1971.2 us).

Comparing this result to the 45.5 MBytes/s of static allocation shows that the
performance has increased more than 4.2 times. Note that as explained before, in
practice the increase in performance could be even higher, as no overhead has been

considered in serial communication.
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It is worth mentioning that the number of links used for each node in MultiCom is 16
bits (size of the data bus). On the other hand, the number of links connected to each

node for asynchronous serial communication is 4 (two full-duplex serial links).

MultiCom can be also compared to a bus-based system and a system using dual-port
memories. This will be performed in the next chapter where timing of MultiCom is

discussed in detail.

5 Conclusion

This chapter has discussed how MultiCom, a hardware prototype, was designed and
implemented as the first step to evaluate the performance of the proposed structure. The
nodes of MultiCom were selected from off-the-shelf DSP processors and they were
interconnected using 4-port memories. Conflicts between the nodes on the shared
memory were removed by using static allocation as an initial allocation method.
MultiCom proved to have very efficient performance in communication achieving 45.5
MBytes/s. This rate was very close to the peak communication rate and the overhead
was less than 15%. Compared to a system using 20 Mbps asynchronous serial links
with no overhead, it showed at least a 4.2-fold speed improvement. The improvement
could be even higher if realistic overheads encountered in practical systems were also
considered. Overall, the design of MultiCom proved that interconnecting systems with
multiport memories is feasible and it can provide high performance. Other benefits such
as reducing the size, cost, and internal wiring will be discussed later. This structure will

be elaborated upon in the subsequent chapters.
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s the communication of nodes in MultiCom is performed
through multiport memory, it is essential to manage the
shared memory in a way that the nodes do not interfere
with each other. For MultiCom, a range of memory
management strategies are possible. In static allocation, as
introduced in Chapter 4, each transmitter uses a pre-
allocated buffer to send a message to a receiver. An
alternative is dynamic allocation, in which a free buffer can
be allocated to any communication on demand. Better
memory utilization is expected for dynamic allocation;
however, a lock mechanism is required to eliminate the
shared memory conflicts. In this chapter, first a detailed
discussion of static allocation is presented. Then dynamic
allocation is explained, and two newly devised software
locks are introduced. Multicasting/broadcasting and
communication protocols are discussed later. Finally, the
results obtained from MultiCom are presented and
compared - to other systems interconnected with serial

links, dual-port memories, or bus-based systems.
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1 Memory management

Since shared memory is used as a communication medium, the nodes need to perform
several activities on the memory as part of transmitting or receiving data. In order to
preserve data integrity and to achieve reliable communication, the nodes must not
interfere with each other. Hence, proper memory management and a suitable

communication protocol must be implemented.

Allocation of buffers in the shared memory to different data transmissions is an
important issue in the memory management. A proper allocation method must prevent a
node from using a buffer that is already in use by another node unless both reading.
Allocation of buffers can be performed in two ways: in static allocation, the nodes use a
pre-allocated buffer for transmission to each node; in dynamic allocation, the buffers
can be allocated to any transmission on request. Each method is discussed separately,

and its advantages and disadvantages are highlighted.

1.1 Static allocation

In static allocation, all of the possible combinations of transmitters and receivers are
determined and a buffer is assigned to each combination. For N nodes connected to a
multiport memory, each node can transmit to N-1 nodes and N(N-1) buffers are
required in total. Hence, MultiCom would require 12 buffers, and for the shared
memory of 4K words, the maximum buffer size would be 336 words. Figure 5.1 shows
the layout of memory under static allocation in which a dedicated buffer is available for

each transmission. The outcomes of static allocation are presented in the result section.

The benefit of static allocation is that a node simply refers to an address table to find the
location of the buffer pre-assigned to the desired transmission. This procedure requires
very small overhead. Moreover, the allocation method ensures that other nodes will not
interfere while the node is writing into the buffer. This is because each buffer is
assigned to a unique transmission only, and the receiver will read the buffer after the
message is completely written. Hence, both of the restrictions for using 4-port

memories as mentioned on page 58 have been addressed in this method.
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Figure 5.1 Memory map of MultiCom for static allocation

The 4 Kword-memory is divided info 12 buffers of 336 words and each
buffer is pre-allocated fo a specific transmission. Memory is not
utilized efficiently and part of it is idle at a time, but there is no conflict
on the memory access.

On the other hand, as only some of the nodes are actively communicating at a time, only
a fraction of the shared memory is concurrently used for communication. In other
words, after the data in a buffer is delivered to the receiver, the buffer remains idle until
used again by the same transmitter and receiver. Hence, the valuable shared memory is
not utilized efficiently in static allocation and part of it remains idle at a time. This is
one of the disadvantages of static allocation. Another disadvantage is that it does not
scale properly when the number of nodes increases. This point will be discussed in the

next chapter.
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A more sophisticated allocation method can use the memory more efficiently. Instead of
creating a buffer for every possible communication, fewer non-allocated buffers can be
generated and the allocation process can assign each of them to a transmission when
requested. Hence, the buffers are assigned only to the active communications and the
number of required buffers is reduced. Consequently, larger buffers can be created
resulting in reduced overhead and increased performance. This method is called

dynamic allocation and is the subject of the next section.

1.2 Dynamic allocation

In dynamic allocation, the shared memory is divided into a number of buffers that are
not dedicated to any specific communication link. The list of the buffers is stored in a
table called the “buffer allocation table”. Each buffer has an entry in the table that
defines whether the buffer is free or in use. More information such as the size and the
start address of the buffers can be also stored in this table. Any node requiring a buffer
for transmission refers to this table and if a free buffer is available, the node allocates it

to its transmission. Figure 5.2 illustrates the memory layout under dynamic allocation.

As there is no central controller on the shared memory to perform the buffer allocation,
each node is responsible for the required allocations. If two or more nodes perform the
allocation process simultaneously, there is a potential for conflict among the nodes,
which can cause data loss. For example, if two nodes simultaneously allocate the same
buffer to their transmission without knowing the activity of the other node, some data
will be overwritten and data loss is inevitable. Hence, there must be a mechanism to
control the allocation process so that it can be performed exclusively. In order to
achieve this goal, a lock mechanism implemented in hardware or software must be used
and each node must possess the lock exclusively before allocating a buffer. This

prevents the others from doing a similar task until the lock is released.

It is worth mentioning that the lock is only used in critical activities such as buffer
allocation, where there is a possibility for conflicts among the nodes. Other tasks such
as writing into or reading from a pre-allocated buffer do not require the possession of
the lock. Therefore, nodes can work independently on unlocked areas of the shared

memory, in parallel with the other memory activities.
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Figure 5.2 A typical memory layout for dynamic allocation

Memory is divided into several buffers and each can be allocated to
any fransmission on demand. Memory can be utilized more efficiently,
but a lock mechanism is required for buffer allocation.

The advantage of dynamic allocation over static allocation is the use of fewer but larger
buffers. This is achieved by combining the active buffers with the idle ones. In general,
larger buffers can reduce the communication overhead and increase the performance,
provided that sufficient buffers are available. The drawback of dynamic allocation is the
use of a lock that introduces a serial mechanism into the system and requires extra

overhead.

1.3 Multicast / broadcast

One benefit of using dynamic allocation is that if the same message is to be sent to two

or more nodes, multicasting or broadcasting can be used instead of sending the message
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to each node individually. In this method, once the message is copied into a buffer, it
can be sent to more than one node without rewriting. Each involved node can receive
the message from the same buffer simultaneously and in parallel with the other nodes.

The buffer must be released by the last node.

In multicasting, multiple attempts for getting the lock, allocating a buffer, and
transferring data to the buffer are reduced to one attempt only. Hence, communication
overhead drops and system performance rises. This method will be discussed in more

detail later.

2 Semaphore signalling

In assigning a buffer using dynamic allocation, there is a possibility that nodes could
interfere with one another. The use of a lock mechanism or semaphore signalling can
remove the conflict and produce mutually exclusive access to the shared memory. Each
node is required to possess the semaphore before performing a sensitive task on the

memory such as buffer allocation. This will preserve data integrity.

Semaphore signalling can be implemented in either hardware or software. With a
hardware semaphore, if a node possesses the lock, the other nodes attempting to get it
will receive a denial until the lock is released. With software semaphores, after
requesting the lock, the nodes are required to check regularly a dedicated memory
location for their turn to use the memory. Different algorithms can be used to create a

software semaphore. Both methods are discussed in subsequent sections.

2.1 Hardware semaphore

Hardware semaphores have been implemented in some dual-port memories for a long
time. In general, semaphore latches are independent from the memory locations on the
chip. The control of semaphore requests can be handled using a standard write followed
by a read instruction. There is no requirement to lockout the other processor to access
the semaphore between the write and read. In some products, as many as eight

semaphore latches have been implemented in one memory chip [Cypress 96].
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Hardware semaphores can be used to implement a token controlled scheme allowing
the port in possession of the token to have exclusive access to a block of shared
memory. The port releases the token after finishing its critical section. A request for
possessing the token from another port will be denied if the token is held by the other

port, but the request will be registered to take affect after the token is released.

Possession of the token is indicated by the state of a semaphore latch formed by two
cross-coupled NAND gates as shown in Figure 5.3. Only one port can set the
semaphore latch at a time. An extra input latch on each port is used to hold the request
for setting or clearing the semaphore latch. Output latches are also used to prevent the

output data from changing during a read operation.

The semaphore latch is accessed through the address and data buses similar to accessing
a memory location. The semaphore enable line should be activated in this cycle instead
of the memory chip select. The latch is accessed using the lower data bus line, and if
more than one semaphore latch is implemented, the lower address bus lines can select

one of them.

The semaphore latch in Figure 5.3 is active high. A node can request the control of the
semaphore by writing “1” into the port. This request is stored in the port input latch and
held until the same node clears it by writing “0” into the input latch. If the semaphore
latch is free, the node will immediately gain the control of the latch. On the other hand,
if the semaphore is controlled by the other port, the request will be denied. If the request
remains pending in the input latch, the requesting node will be granted the control only

after the other port has released the semaphore by writing “0” into its input latch.

The read of the semaphore will indicate if a request for controlling it was successful. A
readout of “1” indicates that the port controls the semaphore and “0” indicates a denial.
As the state of the semaphore latch could change during a read operation, an output
latch is used to prevent propagation of the change to the output line. In this case, the
next read will show the updated state of the semaphore. The node receiving the denial
should either repeatedly check the status of the semaphore until control is granted, or

write “0” to clear the request and try another time [Baumann 96].
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Figure 5.3 Semaphore latch cell

Only one port can possess the semaphore at a time. Each port
can request the semaphore by writing *1” info the input latch.
Reading "1” on the output indicates a success and “0” a denial.

If the semaphore is free and both ports attempt to request it at the same time, semaphore

arbitration logic guarantees that only one side gains the control [Cypress 96].

As IDT7054, the 4-port memory used in MultiCom, was a very new product at the time
of system design, no semaphore logic was implemented on this chip. The structure of
the semaphore as explained above applies only to two ports and needs a major change
for implementation on more ports. The semaphore latch should be modified to have
more inputs, and other parameters such as the order in which the nodes apply for the
semaphore should be taken into account. In addition, a priority scheme should be set up
for pending requests or for requests applied at the same time. Consequently, the overall
logic can become complicated. On the other hand, the absence of semaphore logic in
the IDT7054 could have commercial reasons such as releasing the chip to market as fast

as possible. A new design for a multiport semaphore is explained in the Appendix.

The conclusion is that hardware semaphores are currently unavailable on multiport
memories. There is no semaphore latch on multiport memories with more that two ports
and the control of these memories is entirely left to the system designer. The only

remaining solution is the use of software semaphores as discussed in the next section.
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2.2 Software semaphore

A hardware semaphore is a convenient way to control a shared memory. In its absence,
software semaphores should be used. Software semaphores can be implemented using
dedicated memory locations to hold the semaphores and are extensively used as a
mechanism to provide synchronization and concurrency for different processes [Ben-
Ari 82] [Stallings 98]. In a general semaphore, the number of waiting processes is
stored in a variable and the ID of each requesting process is stored in a queue. A binary
semaphore can only have values of 0 or 1. In a system using a simple binary semaphore
stored in a reserved memory location, each node attempts to gain control of the
semaphore by using an indivisible test and set instruction. The test instruction checks if
the semaphore is set by other nodes. If the semaphore is free (cleared), the node sets the
semaphore and gains exclusive control of a block of memory associated with that
semaphore. If the semaphore is not free, the set instruction is aborted and the node

should reapply again later.

Software approaches to mutual exclusion and semaphores can be implemented for
concurrent processes that execute on a single processor or a multiprocessor machine
with shared memory. These approaches rely on some elementary mutual exclusion
mechanism at the memory access level [Lamport 91]. That is, simultaneous accesses to
the same memory location in the shared memory are serialized by some sort of memory
arbiter, although the order of access granting is not specified ahead of time. With this
mechanism in place, accessing a memory location excludes any other access to the

same location simultaneously [Stallings 98].

Checking a semaphore and changing its value must be an indivisible atomic action
[Tanenbaum O1]. The system must guarantee that once a semaphore operation has
started, no other process can access the semaphore until the operation has completed.
According to [Tanenbaum 01], “this atomicity is absolutely essential to solving

synchronization problems and avoiding race conditions.”

The software semaphores discussed in [Ben-Ari 82], [Stallings 98], and many other
operating systems textbooks cannot be directly implemented for multiport memories.

The reason is that on a system using multiport memories, nodes can freely access the
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shared memory from different ports concurrently. Unless there is a hardware memory
arbitration circuit, or a software mechanism to enforce mutual exclusion, the algorithms
cannot be successful. Multiport memory has not been discussed in these references and

new methods need to be found to address this issue.

Hardware memory arbitration has been implemented in some dual-port memories to
achieve mutual exclusion. [Wyland 88] discusses an address arbitration circuit for dual-
port memories. It consists of common address detection logic and a cross-coupled
arbitration latch. If the same memory location is accessed from both sides
simultaneously, this logic provides a busy signal to the address that arrived last and
inhibits write operation for the port receiving the busy signal. It also makes a decision in
favour of one port or the other when both addresses arrive at the same time. A busy line
is available in most of dual-port memory products [IDT] and is explained in more detail
in the Appendix. It can be used to extend the memory cycle for the operation performed

by the losing processor until the winning processor finishes its access.

As stated earlier, the IDT7054 has no extra circuit to resolve simultaneous access to a
common memory location. The IDT7052, the 2K version of this memory, has a BUSY
line for each port. This input line has a very limited functionality and is different from
the busy line explained in the previous paragraph. If activated by external logic, it will
block the write to the addressed location from the pertinent port [IDT 95]. The system
designer should devise the required external logic to detect the address match from
different ports and resolve the conflict in favour of one of them by providing busy
signals to the others. A simplified version of this external circuit may search for only
one specific location such as address zero, where the semaphore flag could be kept. If a
BUSY line were available in IDT7054, it could facilitate the implementation of
software semaphores; however, the extra address line required to expand the chip from
2K to 4K has replaced the BUSY line in the pinout. Hence, system designers should

rely on software methods to implement a lock for IDT7054.

The only method that has been implemented to control 4-port memories with no
hardware arbitration, is TOKEN passing [Mick 96]. Token passing and other methods

attempted in this study are discussed in subsequent sections.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 78



CHAPTER 5 Memory Management and Communication Protocol

2.2.1 TOKEN passing

In this method, every node has a unique ID. The owner or the master is the node whose
ID matches the TOKEN that resides in a dedicated memory location. The master can
use the locked part of the memory exclusively for performing critical tasks such as
buffer allocation. When finished, the master passes the token to another node in a

prescribed order by writing the ID of the node into the token.

At the start, one of the nodes is the master by default. To determine who is the master,
each node should read the token regularly and compare it to its ID. The node successful

in finding a match can go ahead to use the memory as the master.

After finishing with the lock, the master passes the token to another node in a circular
manner. While the owner is writing the new master’s ID in the token, if other nodes
attempt to read the token, there is a possibility of data corruption for the read operation.

Hence, the new master must verify its success by multiple read / compares [Mick 96].

Token passing is very easy to implement, and it is very effective as long as all the nodes
are active in the token passing operation. On the other hand, a node that no longer needs
the token, or is performing tasks not requiring the token, would still be included in the
token passing cycle. This demands that all of the nodes, regardless of their interest in
becoming a master, should regularly check the token to use it, or at least to pass it to the
others. This requirement is an extra burden for the nodes and failure to do it on time

may result in long delays for the other nodes waiting for the token.

Moreover, as explained in Section 4.2 on page 101, in the node processors used in
MultiCom, transferring packets of data to or from allocated buffers were performed by
specific instructions in repeat mode. Once started, the repeat mode generates a firmware
loop and transfers the entire packet before stopping. This increases the transfer rate
considerably, but it is not possible to perform other tasks such as token checking while

the transfer is in place.

For the reasons discussed above, in spite of its simplicity, token passing was not
suitable for MultiCom and other methods were devised for implementing a software

lock. These methods are explained subsequently.
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2.2.2 Waiting list

With a waiting list, similar to the token passing, each node accesses the memory using a
separate port and the master is the node with a matching ID to the number in OWNER.
Each node requesting to become the master registers its ID at the end of a waiting list in
the shared memory. The registered node should regularly monitor the list to upgrade its
position in the queue. If the upper request is cleared because of a move in the queue, the
node should upgrade its turn by moving its ID to the cleared location. This process is
repeated until the node reaches the highest position and writes its ID in OWNER

indicating that it is the master. Figure 5.4 demonstrates this algorithm.

The move in the queue is initiated when the master clears its ID from OWNER. If there
is a node waiting at top of the queue, the node writes its ID in OWNER and becomes
the new master. It also clears its ID from top of the queue. This in turn enables any

requesting node to advance in the queue by moving its request to a higher position.

This method is acceptable in principle; however, its implementation on MultiCom
showed that there were several potentials for write-write, and write-read conflicts as

discussed below:

A new _)
request OWNER )
finds the top of queue
end of _)
queue next
and next -)
takes _)
%’ last in queue
empty
empty
, -
-~
_
P Each node monitors the

queue to upgrade its turn

Figure 5.4 Waiting list

Each node registers at the end of the queue and upgrades
its position if the queue is moved up. The node with its ID in
OWNER is the master and clears its ID when finished.
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« More than one node may attempt to register at the end of the queue at the same time.
The conflict can be compensated for by verifying the write operation and starting

again if not successful.

« In the upgrading process, each node moves to a higher position and clears the lower
one. Before all the nodes finish the upgrading, a new request may be inserted in a
freed location. To avoid this, two different codes should be used to clear the requests,
one code for end of the queue where there is no other request, and another code for
between the other requests. Even with this approach, a lucky node may find a free
location for registering its ID while there is another request underneath. This case
may happen if registering of a request for a node at the end of the queue coincides
with the release of the last request by another node. Normally this situation causes no
problem because the new request is upgraded within a short time. However, if a third
node attempts to register in the queue before this request is upgraded, it may register
in a place that is not the end of the queue. The results of several tests using this
method showed that the probability of this situation was very low; however, it was

observed in long run under heavy demand for the lock.

« In the upgrading process, several write-read conflicts are possible. The sensitive ones
are overcome by repeated reads and compares. There are also a few possibilities for

write-write conflicts as discussed above.

o The algorithm is very sensitive to the processor and memory timing. If either one is

changed, the algorithm should be adjusted for the new condition.

o All the registered nodes should monitor the queue continuously for an upgrade in
their position. Delay in upgrading could hold the other nodes registered in the lower

parts of the queue.

For the reasons discussed above, this algorithm was not successful. Applying a few
modifications may result in a successful algorithm. For example, if the upgrade process
is performed entirely by the master or even by the node at the top of the queue, most of
the memory conflicts can be removed. The latter is a better alternative, because no

provision is required when no master is available. The algorithm may work as follows:

« The nodes register at the end of the queue as discussed previously.

» After the master releases the lock, the node on top of the queue writes its ID in

OWNER and upgrades the positions of the other nodes if any.
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o Other nodes only monitor the top of the queue. The node the ID of which

reaches this point will be responsible for the upgrade.

The algorithm would be successful even if the queue is empty and there is no master. In
this case, any node registering at top of the queue would become the master. There are
still some remaining conflicts in this algorithm, but they can be overcome by repeated

verifying.

The author came across this idea only at the time of writing the thesis. Therefore, the

modified algorithm was not tested on MultiCom.

2.2.3 Lock with BUSY

This new lock scheme was designed in an attempt to exclude the uninvolved nodes from
the token passing scheme. In this method, only the nodes registered for the lock are
considered in the TOKEN passing cycle. As shown in Figure 5.5, each requesting node
can register in a dedicated location if the BUSY flag is cleared. Otherwise, the node

should keep checking the flag until it is cleared.

The master is the node the ID of which matches the number in OWNER. After finishing
the allocation process, the master determines the next owner by checking all the
registered nodes in a circular priority in which the current owner is in the lowest
position. Before determining the new owner, the master raises the BUSY flag to prevent
the other requests from registering. This is essential because it prohibits write-read
conflicts in a sensitive situation. A short delay is also inserted to settle any request that

might be in progress.

In the process of determining the new master, if there is no request, this simple
algorithm may fail. This is because if a new request is made later, none of the nodes will
be responsible for determining the master. Therefore, a flag called No_owner is added
to the algorithm. When this flag is set, the requesting node takes the responsibility of
determining the owner. Sometimes there might be more than one node registered. They
all compete to be the master, and the node having the highest circular priority is the
winner. The algorithm is shown in the flow chart of Figure 5.6 and is explained in more

detail in Table 5.1.
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OWNER
No_owner flag
BUSY flag
Node-1 request

Node-2 request

Node-3 request

Node-4 request

Figure 5.5 Lock with BUSY

The nodes register in a dedicated location if BUSY is
not set. The current owner determines the next
owner using circular priority. If there is no owner, the
reguesting node is responsible for determining the
owner.

This algorithm was successful in sharing the lock among the nodes of MultiCom. There
is no starvation for any of the nodes, because after clearing the busy flag, there is plenty
of time for all the waiting nodes to register their request before busy goes high again.
Moreover, circular priority ensures that all the registered nodes will receive the lock.
Although the overhead of the algorithm is slightly high, the benefit is that a registered
node is free to perform other tasks while its request is processed by other nodes. The
only remaining write-write conflict is a possible setting of the BUSY flag by more than
one node simultaneously. This situation may happen if there is no current owner, and
two or more nodes register at the same time. All of the nodes activate the BUSY flag to
block the new requests, and start to determine the new master. As they all write a “1” in
the BUSY flag, the conflict has no drawback. The shaded box in Figure 5.6 shows the
location of this possible conflict. In this case, the node with the highest circular priority

will be the master.

For a reduced overhead, the algorithm can be modified as explained in the next section.
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Figure 5.6 Flow chart of the lock with BUSY

If there is no owner, the requesting nodes should
determine which one is the master. Otherwise, the
current master determines the next owner after
finishing with the lock.
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Table 5.1 Algorithm for lock with BUSY

o Each node registers its request if the BUSY flag is cleared.

Otherwise, it waits until the flag is cleared.

 If there is a current owner, the requesting node only should check
the OWNER regularly. When the ID of the node matches the
OWNER, the node is the master.

« If there is no owner, the requesting node sets the BUSY flag to block
new requests from registering. As more than one node may register
simultaneously in this situation, a short delay is inserted to make
sure that any other possible requests in action are registered.
Considering all the requests, each registered node determines the
owner in a circular priority where the previous owner has the lowest
rank. The node the ID of which matches the determined owner is the
new master. It writes its ID in the OWNER, clears the No_owner
and BUSY flags, and can use the locked part of the shared memory.
The losing nodes, if any, perform regular checking of the OWNER

to determine their turn to obtain the lock.

 When the owner finishes with the lock, it sets the BUSY flag to
disable incoming requests, clears its own request, and determines
the next owner using the circular priority. It writes the ID of the new
owner, if any, into the OWNER; otherwise, it sets the No_owner
flag. It clears the BUSY flag in the end.

2.2.4 TFastlock

This lock has a structure similar to the previous one. The main difference is that each
node is responsible for acquiring the lock rather than receiving it through the current
master. It was devised in an attempt to eliminate the No_owner flag in the previous

algorithm. Figure 5.7 shows the memory structure used for the fast lock.

If BUSY flag is not set, the requesting node sets it to block the other requests and
registers in a dedicated location in memory. In some conditions, more than one node
may register. This is because as the BUSY flag changes from set to clear, all the waiting

nodes register almost simultaneously before the flag is raised again. Each registered
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Previous-Owner

BUSY flag
Node-1 request

Node-2 request

Node-3 request

Node-4 request

Figure 5.7 The fast lock

All registered nodes determine the owner and the winning
one can proceed as the master. Others keep checking their
turn to become the master using circular priority.

node determines the next owner using circular priority where the previous owner has
the lowest priority. The winning node in finding a match with its ID is the new master.
After finishing with the lock, the master writes its ID in the Previous-Owner and clears
its request. Consequently, another node having a pending request can win to become the
new master. If there are no more requests, the master clears the BUSY flag to enable
waiting nodes to register new requests. Figure 5.8 shows the flow chart of this lock and

Table 5.2 illustrates its detail.

Fast lock is simple and very efficient. The associated overhead is also low. The
drawback is that the registered nodes should continuously check for their turn to
become the master. Moreover, registering a new request for the lock may take longer
than the previous method, because the BUSY flag remains active until all the registered
nodes have finished with the lock. Similar to the previous lock, there is no starvation in

this lock, as nodes have time to register, and after registering, they will certainly receive

the lock.

Dynamic allocation was implemented on MultiCom using both the “lock with BUSY”

and the “fast lock” as software semaphores. Both algorithms proved to be efficient in
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Figure 5.8 Flow chart of the fast lock

After registering, each node determines the next owner using
circular priority and the winning node is the master. After
finishing with the lock, the master clears its request and writes
its ID in the Previous-Owner. Other nodes, if any, determine
the new owner.
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Table 5.2  Algorithm for fast lock

» If not BUSY, each requesting node raises BUSY to block the other
requests and registers in a dedicated location. Under heavy demand

for the lock, usually more than one request can be registered.

o After a short delay to make sure that all requests in progress are
recorded, each registered node determines the next owner based on
the circular priority with the previous owner having the lowest rank.
The winning node can proceed as the master, while the losing nodes
keep determining the owner repeatedly until it matches the ID of the

node.

« After finishing with the lock, the current owner writes its ID in the -
Owner and removes its request. If no other request is pending, the

owner also clears BUSY to enable registering of new requests.

» By changing the Previous-Owner and removing the relevant request
by the current owner, one of the other registered nodes, if any, can

win to be the new master.

assigning the lock to the requesting nodes with no conflicts. It is worth mentioning that
these algorithms have not appeared anywhere in the technical literature and are new

lock schemes. The outcomes of dynamic allocation are presented in the result section.

Buffer allocation is part of a larger algorithm called “communication protocol” that

controls the overall communication. It is discussed in the next section.

3 Communication protocol

A proper communication protocol facilitates the communication task in a system. A
simple and basic protocol was used to test the static allocation on MultiCom. The basic
protocol was gradually upgraded to include the extra features required for complicated
algorithms such as dynamic allocation or broadcasting. For evaluation of larger systems
using the simulation model in the next chapter, the communication protocol was also

modified and upgraded. The basic communication protocol is explained in the next
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section, and the required modifications for other algorithms are discussed in the relevant

sections.

3.1 Basic communication protocol

The basic communication protocol was tested on MultiCom for static allocation. In the
all-to-all test program, as discussed in page 62, depending on whether a node is a
transmitter or a receiver (or both), two different activities are performed in the node.

They are explained below:

Transmitter:

Each node sets up the transmit buffers with the messages to be sent to other nodes. Each
message can be sent in several packets if it is larger than the buffer size. Within a loop,
each node checks the transmit buffers, and if there is data to be sent, it checks the
appropriate receiver. If the receiver is ready, a packet of data is copied into a pre-
allocated buffer in the shared memory and an interrupt is generated for the receiver.
This process is repeated several times until all the messages in transmit buffers are sent
out to the appropriate receivers. Figure 5.9-a shows the activities of a transmitter in the

basic protocol.

Receiver:

In a receiver, interrupts coming from different transmitters are connected to separate
interrupt lines. The receiver identifies the transmitter by the received interrupt and
refers to the appropriate buffer in the shared memory. Then it transfers the packet of
data from this buffer to a local buffer and appends it to the previous packets of the same
message received from the sender, if any. When transfer is complete, the receiver raises
the receiver ready flag to acknowledge that the data is received and the receiver is ready
again to get more data from the same transmitter. After updating the necessary
variables, it terminates the interrupt service routine. Figure 5.9-b illustrates the receiver

activities in the basic protocol.

Note that the shaded parts of Figure 5.9 depend on the protocol in use, whereas the

unshaded parts are general. Only the shaded parts will be explained for other protocols.
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Figure 5.9 Basic communication protocol

The figure shows the tasks performed in each node a) as a transmitter, b)
as a receiver. The receiver is activated by receiving an interrupt from
other nodes at any time. The unshaded parts are general for all-to-all
communication, but the shaded parts depend on the protocol in use.
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Table 5.3 summarizes the communication protocol under static allocation.

Table 5.3 Basic communication protocol

In transmitter:

1. In the transmission loop, each transmit buffer is checked. If there is data
to be sent, step 2 is performed; otherwise, the next buffer is checked.
After checking all the buffers, the loop is executed again until data in all

the buffers is transmitted.

2. The status of the receiving node is checked. If it is not ready, indicating
that the previous transmission is still in progress, the transmission loop is

resumed.

3. The address of the pre-allocated buffer is determined and a packet of
data with proper size is generated. Proper size is the minimum of the

buffer size, and the size of remaining data in the transmit buffer.

4, The packet of data is transferred to the buffer in the shared memory. The

internal variables are updated.

5. An interrupt is generated for the receiving node. The transmission loop is

resumed.

In receiver:

1. Depending on the received interrupt, the identity of the transmitter is
known to the receiver. Therefore, upon receiving an interrupt, the
appropriate buffer address in the shared memory is determined and the
size of the packet is obtained. The local buffer to transfer the received

data is also identified.

2. The packet is transferred from the shared memory into the local buffer

and is appended to the previous packets of the same message, if any.

3. The receiver ready flag is raised to indicate that the data is received and
the receiver is ready again for more data from the same transmitter.
Internal variables are updated and the interrupt service routine is

terminated.
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3.2 Protocol for dynamic allocation

The general activities in the dynamic allocation protocol are similar to the basic
protocol, but the memory management is very different. Before describing the protocol,
a closer look at dynamic allocation is needed to identify the required components.
Figure 5.10 shows the memory layout and the essential elements for dynamic

allocation. Detailed explanations are given below.

Lock variables:

As explained in previous sections, OWNER, No_owner, BUSY, and node requests are

the variables used for the lock.

Buffer address table:

Buffer address table lists the start address of the buffers in the shared memory. The
address of a buffer can be obtained by using the buffer number as an index to this table.
The number of available buffers and the buffer size is determined by the size of

available memory.

Buffer allocation table:

Each buffer has a 16-bit entry in the buffer allocation table. Bit-15 shows the status of
the associated buffer. “0” indicates a free buffer and “1” an allocated buffer. The

remaining bits are reserved for multicasting/broadcasting and will be explained later.
Receiver mailbox:

Each of the possible receivers that can be connected to a transmitting node has a 16-bit
mailbox entry dedicated for that transmitter. As there are four nodes each transmitting
to three other nodes, there are 12 mailboxes. Bit-15 of each mailbox shows the status of
the receiver associated with it. “0” is used for ready and “1” for busy. Other bits are
used to hold the number of the buffer allocated for the transmission. If a receiver is
ready, the transmitter writes the allocated buffer number in the mailbox of the receiver
and sets bit-15 to mark it a busy receiver. It also sends an interrupt to the receiver to
signal that a message is ready to be collected. Upon receiving the interrupt, the receiver

refers to the appropriate mailbox to identify the number of the buffer in use. After
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Figure 5.10 Memory map of MultiCom for dynamic allocation

The components used for dynamic allocation in shared memory are lock
variables, buffer address table, buffer allocation table, receiver mailbox,
and several buffers.

removing data from the buffer, the receiver clears bit-15 in its mailbox to indicate that

the node is ready to receive more data from the same transmitter.

Buffers:

Each buffer consists of a header and data. In the simplest form, the header contains the
size of data in the buffer. Other information such as the sender’s ID, the receiver’s ID,

and the relative order of the packet in the entire message can be included in the header.

The protocol is shown in Figure 5.11. More detail can be found in Table 5.4.
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Figure 5.11 Communication protocol for dynamic allocation

Only the shaded parts of the protocol are shown. a) The tfransmitter applies for the lock. After
getting the lock, the tfransmitter allocates a buffer, writes the buffer number in the mailbox of Rx,
releases the lock, and transfers data to the buffer. b) The receiver gets the allocated buffer
number from its mailbox, reads data, releases the buffer, and clears ifs busy flag in the mailbox.
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Table 5.4 Protocol for dynamic allocation

In transmitter:

1. The status of the Rx node in the mailbox is checked. If it is not ready,
indicating that the previous transmission is still in progress, the transmission

loop is resumed.
2. A buffer is allocated for transmission. To do this:
e The lock is obtained by applying and waiting to become the master.

» The file allocation table is searched and a free buffer is allocated. If no
free buffer is available, the search is performed repeatedly until one

buffer is freed by other nodes.
e The lock is released.
3. The packet is transmitted as follows:

e The allocated buffer number is written into the receiver mailbox and

the Rx is marked as busy.
o The start address of the buffer is obtained from the address table.
o The header and data are written into the buffer.
» The variables are updated.

4. An interrupt is generated for the receiver. The transmission loop is resumed.

In receiver:

1. Depending on the received interrupt, the identity of the transmitter is known

to the receiver. Therefore, after receiving an interrupt:
e The local buffer to hold the data is determined.

e The buffer number used in transmission is read from the receiver

mailbox and its address is obtained from the buffer address table.
» The size of the packet is obtained from the buffer header.
2. Data is transferred from the shared memory into the local buffer.

3. The buffer is released and the busy flag in the mailbox is cleared to indicate
that the packet is received and the receiver is ready to get more data from the
same transmitter. Variables are updated and the interrupt service routine is

terminated.
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Note that in the last step of the protocol as shown in Figure 5.11-b, the receiver releases
the buffer without using the lock. The reason for this will be explained in the discussion

section.

3.3 Protocol for multicast / broadcast

Multicast and broadcast can be implemented by applying minor changes to the
protocol. Each entry in the allocation table is capable of holding broadcast information.

A modified entry incorporates the following information:

e Bit-15 is for buffer status (“0” for free, “1” for allocated).
e Bit-14 is for transmission type (“0” for normal, “1” for multicast/broadcast).

o Bits 3-0 are node-bits for the receivers 4 to 1 in bitmap form. A “1” in each

bit position indicates that the corresponding node will receive the data.

The structure of the buffer allocation table is shown in Figure 5.12. The format and the
protocol were modified in a way that the added overhead to the transmissions not using

multicasting was reduced to a minimum.

15 0
T
.- 15 14 3 2 1 0
[ ]
[ ]
™ |
node-bits for nodes 4-1
multicast bit ? 5 ”Oge W?” not f?ce(;VGT
- 0 = normal = Node will recelve adata
a) buffer allocation table 1 = multicast
_ dliocation bit

0= free
1 = dllocated

b) the entry for each buffer

Figure 5.12 The structure of buffer allocation table

a) Each buffer has an entry in the allocation table. Bit-15 is used o
dllocate the buffer. b) Other bits of the buffer entry are used in
multicasting/broadcasting.  Bit-14 shows normal or multicast
fransmission, and bits 3-0 define which nodes should receive the
data.
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The transmitter checks the status of all the receivers. If all are ready, it allocates a
buffer, writes the broadcast information in the buffer entry in the allocation table, and
transfers data to the buffer. Then it writes the buffer number into the mailbox of each
receiving node and marks them as busy. In the end, it generates an interrupt for each of

the receivers.

The receiver reads the data from the buffer and clears its node-bit from the
corresponding buffer entry in the allocation table. If the buffer entry shows that no more

nodes are left to receive the data, the receiver also releases the buffer as the last node.
Figure 5.13 shows the communication protocol under multicasting/broadcasting.

Because of the structure of the buffer allocation table, there is a possibility of write-
write conflict on the shared memory. This may happen if two or more nodes try to
remove their node-bits from the buffer entry at the same time. In removing a node-bit,
other information in the buffer entry must be preserved. Therefore, any programming
method should first read the entry, mask the corresponding bit, and write it back. Even
with the instruction set of the TMS320C50 that makes it possible to do this task using
only one instruction, the memory read and write take place at two different clock
cycles. Therefore, if two or more nodes perform this step at the same time, one of them,
which is normally the lagging one, may overwrite the data written by the other nodes.
Consequently, removing the node-bit may not take effect properly and the buffer may

remain allocated.

This conflict is unlikely to happen and it was observed only in long runs on MultiCom.
However, a reliable system requires the removal of the conflict. Two approaches can be

considered in this regard:

1. After removing the node-bit from the buffer entry, each node checks the entry

and if unsuccessful, tries again.

2. The node-bit is removed by the aid of the lock.

The first approach is very simple and there is not much overhead involved. However,
because at least two nodes may attempt to write different data in the same location

simultaneously, undesired information could be written in the target location, which
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Figure 5.13 Communication protocol using multicasting/broadcasting

a) In case of a multicast/broadcast, fransmission starts only if all of the receiving nodes are
ready. Affer obtaining the lock and allocating a buffer, the tfransmitter writes the information of
the receivers in the buffer entry, and the buffer number in the mailbox of each receiver. Then it
fransfers data to the buffer and sends an inferrupt fo each receiver. b) In the receiver, first data is
collected from the buffer. Then, if there is no other node to receive the data, the receiver
releases the buffer, otherwise, it only removes its node-bit using a special lock.
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could be neither of the two nor even a combination of them. This may create a deadlock
and is not acceptable for a reliable system. It is worth mentioning that no such situation

was observed in MultiCom even in the long runs.

The method of using a lock to remove node-bits is better suited for a reliable system.

There are two options in this case:

1. Use of the existing lock.
2. Use of a special lock as explained below:

e Removing the node-bits is performed on an allocated buffer entry, but the
allocation process searches for a free buffer. Therefore, there is no conflict
between the two, even if both are performed at the same time. Hence, a

separate lock can be used for this purpose.

» In order to minimize the overhead, a simplified version of the fast lock can be
used. In this version, a fixed priority for the nodes rather than circular priority

can be implemented.

« If other nodes have already removed their node-bits from the buffer entry, the

last node does not require a lock to remove its node-bit.

Using the existing lock increases the overhead, and the system may end up in a
deadlock as explained in the discussion section, but the special lock has a reasonably
small overhead. Therefore, the latter was used for removing the node-bits in

multicasting/broadcasting.

It should be restated that the programming was carried out with the minimum added

overhead to the communication without multicasting/broadcasting.

Considering the fact that broadcasting can reduce the communication overhead in the
system by a large extent, the small overhead of removing the node-bits is negligible.

The system throughput is expected to rise considerably under this protocol.

The results obtained from MultiCom under different protocols are presented and

discussed in the following section.
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4 Results from MultiCom

Using suitable protocols, static allocation, dynamic allocations, and multicasting/
broadcasting were tested on MultiCom and the performance of the system was
evaluated. The results are presented in this section. The outcomes are also compared to
other systems using serial links, bus-based architecture, and dual-port memories.
Before discussing the results, the mechanism of data transfer using the nodes of

MultiCom is described so that the results can be analysed thoroughly.

4.1 Details of data transfer

In order to interpret the achieved results better, the mechanism of data transfer is
explained in more detail. The transfer of data from a local buffer to a buffer in the
shared memory and vice versa is performed with block transfer instructions. The
TMS320C50 has a series of instructions to perform this task. One of them is BLDD
standing for “Block Load from Data memory to Data memory”. This instruction can be
repeated with the RPT instruction to create the transfer loop. Considering the effect of
the 4-stage pipeline of the processor, BLDD in repeat mode is optimised to act as a
single cycle instruction. Therefore, the data transfer from shared memory to local
memory takes only one cycle per a 2-byte word. However, the reverse transfer that
writes to the external memory includes an internal wait cycle and takes two cycles per
word. As explained in the discussion of the nodes in Chapter 4, this extra cycle is
introduced to allow a smooth transition between write and any adjacent bus operation
[TI 97]. Hence, the overall transfer of a 2-byte word from one node to another takes
place in three cycles; two for writing by the transmitter, and one for reading by the
receiver. This number puts an upper limit for the communication bandwidth of the

system.

With the 50 ns cycle time of the processor, the communication bandwidth through the
memory for each node is 13.3 MBytes/s (i.e. 2 bytes in 150 ns). For four processors in
the system, and assuming that all of them are communicating without any overhead, the
peak communication rate or the bandwidth for the overall system would be 53.4
MBytes/s. In practice, the following factors, as explained in different protocols, degrade

the peak rate:
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» Finding the transmit buffers and checking the readiness of the receiver.

e Allocating a buffer in the shared memory (especially in dynamic allocation,
which requires applying for the lock, acquiring it, and searching for a buffer).

« Initialising the counter and address pointers, initiating the repeat mode, and

generating an interrupt for the receiver.

o Latency in acknowledging the interrupt in the receiver, and the overhead of

identifying the transmitter, initialising and initiating a block transfer.
» The busy status of the receivers, which adds extra delay to the communication.

e The finite and limited buffer size in the shared memory, which causes a long

message to be sent in several packets rather than one.

The buffer size in the shared memory is a very important factor in the communication
rate. As there is a fixed overhead in sending a packet of any size, by using bigger
buffers, a long message can be sent in fewer large packets and the overall overhead will

be reduced, resulting in a higher throughput.

With the total communication rate as the focus of the experiment, MultiCom was tested
under static allocation, dynamic allocation, and broadcasting. The results are presented

in the next section.

4.2 Results of static allocation

The effect of the buffer size on the communication rate and the associated

communication overhead using static allocation are shown in Figure 5.14.

The figure shows that by increasing the buffer size, the communication rate increases
and approaches the peak communication rate. For static allocation, the maximum buffer
size for the shared memory of 4K words was 336 words. The maximum communication
rate of 45.5 MBytes/s was achieved for this buffer size, showing overhead of 15%.
Considering the unavoidable overheads in the system as discussed above, 15% is
reasonable and shows the effectiveness of the protocol under heavy traffic. As explained
in the next chapter, by increasing the memory size, the communication rate can increase

and approach the peak rate, because bigger buffers can be used.
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Figure 5.14 Effect of buffer size on communication rate and
overhead in static allocation

Increasing the buffer size increases the communication rate and
reduces the overhead. The maximum rate of 45.5 MBytes/s was
achieved for the buffer size of 336 words. With 15% overhead, the
result is close to the peak rate.

The figure also shows that by reducing the memory size to 2K words, which reduces the
buffer size reduces to 168 words, the communication rate is reduced by only 9%.
Hence, an acceptable performance can be achieved even with a small shared memory.
Increasing the memory size beyond its current size of 4K words will only improve the

performance slightly and may not justify the additional expense.

This is an important outcome of the experiment indicating that the structure does not
require a large shared memory [Asgari+ 01]. This outcome will be verified by the

simulation model, and will be discussed in more detail in the next chapter.

Latency is defined as the time it takes for a packet to reach from a sender to a receiver.
The latency for the static allocation was 2.4 pus for a 4-byte packet and 12 us for a 128-
byte packet.
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4.3 Results of dynamic allocation

With the performance of static allocation being reasonably close to the peak
communication rate, there is not much to gain in applying dynamic allocation.

However, there are two reasons why dynamic allocation is more useful:

1. Dynamic allocation scales better than static allocation. As explained in
Chapter 7, the ultimate goal is to design a communication structure using 9-
port memories. In static allocation, an N-port memory should be divided into
N(N-1) buffers. Therefore, the buffer size would be very small for large N.
Moreover, as the number of ports increases, the internal connections inside the
memory chip increase considerably resulting in less space for the memory
cells. Hence, a 9-port memory is expected to have a small capacity and
dividing it into 72 buffers will yield even a smaller buffer size. Hence, the
performance loss will be substantial. Considering the fact that not all of the
buffers are simultaneously used, a better memory management such as
dynamic allocation is required to make efficient use of small shared memory

size.

2. Multicast and broadcast, which potentially increase the system performance
considerably, can be implemented easily in dynamic allocation as explained
before. However, in static allocation, each buffer is pre-allocated to one
transmission only and it cannot be shared with the other nodes. It might be
possible to change the structure of static allocation to incorporate multicast
and broadcast, but it would require a lock similar to the one used in dynamic

allocation and will lose its simplicity, speed, and efficiency.

Dynamic allocation adds extra overhead to the system, mainly because of the lock
mechanism and the buffer allocation process. However, its capability for easy
implementation of multicasting/broadcasting, as well as its better scalability makes it
more attractive than static allocation. In Chapter 6, the difference between the

scalability of these allocation methods will be demonstrated.

Figure 5.15 shows the communication rate for different buffer size and buffer counts.
During each test, the number of allocations performed on each buffer was also
recorded. An interesting result was achieved from these figures; they showed that for

four nodes under heavy communication traffic, no more than six buffers were required
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Figure 5.15 Communication rate for dynamic allocation

In dynamic allocation, increasing the buffer size increased the
communication rate, but no more than six buffers were used. The best
result of 45.8 MBytes/s was achieved for the buffer size of 672 words.
Increasing the buffer size to 806 words dropped the performance
because only five such buffers could be created with memory size of
4K words.

(In a rare case, the seventh buffer was used only once). Therefore, for four nodes, only
half of the buffers used in static allocation were used. The dependency between the
number of nodes and the buffers in use will be checked by the simulation model in the

next chapter.

The highest value for the communication rate was 45.8 MBytes/s, achieved for six
buffers of 672 words. As expected, the increase in performance is not significant
compared to the 45.5 MBytes/s achieved for static allocation; however, it is expected
that this method can perform much better if a large number of ports and small memories
are to be exploited. Furthermore, as shown in the next section, better performance can
be achieved by using dynamic allocation for multicasting/broadcasting. It should be
noted that the results of Figure 5.15 were obtained for a system in which multicast/
broadcast was also checked. Slightly higher performance could be achieved if the

overhead of checking for multicast/broadcast was removed.
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For five buffers of 806 words, although the buffer size was increased, the performance
dropped. This is because one less buffer could be created for the limited memory size of
4K words. Hence, some nodes had to wait for a buffer to be released. Increasing the
number of buffers to seven dropped the performance because of the reduced buffer size.
The extra buffer in this case was rarely used. The rate obtained for the buffer size of 336
words was 40.8 MBytes/s compared to 45.5 MBytes/s of the static allocation for the
same buffer size. This reveals the extra overhead imposed on the system by using the

lock mechanism and the allocation process.

Moreover, the latency of the dynamic allocation was slightly higher than the static

allocation, obviously for the same reasons stated before.

Dynamic allocation enjoys the benefits of better memory management, but it suffers
from the overhead imposed by the serial nature of the lock mechanism, and the software
implementation of the lock. Better performance could be expected if a hardware lock
similar to the semaphore logic were available for multiport memories. Moreover,

improving the algorithm for the software lock could enhance the performance slightly.

4.4 Results of multicasting/broadcasting

One of the major advantages of the dynamic allocation is the easy implementation of
multicasting/broadcasting. A message is written into the shared memory buffer once,
but it is received by more than one node. This results in a considerable saving in time by
avoiding duplicate buffer writes. In addition, multiple attempts to apply for the lock and
to allocate a buffer are reduced to one attempt only and the overhead decreases. Hence,

messages are transferred much faster and the communication rate increases.

Figure 5.16 shows the communication rate for broadcasting. The best result was 68.2
MBytes/s, and shows about 50% increase in the performance of static or dynamic
allocations. Owing to the fact that messages can be delivered much faster because of
fewer writes and reduced overhead, the achieved communication rate is 30% better than
the peak rate for node-to-node communication. The maximum number of buffers

involved in communication did not exceed four.
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Figure 5.16 Results of broadcasting

Broadcasting can increase the performance significantly because
of fewer writes and reduced communication overhead. The best
result of 68.2 MBytes/s is 50% better than the results of static or
dynamic allocations. The redlistic performance is 64.8 MBytes/s
achieved for the same buffer size used in dynamic allocation.

For a buffer size of 1008 words, the communication rate shows a drop. This is because
the buffer size is comparable to the message size of 1792 words and in sending the
message in two packets, part of the buffer is wasted. If the message size were increased,
the performance would be much better; however, because of memory limitation of the
nodes of MultiCom, it could not be tested. This fact was discovered by the simulation

model presented in the next chapter.

Although 68.2 MBytes/s is the best result achieved, the realistic result is 64.8 MBytes/s
obtained for the buffer size of 672 words. The reason is that in a system, most of the
messages are transferred between two nodes, and only a few may be capable of being
broadcast. Hence, multicasting/broadcasting should be considered in the context of the

normal operations of the system. As the maximum available buffer size for dynamic
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allocation is 672 words, only the performance of the broadcasting for this buffer size
should be considered as the realistic throughput. Compared to static or dynamic

allocations, the performance increase is 41%.

These results confirm that dynamic allocation performs better than static allocation
because of the ability to implement multicasting/broadcasting, and better scalability as

shown in the next chapter.

4.5 Comparison of results

The results from MultiCom show that both static and dynamic allocation can achieve a
reasonably good performance close to the peak communication rate. Furthermore,
dynamic allocation shows its advantage by the use of broadcasting that can reduce the

overhead considerably and achieve a higher communication rate.

As discussed in Chapter3, all the communication structures based on multiport memory
have not gone beyond the proposal stage and their performance have not been
investigated. This makes it difficult to compare the outcome of this research to the
previous work. However, in the following sections, the results of MultiCom are
compared to a bus-based system and other systems using dual-port memories or serial

links.

4.5.1 Comparison to a bus-based system

On a bus-based system using a conventional single-port memory as shown in the
structure of Figure 2.1 on page 12, the processors need to take turn for using the bus and
the communication rate is limited by the memory bandwidth and the speed of
processors. The realistic communication rate would be significantly lower than the
memory bandwidth. This is because each word of a message requires two transactions
on the shared memory. The transmitter should write the word in the shared memory and
the receiver should read from it. Hence, for a transfer of a word under heavy traffic, the
delay of the arbitration logic and the waiting time of the processors for the busy bus
should be taken into account. In addition, the time spent on local memory transactions
to fetch or store the word should be also considered. Moreover, if the system is

upgraded to more nodes, the communication rate will not improve at all, and in fact, it
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will be further downgraded, as there would be more demands to access the shared

memory and increased waiting period for the nodes.

To illustrate these facts, the results of a research to interconnect four Inmos T800
Transputers through a bus-based shared memory are discussed here. [Boianov+ 91]
reports a network of 20-MHz T800 Transputers interconnected with 64 KBytes of
single-port memory (with 45 ns access time) through memory arbitration logic. If the
bus was used by one of the nodes, other nodes requesting a memory access were forced
into a wait state by the arbitration logic. When the bus was released, the arbitration
logic terminated the wait state for the node with the highest priority enabling the node
to use the bus for its memory access. For a reduced communication overhead, the
memory management of this system used predefined memory buffers similar to the
static allocation discussed earlier. The communication rate for 2 or 3 nodes was 3.36
MBytes/s; however, adding the 4th node reduced the communication rate by 25% to
3.31 MBytes/s. This was because of the increased waiting period for the nodes to

perform a memory access.

MultiCom outperforms this bus-based system by a factor of 14. The main reason for
this large difference is that in the bus-based system the nodes have to share the limited
bandwidth of the bus. In a heavy demand for memory, such as all-to-all communication,
most of the times the nodes are forced into wait states and the throughput of the system

is reduced considerably.

4.5.2 Comparison to a system using dual-port memory

The result of a system using dual-port memories for communication is discussed below.
[Campbell+ 96] reports the design of COMPS, which stands for “COmmon memory
Message Passing System”. This system was designed by using Intel 486DX2/66 CPUs
as node processors (with 66 MHz processor clock and 33 MHz bus clock), and
IDT7006 dual-port memories (16 KBytes, 45 ns) as shared memory. The memory chips
were used in pairs to achieve a word length of 16 bits. A cluster of five nodes was
reported to be near completion in [Campbell+ 96]. Under light traffic conditions and for
a buffer size of 1000x16 bits, the measured memory access rate to send a packet of data

to the dual-port memory was quoted to be around 2 MBytes/s. The same rate applied for
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receiving data from the dual-port memory. Consequently, each node had a
communication rate of 1 MBytes/s. The aggregate communication rate was not
mentioned; however, for comparison, an upper bound can be estimated for a four-node
system. In order to have a full connection between four nodes, this system would
require six blocks of dual-port memory between the nodes, and each node would need
to be connected to three different memory blocks. Under these conditions, the upper
bound communication rate would be 4 MBytes/s [Asgari+ 98]. It should be mentioned
that COMPS was designed to work under an operating system with slow bus protocol

and it used slower memory than MultiCom (45 ns compared to 35 ns of MultiCom).

The results of MultiCom show a considerable improvement over the system using dual-
port memories in terms of both performance and cost. The communication rate is
increased more than 11 times and the number of blocks of memory is reduced six times
(one 4-port memory compared to six dual-port memories, which is about 75% reduction
in cost). The increase in performance could be even higher if the exact value of the
communication rate rather than an upper bound was available. Moreover, broadcasting

shows an increase of at least 16 times in performance compared to this system.

It is worth mentioning that although broadcasting is possible in structures using dual-
port memories, it will not have similar benefits as the systems using multiport

memories.

4.5.3 Comparison to serial links

The results of a system using serial links with comparable capabilities to MultiCom are
also included in this comparison. As discussed in detail in the previous chapter, in this
hypothetical system, four nodes are connected in a 2-cube structure using 20 Mbps
links. The intermediate nodes pass the data to the destination node without storing it. It
is assumed that there is no overhead in the communication and the optimum approach
in delivering the messages is selected. Under these conditions, the upper bound for the
aggregate communication rate would be 10.9 MBytes/s. Compared to the upper bound

performance of this system, MultiCom performs at least 4.2 times better.
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Figure 5.17 Comparison of results

MultiCom outperforms certain bus-based systems and systems using
dual-port memory or serial links by a considerable amount, The
performance is more than 4.2 times compared to a serial system and
11 times better than a system using dual-port memory, and 14 times
befter than o bus-based system. Broadcasting has the highest
performance in MultiCom.

Figure 5.17 summarizes the results obtained form MultiCom and compares them to a

bus-based system and other systems using dual-port memories or serial links.

5 Discussion

In this section possible ways of improving the performance of MultiCom such as using
wider datapaths or faster nodes are discussed. In addition, the structure of the allocation
table is discussed and the advantages of using this structure over other methods are

presented.
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5.1 Improving the performance

The performance of MultiCom can be improved in two ways as explained in the

following sections:

5.1.1 Increasing the speed of nodes

The performance of MultiCom was tested with 20 MHz node-processors. Increasing the
speed of the nodes can enhance the performance of the system. In upgrading the
processor speed, the speed of memory or its access time should be also considered. If a
linear performance increase is required, the speed of memory should be upgraded at the
same rate of the processor speed. If the memory speed cannot follow the rate of increase
of the processor clock, arrangements should be made for the memory to be accessed in
two or more cycles. In this case, the performance will depend mostly on the memory
access time. Nevertheless, performance boost is still expected as tasks other than data

transfer can be performed at a higher clock rate, reducing the communication overhead.

In 2002, IDT introduced IDT70V5388, a four-port memory with capacity of 64Kx18
bits and speed of 200 MHz [IDT 02]. The performance of MultiCom can be increased
significantly by using high-speed processors and faster memories such as IDT70V5388.

5.1.2 Use of wider datapath

MultiCom was built as a prototype to evaluate the performance of a communication
scheme using multiport memory. It used 16-bit processors and the required 16-bit
memory was created by two 8-bit memories connected in parallel. There is no
restriction in using a wider datapath. For example, if a 32-bit processor is selected, the
required memory can be built with four 8-bit memories in parallel, or with two 18-bit
newer version of the 4-port memory. Similar arrangements can be made for 64-bit

nodes.

Using a wider datapath can enhance the communication bandwidth linearly because
transferring a fixed amount of data to or from memory will require less time. The
practical communication rate will be slightly less than this, because the communication

overhead that arises mainly from the preparation of the nodes for transmission or
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reception does not depend very much on the width of the datapath and remains virtually

the same.

A wider datapath can compensate for the use of smaller multiport memories in larger
systems. This is because horizontal expansion of memory can yield higher performance
increase than vertical expansion. For example, MultiCom upgraded to a 4Kx32-bit
shared memory can achieve much higher rates than a system upgraded to an 8Kx16-bit
memory. Although both use the same number of memory cells, the throughput will be
almost doubled in the former, where as in the latter the throughput will increase only
slightly (Refer to Figure 6.1 on page 123). This point is especially important in bigger
systems in which a larger number of ports for the multiport memory is required. As
explained before, multiport memories with larger port counts will probably have very
limited capacity; however, the small capacity can be balanced by the use of a wider

datapath.

Wider datapaths combined with higher port counts will increase the routing complexity
of the PCB design. However, with current multi-layer PCB design technology, a careful
design can overcome the routing problems. The designer should also keep the PCB

trace lengths balanced to avoid signal skews.

Wider and faster multiport memories are supported by the leading memory
manufacturing companies. For example, IDT70V3579 is a dual-port memory module
from IDT with a capacity of 32Kx36, speed of 4.2 ns/133 MHz in a 208-pin packaging
[IDT 99]. Moreover, as explained before, IDT has released its new version of 4-port
memory with the capacity of 64Kx18 bits and speed of 200 MHz in a 256-pin
packaging [IDT 02].

5.2 Structure of the allocation table

As explained earlier in Section 3.3, the allocation table uses one entry per buffer, and bit
15 indicates if the buffer is allocated or free. An alternative approach would be to use
only one word to hold the status of all the buffers as a bitmap. Although this is a very
common practice, it may end up in performance loss by adding extra overhead to the

system. The reasons are discussed below:
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In the last step of the protocol in Figure 5.11-b, the receiver releases the buffer without
using the lock. The reason lies in the structure of the allocation table as shown in
Figure 5.12. A free buffer is sought in the allocation process, whereas an allocated
buffer is freed in the releasing process. As each buffer has a separate entry, there is no
conflict between allocating and releasing, even if performed simultaneously. Hence,

there is no need to acquire the lock for releasing a buffer.

On the other hand, if the bitmap approach were used to keep the status of the buffers,
the use of the lock for releasing a buffer would be inevitable. This is because two nodes
allocating and releasing two distinct buffers at the same time would write different
information in the same location; hence, there is a potential for a write-write conflict.
This type of conflict could easily crash the entire communication in the system because

of the major dependency of the communication on the allocation table.

Using the lock to release the buffer would require the receiver to apply for the lock and
wait to acquire it. This process increases the overhead of the system and reduces the
performance. Moreover, it could interfere with the other activities of the receiving node
such as transmitting to other nodes. The reason is that at the end of an interrupt service
routine where the receiving node should free the buffer, the node has no information
about its previous attempt to register for the lock (for transmission purpose) and the
progress made so far. If the node applies a second time, it may destroy the previous
request or interfere with it. It is possible to solve this problem by modifying the
protocol to check previous attempts and share it for releasing the buffer as well, but this
means unwanted overhead, extra performance loss, as well as a prolonged interrupt

service routine.

Moreover, the bitmap structure for the allocation table could end up in a deadlock. In
order to clarify this statement, imagine that a transmitting node acquires the lock to
allocate a buffer for its transmission, but no free buffer is available. Although the
critical section of a node when using a lock should be short and free of loops, there is no
point in releasing the lock for others to use. This is because the lock is used exclusively
to allocate a buffer. If another node gets the lock, it will also search for a free buffer,

which is not available yet. While holding the lock, the node keeps trying until a buffer is
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released. Meanwhile, another node finishes receiving the data and needs to release the
buffer. It registers to get the lock. This creates a deadlock because there is no buffer to
allocate, and no lock to release an allocated buffer. The deadlock can be removed by
adding extra steps to the protocol such as releasing the lock when no buffer is available
and applying again later; however, adding extra steps increases the overhead and

decreases the performance.

Another benefit of using a separate entry for each buffer is that it facilitates the
implementation of multicasting/broadcasting. As explained in Figure 5.12 on page 96,
the unused part of the buffer entry is used to identify the receiving nodes. If a bitmap
structure for the allocation table were used, a separate table would be required to hold

the broadcast information.

Furthermore, there is no extra overhead in searching the current structure of the
allocation table for a free buffer compared to searching the bitmap structure. In fact,
with the instruction set of the processor in use, the current structure is searched even

faster.

6 Conclusion

Memory management is an important issue for the interprocessor communication of
MultiCom and it is implemented using both static and dynamic allocations. Static
allocation is easy to implement and the associated overhead is very low. However, only
a portion of the valuable shared memory is actively used in communication at a time,
and the rest remains idle. On the other hand, dynamic allocation can use the entire
capacity of the memory in the communication, but its structure is much more
complicated and requires a lock mechanism, which has a serial nature. The lock
mechanism can be easily implemented with hardware semaphores; however, the
memory used in MultiCom did not have a semaphore latch. Hence, the only possible

way to implement a lock was to use software semaphores.

The waiting list algorithm was tested on MultiCom to implement a software semaphore.

In addition, two newly devised algorithms based on a modified TOKEN passing scheme
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were designed and tested on the system. Both of the algorithms proved to perform

effectively and could overcome all the memory conflicts.

For the communication protocol, first a basic protocol was developed and tested for
static allocation. Then the software semaphore was added and the protocol was
modified to support dynamic allocation. As an advantage of dynamic allocation,
multicasting/broadcasting was also implemented by applying the required
modifications to the protocol. The structure of the buffer allocation table was designed
in a way that it could facilitate the implementation of multicasting/broadcasting and the

lock was not required for releasing buffers.

The aggregate communication rate in the entire system was measured in several
experiments. The buffer size of the shared memory was a very important factor in this
regard. For static allocation, the best communication rate was 45.5 MBytes/s. For
dynamic allocation, the best rate was 45.8 MBytes/s. This rate was achieved in the
presence of the extra overhead for checking multicasting/broadcasting in the protocol.
Both of the results were very close to the peak communication rate in which all of the
nodes could communicate with zero overhead. Considering the amount of overhead
available in the protocols, the overhead of 15% is very reasonable. Multicasting/
broadcasting could achieve the rate of 64.8 MBytes/s, which was 41% better than the

node-to-node communication rate using static or dynamic allocations.

The capability of dynamic allocation in implementing multicast/broadcast as well as its
better scaling characteristics proves that dynamic allocation is a better memory
management technique compared to static allocation. This outcome will be discussed in

more detail in the next chapter.

MultiCom outperformed a bus-based system in its class by a factor of 14. Compared to
a system using dual-port memory for interprocessor communication, the performance
was boosted 11 fold, and the cost was reduced by using one shared memory. If
multicasting were also considered, the boost in performance would be more than 16.
MultiCom performed 4.2 times better in comparison with a hypothetical system using

serial links.
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The performance of the system can be greatly enhanced by using faster node processors
and wider datapaths. The communication bandwidth of MultiCom can be upgraded to

over 1 GBytes/s by using 32-bit processors running at 200MHz and fast memories.

Overall, the system shows a significant increase in performance over comparable
multiprocessor architectures with serial links, dual-port memories, or bus-based
systems. It also shows a significant cost reduction and a much simpler design compared

to dual-port memory schemes.
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Simulation Modelling

caling of MultiCom cannot be easily performed within the
limited resources of a research laboratory. Hence, the best
way to evaluate larger systems would be the use of a
simulator. In this chapter, the simulation model of
MultiCom is introduced and is gradually expanded to cover
a larger network. First the extension of the model to cover a
large group is presented and scaling of the system under
both static and dynamic allocations is verified. Then the
expansion of the model to encompass a cluster of groups of
nodes interconnected by a network controller is
demonstrated and performance of the system is evaluated.
A proper communication protocol was implemented in each
simulation stage. The overloading of network controller is
also explored and the cause of a communication bottleneck
is investigated. Finally, the model for a larger network and

the associated problems are discussed.
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1 Simulation model

As a new framework for interprocessor communication, MultiCom showed that the
communication between the nodes could be performed through a multiport memory
with high throughput. Small systems are easy to implement and design; however,
moderate or large-scale systems cannot be implemented within the limited resources of
a research laboratory. Moreover, the design of larger systems requires significant
financial support and well-organized teamwork. Hence, the only possible way to

evaluate the structure on larger systems was the use of a simulation model.

MultiCom provided sufficient background to build a simulator. Observing the
behaviour of nodes and their interaction with multiport memory in a working system
was very valuable in building the structure of the model. As the first step in designing

the model, it was decided to simulate MultiCom. This could be useful in two ways:

1. The basic structure of the model would be generated and verified by a working

prototype.

2. Further expansion of the model would be relatively reliable, as it would be

based on a verified model.

The simulation model created in this stage was modified to cover larger systems in three
stages [Asgari+ 99b]. In the subsequent sections, the structure of the model and the

simulation stages are explained and the achieved results are discussed.

2 Structure of simulation model

The simulation model incorporated several modules. The main modules were the node
module, multiport memory module, and network controller module. Related modules
such as group module and cluster module were derived from these main modules. Other
minor modules were also used in the simulator. Because of the modular features of the
model, an object-oriented approach was used and the simulations were carried out in

C++. Only important modules are explained in the subsequent sections.
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2.1 Node module

The simulation model of the nodes was based on the simulation of TMS320C50
processors. Critical tasks such as applying and acquiring the lock that were subject to
memory contentions were simulated on a cycle-by-cycle basis. For non-critical tasks,
instead of simulating every instruction, an abstract form was used whereby a group of
instructions that performed a specific task was simulated as a single command that
required several cycles. Checking receivers, allocating a buffer, initialising for
transmission, transmitting data, generating interrupts, and various steps in receiving
data in an interrupt service routine are examples of the available commands. Based on
the characteristics of the TMS320C50 node processors and the observation of their
behaviour in MultiCom, the timing of the commands and the number of cycles required
for each one were defined in a configuration file. The activities of the nodes under the

applied protocol were defined in a program file using these commands.

The clock rate of the nodes was fixed at 20 MHz, which was the same rate used in
MultiCom. In fact, the clock rate does not affect the simulation model, but it defines the

period of the simulation clock used in calculating the communication rate.

After defining the node module, a group module was created by instantiating the
required number of nodes and integrating them with a multiport memory module,
which is explained in the next section. A cluster could be generated by connecting

several groups to a network controller module as explained later.

2.2 Multiport memory module

The module for multiport memory was designed by considering the structure and
behaviour of IDT5054, which is the 4-port memory used in MultiCom. The module
could be linked to the required number of node modules with each node capable of

reading from or writing to the memory cells independently.

Apart from the normal activities of this module as a shared memory, a sub-module was
also defined. All the signalling among the nodes could be performed through this sub-
module. For example, generating an interrupt for a node was recorded in the sub-

module and every node had to check it routinely to detect the incoming interrupts.
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In both the memory module and the sub-module, provisions for simultaneous access of
the nodes to critical data such as lock variables were provided. Lock variables could be
accessed by more than one node at a time, and modifying their contents needed to take
place only after termination of all the accesses in progress. By implementing this
method, the write-write and write-read conflicts that may have occurred in queuing or

acquiring the lock and in interrupt generation or reception were taken into account.

2.3 Network controller module

Similar to the nodes, network controllers were based on the TMS320C50 processors;
however, the two modules were not identical. One of the differences between a node
and a network controller is that a node only accesses one multiport memory, but a
network controller needs to access more than one multiport memory in order to link
different groups or clusters. As shown in the structure of Figure 3.4 on page 48, for
linking eight groups of a cluster, each network controller is connected to eight different
multiport memories. It is also connected to another multiport memory for linking its
cluster to other clusters. The other difference is that the activities of a network
controller acting as a link between nodes are different from the activities of a normal
node working as a transmitter or a receiver in the network. Hence, a network controller
required a separate program file and new commands were created for programming its

tasks.

Consequently, the model of a network controller module was very similar to that of the
node module with the provision of accessing several multiport memory modules
arranged as a memory array. In addition, new commands were defined for its
programming. With the capabilities of C++, it was possible to derive the node and
network controller modules from the same class; however, for various reasons, a

separate module was defined for each one.

2.4 Log file

The log file was not really a module. It was an output file generated by the simulation
program and every activity in the network was recorded in it. As the simulation clock

advanced, the activity and status of all the nodes and network controllers were recorded
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in this file. These records were listed in chronological order and the status of the
network at any stage could be checked by reviewing the recorded events. The log file
was a valuable tool in debugging the simulation program, especially at the development
phase, and was used for checking the validity of the communication between the nodes.
In addition, conditions such as an insufficient number of buffers or an overloaded

network controller could be detected by examining the records of the file.

3 Simulation stages

The simulations were carried out in four stages starting from the simulation of
MultiCom to the simulation of the entire network of Figure 3.4. The stages were as

follows:

Simulation of MultiCom

Simulation of a large group with more nodes

Simulation of a cluster with several groups interconnected by a network

controller

Simulation of the entire network

Each stage will be discussed separately and the results will be presented in separate

sections.

3.1 Simulation of MultiCom

Simulation of MultiCom was a good starting point in developing the framework for the
simulation model. In this stage, the basic structure of the model was implemented
according to the characteristics of the nodes and the multiport memory of MultiCom.
The results were compared to the results of MultiCom, and the model was fine-tuned to
produce identical results. This was performed to ensure that the simulation results

would be more reliable in the expanded system.

The all-to-all test program used in MultiCom was used to test the model. As explained

earlier, each node sent a message of 1792 words to all other nodes through the shared
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memory and heavy traffic was generated. For testing buffer sizes bigger than the buffer

size of MultiCom, the message size was also increased to maintain the heavy traffic.

In verifying the simulation model, every attempt was made to ensure that the model
worked under the same conditions as in MultiCom. After checking the results obtained
from the model, the timing of commands in the configuration file was adjusted so that

the simulation results matched the results of MultiCom.

Both static and dynamic allocations were implemented on the simulation model. Each

case is discussed in a separate section.

3.1.1 Static allocation

The simulation model was tested under static allocation and the results are plotted in
Figure 6.1. The X-axis is almost logarithmic as, with few exceptions, for each entry the
buffer size and the memory size are double the previous entry. (In fact, the buffer size is
divided by two in decreasing X direction and rounded.) The shaded bars on the graph
are almost identical with the results obtained from MultiCom in Chapter 5. The striped
bars show that if the buffer size (hence the memory size) is increased, performance of
the system will approach the peak rate and the overhead will drop to 3%. As explained
earlier, the peak rate was calculated from the maximum rate that the nodes could write

to and read from the multiport memory without any overhead.

As stated in the previous chapter, a large shared memory was not required for this
communication scheme. Figure 6.1 confirms this statement. For the memory size of 4K
words and under heavy traffic, the performance is close to the peak rate with 15%
overhead. By increasing the shared memory size to 8K words, overhead drops to 8%.
Additional increase of memory to 16K and 24K words drops the overhead to 4% and
3% respectively and the performance rise is not significant. A further memory increase
has no effect and the overhead stays at a minimum value of 3%. It can be concluded that
for the all-to-all test program, the system is able to operate with a shared memory as
small as 4 or 8K words and can achieve near peak performance with reasonable
overhead. Additional increase of memory will not boost the performance significantly.

As explained in the next section, this is even more obvious in dynamic allocation.
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Figure 6.1 Simulation results for static allocation

The shaded bars match the results of MultiCom. As shown by the
striped bars, increasing the buffer size increases the performance
and drops the overhead, but the change is not very significant.
Static aliocation performs very well for small systems.

Moreover, performance gain should be compared to the cost of increasing the memory
size. For example, increasing the memory size from 8K to 16K words will only increase
the performance by 4%, which is too small to justify the associated increase in the cost

of using bigger memories.

3.1.2 Dynamic allocation

The simulation model of MultiCom was tested with dynamic allocation. The results are
shown in Figure 6.2. Similar to the static allocation, the shaded bars match the results of
MultiCom. The striped bars were obtained by increasing the buffer size (hence the
memory size). Increasing the memory size up to a point increases the performance
slightly; however, for the memory sizes beyond 12K words, performance is fixed at 50
MBytes/s. The reason is that the software lock and the associated allocation process
both have a serial nature. They impose extra overhead on the data transfer and limit the

communication rate.

Mulfiport Memory as a Medium for Interprocessor Communication in Multiprocessors 123



CHAPTER 6 Simulation Modelling

MBytes/s

-

e
&Y 6 buffers in use 534

504

40

304

Communication rate

L~
/
204
’q

- 256 336 576 672 1,344 1,696 1,986

Buffer size (words)

Figure 6.2 Simulation results for dynamic allocation

The shaded bars are almost identical to the results of MultiCom.
By increasing the buffer size, the performance does not increase
considerably because of the overhead of the lock mechanism
and the buffer allocation process.

For the all-to-all test program, the results strongly confirm the low memory requirement
of the communication structure. The figure shows that by increasing the memory size
beyond 4K words, the gain in performance is very small. A memory size of 4K words is
adequate for MultiCom and the negligible boost in performance achieved by doubling
the memory size cannot be justified. The outcome is particularly significant because
dynamic allocation is the memory management better suited for large systems. This

point will be explained later in this chapter.

For a four-port system, the effect of memory size on both allocations can be better
explained on a graph using linear axes. Unlike Figure 6.1 or Figure 6.2, the X-axis
representing the memory size in Figure 6.3 is linear. Both static and dynamic
allocations perform more or less the same. The figure shows that performance will not
increase considerably if memory size is increased beyond 4 or 8K words. The saturation

level is 51.9 MBytes/s for static allocation and 50.0 MBytes/s for dynamic allocation.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 124



CHAPTER 6 Simulation Modelling

MBytes/s
60 - —

eak rate
53.4 oo,

50

40

={== Dynamic
—O— Static

30

20

!
8.;
£
S
=

Communication rate

0 4K 8K 12K 16K 20K 24K

Memory size (words)

Figure 6.3 Effect of memory size in static and dynamic allocations

For four nodes, increasing the memory beyond 4 or 8K words does not
affect the performance significantly. The 4K-word memory used in
MultiCom is the best compromise in terms of cost/performance.

The slight difference is mainly because of the lock mechanism used in dynamic

allocation.

The simulation model of MultiCom developed in this stage was expanded to cover more
nodes as explained in the next section. As the model was verified by a physical system,

the results of simulation for larger systems would be more reliable.

3.2 Simulation of a larger group

The simulation model was expanded to cover a larger group with more nodes connected
directly to a multiport memory. A proper communication protocol as discussed in the
previous chapter was implemented in this model. In this stage of the simulation,
performance of the communication in a group was evaluated and the maximum number
of buffers required in dynamic allocation was explored. In addition, the efficiencies of

static and dynamic allocations in larger systems were compared.
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Figure 6.4 displays the communication rates for different node counts under both
allocations. With the fixed buffer size of 672 words in dynamic allocation, the size of
shared memory was increased to accommodate all the required buffers. The figure
shows that by increasing the number of nodes and ports, higher communication rates
can be obtained and the dependency is almost linear. As an example, for eight nodes,
the rate of 90.9 MBytes/s was achieved, which is double the rate for four nodes. The

size of 8-port memory was 8K words compared to the 4K words of 4-port memory.
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Figure 6.4 Scaling in a group

in dynamic allocation, by adding more nodes and increasing the
memory size linearly, the communication rate increases linearly.
However, with the same situation, static allocation does not scale
very well and the performance drops for large node counts.

The figure also shows the performance of static allocation for increasing numbers of
nodes. In each case, the memory size was equal to the size used in dynamic allocation.
For N nodes, N(N-1) buffers were required and the buffer size was determined by
dividing the memory size by the number of required buffers. The results show that by
increasing the number of nodes the communication rate increases; however, its
performance is lower than dynamic allocation. In fact, dynamic allocation scales

linearly but static allocation does not.
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For dynamic allocation, a test program was used to explore the dependency of the
required number of buffers on the number of nodes. In this test, enough buffers were
available and the buffer size was fixed at 672 words. The number of allocations
performed on each buffer was recorded during the test run. The number of buffers used
in the communication was obtained from the recorded data. As shown in Figure 6.5, for
N nodes, the number of buffers actively used in the communication was approximately

1.6N. If more buffers were available, they would not be used [Asgari+ 99b].
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Figure 6.5 Number of buffers used in dynamic allocation

The maximum number of nodes required in dynamic allocation is approximately
1.6 times the number of nodes. If more buffers are available, they will not be used.

The difference between performance of static and dynamic allocations was explored
further on the simulator. With the size of multiport memory fixed at 4K words,
performance of the system for different numbers of nodes was determined under both
allocations. As anticipated, static allocation quickly falls behind the dynamic allocation.
The reason is that the memory is divided into N(N-1) buffers in static allocation, while
a maximum of 1.6N buffers is required for dynamic allocation. Hence, if static
allocation is used in a system with fixed memory size, increasing the number of nodes
does not increase the communication rate considerably as the buffer size is reduced by

NZ. On the other hand, under similar conditions for dynamic allocation, increasing the
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number of ports increases the communication rate, as the buffer size is only reduced by
1.6N. Figure 6.6 compares the communication rates for static and dynamic allocations
for the fixed memory size of 4K words. The figure shows that performance of dynamic
allocation rises as the number of nodes increases. Since the memory size is fixed at 4K
words, the communication rate does not increase linearly as in Figure 6.4. On the other
hand, performance of static allocation flattens at around eight nodes, and even drops

slightly for 10 nodes, achieving only 67% of the performance of dynamic allocation.

The results obtained in this stage of simulation confirm two important features of the

communication structure:

1. Dynamic allocation performs better than static allocation.

2. The structure requires only a small amount of shared memory for

interprocessor communication.

It is worth mentioning that unlike other shared memory systems, in this structure, the
shared memory is only used for message transfer, and a small memory size is adequate

for this purpose.
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Figure 6.6 Static and dynamic allocations with fixed memory size

For a fixed shared memory size of 4K words, increasing the number of nodes in
dynamic callocation increases the communication rate considerably, but in
static allocation, the communication rate saturates. This result confirms that the
memory management of dynamic allocation is better than static allocation.
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Because of the better performance of dynamic allocation and its capability for
implementing multicasting/broadcasting, only this method was used throughout the rest

of the simulations.

3.3 Simulation of a cluster of groups

In this stage, the simulation model was further expanded to encompass a cluster of
groups. Several groups can be interconnected in a cluster using a network controller
(NC). As shown in Figure 3.3 on page 46, a network controller is connected to the
multiport memory of each group through an extra port and acts as an intermediate node
for inter-group communication. Before transmitting data, if a node discovers that the
receiver is in another group, it sends the message to the NC. The data received by the
NC can be transferred to an internal buffer, or it can be kept in the multiport memory.
When the end receiver is ready, the NC transfers the message to the appropriate

multiport memory, where the receiver can collect it.

The simulation model was based on a structure using eight groups, each comprising of
eight nodes. Each node was programmed to send a message of 1792 words to each of
the other seven nodes using dynamic allocation. The receiving nodes could be in the
same group or in other groups. The buffer size was 672 words and 14 buffers were

available in each 9-port memory module.

There are two types of communication in this model. One type is the direct
communication within a group, which is fast and takes very short time. The other type
is the inter-group communication that takes longer to finish because it must go through
the NC and requires two hops. As there is only one NC with limited communication
capacity, if too many inter-group messages are to be sent, the NC can be overloaded and
long delays will be expected. Several different simulations were performed to
determine the effects of sending messages within groups, and between groups of a

cluster.

Considering these points, the communication rate is no longer constant in this model.
The reason is that the nodes that communicate within a group finish early and become

idle, while some nodes are still communicating with the NC. In fact, there are two
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different communication rates in this case. The first one is the communication rate
between the nodes within a group, plus the rate between the NC and the end receivers.
The second one is merely the rate of communication between the NC and some nodes
as the end receivers. In order to measure these rates, the simulator was programmed to
compute the total data communicated in the entire system within fixed time intervals.
By dividing this result by the duration of the interval, the communication rate in the
interval was calculated. It is worth mentioning that only the data received by the end
receivers was included in the total communication measurements, and the intermediate
communications such as transferring data from a node to the NC were not taken into

account.

The interval size was set to 4000 simulation clocks, equivalent to 200 ps. The
simulation model was programmed to generate an output file in which the time, the
cumulative communicated data, and the communication rate in each interval were
recorded. The data in this file can be plotted versus time to achieve the graphs of the
total communication and the communication rate. A closer look reveals that the
communication rate is in fact the slope of the total communication and each one can be
derived from the other one using integration or differentiation. However, as each graph
carries different visual information, both the total communication and the

communication rate are included in the figures.

3.3.1 Communication protocol in a cluster

The communication protocol needed some modifications to include the requirements of
a cluster. The protocol for the nodes required minor changes, but a new section was
added for the tasks of a network controller. The modified protocol for the nodes was
derived from the communication protocol for dynamic allocation as shown in
Figure 6.7. As a transmitter, the node checks the end receiver. If it is in the same group,
the node proceeds as before, otherwise, it sets the NC as the receiver of the message. A
new header, as explained in the next section, was used to identify the original sender
and the end receiver for the messages distributed by the NC. As a receiver, each node
checks the source of received interrupt and if it is from the NC, it refers to the header of
the message to identify the original sender. Only the outline of the protocol is shown in

this figure and the details are omitted.
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Figure 6.7 Communication protocol for a cluster

a) A fransmitter node sends the message to the NC if the receiver is In
ancther group. b) A receiver node finds the original sender from the
header if the message has been distributed by the NC.

A simplified version of the tasks of a network controller is illustrated in Figure 6.8.
After receiving an interrupt, the NC determines the sender and refers to the appropriate
buffer in the shared memory of the sender. It creates a transmit buffer and transfers the

header information along with other useful data into the buffer. As a transmitter, if there
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Figure 6.8 Communication protocol for the NC of a cluster

a) As a transmitter, the NC gets a buffer from the shared memory of the
end receiver and transfers the message to it. b) As a receiver, the NC
creates a buffer for the incoming message and transfers the information to
the buffer,

is an active transmit buffer, the NC checks the end receiver. If it is ready, the NC applies
to get the lock from the shared memory of the receiver. After obtaining the lock, the NC
allocates a buffer, transfers the header and the data to the allocated buffer, and sends an

interrupt to the receiver.
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3.3.2 Header of a packet

The ID of each node represents its group and node numbers. The header of a packet

contains the following information:

e sender’s ID
e receiver’s ID
« size of data in the packet

« a flag for the last packet of the message

If the message is long, it is sent in several packets. A flag indicates that the current
packet is the last packet of the message. Each receiver checks the header and generates

an error message if it finds any error.

3.3.3 Results

The model of a cluster was tested under the conditions explained in the previous
sections. Figure 6.9 shows three different cases. In case (a), all the nodes were
communicating within their groups. In total, 1.61 MBytes was transmitted in around 2.2
ms and the average communication rate was 0.73 GBytes/s. This rate is the slope of the
dashed line in the figure. Each 8-node group contributed 91 MBytes/s to this rate,
consistent with the results of Figure 6.4. The graph of the communication rate as the
slope of the total communication shows a rate of 0.78 GBytes/s. This rate is slightly
higher than the average communication rate, because it excludes the initial delay in the
start of the communication. In case (b), one of the receivers of only one node in each
group was in another group and the message was delivered by the NC. Case (c) was
similar to (b) with two receivers of a node located in other groups. In both cases, the
majority of the messages were transmitted within the groups with the rate of 0.77 and
0.76 GBytes/s respectively, slightly less than the rate in case (a). The inter-group
messages took longer to go through the NC for another hop. When the communication
within the groups terminated, the communication rate dropped considerably indicating
that the remaining communication had to be handled by the NC. In case (c), it took
longer for the NC to distribute the inter-group messages because of its limited

communication bandwidth. For the transfer of larger inter-group messages in a cluster,
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Figure 6.9 Communication of groups in a cluster
a) Communication within groups only.
b) One of the receivers of a node in each group was in another group.
¢) Two of the receivers of a node in each group were in other groups. It
took longer for the infer-group messages to be transmitted.
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the only available NC can be overloaded and longer delays will be expected, resulting

in performance loss.

It is worth mentioning that the graphs show only the effective communication. This
denotes that only the messages delivered to the end receivers were considered and
intermediate messages received by the NC were excluded from the measurements. This
point can be observed from the initial rise of the communication rate graph. In case (c),
the initial rise is slightly flattened compared to case (a) because of sending some of the

messages to the NC.

The results show that the structure of a cluster could suffer from a communication
bottleneck if the NC is overloaded. This is caused by using only one NC that has a
limited transfer capacity. In order to investigate overloading of the NC further, two
other tests were conducted on the model. The results are plotted in Figure 6.10. In case
(a), four nodes in each group had a receiver in other groups. Under this condition, the
load of the NC was increased to 1/14™ of the total messages. The graph of total
communication clearly displays two different slopes. One is 0.72 GBytes/s showing the
rate of delivery of messages by both the nodes and the NC. The other one is 11. 5
MBytes/s, which shows the rate of delivery by the NC only. This is consistent with the
communication bandwidth of the NC, which like the other nodes is 13.3 MBytes/s. The
test shows that the NC is working effectively, but the bandwidth it provides is not

enough for large inter-group transfers.

In case (b), the NC was further overloaded by doubling its load. Every node in each
group had a receiver in a different group. The NC was responsible for delivering one out
of seven messages of a node. The messages within the group were delivered at the rate
of 0.56 GBytes/s. The rate had dropped considerably compared to case (a) partly
because a portion of the available bandwidth of the nodes was used to transmit to the
NC and had not been included in the measurements. The other reason is the effect of an
overloaded NC and will be explained in the discussion section. It can be also observed
that the communication of nodes within the group has taken slightly longer than case

(a). This is also caused by an overloaded NC and will be explained later.
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Figure 6.10 Overloading effect of the NC in a cluster

a) Four nodes in each group had a receiver in other groups. In this
case, 1/14™ of the total messages were delivered by the NC.

b) Every node in each group had a receiver in other groups. In this
case, 1/7™M of the messages were delivered by the NC. The effect
of an overloaded NC can be observed as rate drop, longer time
fo deliver the messages within groups, and very long fime to
deliver the inter-group messages.

The simulation results show that the structure is only suitable for a light inter-group
traffic. Heavy traffic will overload the NC and performance will drop considerably. In
order to get an acceptable performance, the structure needs to be improved and the
bottleneck must be removed. An improved structure will be presented and evaluated in

the next chapter.
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3.4 Simulation model for the entire network

In the network structure of Figure 3.4 on page 48, the clusters were interconnected by
sharing a multiport memory among the network controllers. For this structure, each
node is defined by its cluster number, group number, and node number. A message can
be sent directly to a node within a group. If the receiver is not in the same group, the
message should be sent to the NC. The NC checks the cluster number of the receiver. If
it is in the same cluster, the NC sends the message to the appropriate group; otherwise,

it sends the message to the NC of the cluster where the end receiver is located.

In this structure, both inter-group and inter-cluster messages should be handled by the
network controllers. The simulation model of a cluster in the previous section indicated
that a network controller could be overloaded by large inter-group messages.
Interconnecting clusters using the same network controllers used for connecting the
groups increases the load of the network controllers, resulting in a poor performance for
the network. Although this stage of simulation was implemented and preliminary
results were presented in [Asgari+ 99b], it will not be discussed here until the structure
of a cluster as its sub-model is improved. The improved communication structure is

presented in the next chapter.

4 Discussion

The simulation model for MultiCom was a credible and simple start for a complex
model. The results of this model showed that increasing the memory size could increase
performance of the system. For very large memories, performance of static allocation
was slightly better than dynamic allocation because of the lower overhead. However,
the increase of memory size beyond 4 or 8K words was not advantageous in terms of

cost/performance.

The results of group communication and the effect of overloaded NC are discussed in

the following sections.
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4.1 Group structure

The expansion of the model to cover a larger group showed that in the range of up to 10
nodes dictated by the limited number of ports on multiport memories, a system can
scale linearly under dynamic allocation; however, performance drops if static allocation
is used. Given that dynamic allocation is also capable of performing multicasting/
broadcasting, it was selected as the memory management for complex models. The
results also confirmed the small shared memory requirement of the structure and
showed that for an 8-node group, good performance was achievable even with a

memory size as small as 4K words.

The structure of a group can achieve higher performance compared to serial links used
in hypercubes. With similar assumptions and calculations as stated in Chapter 4, the all-
to-all communication for an 8-node system interconnected using a hypercube of order-
3, would require at least five time slots if no overhead is assumed. For this system, a
calculated aggregate communication rate of 20.4 MBytes/s (i.e. 56x1792x2 bytes in
5x1971.2 us) could be achieved. If the system were implemented using multiport
memories, the practical communication rate would be 91 MBytes/s, showing a
performance increase of 4.5 times. If a practical rate rather than the calculated rate for

serial communication were considered, performance boost would be even higher.

The structure also shows a large reduction in the number of memory elements and a
significant increase in performance compared to a system using dual-port memories. If
the cluster of eight nodes were to be implemented with dual-port memories similar to
the system explained in [Campbell+ 96], it would require 20 modules of dual-port
memory, instead of one multiport memory. Even with this many DPMs, the
communication between some nodes would not be direct and would require the use of
at least one intermediate node [Asgari+ 01]. This would decrease the performance of
the DPM system considerably compared to a system communicating in one hop using

one multiport memory.
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4.2 Overloaded network controller

The simulation model of a cluster showed that the NC could be overloaded if the
number of inter-group messages was high. An overloaded NC will result in longer
delays in delivering the messages to the end receivers. In addition, it can reduce the
communication rate within the groups by using most of the resources in the system.
This effect can be observed in Figure 6.10-b. Compared to case (a), there were fewer
messages to be transferred within each group, but the group communication was
performed at a lower rate and was completed in a longer time. The lower rate was partly
because the nodes had to send some of the messages to the NC, which was not included
in the total communication until delivered to the end receivers. With fewer inter-group
messages, the group communication was expected to finish sooner, or at least at the
same time of case (a); however, it took longer. The cause for this delay was not very
clear until the log file was examined. The records of the log file revealed that most of
the nodes had allocated a buffer to send a packet of data to the NC, and had transferred
the data to the buffer, but the messages were not collected by the NC for some time. As
the NC could not handle all of the requests within a short time because of its limited
communication bandwidth, the allocated buffers were not released. Hence, there were
fewer buffers available for group messages and it took longer for them to be

transmitted.

In order to verify this point, another experiment with the same conditions but with more
buffers was tested. The results showed that the communication within groups was
completed within the time and almost at the same rate of case (a). This experiment
showed that an overloaded network could create a bottleneck in the communication by
delaying the delivery of the inter-group messages. It could also prolong other activities
in the network by not releasing some of the available buffers. An improved structure for

a cluster is required to overcome this bottleneck.

Moreover, inter-cluster messages in a network increase the load of NCs. The
performance of a network can be highly degraded because of overloaded NCs. A new
network structure based on the improved cluster structure will be introduced in the next

chapter.
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5 Conclusion

In this chapter, a simulation model was developed to evaluate the efficiency of the
proposed communication structure on larger systems. Initially, the model of MultiCom
was created and its functionality and timing were verified against the results from
MultiCom. The model confirmed that the structure does not require a large shared
memory for its operation, because shared memory is only used for communication

purposes.

Expanding the model to higher numbers of nodes showed that the system could scale
linearly if dynamic allocation were used. On the other hand, static allocation was
suitable for small systems, but its performance dropped for expanded systems. The
main reason was that in static allocation the number of required buffers increased as N2,
whereas in dynamic allocation it increased as 1.6N. Considering the capability of
implementing multicasting/broadcasting, and in spite of its lock mechanism, dynamic

allocation proved to be a better solution for the memory management of larger systems.

A system of eight nodes connected in a group can perform at least 4.5 times better than
a hypothetical system interconnected in an 8-cube structure by serial links running at
comparable speed. A wider datapath could improve the communication bandwidth
considerably. In addition, increasing the speed of the nodes and the multiport memories

would also increase the performance.

Compared to a system using dual-port memories, the 8-node system requires only one
multiport memory instead of 20 blocks of dual-port memories. This is a significant
reduction in the cost and complexity of the system, and a considerable increase in

performance because of direct communication.

A cluster is a group of nodes interconnected using a network controller. The inter-group
messages should be transmitted in two hops through the NC. The results obtained from
the simulator showed that the current cluster structure was only useful if the number of
inter-group communications was low. Because of its limited communication bandwidth,
a network controller could be overloaded as the number of inter-group messages was

increased. An overloaded NC would create a communication bottleneck that could
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reduce the performance significantly. The cluster structure will be modified in the next

chapter and similar improvement will be applied to the network structure.

Overall, communication using multiport memory is very efficient for small systems.
The structure is simple to implement and requires a very small shared memory. It scales
linearly achieving a substantial increase in performance. It also enjoys a big reduction
in the system cost by minimizing the number of required components. The efficiency of
medium and large systems will be discussed after evaluating the improved structure in

the next chapter.
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Improved
Communication
Structure

valuation of the simulation model in the previous chapter
showed that if the number of messages transferred
between groups was high, the NC of a cluster could be
overloaded. In this chapter, first an improved structure for
a cluster is presented which can reduce the overloading
considerably. Then, a modified network structure for using
the improved clusters is presented. Evaluation of the
modified network shows that the configuration is not
suitable yet, as inter-cluster messages can still overload
the NCs. Hence, an improved network structure is
proposed that can handle the inter-cluster messages with
similar efficiency of the communication within clusters.
Finally, the effect of an extra hop required for some inter-
cluster messages is explored and scaling of the system is

discussed.
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1 Improved cluster structure

In the cluster model used in the previous chapter, all of the inter-group messages in a
cluster were handled by a single NC. As the NC had limited communication capacity, it
could be easily overloaded. One solution to reduce overloading would be to distribute
the load among several NCs rather than exhausting a single NC under heavy traffic.
Based on this idea, an improved structure for a cluster is presented in Figure 7.1. In this
structure, each group is connected to a group-NC and several groups are interconnected
using a cluster-MPM. If the receiver is in a different group, the message is sent to the
group-NC. Then, it is transferred to the NC of the receiver group through the cluster-

MPM, and finally it is delivered to the end receiver.

In this structure, an inter-group message requires three hops. This may increase the
latency of an individual message; however, the transmission of several inter-group

messages would be much faster. In order to reduce latency and to increase the cluster

. MPM cluster-MPM

O NC

@® Node 16 or 32-bit link

. group-NC

group-MPM
0

I

Figure 7.1 Improved cluster structure

The communication load of a cluster is distributed over several NCs. In this
structure, an infer-group message is sent to the group-NC by the fransmitter
node. Then, it Is fransferred to the NC of the receiver group through the
cluster-MPM for delivery to the end receiver,
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performance, the NCs were upgraded to operate at twice the speed of node processors.
As a network controller mainly handles memory transfers, a cut-down processor
specifically designed for network requirements could be used for this purpose. The

memories connected to NCs should be capable of working at the increased speed.

The structure was implemented in the simulator and was tested under different loading
conditions. Figure 7.2 illustrates the performance of the system under the same

conditions of Figure 6.10. In case (a), four nodes in each group had a receiver in another
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Figure 7.2 Communication of groups in improved cluster
a) Four nodes in each group had a receiver in another group. In this case, 1/14™M
of the total messages were delivered by the NCs.
b) Every node in each group had a receiver in another group. In this case, 1/71
of the messages were inter-group type.

In contrast to Figure 6.10 on page 136, the NCs were not overloaded in the
modified cluster and the messages were delivered much faster.

Multiport Memory as a Medium for Interprocessor Communication in Multiprocessors 144



CHAPTER 7 Improved Communication Structure

group, requiring 1/ 14 of the total messages to be delivered by NCs. As shown in the
figure, the communication was performed in almost the same time of the
communication within groups only (refer to Figure 6.9-a on page 134). In addition,
unlike Figure 6.10-a on page 136, the inter-group communication did not increase the
overall communication time. In case (b), each node in every group had a receiver in

another group, requiring 1/7t

of the messages to be delivered by the NCs. The
communication was performed six to seven times faster than Figure 6.10-b, and no

overloading effect was observed.

These results show that the improved cluster structure can considerably reduce
overloading of NCs. For further evaluation of this structure, the model was tested with
more inter-group transfers and Figure 7.3 presents the results. In case (a), the number of
inter-group messages was doubled and 2/7% of the total messages were handled by the
NCs. In case (b) and (c) the load of the NCs was increased to 3/7™ and 4/7% of the total
messages respectively. The results show that in all cases, the transfers were performed

in a reasonable amount of time, without excessive overloading.

As previously explained in Chapter 6, the graph of the total communication shows two
different slopes. One is around 650 to 720 MBytes/s, which is mostly the message
delivery rate by nodes. The other one is 75 MBytes/s, which is the rate of message
delivery by NCs only. The NC delivery rate shows an improvement of six to seven times

compared to a structure using a single NC,

These results show a simple but effective way for estimating the time required for the
transfer of total messages. In a similar communication pattern, the messages can be
divided into two categories: within groups and inter-groups. For each category, the
transfer time can be calculated using the appropriate rate for the category. The time
required for the total communication is approximately equal to the longer calculated
time. The validity of this method was verified by all the cases shown in Figure 7.2,

Figure 7.3, and some other cases not shown.

It can be concluded that the performance of a cluster depends on two types of transfers.

If most of the messages are transferred within groups, the system will show high
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Figure 7.3 More inter-group communications in improved cluster
a) Every node in each group had two receivers in other groups. Inter-group
messages were 2/7™ of the total messages.

In b) and ¢) 3/7™ and 4/7™ of the total messages were handled by NCs,
respectively,
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throughput because of the direct communication between nodes. On the other hand, if
most of the communication is of inter-group type, the communication will have lower

throughput, as these messages will be handled by the NCs and will require three hops.

2 Modified network structure

For interconnection of clusters in a network, each cluster requires at least one extra link.

In the structure of the improved cluster, no extension link is available for further

B MPM link to network-MPM
O Nc
@® Node O cluster-NC
/| \ \ :
|\
.lI ‘\l
©/cluster-MPM, ' ~~ 16 or 32-bit link

f

group-NC

N
[

\

group-MPM

Figure 7.4 Modified cluster for a network

Adding an extra NC to the cluster structure can provide the required link for the
interconnection of the clusters in a network. To achieve the modified network,
this structure should replace the cluster structure in Figure 3.4 on page 48.
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expansion. One possible method for creating such a link is to add an extra NC to the
cluster structure. As shown in Figure 7.4, a cluster-NC is connected directly to the
MPM of each group. It uses an extra link for connection to other clusters. In a network
structure as shown in Figure 3.4 on page 48, the clusters are interconnected through a
network-MPM that is shared among different cluster-NCs. The modified network

structure can be obtained by substituting the old clusters with the modified ones.

In the modified network structure, the inter-group messages are handled by the group-
NCs. Similarly, inter-cluster messages are handled by the cluster-NCs, as explained in
Chapter 3. The advantage of this structure over the previous structure of Figure 3.4 is
that in the new structure the cluster-NCs only handle the communication between the
clusters and they are not overloaded by the inter-group communication. Although the
performance of the new structure will improve very much, the limited bandwidth of the
cluster-NCs can be still a problem and overloading of NCs may be observed if the
number of inter-cluster messages is high. The drawback of the structure is the need for

an extra port on the memory, which adds up to 10 ports in total.

The simulation model was upgraded to simulate the modified network with the new
cluster structure. Figure 7.5 illustrates the system performance under inter-cluster
communication. In case (a), two nodes in each group had a receiver in another cluster.
The aggregate communication rate within the groups was 6 GBytes/s, which was 0.7
GBytes/s for each of the eight available clusters. However, the transfer of inter-cluster
messages took longer to go through the cluster-NCs. In case (b), the load of cluster-NCs
was doubled to handle 1/14™ of the messages. Consequently, the time spent on
communication was doubled. In both cases, the communication rate for inter-cluster
messages was around 70 MBytes/s, which was very low for a network of this size. The
overloading of the very few available cluster-NCs was the main cause of performance

loss. These results show that the model still requires more modifications.

The model was also tested in presence of a large number of inter-group messages. In
addition to the same conditions of Figure 7.5, three out of seven messages in each group
were directed to other groups within the same cluster. As there was very little

interaction between the inter-cluster and inter-group messages, the results of Figure 7.6
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Figure 7.5 Inter-cluster communications in modified network

a) Two of the nodes in each group had a receiver in other clusters.

b) The load in @) was doubled and 1/14™ of the fotal messages were
transferred between the clusters using the cluster-NCs.

were in fact the combination of the results of Figure 7.5 and Figure 7.3-b. The
communication rate had three components in this Figure. The highest one was mainly
the rate of message transfer within groups observed at the beginning of the
communication combined with the inter-group and inter-cluster rates. After this initial
high rate, the combination of inter-group and inter-cluster rates added up to around 670
MBytes/s. Although not very clear in the graph of case (a), inter-cluster communication
finished within 6.8 ms and the rate dropped to 600 MBytes/s. After this point, which is
shown on the graph with a circle, the rate was merely the inter-group communication

rate achieved by scaling the network to eight clusters of 75 MBytes/s. In case (b), inter-
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Figure 7.6 Inter-cluster and inter-group communications in modified network

a) 3/7M of the messages were inter-group and 1/28™ were inter-cluster types. Both cluster-
NCs and group-NCs were used for message delivery.

b) Same as @) with inter-cluster messages doubled.

group transfer was the same, but inter-cluster transfer was doubled. In this case, inter-

group transfers finished within 9.4 ms (the same

time it took for inter-group transfer in

case-a) and the remaining communication was between clusters with a rate of 70

MBytes/s. An initial rate of 6 GBytes/s was expected for both (a) and (b); however, only

5.2 and 4.3 GBytes/s were achieved respectively. Similar to the case explained in

section 4.2 in Chapter 6, this was the result of overloaded cluster-NCs and was detected

by reviewing the records of the simulation log file. Inter-cluster messages that were sent

to cluster-NCs were not picked up from the shared memory at a rate comparable to the
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transmit rate because of the limited communication bandwidth of the cluster-NCs.
Hence, communication within groups was conducted with fewer available buffers and
the rate was reduced. Increasing the number of buffers fixed this problem and the

expected rate was achieved.

These results confirm that in the modified network, inter-group communication is
performed with acceptable speed, while a large number of inter-cluster messages can
create a bottleneck. This demands more improvements to the model. In the next section,

the network structure will be further improved to achieve the desired performance.

3 Improved network structure

The performance of the modified network was not satisfactory as large inter-cluster
communication could degrade it significantly. An improved structure with more links
for interconnecting the clusters is presented in Figure 7.7. In this structure, the cluster-
NCs are removed and group-NCs in different clusters (simply called NCs) are

interconnected using several MPMs.

As shown in the Figure, each NC is connected to a group-MPM, a cluster-MPM and a
network-MPM. Each network-MPM interconnects the NCs connected to similar groups
in different clusters. If the receiver is in another cluster, the node sends the message to
the NC of the group. The NC passes it to the linked NC in the destination cluster. If the
receiver node has the same group number as the sender, the NC delivers the message
directly, otherwise, it sends the message to the NC of the destination group for delivery
to the end receiver. Hence, an inter-cluster message may be transferred with three or

four hops depending on the group number of the sender and the receiver nodes.

The improved network structure can be viewed as the expanded version of the original
structure in Figure 3.4 on page 48. The cluster-MPM has been duplicated several times;
the clusters have been substituted by improved clusters, and they have been linked by
cluster-MPMs. In fact, by considering only one of the cluster-MPMs and ignoring the

others, the structure of Figure 3.4 can be obtained. In the resultant network, the clusters
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Figure 7.8 Inter-cluster communications in improved network

a) 1/14™ of total messages were transferred between clusters and 3/4 of
them required four hops.

b) 1/7™" of the total messages were inter-cluster type.

are interconnected with more links and the communication load is distributed among

several NCs.

The simulation model was modified to accommodate the required changes in the
structure. At first, besides communication within groups, only inter-cluster
communication was tested on the model and the results are displayed in Figure 7.8. In
case (a), 1/14™ of total messages were inter-cluster type with 75% requiring four hops.
The condition was similar to the case in Figure 7.5-b, but it finished much faster and

required almost the same time of communication within groups only. In case (b), the
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Figure 7.9 Effect of extra hop for inter-cluster communications in
improved network

In both cases, 2/71 of the messages were inter-cluster type. They required
a) three hops b) four hops.

load was doubled to 1/7™ of the total messages and all were delivered in a short time.

These results show that overloading of NCs has been reduced significantly.

In another test, the effect of the extra hop on the performance was investigated.
Figure 7.9 illustrates the performance of the system with 2/7% of the total messages as
inter-cluster type. In case (a), all of these messages required three hops. The rate for
inter-cluster communication was around 0.6 GBytes/s. In case (b), all of the messages

required four hops and the rate dropped to 0.45 GBytes/s as the consequence of using
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an extra hop. These results show that the improved network can handle inter-cluster

communication much better than the modified network.

Figure 7.10 illustrates the results of a test in which besides communication within
groups, a mixture of inter-group and inter-cluster messages, each consisting of 1/7% of
the total messages were used. In case (a), three hops were required for inter-cluster
messages. Both inter-group and inter-cluster messages were delivered at the rate of
0.6 GBytes/s, which can be seen after the initial high rate for the communication within

groups. In this case, the system performance was similar to the case in Figure 7.9-a, and
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Figure 7.10 Inter-cluster and inter-group communications in
improved network

1/7M of the tofal messages were inter-cluster tfype and a similar portion was
inter-group type. Inter-cluster massages required a) three hops, b) four hops.
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it shows that inter-group and 3-hop inter-cluster messages had been treated almost
equally, because the same NCs handle both types. In case (b), inter-cluster messages
required four hops and the communication rate dropped to 0.45 GBytes/s for the
duration of this type of communication. The rate was increased to 0.6 GBytes/s after the

inter-cluster communication terminated.

As can be seen from this test, communication of messages using NCs is controlled by
two rates. Inter-group communication can be performed in three hops with a rate of 0.6
GBytes/s. This rate is achieved by scaling the structure to eight clusters, each having a
rate of 75 MBytes/s. Likewise, 3-hop inter-cluster communication can be performed at
the same rate of inter-group communication because the mechanism for both types is
very similar. On the other hand, 4-hop inter-cluster communication is performed with
the reduced rate of 0.45 GBytes/s because of the extra hop. As both inter-group and
inter-cluster messages are handled by the same NCs, in the worst case, a mixture of
both type of messages will require the sum of the time spent on each communication

individually.

For further evaluation of the system performance with mixed types of communication,
more tests were conducted and Figure 7.11 shows the results. In case (a), 3/7™ of the
total messages were inter-cluster type, all requiring three hops. As expected, the
communication rate was around 0.6 GBytes/s. In case (b), the configuration was
changed to 1/7" inter-cluster and 2/7% inter-group messages. A similar performance
was achieved and the communication rate and time were almost identical. Case (c) was
similar to case (b) with the number of hops of inter-cluster messages increased to four.
The extra hop dropped the communication rate to 0.45 GBytes/s. When inter-cluster
communication was terminated, the rate of 0.6 GBytes/s could be achieved for inter-

group communication.
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Figure 7.11 Mixed message types for improved network

a) 3/7N of fotal messages were intercluster type requiring three
hops. b) 1/7M of messages were 3-hop inter-cluster type and 2/7™
were inter-group type. ¢) Same as () with four hops for inter-cluster
rmessages.
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4 Discussion

4.1 Scaling of the structure

Communication within groups has the highest performance in this structure as the
nodes can directly communicate in one hop. For a limited number of nodes, the group
communication is scalable. The limiting factor is the number of available ports on
multiport memories. For a group of eight nodes running at 20 MHz, the communication

rate is about 90 MBytes/s.

For more nodes, a cluster in which groups of nodes are interconnected with NCs can be
used. An inter-group message is handled by two NCs and it is transferred in three hops.
Hence, it cannot be transmitted as fast as the communication within groups. The
communication rate for a cluster of eight groups (64 nodes) is 75 MBytes/s. However,

the communication rate within groups can rise up to 700 MBytes/s.

A network of 512 nodes can be organized as the structure of Figure 7.7, in which eight
clusters are interconnected using eight multiport memories. The communication within
groups has the highest throughput and can rise up to 6 GBytes/s. The inter-group
communication has the second highest rate and can rise up to 600 MBytes/s. Inter-
cluster communication has the lowest performance. Depending on the location of
sender and receiver in the structure, it can be performed with the same rate of inter-
group communication (600 MBytes/s) in three hops, or with the reduced rate of 450
MBytes/s in four hops. Scaling of the structure beyond 512 nodes requires more

changes and is not beneficial because of the increasing number of hops.

4.2 Use of 8-port memories

The structure of an 8-node group discussed so far is based on 9-port memories, which
includes an additional port for a network controller. The idea of using eight nodes in a
group originated from the structure of a hypercube of order-3 for interconnecting eight
nodes. Another reason for choosing 8-node groups was the ease of using a 3-bit binary
code to address each node. This reasoning also applies for eight groups in a cluster and

eight clusters in a network. In the growth of multiport memories, a more realistic
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expectation is to look for 8-port memories rather than 9-port. Hence, in communication
structure using multiport memories, it is more sensible to use 8-port memories rather

than 9 or 10 ports.

One of the advantages of the improved network structure is that for a network with eight
clusters, each including eight groups, the network MPMs and cluster MPMs require
only eight ports. This means that if only the number of nodes in each group is reduced
to seven, all the multiport memories in use will be 8-ported. With this modification, the
number of total nodes in the network is reduced from 512 to 448, but a more realistic
network is proposed. Of course, a smaller number of ports can still be used; however,
reducing the number of ports reduces the parallelism in the structure, which is the main

contributor to performance rise.

The network structure based on 7-node groups has not been evaluated by the simulator.
However, it is expected that the higher communication rate related to the
communication within groups will be reduced by a factor of 1/8 or 12.5%. The rate of

communication for inter-group and inter-cluster messages should not be affected.

4.3 Practical issues

The improved network structure presented in Figure 7.7 was evaluated by simulation
and practical issues were not addressed. The results illustrate the system performance
under perfect conditions. Obviously, implementing this structure in practice will face
several practical issues. One of the problems is the physical location of the nodes,
network controllers, and multiport memories. Physical location of these components
affects the length of the links that connect them. As data is transmitted in parallel bits
with speeds comparable to processor clock, the length of the links need to be kept to a
minimum. This in turn puts a constraint on the physical size of a large system that may

not be easily achievable and will require a meticulous design.

The critical component in the network structure is the network controller. Each network
controller is connect to three MPMs, one of which, the network-MPM may not be in the
close vicinity. Proper buffering of the network controllers buses, especially the one

connected to network-MPM can alleviate the lengthy bus-issue discussed earlier.
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Wider data paths combined with higher port counts will increase the routing complexity
of the PCB design. However, with current multi-layer PCB design technology, a careful
design can overcome the routing problems. The designer should also keep the PCB

trace lengths balanced to avoid signal skews.

The network structure encompasses many cluster structures that are interconnected by
several network-MPMs. A cluster structure also contains several group structures. It
would be very beneficial to highly optimize the physical structure of a group and use it
to generate an optimum cluster structure. With this approach, the remaining problem
would be the interconnection of several clusters through network-MPMs. Using
appropriate buffering on the network controller as discussed before will considerably

reduce the complexity of the connections.

In implementing any type of structure, several small or large practical issues need to be
considered and resolved. The experience of the technical team plays an important role
in this process. The structure proposed in this study was not intended to address all the
practical issues related to a complex structure such as the one presented in Figure 7.7.
Careful consideration of the practical issues need to be performed at the time of

implementing the system and proper solutions need to be applied.

5 Conclusion

The limited bandwidth of the single NC in a cluster could create a communication
bottleneck as discussed in the previous chapter. In the improved cluster, the bottleneck
was removed by distributing the load among several fast NCs. In the new structure, an
inter-group message requires three hops, as an extra hop is used to transfer the message
between NCs. Even with this extra hop, throughput was greatly enhanced and

overloading of NCs was reduced considerably.

The network structure was modified to utilize the improved cluster structure. In each
cluster, an extra NC was used to handle inter-cluster communication. Inter-cluster NCs
were interconnected by a cluster-MPM. The communication within groups and inter-

group communication scaled very well; however, cluster-NCs could be overloaded if
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the number of inter-cluster communications was increased. This demanded extra

improvements to the model.

The network structure was further improved by removing the cluster-NCs and
interconnecting the group-NCs through different paths generated by several MPMs. In
this structure, overloading of cluster-NCs is reduced and inter-cluster communication
takes three or four hops depending on the location of the sender and receiver. A 3-hop
message can be transferred at the same rate of an inter-group message, as they both use
a similar mechanism for transmission. On the other hand, the communication rate for 4-
hop messages is reduced by 25% as the result of the extra hop. In the worst case
communication when all NCs are engaged in message handling, the communication
time would be equal to the sum of the time spent on inter-cluster and inter-group

communications.
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his study has explored the possibility of a new scheme for
interprocessor communication using multiport memories.
A novel structure for this type of communication was
proposed and evaluated by a hardware prototype and a
simulation model. In this concluding chapter, the steps
involved in designing, evaluating, and improving the
structure are presented briefly and the achievements are
discussed. Finally, several possibilities for improving the
system and further directions in pursuing this study are

presented.
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1 Conclusions

The intended focus of this study was to improve the performance of interprocessor
communication in multiprocessors. A novel communication scheme based on passing
information through multiport memories was proposed and the structure was evaluated

by a hardware prototype and simulation modelling.

In shared memory systems, several processors are connected to a common memory and
communication is performed by using memory load and store instructions. In message
passing systems, several nodes are connected by an interconnection network and
communicate by sending and receiving messages. In the proposed structure, several
nodes share a local shared memory in a group and communicate through independent
ports of shared memory without the overhead and delay of bus or interconnection
network. A cluster of groups can be created in which differnt groups are interconnected
by network controllers and other multiport memories. Nodes can communicate by
sending and receiving messages through multiport memories. In fact, multiport memory
is used as a link for message passing. Unlike message passing systems in which
communication is normally performed serially, in this structure a message is passed
through wider data path of the shared memory. In contrast to other shared memory
systems, the common memory in this structure is only used for message passing and

small capacity is adequate for this purpose.

In order to evaluate the structure, a small system called MultiCom was built as a
prototype, which had four nodes and a four-port memory. The memory management of
the system had to be designed in a way that it could prevent the nodes from interfering
with each other. By using static allocation, the memory was divided into several buffers
and each buffer was allocated to the communication of two specific nodes. No
interference was expected in this method as a separate buffer was assigned for the
activities of each node. However, the idle buffers that were not used in a communication
at a time could waste the memory and reduce the efficiency of the communication
scheme. On the other hand, dynamic allocation could use fewer but larger buffers that

could be assigned to any communication on demand, and full memory utilization was
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thus possible. This approach required a lock mechanism for allocating the buffers and

higher overheads were involved.

As no hardware lock was available on the multiport memories, the lock had to be
implemented entirely in software. New algorithms for the lock mechanism were
devised and were successfully tested on MultiCom. A primary communication protocol
for both allocations was established and it was improved gradually to accommodate the

required modifications deemed necessary in the process of scaling the structure.

The performances of static and dynamic allocations were almost the same on
MultiCom. For 20-MHz node processors, the system could achieve an aggregate
communication rate of 45.5 MBytes/s. This is at least more than 4.2 times faster than a
hypothetical system using serial communication running at comparable speed, 11 times
faster than a system communicating through dual-port memories, and 14 times better
than a bus-based system. In addition, the cost of the system was reduced considerably
compared to a system using dual-port memories as a result of reducing the number of

required chips.

The main advantage of dynamic allocation over static allocation in MultiCom was that
multicasting/broadcasting could be performed with dynamic allocation with higher

efficiency. This increased the communication rate to 64.8 MBytes/s.

In order to evaluate larger systems, a simulation model was created. To make the model
more accurate and reliable, at the first stage, a model of MultiCom was created and
tested successfully. Evaluation of the model revealed that increasing the memory size of
MultiCom beyond the memory size of 4 or 8K words did not improve the performance
very much. If fact, doubling the existing memory size increased the communication rate
by 7%, and further doubling increased the rate by only 2.5%. Doubling the memory size
increases the cost considerably and the gain in performance is very little to justify the

additional expense.

This stage of simulation confirmed an important feature of the proposed
communication scheme: For the all-to-all test program, the structure only requires very

small shared memory for communication. This is a very important outcome, especially

Multlport Memory as a Medium for Interprocessor Communication In Multiprocessors 164



CHAPTER 8 Conclusion and Further Directions

considering the fact that the capacity of the future multiport memories with large
number of ports would be very small. Even with a small memory size, it would be still
possible to achieve a high performance using this structure. Unlike other shared
memory systems, the small shared memory in this structure is exclusively used for

communication purpose. In fact, shared memory is used as a link for message passing.

The model of MultiCom was expanded to cover more nodes. This stage of simulation
revealed that dynamic allocation could scale linearly, but static allocation could not.
The reason was that for a fixed memory capacity, the buffer size in static allocation was
reduced by N2, but in dynamic allocation, it was reduced by 1.6N. Considering the
advantage of using multicast/broadcast, dynamic allocation was used as the memory

management of the larger systems in the simulation model.

The simulation model was expanded to cover several groups in a cluster, which were
interconnected by a network controller. The results of this step showed that using only
one NC for a cluster could easily overload the NC because of its limited communication
capacity. To achieve a higher performance, an improvement in the structure was

necessary.

The cluster structure was modified by introducing a separate NC for each group in the
cluster. In addition, the NCs were also interconnected using an extra multiport memory.
Although this modification increased the number of hops for inter-group
communication from two to three, the performance of the system was significantly

improved and overloading of the NCs was reduced considerably.

The simulation model was expanded again to cover several clusters in a network.
Because of the modified cluster structure, the original proposal also had to be modified
to accommodate the new cluster structure. For this purpose, a cluster-NC was added to
the cluster structure for handling communication between clusters. The cluster-NCs
from different clusters were interconnected by a network multiport memory. Evaluation
of this structure revealed that it was not efficient and the cluster-NCs could be

overloaded in moderate or large inter-cluster communications.
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To overcome the shortcoming of this structure, a major change in the proposed structure
was necessary and several parallel paths were required to distribute the communication
load among the NCs. In order to achieve the improved network structure, the cluster-
NCs were removed and the group-NCs with identical group numbers in different
clusters were interconnected using a multiport memory (refer to Figure 7.7 on
page 152). This structure created several data paths for communication between
clusters, and depending on the position of the transmitting and receiving nodes in the

network, a message could be delivered in three or four hops.

The simulation model showed that the new improvements reduced the load of NCs
considerably. Three communication rates were measured in the improved network. A
rate of 6 GBytes/s could be achieved for communication within groups. A rate of 600
MBytes/s was also achievable for inter-group communication. The inter-cluster
messages were transferred at a rate of 450 or 600 MBytes/s, depending on whether four

or three hops were needed.

The overall conclusion is that the structure is very efficient for small-scale networks, it
is good for medium to large-scale structures up to 512 nodes, but it is not recommended

for very large networks, because of increased number of hops.

2 Further research

There are several possibilities to improve and extend the results of this study. They
range from the use of hardware supports for multiport memories to the use of other
structures for connecting the nodes and multiport memories. Some of these possibilities

are discussed here as the recommendation for further research.

2.1 Hardware support for multiport memory

Dynamic allocation proved to be a better memory management strategy for the
proposed communication scheme. The major disadvantage of this method is the

overhead of the lock mechanism and the allocation process, as both have a serial nature.
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The use of hardware support can reduce the overhead considerably. A few options are

discussed in the following sections.

2.1.1 Multiport semaphore logic

As discussed in Chapter 5, semaphore logic can simplify the required lock mechanism
for the multiport memory. Unfortunately, at the time of this study, semaphore logic was
only available on dual-port memories. Hence, in the design of MultiCom and the
simulation model, a purely software-based lock was used. Some of the problems in
designing the semaphore logic for multiport memories are discussed in the Appendix
and a new semaphore logic based on fixed priority is proposed and tested by the
hardware design tools for satisfactory operation. The use of this logic or similar ones in
multiport memory will lead to a much faster lock mechanism. This can reduce the

overhead and increase the performance.

2.1.2 Centralized control

Using hardware support for the tasks that are time consuming in the software can also
reduce the overhead of the lock mechanism. For example, buffer allocation can be also
performed with a controller rather than by each node processor. In addition, other
control circuitry such as semaphore logic and interrupt logic (as proposed in the
Appendix) can be integrated into the controller chip to achieve a centralized control.
This chip can greatly simplify the management of the multiport memory. A simple

approach for designing this chip can be as follows:

1. A very small size multiport memory with the same number of external ports as
the main multiport memory plus an extra port for the access of the controller
is required. In general, the word size of this control memory can be smaller

than the main multiport memory.

2. A fast but simple custom-designed controller should be connected to the
control memory through the extra port. It should be capable of reading and
writing the control memory and performing simple calculations and tests. As
there is no interaction between the controller and the main multiport memory,

no extra port for the main memory is required.
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3. Each node can request a service from the controller by writing a command to
a specific location assigned exclusively to that node. For example, a node can
request a buffer, and the controller can return the allocated buffer number to
the requesting node. Note that no lock mechanism is required in this structure,
as only the controller performs the sensitive tasks. In addition, the nodes do

not interfere with each other in any way.

4. The interrupt generation logic as proposed in the Appendix can be also
integrated into this chip as an independent logic. Although the controller
mentioned above is also capable of controlling the interrupt logic, using an
independent circuit for the interrupt logic within the same chip is beneficial,

because the response time for buffer allocation will not be affected.

5. Any other required logic can be integrated into this chip as an independent

logic, or as an additional task for the controller.

The use of this kind of controller external to the main multiport memory has the
advantage that the memory chips can be designed to be simpler and bigger, because no
extra logic is added to the chip. Furthermore, in horizontal or vertical expansion of the
memory, which is performed by connecting several chips in series or in parallel, there
will be no duplicate control circuitry which would normally be left idle. In addition, the
control chip can be used with any kind of multiport memory, as there is no interaction
between the main memory and the controller. The only requirement is the compatibility

of the port counts.

2.2 Use of DMA for data transfer

In this communication structure, a shared memory created by multiport memories is
only used as a communication medium for message transfer. Unlike other shared
memory systems, the memory is not used as a shared area in general. As shown earlier,
the structure requires only a small shared memory for message transfer. Otherwise, as it
is not practical to create very large memory size using multiport memories, the structure

would not be feasible.

In this approach, each node assembles a message in its local memory and sends it to

another node in several packets through the shared memory. Hence, data transfer
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between local and shared memory or vice versa is a common task for a node and

improving it will improve the communication rate.

In both the hardware prototype and the simulation model, all data transfers were
performed by the node processors. It is possible to increase the speed of data transfer by
using Direct Memory Access (DMA) controllers. In this approach, a node should apply
for the lock and allocate a buffer in the shared memory. It should also initialise a DMA
channel for the appropriate transfer. At this stage, the DMA controller can take over and

perform the required data transfer. This approach will have the following benefits:

1. In general, the overall data transfer rate is higher with DMA, because

everything is controlled by hardware and no software loop is required.

2. If the DMA transfer is transparent to the processor, it is possible for the
processor to perform other tasks like applying for another lock,
acknowledging an interrupt, or programming another DMA channel. The
higher transfer rate and the freedom of the processor to perform other tasks
can boost the performance. If the DMA transfer is not transparent, the node
can be forced into an inactive state while DMA is efficiently performing the

data transfer.

3. If the memory of the processor including the shared memory is partitioned
and located in different memory banks, more than one DMA transfer can be
active at a time, provided that adequate hardware support for accessing
simultaneous banks is incorporated in the system design. The performance

boost in this approach can be very high.

2.3 Using different communication structure

Other structures for interconnecting nodes using multiport memory can provide
different performance. A mesh structure as discussed in the following subsection can be
used for medium-scale systems. In addition, a method that virtually increases the

number of ports of a multiport memory is also presented.

2.3.1 Mesh structure

Other structures can be also used for connecting nodes through multiport memory.

Figure 8.1 shows a new structure using a two-dimensional mesh. Each node is
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connected to two 8-port memories (excluding boundary nodes). The nodes sharing the
same multiport memory can communicate directly, but other nodes should use
intermediate nodes for their communication. The structure can be expanded in both X
and Y directions and is useful for low to medium size networks. This mesh structure is
the extension of the structure presented in [Varshneya+ 94] for 6-port memories. Based
on the future availability and organization of new multiport memory chips, it is feasible

to develop a variety of such meshes.

8-port
memory

e Node

Figure 8.1 Mesh structure

Each node can access two 8-port memory modules. Some
nodes can communicate directly. Others should use
intermediate nodes for data passing.

The effectiveness of this structure needs further investigation; however, it is anticipated
that it would only be useful for medium-scale systems, because of the increasing
number of intermediate nodes involved in the communication of non-neighbouring

nodes as the system expands.

2.3.2 Increasing the port count of multiport memory

The simulation model showed that increasing the number of ports of a multiport
memory could increase the performance; however, the availability of multiport
memories with higher port counts still remains a question. With some performance

degradation, the bus system can be combined with multiport memory to increase the
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number of port counts. Several nodes can be connected to each memory port using a bus
to have a shared access to the memory. Although in principle, more than two nodes can
be connected to each bus, no more than two nodes is recommended for this application.
Figure 8.2 shows an example in which eight nodes are connected to a 4-port memory
using a bus at each port. This method virtually doubles the port count, but it reduces the
performance. It can be used as a compromise for the unavailability of higher port counts
on multiport memories. Further investigation is required to analyse the impact of

sharing a port among more than one node under different traffic conditions.

node 2 node 1

ﬁ BUS 1 ﬁ
K ]
U pori 1

4-port
Memory |<—

port 3 ﬁ
L - |
U BUS3 B

node 5 node 6

node 3 node 8
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J .

node 4 node 7

I
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Figure 8.2 Increasing port count of multiport memory

By using a bus for each port, more than one ncde can be
connected fo shared memory. This virtually doubles the port
count,
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or an efficient design with multiport memories, it is very
beneficial for design engineers to understand the structure
and architectural features of this kind of memory. In this
Appendix, a typical structure for single-port memory is
presented and is gradually expanded to dual-port and
multiport memories. In addition, the control logic
commonly used in dual-port memories to handle the
simultaneous access conflicts are presented. These
materials are from [Mick 96], [Wyland 88] and [Baumann
96]. In the discussion section that follows, several issues in
designing and using multiport memories are discussed and
new circuits for multiport semaphore logic and interrupt
logic that can facilitate the use of multiport memories are

proposed.
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1 Structure of single-port memory

Figure A.1 shows a typical single-port four-transistor static RAM cell. This architecture
is commonly used by most static RAM manufacturers because it offers high density,

good speed, and low power.

VCC
R R1
Row Sslect 1
= -
4 I Qzl I Q, I I
01 | | Q1
N R
Bit Bit
Line Line

Figure A.1 Typical four-transistor SRAM cell

The cross-coupled inverters form the basis of the memory cell.
When one is ON the other is OFF. Q2 transistors activated by
row select connect the cell outputs fo complementary bit-
lines used for reading or writing.

The memory cell consists of two N-channel transistors (Q1) and two resistors (R1) that
are connected to form two cross-coupled inverters. This gives a regenerative action such
that when one transistor is ON, the other is OFF. Two additional N-channel transistors
(Q2), usually called pass transistors are connected between the cell outputs and the bit-
lines. The gates of the pass transistors are connected to the row select line. When a
particular row of cells in the RAM is addressed, these two transistors are turned on.
Depending on the current state of the cell, one of the bit-lines is driven high and the

other one low.

A simplified structure of a 16x1 bits RAM organized in four rows and four columns is

shown in Figure A.2. The row address decoder selects only one row. In each column,
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one cell is selected and its outputs appear on the corresponding bit-lines. The bit-lines
of each column are connected to the inputs of a differential sense amplifier by means of
N-channel switches called data multiplexers. These switches are controlled by the
column address decoder and only one column is selected. Hence, the sense amplifier is
connected only to the one cell located at the intersection of the selected row and the
selected column. The sense amplifier detects whether the state of the cell is logic one or
logic zero depending on the relative polarity of the two bit-lines. In a read operation, the

sense amplifier drives the Data-Out pin accordingly.
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Figure A.2 The structure of 16x1 bits RAM

Only one cell is selected at the infersection of a row and a column. For
READ, the differential sense amplifier derives the Data-Out line according
to the state of the two bit-lines connected fo its inputs. For WRITE, the
write buffer overpowers the two bit-lines and sefs the selected cell
according fo the state of the Data-In line.
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For a write operation, a cell is selected at the intersection of a row and a column and its
output appears on the active bit-lines. However, the write buffer that is driven by the
Data-In line differentially drives one bit-line high and the other one low as determined
by the logic state of the data input. The output of the write buffer is more powerful than
the inverter transistors in the RAM cell (Q1 pair in Figure A.1) and it easily overpowers

them if it is necessary to flip the static RAM bit.

A variation on the standard four-transistor static RAM cell is the six-transistor static
RAM cell. In this cell, the two pull-up resistors (R1 pair in Figure A.1) have been
replaced by two P-channel transistors. The operation of such a six-transistor cell is
identical to the four-transistor cell described above. The difference between the two
approaches is that the physical size of the cell with the P-channel transistors is larger
than the cell with the resistors. The standby power is lower for the six-transistor cell
because there is ordinarily no power being dissipated; in a four-transistor cell, one of
the pull-up resistors is always dissipating power since one transistor of the cell is
always ON. The six-transistor cell has higher radiation hardened characteristics than the
four-transistor cell because the voltage swing in the cell is larger. This is because the
internal node in the cell that is high is pulled to the Vcc rail by the P-channel transistor.
In addition, the six-transistor cell provides higher internal noise margins in the circuit
for the same reason. Most manufacturers of static RAMs use the four-transistor cell

because it allows static RAMs of higher density to be fabricated with smaller die sizes.

2 Structure of dual-port memory

A dual-port RAM cell can be derived from the structure of a single-port cell. As
illustrated in Figure A.3, the basic cell is created by the standard cross-coupled inverter
pairs. There are two pairs of bit-lines associated with a cell, each pair acting as a read/
write port into the dual-port RAM. Two pass transistors (Q2) controlled by a row select
line connect the cell outputs to a pair of bit-lines. Ignoring all the lines of port_2, the
operation of the cell using port_1 is exactly as described for a single-port cell. Similarly,

port_2 can access the cell using Q3 pass transistors.
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Figure A.3 Dual-port SRAM cell

Each cell can be accessed by two different ports using a
separate row select and a pair of bit-lines. The operation
of the cell from each port is similar to the operation of a
single-port cell.

A schematic diagram of a 16x1 bits dual-port RAM is shown in Figure A.4. As each
port has a separate address line, any memory cell can be selected by one port
independent of the other port. Each pair of bit-lines in each column is connected to a
sense amplifier and a write buffer via a data multiplexer so that each port can read from

or write to its selected cell via separate data lines.

The ports can access the cells independently as long as both do not select the same cell;
otherwise, data corruption may occur. Simultaneous reading of the same cell by two
ports is not a problem; however, if two ports write to the same cell at the same time, one
or both values may be lost. Likewise, if one port writes to a cell at the same time that the
other port is reading the cell, the read may be corrupted even though the write is

completed correctly.

2.1 Control logic for dual-port memory

Most dual-port memories include control logic to deal with three common application

issues: conflict arising from simultaneous addressing of a memory location by both
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Figure A.4 Structure of 16-bit dual-port memory

Each port can select a different cell using separate address lines. The

selected cells can be read or written independently using data lines
that are isolated from the other port.

ports, hardware support for temporary assigning a block of memory to one side only

(semaphore), and signalling between processors. Each case will be discussed briefly.

2.1.1 Busy logic for simultaneous access conflicts

A conflict can occur with dual-port memories when both ports attempt to access the

same address at the same time. There are two significant cases: when one port is trying

to read from the same location that the other port is writing to, and when both ports
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attempt to write to the same location at the same time. If one port is reading while the
other port is writing, the data on the read side will be changing during the read and
corrupted data may be obtained. If both ports attempt to write at the same time, the
memory cell will be driven by both sides and the result can be a random combination of
both data words rather than the data word from one side or the other. Busy logic solves
this problem by detecting when both sides are addressing the same location

simultaneously.

Busy logic is a hardware address arbitration circuit that decides which side will receive
a busy signal if the addresses are equal. It consists of a common address detection
circuit and a cross-coupled arbitration latch. A typical circuit for busy logic is shown in
Figure A.5. This circuit provides a BUSY signal to the port that has sent the address
slightly later, inhibits the write request from that port, and makes a decision in favor of
one side or the other when both addresses arrive exactly at the same time. The logic
consists of a pair of address comparators, a pair of delay buffers, a cross-coupled
arbitration latch, and a set of BUSY output drivers. The address comparator output is

set true when both addresses at its inputs are equal.

ADDRESSL
ADDRESSR
DELAY DELAY
BUFFER BUFFER

ADDRESS ADDRESS
EQUAL EQUAL
COMPARATOR COMPARATOR
A Y B ————
CEL @ L 2 CER

mma—@ @o——» BUSYA
WRITETNHIEIT. ¢ ¢ ® >

(Internal) (Internal)

Figure A.5 Busy logic for dual-port memory

When accessing the same location from both ports, busy logic internally
inhibits the write request that has arrived slightly later and sends a busy
signal to the corresponding port. If both of the requests arrive exactly at
the same time, the circuit will decide in favor of one side.
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In the logic shown in Figure A.5, the ability to detect which address arrived last is
provided by the time delay buffers between the address lines and the comparators.
Assume that the L (left) address is stable and the R (right) address changes to match the
L address. The R address comparator will go true immediately while the L address

comparator will become active some time later as determined by the time delay gates.

The arbitration latch formed by the L and R gates settles with the timing of the address
comparator outputs A and B. This latch has three stable states: both latch outputs C and
D high, C low - D high, and C high - D low. Initially, both C and D are high because A
and B are low. For the L address stable and the R address arriving later, B becomes
active before A and forces D to go low. C will remain high because A will go high
sometime later, but the input of L gate connected to D will go low before this occurs.
Hence, D will be low and will inhibit the write request from the right port, which its

address has arrived later. In addition, the right port will receive a busy signal.

The extreme case of decision making in busy logic occurs when both addresses arrive at
exactly the same time. In this case, the outputs of both address comparators go high
simultaneously activating both sides of the arbitration latch. The latch will settle into
one of two states with either C or D latch outputs being active. The latch design must

ensure that one side will be given priority in this case to avoid metastability.

A common way of using the busy line is to stretch the cycle for the operation performed
by the losing processor until the other processor finishes its access. Note that for the
read-read case, no arbitration is required, but this circuit generates a busy signal for one
side. The arbitration latch can be modified to remove this case. As illustrated in Figure
A.6, if both of the ports are performing read operations, the arbitration logic will be

disabled and will have no effect on read operations.

2.1.2 Semaphore logic

Data integrity is a major issue in dual-port memories. Sometimes there is a requirement
to assign a block of memory to one port temporarily. For example, if one processor
needs to update a data table as a whole, the other processor should not interfere until the

update is complete. Moreover, block allocation can be used to avoid the address
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Figure A.6 Modified arbitration latch

If both of the ports perform read action, the arbitration
latch will be disabled and no busy signal will be generated.

arbitration problem since it is a way of ensuring that both sides do not use the same

address at the same time.

Semaphore logic is a hardware support mechanism to allocate a block of memory to
one side. Most dual-port memories have up to eight semaphore latches. This method

was explained in detail in "Section 2.1, Hardware semaphore" in Chapter 5.

2.1.3 Interrupt logic for signalling

A common problem in dual-processor systems is signalling between processors. For
example, when processor A needs to request processor B to perform a task, it sends a
signal to processor B. The task might be defined by a data word written in the common
memory. When processor B completes the task, it needs to signal processor A that the
task is done. Note that signalling must occur in both directions. A common form of
signalling is to send an interrupt from one processor to the other one. This allows the
receiving processor to be informed of a communication without having to check for it

constantly.

Hardware support for this type of signalling is provided by the interrupt logic, which is
available on most dual-port SRAMs. As shown in Figure A.7, in these devices, the two

top memory locations serve as interrupt generators for the ports. If the left CPU writes
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Figure A.7 Interrupt logic for signalling

Each processor can signal the other processor by sending an
interrupt to it. If the processor on the left side writes a byte in the
last memory location, an interrupt will be generated to the right
side. Reading the same location by the right processor will clear
the interrupt, The right processor can perform a similar fask by
writing in the penultimate location.

into the location XFF (X depends on the memory size), an interrupt latch is set and the
interrupt line connected to the right CPU is activated. This interrupt latch is cleared
when the right CPU reads from the same location. Similar logic is also provided to
allow the right CPU to send an interrupt to the left CPU using the location XFE. The
availability of this logic on memory chips simplifies the system design, because no
extra logic is required for interrupt control. The interrupt logic is an additional feature
on the memory chips and using it has no impact on the normal operation of the other

memory locations.

3 Structure of multiport memory

The dual-port memory cell can be further expanded to form a multiport memory cell.

Figure A.8 shows the schematic diagram for a 2-bit N-port RAM. The two inverters
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making up the basic memory cell are similar to a single-port memory cell except that
two P-channel pull-up transistors are used instead of pull-up resistors. This cell has
similar benefits of a six-transistor cell as explained before. The inverters are connected
in the normal cross-coupled fashion to create a single memory cell. N individual
memory ports are generated by using N pairs of pass transistors for connection to N
pairs of bit-lines. For each port, an individual row select line can activate the
corresponding pair of pass transistor connected between the RAM cell outputs and the
bit-line pairs. N sense amplifiers and write buffers are used to provide individual read/
write paths from each port to all the cells in the RAM. There are some practical limits

on N such as the maximum number of sense amplifiers that a memory cell can feed.

As there are more ports in this memory, it is more likely that two or more ports will try
to access the same cell simultaneously. Furthermore, the simultaneous access can
happen for more than one cell by different groups of ports. Hence, data corruption
problems in simultaneous access of the cells are more complicated in a multiport
memory. This issue and several other issues in designing multiport memories are

discussed in the next section.

4 Discussion

In the design of multiport memories with a large capacity and a large number of ports,
several issues such as limited capacity, large pinout, and control logic should be

considered. These issues are discussed in the following sections.

4.1 Limited capacity

The capacity of a multiport memory chip suffers from the bigger cell size and larger
connection matrices. As illustrated in Figure A.8, the size of a multiport cell is big and
for an N-port cell, 2N+4 transistors are needed. In addition, increasing the number of
ports increases the amount of wiring inside the chip, and large connection matrices are
required for routing vertical and horizontal lines. Consequently, a large section of chip
area has to be devoted to the connection matrices and the chip area available to the cells

(that are already big) is reduced. Therefore, the capacity of the multiport memory is
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Figure A.8 Architecture of multiport memory

For each port, separate data and address lines are available.
Within some constraints, each cell can be accessed independently
for reading or writing by the ports.

limited. Nevertheless, the multiport memory is a very useful device and even a small

capacity is valuable. Moreover, by using advanced packing technologies such as the
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Vertically Expandable Memory (VEM) used by [DensePac], up to eight layers of
memory can be packed into a single package. Hence, the limited capacity is not a major
issue, especially if the structure using it, such as the communication scheme presented

in this research does not require large memories.

4.2 Large number of pinout

As the number of ports of a memory increases, more pins are required to interface to the
external devices. However, for the application discussed in this document, the required
pinout is under control. Using similar calculations shown in Chapter 3, a 16K, 64-bit

8-port memory would require around 750 pins, which can be easily packed in a single

chip using advanced packaging technologies such as the ones used by [Xilinx].

4.3 Control logic for multiport memory

Although the multiport cell was derived from the dual-port cell, extending the dual-port
control logic to multiport memories is not trivial. This section discusses some of the

issues in designing control logic for multiport memories.

4.3.1 Busy logic

Extending the busy logic to multiport memory is possible but requires considerable
hardware. For example, for only three ports, the size of the hardware is tripled. In this
case, each pair of address lines requires two comparators and an arbitration latch as
illustrated in Figure A.5. As the address lines can be paired in three different ways,
three separate circuits are required. For each port, the two busy outputs coming from
different circuits should be combined together to form only one busy line for that port.
Even with this circuit, if all the ports apply exactly at the same time, all of them may
receive a busy signal, as arbitration latches may decide in favor of different ports.
Although the probability of all of the ports applying exactly at the same time is very
low, this case must be removed by careful latch design, otherwise it can keep all the
ports in an endless waiting state. In general, for N ports, N(N-1) arbitration circuits are
required and their outputs should be combined properly. In this case, the maximum

number of cells that might be accessed by more than one port simultaneously is N/2.
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4.3.2 Semaphore logic

Among the range of available control schemes, semaphore logic is the most effective
but the hardest one to extend to multiport memories. The present concept works only on
two ports and it requires major modifications if it is to be used on multiport memories.
In the semaphore logic used for multiport memories, the semaphore latch should be
modified to include all the ports and it should take into account the order in which the
ports apply for semaphore. There should be also a priority scheme among the ports if

more than one port apply at the same time.

Adding the order of applying for semaphore can increase the complexity the semaphore
logic. A simplified version can be designed in which a fixed priority is used for the ports
that request the semaphore. Figure A.9 illustrates a new proposal for semaphore logic.
In this circuit, the shaded priority logic exerts a priority scheme in which Port_1 has the
highest and Port_n the lowest priority. Each port requests the semaphore by writing “1”
in its input latch. If the semaphore latches are all cleared, the request with the highest
priority will be the winner and it write “1” in its semaphore latch. Once one of the
latches is set, a NOR gate combined with AND gates at the input of the priority logic
disables the other requests from entering the semaphore latches and keeps them in a
pending state. The winning node receives “1” in the output and all the losers receive
“0”. When the winning node writes “0” in the input latch, its semaphore latch is cleared

and the highest pending request wins the semaphore.

In this circuit, semaphore latches are clocked by delayed data. When the data input of a
latch changes from “0” to “1”, a low to high transition is generated at the clock input
using the short delay of a buffer. The delay is inserted so that the data in the input settles
before the clock is applied. When the request is removed from the input latch, if the
semaphore latch is already set, an AND gate connected to the asynchronous reset of the
latch resets it to zero. The output latches are included to avoid the change of state while

reading the semaphore.

This circuit was simulated and successfully tested with the Xilinx’ Foundation Tools.
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Figure A.9 Semaphore logic for multiport memory

There is a fixed priority among the nodes with Port_1 having the highest and Port_n
the lowest priority. The ports register their request by writing “1” in the input latch.
When the semaphore latches are free, the highest priority request wins the
semaphore. For reading, the winning port will receive “1” at the output. Other
pending requests will get 0" at the output as a denial.

4.3.3 Interrupt logic

In the multiport interrupt logic, each port should be able to generate interrupts for other
ports, or clear the received interrupts from them. Although the individual interrupt

circuits are isolated from each other, several issues should be considered in the design
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of an N-port logic. For this logic, N(N-1) memory locations are required, and each
processor should use a table to find the address of other processors. For large N, it is
necessary to combine all of the interrupts generated for one processor into one line, as a
processor may have few interrupt lines, with some allocated to other resources. In this
approach, a mechanism is required to identify the source of generated interrupts. In
addition, as the received interrupts can be cleared only one by one, a new signal may be
included for clearing them all at once. Moreover, some other issues need to be resolved
such as conflicts between clearing interrupts and receiving new interrupts at the same
time, or receiving new interrupts while the interrupt line is active and other interrupts
are being serviced. The latter case may result in missed new interrupts, or excessive

delays before servicing them.

A new proposal for multiport interrupt logic is presented here. In order to reduce the
size of the required logic and to simplify the operation of the circuit, a different
approach from the one discussed for dual-port memory is used. Figure A.10 illustrates
the proposed structure for four ports and it can be scaled easily. In this structure, there is
no memory location associated with the interrupt generation logic. The number of
available addresses that are accessible from each port is equal to the number of
available ports on the memory. The chip-enable signal for this circuit can be different
from the memory chip-enable. Each processor can send an interrupt to any other
processor by writing to the address matching the port number of the destination
processor. The write operation does not require any data as it only sets the
corresponding interrupt latch. This will create an active high signal for the destination
processor on its interrupt line. If a command needs to be sent along with interrupt, it can
be passed in the mailbox, which is not in this circuit. For this purpose, each port of an
N-port memory will require N-1 dedicated memory locations in the main multiport
memory, each regarded as the mailbox of one of the ports. In total, N(N-1) such

locations will be required.

All the interrupt latches related to one port share the same interrupt line for sending an
interrupt to the processor connected to the port. In order to identify the source of
interrupt, the target processor should perform a read from the address matching its port

number. In order to avoid probable data change during read operation, the interrupt
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Figure A.10 Interrupt logic for multiport memory

Each port can generate an interrupt for another port by writing in the address that
matches the destination port number. The interrupt is stored in an interrupt latch
and the interrupt line of the desfination port Is activated. Reading from the
address of each port clears all the generated interrupts for the port and returns
the Interrupt information on separate bit lines. Only the connecting wires for port_0
and port_3 are drawn to avoid confusion, and the identical wire names should be
connected fogether.
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latches of a port are stored in the output latches at the start of read. The interrupt
information is available on separate bit lines during reading. An active bit indicates a

pending interrupt from the corresponding port.

The start of a read operation also clears all the corresponding interrupt latches and frees
the interrupt line. If another interrupt is generated for this port immediately after
releasing the interrupt line, the interrupt system of the receiving processor may not be
able to detect the short transient on this line. Hence, an AND gate forces the interrupt
line to the inactive state during a read operation and provides sufficient time for the

interrupt system of the target processor to settle before accepting another interrupt.

The design of the interrupt latch ensures that if an interrupt is generated during a read
operation, the destination port will not miss it or receive it in duplicate. As shown in
Figure A.11, this latch is cleared by clocking “0” using the rising edge of read
operation, but it is set through the asynchronous SET input. By using an AND gate, the
latch output is available when the set signal goes inactive, as if setting of the latch is
performed by the trailing edge of write operation. A delay buffer is used in the SET
input with the delay value matching the delay of the latch plus the AND gate. This
structure ensures that in clearing all the interrupts, if the destination port resets a latch
while the originating port is setting it, both of the operations will be performed without

any conflict. In this case, the read operation will not reflect the newly generated

j:)i—. INTR
D aQ

o oD
SET o—}3 {}- SET
CIR o—C bCLK

Interrupt to destination port (INTR) — ]
Write from originating port (SET) ——
Read from destination port (CLR) — 1§ L

Figure A.11 Interrupt latch design

The destination port resets the latch by clocking “0” in the rising edge
of read, whereas the originating port sets it by the asynchronous SET.
The iatch output is gated to be available when writing is finished. A
read will not conflict with a write, even if performed at the same fime.
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interrupt. Instead, the port will receive another interrupt by re-activation of the interrupt

line, and the subsequent read will show the interrupt information.

The interrupt circuit was simulated and successfully tested with the Xilinx” Foundation

Tools.

4.4 Simultaneous read of a cell

A common problem in multiport memory is the simultaneous write of a cell by more
than one port. In addition, simultaneous reading and writing of a cell can cause
problems. Both of these issues should be resolved by the use of hardware or software
tools, as explained earlier. Another issue in the design of multiport memory is the
simultancous read of a cell by many ports. Although there is no conflict in this case, the

issue should be considered in the design of multiport memories.

The problem arises from the loading effect on the memory cell. Referring to Figure A.8,
if many sense amplifiers attempt to read the same cell, the sink or source current of the
cell will increase resulting in a poor logic state at the cell output. Hence, the output
transistors of the cell should be strong enough to sink or source the required current.
This may add to the complexity of the cell and a bigger area may be required.
Furthermore, the capacitive loading of the sense amplifiers can also affect the logic state

of the cell output and should be kept to a minimum.

5 Summary

In this Appendix, the structures of single-port and dual-port memories were presented
and different hardware controls for dual-port memories were discussed. The structure of

the multiport memory was shown to be an extension of the dual-port memory structure.

As currently there is no control circuitry for multiport memory, newly devised practical
circuits have been proposed for easier control of multiport memories. The new
semaphore logic and interrupt logic for multiport memories were tested by hardware

design tools.
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Another option for the control of multiport memory is the use of a central off-chip
controller. In this method, as discussed in Chapter 8, different types of control circuitry
are integrated into a single chip that can be connected to the main memory chip
externally. Even the buffer allocation process can be integrated into this chip. The
advantages are faster control of the memory and utilization of the entire memory chip
for memory cells. Moreover, as stated earlier, in vertical or horizontal memory
expansion performed by connecting several chips in series or in parallel, there will be

no duplicate control circuitry, which would normally be left idle.
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