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Abstract

The perfoffnance of a multiprocessor greatly depends on the effectiveness of its

interprocessor communication. Shared memory and message passing are two major

communication architectures for multiprocessors. In shared memory systems,

processors communicate by writing to and reading from a coÍìmon memory. In

message passing architectures, nodes communicate by passing messages through an

interconnection network using send and receive commands. Both systems have their

advantages and disadvantages. This study aims to explore the feasibility of using

multiport memories for interprocessor communication based on message passing.

The individual ports of a multiporl memory provide independent access to memory

cells and can be used as communication links. In the communication structure proposed

in this study, several nodes connected to a multiport memory can communicate in

parallel without the overhead and delay of the bus architecture, or the interconnection

network of a typical shared memory system. The small number of ports on multiport

memory is a limiting factor that restricts the number of nodes connected to this

structure.

The proposed structure can be scaled by using a hierarchy in which the nodes that are

not connected directly can communicate through network controllers and other

available multiport memories. In this structure, shared memory is used as a link for
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message passing. In contrast to other shared memory systems, the small shared memory

in this structure is exclusively used for communication purpose.

The first stage in evaluating the proposed structure was the design and ìmplementation

of a small multiprocessor called MultiCom. In this prototype system, four nodes were

interconnected by a 4-port memory. The memory management of MultiCom could

prevent the nodes from interfering with each other using static and dynamic allocations.

In particular, dynamic allocation used fewer but larger buffers that could be assigned to

any communication on demand, and full memory utilization was possible. It could also

handle multicasting and broadcasting very efficiently. As dynamic allocation required a

lock mechanism for allocating the buffers, in the absence of hardware locks on

multiport memories, two new software locks for controlling the ownership of the

multiport memory were designed and successfully tested. Using a basic communication

protocol for MultiCom, the measured communication rate was 4.2 times faster than a

system using serial links, 11 times faster than a system using dual-port memories, and

14 times better than a bus-based system. In addition, compared to a system using dual-

port memories, the system enjoyed a four-fold reduction in cost.

A simulation model was designed to evaluate the performance of the scaled structure.

The model showed that the structure was scalable for small systems in which all of the

nodes were connected as a group using a single multiport memory. It also confirmed

that the structure only required small amount of shared memory for message passing,

However, the performance of the cluster structure in the original proposal in which

several groups were connected using a network controller was not desirable. The

communication rate dropped considerably under high inter-group message transfers

because of the overloaded network controller. To overcome this problem, the cluster

structure was modified and separate network controllers were used for each group. In

addition, an extra multiport memory was used to interconnect the network controllers.

With this modification, the performance of a cluster was significantly improved and

overloading of the network controllers was considerably reduced. The structure of a

network of clusters was also improved to accommodate the modified cluster structure,

and other measures were implemented to reduce the load of network controllers. The

improved structure can be used for medium to large-scale systems.
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CHAPTER 1 Introduction

his thesis makes the case for the use of multiport

memories fOr interprocessor coûununication in
multiprocessors. In this introductory chapter, the

background and the motivation for the research

undertaken a-re presented briefly and the objective and

scope of the study are outlined. In addition, the

contributions made by the study are put forward. Finally,

the stmcture of the thesis including a short explanation of

the contents of each chapter is presented.
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CHAPTER 1 Introd.uction

I Background and motivation

Interprocessor communication is one of the major activities in a multiprocessor system.

There is a frequent demand for interaction and exchange of data among nodes and a

high communication bandwidth is required. Interprocessor communication can be

regarded as the dominant component affecting performance in multiprocessors. An

eff,cient communication scheme requires high bandwidth and reliability with minimal

cost and software/hardware overheads.

Two major communication structures for multiprocessors are shared memory and

message passing. In shared memory systems, processors have access to a common

memory and communication is performed implicitly by memory load and store

instructions. One processor can write a message in the shared memory and other nodes

can receive the message by reading it. Sharing a conventional single-port memory

among nodes using a bus is one method to realize this concept. In this method, the

nodes need to take turn in using the shared memory and only one node can use it at a

time. Because of the limited bus bandwidth, this method is only useful for small

number of processors. Examples of this structure can be found in fTabak 90], [Culler+

981, and fPatterson+ 98].

In an interleaved memory structure, various blocks of memory are shared among

several nodes using different techniques. Nodes can access different memory banks

simultaneously; however, only one access per bank is allowed. Multiple bus or crossbar

switch can provide non-blocking connection of nodes to memory banks at high cost.

Multistage networks reduce the cost, but full connection of processors to the memory

banks may not be possible because of the blocking nature of the network. Memory

interleaving is useful for medium-size systems and it has been the basis of many

multiprocessors. Several examples can be found in [Tabak 90] and fGajski+ 83].

In message passing systems, the nodes are interconnected by a communication network.

Nodes communicate with each other by explicit send and receive commands. A low to

medium number of nodes can be interconnected using topologies such as ring or mesh,

For larger systems, hypercube is a better topology and some massively parallel

processors have used this structure to interconnect up to 216 nodes [Hennessy+ 94]. In
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these topologies communication is performed through serial links. The required wiring

for connecting nodes in a network of this size is a challenging task. In addition, the slow

nature of a serial link that sends data bit by bit is a limiting factor to achieve high

communication rates.

Message passing through dedicated parallel links has been also investigated by

researchers. For example, [Tuazon +85] suggested the use of f,rst-in, first-out (FIFO)

buffers between two nodes. The transmitting node had to write the message into the

FIFO, and the receiving node could retrieve it from there. Similarly, [Su+ 92] proposed

the use of FIFO RAMs to act as a communication buffers between nodes.

Developments in dual-port memory structure have initiated new methods for

interprocessor communication. Dual-port memories allow two devices to have

independent and simultaneous access to the memory cells. The nodes connected to a

dual-port memory can communicate in both directions using two separate ports. As the

overhead of bus is eliminated, higher communication rate can be achieved. Several

structures have been proposed for interconnecting a limited number of nodes in

[Jagadish+ 89], [Khan+ 94), and fCampbell+ 96]. With only two ports to access the

memory, this approach is restricted to small systems.

Multiport memory offers a better structure for interprocessor communication. Several

nodes can share a multiport memory using independent ports and they can

communicate directly by writing and reading the shared memory concurrently. This

structure is much simpler than other shared memory structures such as multiple bus or

multistage networks and it does not have the overhead and the delay associated with

these structures. The limiting factor is the small size and low number of ports on

multiport memories. This restriction makes the design of communication structures for

large systems very challenging. The structure proposed in this study is based on limited

number of ports, and the shared memory created by multiport memory is used as a link

for message passing. Unlike other shared memory systems, the shared memory in this

structure is exclusively used for communication purpose and as explained later, a small

memory size is adequate for this purpose.
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As explained in Chapter 3, the concept of using multiport memory for interprocessor

communication has not been deeply explored by researchers and only very few

structures for basic communication have been proposed in fHandy 90] and [Varshneya+

94]. No evaluation of the proposed structures has been performed. Hence, this is an

open research area and the challenging nature of it, together with the expected benef,ts

and outcomes are some of the incentives to undertake this research.

2 Objectives and scope of the study

The main objective of this study is to demonstrate that interprocessor communication in

multiprocessors can be performed efficiently through multiport memories. Suitable

structures can be designed in which multiport memory with limited port count and

capacity can be used as a link for message passing.

This study covers the following:

. Designing a basic structure for using multiport memory for interprocessor

communication with a limited number of ports and capacity

. Developing strategies for the management of multiport memory

. Developing the required communication protocols

. Designing structures to connect alarge number of nodes in a network

. Developing support facilities for multiport memories

3 Contributions

This study explores the possibility of using multiport memory for interprocessor

communication. Contributions claimed by the author are the following:

. Communication structure

. Multiport memory management

. Communication protocols

. Support circuits for multiport memory

4Mulliporl Memory os o Medium for lnterprocessor Communicotion in Mulliprocessors



CHAPTER 1 Introd.uctíon

Each one will be discussed briefly in the following sections.

3.1 Communication structure

The concept of using dual-port memory for interprocessor communication has been

explored by some researchers and successful outcomes have been reported. However,

the use of multiport memory for this purpose has not been examined in depth and apart

from a couple of proposed structures as presented in Chapter 3, there has been no

significant work in this area. Furthermore, no work has been carried out to evaluate the

proposed structures.

This study proposes a novel structure for interprocessor communication using multiport

memory and supports the proposed structure by evaluating it with a hardware prototype

and a simulation model. The hardware prototype tests the functionality and

effectiveness of the structure under real conditions, and the simulator provides further

in-depth tests of the expanded structure for conditions that cannot be tested easily on

real systems. The hardware prototype was also used to calibrate the simulator to

produce more reliable results when expanded. After several revisions of the structure

based on the results obtained from the simulation model, the final structure presented in

Chapter 7 was devised for medium to large-scale systems.

Compared to a system using dual-port memories, this structure offers a considerable

increass in performance, and a remarkable decrease in the cost of the system as

presented in Chapter 5. In addition, it enjoys a much simpler design and reduced

number of links. It also shows much better results compared to bus-based systems or

systems using serial links.

3.2 Multiport memory management

The proposed structure relies on conflict-free flow of data through multiport memory.

As each node is connected to a multiport memory through an individual port, the

possibility of a conflict between nodes is very high. The memory management of the

multiport memory requires hardware support facilities or software-driven mechanisms

for removing the conflicts or avoiding them. Because of the lack of hardware supports
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CHAPTER 1 Introduction

on multiport memories, the memory management developed in this study was based on

software methods. In particular, two newly devised algorithms for implementing a lock

mechanism for multiport memory were successfully implemented and tested on the

hardware model in Chapter 5. These locks were used in dynamic allocation of the

memory buffers to the requesting nodes.

3.3 Communication protocols

In order to effectively control the communications in the hardware prototype, a basic

communication protocol was developed and tested on MultiCom in Chapter 5. The

simulator designed in Chapter 6 was used to evaluate the scaling of the communication

structure in several stages and the communication protocol was gradually modifled to

support the requirements of the expanded system. More improvements were applied to

the communication protocol to meet the requirements of the improved communication

structure in Chapter 7.

3.4 Support circuits for multiport memory

As discussed in Chapter 5, support circuits such as semaphore logic facilitate the use of

dual-port memories. If similar facilities are not available on multiport memories,

software approaches need to be developed for memory management and overhead will

increase. This reduces the usefulness of multiport memory in a system design. In the

Appendix, several new support circuits for multiport memories are proposed and

designed. In particular, the new circuit designed for multiport semaphore logic

considerably simplifies the management of multiport memory and makes the use of this

type of memory more convenient. The designed circuits are practical and have been

tested by hardware design tools.

4 Thesis structure

This thesis is divided into eight chapters and one Appendix. Each chapter is discussed

very briefly in the subsequent sections.
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CHAPTER 1 Introduction

4.L Background

Chapter 1 presents a brief introduction and the motivation for the research undertaken.

The objective and scope of the study are discussed, the contributions claimed by the

author are presented, and the structure of the thesis is explained.

4.2 lnterprocessor communication

Chapter 2 presents the literature review for interprocessor communication. Shared

memory and message passing as two major communication architectures in

multiprocessors are explained and different approaches for designing each method are

presented. For shared memory, single-bus and interleaved memories are discussed and

the use of multiple bus, crossbar switch or multistage networks for connecting several

nodes to memory banks is illustrated. For message passing systems, the use of serial

links in topologies such as ring, mesh or hypercube is discussed and other structures

that can create a dynamic link between two nodes on demand are reviewed. In addition,

the use of parallel links for message passing is explained and generating such links

using FIFOs or dual-port memory is discussed.

4.3 Multiport memory for interprocessor communication

Chapter 3 describes the research proposal for this study. In the literature review

presented at the beginning of this chapter, the achievements in multiport memory cell

design are explored and some of the applications of multiport memories in system

design are reviewed. Then, a structure for interprocessor communication using

multiport memories is proposed and the expansion of the structure to coveÍ more nodes

in a network is presented. The proposed structure is based on multiport memories with

limited number of ports and small capacity in which shared memory is used as a link for

message passing.

4.4 Hardware model

Chapter 4 discusses the structure and implementation of MultiCom, a small

multiprocessor designed as a hardware prototype to verify the efficiency of the

proposed communication scheme on small scale. The node processors and the 4-port
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memory used in this design are explained and a basic memory management method

called static allocation is introduced. Finally, the performance of this system is

compared to serial systems.

4.5 Memory management

Chapter 5 introduces dynamic allocation as an advanced memory management scheme

and discusses the required communication protocols. Dynamic allocation can provide a

better memory utilization, but requires a sophisticated lock mechanism to eliminate

shared memory conflicts. Two new software locks devised for the control of multiport

memory are explained and the efficiency of the communication in MultiCom is

measured and compared with other methods.

4.6 Simulation model

Chapter 6 presents the design of a simulation model for the evaluation of larger

systems. First, a model for MultiCom is generated and its performance is matched to

that of MultiCom. Then, the simulation model is expanded to include more nodes in a

cluster and the performance of the system is evaluated. The expansion of the model to

encompass more clusters in a network is also explained and the communication

bottleneck detected by the simulation model is discussed.

4.7 lmproved communication structure

Chapter 7 describes the modifications required for the communication structure. Based

on the results obtained from the simulation model, a modified structure for nodes

connected in a cluster is presented and an improved structure for connecting several

nodes in a network is explained. Several issues on scaling the communication scheme

are also discussed.

4.8 Further directions

Chapter 8 is the conclusion. The steps undertaken in designing, evaluating, and

improving the structure ate described and the achievements are discussed. In addition,
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several possibilities to improve the structure and further directions in pursuing this

study are presented.

4.9 Structure of multiport memory

The Appendix presents the evolution of single-port memory cells to dual-port and

multiport memory cells. The control logic used on dual-port memory chips is explained

and several issues in the design of multiport memory chips are discussed. In addition,

new circuits for the control of multiport memory are proposed and designed.
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Communication

I nterprocessor coûununication in multiprocessors is a very

important task and 'requires a high bandwidth. In the

literature review presented here, first, shared memory and

message passing as two major conununication structures

for multiprocessors are explained and different methods to

¡selize each method are presented. In the shared memory

structure, nodes can communicate with memory load arrd

store instructions and different techniques such as single

bus or interleave

message

d memory can be used to create it. In
nodes coûlmunicate with explicit send

and receive.commands using an interconnection network,

which is generally based on serial links and can be

organized using different topologies. Next, the use of dual-

port memory as a conununication medium between two

nodes is discussed and different communication structures

based on dual-port memories are explored. Finally, shared

memory using a multiport memory is introduced and some

of the unresolved issues in'designing large-scale multiport

memories are presented
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1 Introduction

Multiprocessors enhance the capability and performance of computer systems by using

parallelism. Several interconnected processors can process different parts of a workload

in parallel and f,nish it faster. Workload sharing demands close cooperation and

frequent exchange of data between processors. Hence, interprocessor communication is

a very important task in multiprocessors. In fAlmasi+ 89], a parallel computer is

def,ned as "a collection of processing elements that communicate and cooperate to

solve large problems fast". In [Culler+ 98], parallel architecture is viewed as "the

extension of conventional computer architecture to address issues of communication

and cooperation among processing elements". Both of these def,nitions highlight the

importance of communication in multiprocessors. For a high petformance

multiprocessor, the communication structure should provide a high bandwidth.

The communication architecture of the majority of multiprocessors falls within the

following categories:

. single address space or shared-memory

o ffiesSâge passing

In shared-memory architectures, processors share a single memory address space and

communicate through the shared memory. In message passing systems, processors

exchange data and other information by sending and receiving messages to each other.

Both are discussed briefly in the subsequent sections.

2 Shared memory

This class of multiprocessors uses a single memory address space that is shared among

processors. Processors still can have private or local memories, but part of their memory

space is mapped to a common physical memory that is accessible by all processors.

Communication is performed implicitly through shared memory using conventional

load and store instructions. Shared memory can be implemented in many ways and two

popular methods for implementing it using a single bus and interleaved memory are

discussed here.
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2.L Shared memory with a single bus

In this method, a conventional single-port memory is shared among several processors

by a single bus, which has a fixed bandwidth. Implementing this bus is straightforward

and processors can be added to the bus or removed from it if required, although the bus

speed will be limited if the bus is long and/or many devices are connected to it. Because

of the nature of the shared bus, only one request for the memory can be handled at a

time and other requests have to wait for their turn. A control circuit such as arbitration

logic is required to resolve simultaneous requests to memory. Under heavy bus demand,

the limited bandwidth of the bus can create a bus bottleneck and consequently, this

structure is only applicable when the number of processors is relatively low. The

maximum number of processors on a bus depends on the bus bandwidth and the traffic

per processor. Figure 2.1 illustrates the overall structure of a single-bus shared memory.

Local
Memory

a¡¡

Shared Memory

Figure 2.1 Simple shared memory

A conventionol single-port memory con be used os o shored

memory by using o bus, Only one request on the shored
memory con be processed of ony lime.

CPU 2CPU 1 CPU 3 CPU n
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As a consequence of working in parallel, processors frequently work on shared data and

need to coordinate their access to shared variables. As only one processor should be

able to modify a shared variable, synchronization mechanisms such as locks or

semaphores should be implemented to avoid memory conflicts. Semaphores will be

discussed in detail in Chapter 5.

Shared memory structure has a long history, dating at least to precursors of mainframes

in the early 1960s, and today it has a role in almost every segment of the computer

industry. An example of earlier shared memory systems is IBM System 370. Supports

for multiprocessor configurations including atomic memory operations and

interprocessor interrupts were the key extensions in the evolution of the 360

architecture to System 370 lCuller+ 98].

Commercial examples of single-bus architecture are ELEXSI System from ELEXSI

Corporation which features up to 12 processors connected to a single bus system called

"Gigabus" [Tabak 90], and Compaq Proliant 5000 from Compaq Corporation

connecting four Pentium Pro processors [Patterson+ 98].

2.2 lnterleaved shared memory

Memory interleaving is a method used for allowing several concurrent accesses to

memory. In this method, the memory is divided into blocks or banks and an

interconnection network is used to connect memory banks to the processors. Several

processors can access different banks simultaneously; however, only one connection

per bank is possible at a time. If more than one access to a particular bank is requested,

only one of them can proceed while the others have to wait. Figure 2.2 demonstrates an

interleaved memory structure.

Interconnection networks can be implemented using multiple busses, crossbar switches,

or multistage networks. Each one will be discussed briefly.

2.2.1 Multiple-bus shared memory

In multiple-bus structures, processors and memory banks are connected to all of the

available buses as shown in Figure 2.3. There are several redundant paths from each
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CPU 1 CPU 2 CPU 3

Local
Memory

aa¡

¡a¡

CPU n

Bønk 7 Bønk 2

Shared Memory

Bank mala

Figure 2.2 lnterleaved memory

The shored memory is composed of severol memory
bonks ond they ore connected to different processors

using on interconnection network,

processor to a memory module. Each processor can use any of the available buses to

access a memory bank. Each bus can be used with only one processor at a time to

access a memory bank, but several processors can access different banks

simultaneously using separate buses. The cost and complexity of multiple-bus is very

high, In addition, a complex bus arbiter is required to control the bus traffic. [Mudge+

871 analyses multiple-bus structures in detail.

2.2.2 Crossbar switch

A crossbar switch can also provide full connection of memory banks and processors. As

shown in Figure 2.4,in a matrix of switches, processors are connected to the rows and

memory banks to the columns. Crosspoint switches are placed in the intersection of
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node 1 aat

BUS 1

!¡a

node n

Bank I Bønk 2
l¡¡

Bank m
Shared

Figure 2.3 Multiple-bus shared memory

Processors ond memory bonks ore connecled to oll

buses, Eoch bonk con be occessed using ony bus. There

ore severol redundont poths for eoch connecïion.

rows and columns and they can route each processor to a memory module. Crossbar

switches scale well, but their cost is also high. For example, for N processors and N

memory modules, N2 crosspoint switches are required. Moreover, for accessing

memory bits in parallel, each bit should be routed by a separate switch. A crossbar

switch is a nonblocking network and a connection between a processor and a memory

module does not block the access of other processors to other memory modules. The

structure in Figure 2.4 can be regarded as a multiple-bus system in which processors are

connected to all buses, but memory banks are connected to only one bus. Hence, there is

only one path from any processor to any memory bank.

An example of a commercial system using crossbar switches is IP-1 from International

Parallel Machines Incorporation in which eight 64-bit processors were connected to 8

memory modules through an 8x8 crossbar switch. The Alliant System from Alliant

Computer Systems Corporation also used a crossbar switch in its structure [Tabak 90].

node 2

2
¡
¡
t
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node I
¡¡¡

node 2

node n

Bank 1 ank 2

Crosspoint

Swi.tch

a¡¡

Shared

Figure 2.4 Crossbar switch

Eoch memory bonk is connected to o column line.

Nodes con be routed To o memory bonk by ocTivoting

the opproprioïe crosspoint switch.

2.2.3 Multistage network

A multistage network can reduce the cost of a switching network to (N/2) log2N. As

shown in Figure 2.5, instead of directly routing a processor to a memory module,

several single-stage switches are activated in series to make the connections. Many

structures for the design of multistage networks have been proposed and investigated in

the literature. Examples are the omega, banyan, baseline, and delta networks. These are

blocking networks and an existing connection may result in conflicts in the use of

network and may block other connections. [Feng 81] presents a suryey of

interconnection networks in detail.

The circuit required to build the interconnection network can be large, especially if the

number of nodes and memory blocks is high. In addition, as the circuit expands, the

delay associated with it increases.

a
a
¡
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node I node 2 node nnode 3

single-stage

switch

Bønk 1 Ba.nk 2 Bank 3

¡aa

si"å¿
Memory

Figure 2.5 Multistage network

The nodes ore connected to different memory bonks

using o multistoge network, This struclure is o blocking
neTwork, For exomple, routing node I Io bonk l, ond
node 2 to bonk 2 ot the some time is noT possible.

An example of a research machine using multistage networks is the "CEDAR" alarge-

scale multiprocessor built in University of Illinois. It used a special switching network

called "Global Network" which provided redundant paths between processors and

memory modules for conflict avoidance and fault tolerance. It was designed to scale up

to 1024 processors [Gajski+ 83]. A commercial example of multistage network is the

BBN Butterfly from the BBN Advanced Computers, which could scale up to 256

processors, and the shared memory was accessible by all processors through the

system's logarithmic, packet-switched communication network, the "Butterfly Switch"

[Tabak 90].
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3 Message passing

In this class of communication structure for multiprocessors, several nodes each

comprising a processor, an VO system and private memory are interconnected by a

network. Communication between nodes is performed with explicit send and receive

commands. If a message is large, it is divided into several packets and each one is sent

independently. After receiving all the packets, the receiver can reassemble the original

message. Message passing is usually slower than shared memory, but it avoids memory

contention problems and scales very well.

Two general mechanisms for message passing are packet switching and circuit

switching. The packet switching method works in a store-and-forward manner,

analogous to the mail service. Each node stores the received message and then forwards

it to the next node. The minimum message latency depends on the number of hops and

the message length. In the circuit switching mechanism, a path from source to

destination is initially established and remains connected until the message is

transmitted in full [Gaughan+ 93]. This method is similar to a telephone switching

system.

Nodes of a message-passing system can be interconnected using several topologies as

explained in the next section.

3.L Network topologies

The straightforward way to interconnect a number of nodes is to create a fully-

connected network in which a dedicated communication link is used between any two

nodes. The links are norTnally bidirectional and data can flow in either direction.

Between the high coslperformance of this network and the low cost/performance of a

bus, there are several other networks that constitute a wide range of trade-offs in cost/

performance. Network costs include the number of switches, the number of links on a

switch to connect to the network, the width or the number of bits per link, and the

length of the links on the physical machine [Patterson+ 98]. Network topologies can be

grouped into static and dynamic categories, depending on the type of links used in the

network, These are explained in the subsequent sections.
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3.1.1 Static topologies

In a static topology, links between two processors are passive and dedicated buses

cannot be reconfigured for direct connection to other processors [Feng 81]. Some of the

topologies in this category are discussed below.

In a ring topology as shown in Figure 2.6, each node is connected to two adjacent nodes

and several simultaneous transfers are possible. A message sent to a nonadjacent node

will require extra hops to go through intermediate nodes. The maximum number of

hops for N nodes is N/2. As the average message delay and message traffic density

increase with the number of nodes on the ring, this topology is only useful for small

systems.

Figure 2.6 Ring topology

ln lhe ring topology, eoch node is connecïed lo two odjocent
nodes ond the end nodes ore connected together.

In a mesh or grid topology as illustrated in Figure 2.7 , the nodes are affanged in a two-

dimensional grid and each node is connected to the adjacent nodes. A node will have a

maximum of four direct links to adjacent neighbours. For N nodes, the communication

of two nodes located on two opposite corners will take Zt"fN -1) hops. This is 30 hops

for N=256.

Nodes can be also arranged in a three-dimensional grid. In this topology, each node will

be connected to a maximum of six adjacent nodes.

node
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node

Figure 2.7 Mesh or grid topology

The nodes ore orronged in o two-dimensionol grid. Eoch node
in the middle is connected lo four odjocent nodes, but the
corner nodes ond boundory nodes ore connected to two or

three nodes respectively.

In a ring-mesh topology, a combination of ring and mesh is used. The corner and

boundary nodes of a mesh structure are interconnected using several rings as shown in

Figure 2.8. For N processors arranged in a ring-mesh array of 
^,fN 

x ^,rÑ, the longest

path between any two processors requires ,.'/N hops. This is 16 hops for N=256,

A three-dimensional grid can be also converted to a ring-mesh topology by connecting

the boundary nodes using several rings. This will reduce the number of maximum hops

required in the network.

A network of Transputers is a good example of the ring-mesh topology. Transputers can

be used as the main elements of a multiprocessor system and there are four serial ports

on each chip [Inmos 88]. Several Transputers can be interconnected using this topology

and the serial ports on each processor are fully utilized. A 4-cube topology as explained

below is also suitable for a network of 16 Transputers.
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node

I

I

I

I

I

I

I

I

Figure 2.8 Ring-mesh topology

A combinoTion of ring ond mesh is used in This topology. Eoch

node is connected to four other nodes.

For a larger N, hypercube is a better topology where the number of links per node and

the number of hops are optimized. For N=2t nodes, each node should have n=logzN

links and the required hops to communicate from any node to another is the Hamming

distance between the node numbers [Bhuyan+ 84]. The longest distance is log2N, which

is nine for N=2e=5 12. The number of total links is (N/2)log2N, which is 2304links for

512 nodes. This hypercube is called an n-cube.

Figure 2.9 shows a 5-cube configuration with all of its 80 links. Communication

between node X and node Y requires five hops. The arrows in the figure show one

possible path for this communication. Figure2.10 shows a 6-cube, and Figure2.IL

illustrates a 9-cube configuration. Only some of the links are shown in these figures.

The design of a microprocessor-based hypercube system is explained in [Hayes+ 86].

The Intel iPSC (personal supercomputer) and iPSC/2 are examples of commercial

hypercube systems. They offer 5-cube, 6-cube, and 7-cube options. The iPSC uses
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-)-
X

Y

Figure 2.9 32-node hypercube (S-cube) with all of its links

Eoch node in this hypercube is connecTed to its four neighbours through

seriol links, The dotled onow shows one possible woy of connecting
node X to node Y

Figure 2.10 64-node hypercube (6-cube)

ln o ó4-node hypercube, there is o 3-cube in eoch corner of
o cube, Only some of the links ore shown.

+
N
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+
I
T
T
T
T
I
T

Figure 2.11 512 node hypercube (9-cube)

A 9-cube is composed of o cube wilh o ó-cube in eoch corner. Only
some of the links ore shown.

80286 processors with 80287 coprocessors and iPSC/2 is the 80386 version lTabak 90].

Another example is the CM-2 supercomputer with 216 processors. It is a massively

parallel machine from the Thinking Machines Corporation and uses a l2-ctbe

configuration for its interprocessor communication. Each node of the hypercube is a

cluster of 2a=I6 processors. There are also other dedicated links for communication

inside each cluster [Hennessy+ 94].

Other examples in static category are the star, tree, systolic array, and chordal ring

topologies [Feng 81].
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3.1.2 Dynamic topologies

In contrast to static topologies, the links in a dynamic topology are not fixed and can be

reconfigured. This can be done by setting the network's active switching elements

[Feng 81]. Hence, when required, a dynamic link can be established between two nodes

for direct communication.

Dynamic links can be created using an interconnection network based on crossbar

switches, multistage switches, or AIM (Asynchronous Transfer Mode) switches. The

structure of an interconnection network using a crossbar switch is similar to the one

shown in Figure 2.4 with the exception that the memory modules are replaced with

nodes 1 to n. This implies that each node will have one input link and one output link

connected to the network. Hence, a direct path can be created between any two nodes

by setting the appropriate crosspoint switch. Similarly, by replacing the memory

modules with nodes, the multistage switch shown in Figure 2.5 can route a path for the

communication of two nodes. As stated earlier, this is a blocking network, but it costs

less than a crossbar switch network.

Some of the static topologies shown in previous section can be constructed using

dynamic links. For example, in the ring topology shown in Figure 2.12, each node is

connected to the ring using a switch [Patterson+ 98]. The switch is capable of isolating

the node from the ring, or connecting it the right or left side. With some restrictions,

several communications can be performed simultaneously. For example, the two nodes

on the right of Figure 2.I2 can communicate with each other while the two nodes on the

left are also communicating.

Figure 2.12 Ring topology with dynamic links

Eoch node is connected to the ring using o switch. Limited

simultoneous communicotions ore possible,

switch

node

Multiport Memory os o Medium for lnterprocessor Communicotion in Multiprocessors 24



CHAPTER 2 Ilntetprrocessor Communíco,tion

An example of a commercial computer using dynamic links is the CM-5, a

supercomputer from the Thinking Machine Corporation, which is designed using an

advanced structure called "fat-ttee" for its interprocessor communication fHennessy+

941. Another example is IBM SP-2, which is a scalable parallel machine constructed

essentially out of complete RS6000 workstations. The interconnection network is a

butterfly-like structure, constructed by cascading 8 x 8 crossbar switches [Culler+ 98].

3.2 Interconnection methods

An interconnection network can be implemented using serial links or parallel links

Each one will be explained briefly in the subsequent sections.

3.2.1 Serial links

Communication using serial links is a well-established method where the message is

transmitted serially from one processor to another, one bit àt a time. Serial

communication can be performed point-to-point, or on a network using multistage

switches. In the simplest form, the link is composed of a pair of wires that runs between

two nodes. The major disadvantage of this link is its low datarate, which is the result of

the serial nature of the communication that sends data bit by bit at usually low data

rates. Its advantage is that it significantly reduces the number of wires used in the

network. Another advantage is that as serial communication is normally performed

using independent modules, the main processor is not heavily engaged in the

communication and is free to perform other tasks while the communication is running

in the background.

3.2.2 Parallel links

Parallel links are capable of transferring several bits of data at the same time. For a data

transfer, the sender writes to the link and the receiver reads from the link. A simple

parallel link can be created by connecting an I/O port of a node to that of another node.

This method requires extensive handshaking between the nodes and each unit of data

needs to be signalled and acknowledged before sending others. The data bus of a

memory module can be also used as a parallel link for data transfer. [Tuazon +85]

suggested the use of first-in, first-out (FIFO) buffers as parallel links between t\ /o
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nodes. The transmitting node had to write the message into the FIFO, and the receiving

node could retrieve it from there. Similarly, [Su+ 92] proposed the use of FIFO RAMs

to act as communication buffers between nodes. [Culler+ 98] explains an early system

in which eight nodes were connected in a 3-cube structure and there were two sets of

FIFOs between two neighbours for sending and receiving. A total of 24 FIFOs were

used in this structure. Because of the limited size of FlFOs, a message sent to a FIFO

should be picked up by the receiver before sending another message.

The availability of dual-port memory in the second half of the 1980's provided a better

solution than FIFOs because of its ability to work in both directions and many

structures were proposed on this basis. As the discussion of dual-port memory is vital to

the communication structure proposed in this thesis, it is covered in a separate section.

3.2.3 Dual-port memory

As shown in Figure 2.I3, a true dual-port memory has two sets of address, data, and

control lines. Each memory location can be accessed through either of the ports.

Control 1 Control 2

INTRI<'r r r rrr>INTR2

Figure 2.13 Dual-port memory

A duol-port memory hos two sets of oddress, doto, ond control buses,

The memory cells con be occessed from either porT. The chip moy

contoin signolling focilities belween the ports, like on inTenupt line fhol
olerts one slde when doto hos been written by the other,

N
Fi
t4.

t-(

3ú
È

Memory

Cells
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Simultaneous read and writes are allowed, provided that they are performed on different

addresses. In order to achieve data integrity, two concurrent writes to a memory location

should be prevented. Similar prevention methods should be applied to a concurrent read

and write because this may produce changing data at the output of the read operation.

A typical dual-port memory has a size of 16 to 64 KBytes with the facility of preventing

undesired operations, as well as a mechanism to send an interrupt from the processor

connected to one of the ports to the processor connected to the other port. The interrupt

mechanism works by simply writing to a specific memory location. [Cypress 96].

Dual-port memory can be used as a register file inside a processor where two sets of

data are supplied to the ALU (arithmetic logic unit). By the use of simple latches at the

ALU inputs, the output of the ALU could be written back to the register file [Elliot+

891. There are several other applications for dual-port memories such as digital video

cameras, data acquisition systems, displaying dala on a monitor, and communication

between processors. The latter application is one of the major applications of the dual-

port memories [Wyland 88] [Pryce 89]. There is a preliminary report on the use of dual-

port memory for a cluster of four Transputers and a network controller in fKhan+ 93].

The next report from the same team discusses the detail of their design [Khan+ 94]. The

architecture used in this design is illustrated in Figure 2.I4, in which there is a separate

T= Tiansputer
LM= Local Memory
NC= Network Controller
DPM= Dual-Port Memory

Figure 2.14 Restricted Shared Memory (RSM) architecture for
communication through dual-port memories

ln this structure, o cluster of four Tronsputers ond o network controller ore
inTerconnected using duol-porT memories.

T4

EEE
EIF

IF
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link through a dual-port memory from any node to the network controller or the other

nodes. As seen in the figure, ten memory blocks were used in this architecture to

interconnect four nodes and a network controller.

Another work is cited in [Jagadish+ 89], in which dual-port memories were used to

interconnect eight nodes and a network controller. As shown in Figure 2.15, each node

in this design is located in a corner of a cube and has a ssparate link to three of its

neighbours as well as another link to a network controller. Only the dual-port memories

associated with node X and node Y are shown in this figure. The total number of dual-

port memory blocks required for this structure is 20. Even with this number of memory

blocks, the link between some nodes, such as nodes X and Y, must be established

through the other nodes or the network controller as shown by the affov/s.

eJctension

NC Network Controller

node X /a-

node Y

DPM Dual-PortMemory

Figure 2.15 Using DPM to connect nodes in a cube

The nodes ore locoted in lhe corners of o cube ond there is o duol-port
memory between ony two nodes. A neïwork controller con focilitote
the communicotion between non-odjocent nodes. Only DPMs

connected to nodes X ond Y ore shown, Arrows show two possible
poths between X ond Y

a
a
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NC
DPM

NC

node

Figure 2.f 6 Extending the structure using DPMs to 64 nodes

ln this struclure, the network controllers of eoch cluster ore
interconnected using DPMs in o similor monner os nodes of o clusler,

Only one DPM is shown, but The structure requires 180 DPMs

The authors have proposed that the structure could be extended to higher order cubes

such as 26=64 nodes (6-cube) as shown in Figure 2.l6.Thenumber of required memory

blocks would be 180.

Both the structure presented in this work and the RSM discussed earlier combine the

use of shared memory with message passing. In fact, similar to the structures using

FIFOs described earlier, shared memory is used as a link between nodes for message

passing.

The RSM architecture presented in [Khan+ 94] is similar to the structure used in

[Jagadish+ 89]. As shown in Figure 2.IJ , the structure of Figure 2.I4 can be viewed as

a hypercube of order 2 in which four nodes are placed in corners of a square and each

one shares a DPM with each adjacent node. In addition, the diagonal nodes are
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NC Network Controller

DPM Dual-Port Memory

Node

Figure 2.17 Another view of RSM architecture

RSM structure con be viewed os o fully connected network for four nodes

using DPMs. ln oddition, eoch node hos o link to o network controller,

interconnected using other DPMs and each node has a link to a network controller. With

the exception of the diagonal links, this structure is similar to the top part of the

structure shown in Figure 2.15.

With the contributions from one of the authors of [Jagadish+ 89], the continuation of

this research has been presented in [Campbell+ 961. It was reported that a

multiprocessor called COMPS (COmmon memory Message Passing System) was being

developed in Curtin University of Technology in Perth, Australia and used a dual-port

memory as the communication link between two nodes. A five-node prototype system

was reported as being in its final stage and near completion. The results of this system

will be reviewed in Chapter 4.

4 Convergence

Shared address space and message passing are two clearly distinct architectures.

However, the evolution of hardware and software has gradually blurred the boundary

and substantial convergence has taken place [Culler+ 98]. Some of these are explained

below.

At the user level, most shared memory machines also support send"/receive operations

used in message passing through shared buffer storage. In addition, a shared virtual

I
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address space can be established on a message passing system. A group of processes

can have a region of shared address space, but each process has access to its local pages.

When a non-local page is addressed, a page fault occurs and the operating system

initiates a message passing transaction to transfer the missing page and map it to the

user address space [Culler+ 98].

As explained in the previous sections, shared memory can be used as links for message

passing. Furlhermore, with the advances in the design of scalable interconnect

networks, several machines, which may be shared memory in their own right, are

interconnected to operate as a parallel machine on individual large problems or as many

individual machines on a multiprogramming load [Culler+ 98]. Such systems can

utilize the advantages of both architectures.

The Stanford DASH multiprocessor (abbreviated for Directory Architecture for Shared

Memory) was designed to investigate the scalability issues for shared-memory

multiprocessors. As in message-passing machines, the main memory in DASH is

distributed among the processing nodes and a scalable interconnection network is used

to connect the nodes together. Unlike message-passing machines, however, the

processing nodes share a single global address space. The DASH architecture thus

combines the scalability of message-passing machines with the ease of programming

associated with single address space machines ll-enoski+ 91].

The FLASH multiprocessor (abbreviated for Flexible Architecture for Shared Memory)

also developed in Stanford supports distributed shared memory and message passing

while minimizing both hardware and software overhead. Each node in FLASH contains

a microprocessor, a portion of the machine's global memory, a port to the

interconnection network, an VO interface, and a custom node controller called

"MAGIC". The MAGIC chip handles all communication both within the node and

among the nodes, using hardwired data paths [Kuskin+ 94].

The underlying machine structures for message passing and shared address space have

converged toward a common organization, represented by a collection of complete

computers, expanded by a "communication assist" connecting each node to a scalable
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communication network. Thus, it is natural to consider suppolting aspects of both in a

common framework lCuller+ 98].

5 Shared memory using multiport memory

Multiport memories provide several ports for accessing the memory cells and each node

of a multiprocessor can be connected to one of the available ports exclusively. All the

nodes can simultaneously read from different memory locations. They can even read

from the same memory location concurrently. In contrast to reads, simultaneous

memory writes are only possible if different memory locations are used. If two or more

conculTent writes to a memory cell are requested, only one of them should proceed.

The use of multiport memory as in Figure 2.I8 can improve the performance of a

shared-memory system significantly. This is because concurrent memory access is

possible without the overhead of the bus system or the interconnection network.

However, the main problem is that the available multiport memories have very few

ports (maximum 4 ports at the time of conducting this research) and small capacities (2-

4 KBytes for 4-ports) [ICmaster 99]. This small range is not sufficient to build a shared

memory suitable for a relatively large number of nodes. There are several issues in the

design of a large-scale multiport memory that need to be resolved before producing

multiport memories with large capacity and more ports. Some of these issues are the

complexity of the memory cells, the huge number of connections inside the chip, large

pinout required by the chip, and a preventing mechanism for avoiding concurrent

writes, or even concurrent read-write on the same memory cell.

The small port count and limited capacity of multiport memories make their use as a

shared memory a challenging task. As explained in Chapter 3, this area has not been

explored in depth, and only very few structures for interconnecting nodes in small

systems have been proposed. Furthermore, no work has been reported previously in

evaluating a coÍìmunication scheme based on multiport memories and no attempt has

been made to design the required memory management and associated communication

protocol. Hence, the openness of the area, the challenging nature of it, and the expected

advantages over other methods make it an excellent research area.
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port I

port 2 n

a a
a

a
a
a

node i

Figure 2.18 Multiport shared memory

Eoch node con be connected to one of the ports of on

ideol multiport memory. They con communicote with eoch
other through the shored memory.

As multiport memory is the focus of this thesis, its use in interprocessor communication

will be discussed in depth in Chapter 3. The proposed structure is based on multiport

memories with limited size and port count. A small shared memory is created for

interconnecting a small number of nodes. The memory is very small to be used as a

normal shared memory, but it is large enough for use as a communication medium for

message passing only. The scaling of the structure is performed by a network of

multiporl memories in which data is exchanged among the nodes using message

passing. The structure of multiport memory cells and new circuits to resolve some of

the issues in designing multiport memories are presented in the Appendix.

node I

Multiport
Shared
Memory

Ideal
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6 Conclusion

Interprocessor communication is a vital task for sharing data among the nodes in

multiprocessors. Two major architectural techniques for sharing data in multiprocessors

are shared memory and message passing. In shared memory systems nodes have access

to a common memory using different techniques such as a single bus or interleaved

memories. The communication among nodes is implicitly performed by load and store

instructions.

A conventional single-port memory can serve as a shared memory using a single bus.

This structure is only useful for a small number of nodes. Interleaved shared memory

can provide higher memory bandwidth than a single-bus system and can be designed

using multiple-bus, crossbar switch, or multistage networks.

In message passing systems, the nodes are connected by an interconnection network

and they can share data by sending and receiving messages. Generally, there are explicit

send and receive commands for communication. The interconnection network can use

different topologies such as ring, mesh, or hypercube, and nodes can be connected

using either conventional serial links or dedicated parallel links. In the latter case, a

FIFO can be placed between two nodes and messages can be transferred in one

direction by writing to and reading from it.

The advent of dual-port memory introduced new methods for interprocessor

communication. A dual-port memory shared between two nodes can be used as a

communication medium and nodes can communicate simultaneously in both directions

using load and store instructions. Using appropriate structures, several nodes can be

interconnected with dual-port memories.

Multiport memory provides more ports for concurrent access of memory. Ideally, it can

be used as a communication medium for several nodes with very low overhead.

However, the small number of ports and the limited capacity of the multiport memory

make it less attractive. In the next chapter, a new structure for interprocessor

communication based on multiport memory with limited port-count and small capacity

will be presented in which shared memory is used as a link for message passing.
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ultiport memories can facilitate the interprocessor

conununication in multiprocessors. Communication can be

performed in parallel streams by accessing a multiport

shared memory through independent ports. This method is

capable of increasing the performance and reducing the

size, cost, and the number of required components and

interconnections. In this chapter, first, the advances in
multiport cell design are explored and its applications in

system design are presented. Then, an interprocessor

comrnunication scheme based on multiport memory is

proposed in which shared memory is used as a link for

message passing. For small systems, the nodes can

communicate directly in a group structure. Groups can be

connected in a cluster, and a network controller would

handle the inter-group messages. For expanded systems,

the network controllers of various clusters can be

by sharing a multiport memory at the top of

the hierarchy. Finally, several issues related to multiport
mernories are discussed.
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1 Multiport memory: background and previous work

Multiport memory offers new communication methods for multiprocessors and can

provide high-speed communication using parallel streams. In a small-scale system

using this method, each node can use a separate port to access a multiport memory

shared among the nodes. One node can write data into the shared memory from one

port, and other nodes can read it from other ports. Nodes can communicate in parallel

and achieve high performance, provided that they do not interfere with each other. This

is achievable by proper memory management schemes. The limiting factor in scaling

this structure is the limited number of ports and the small size of true multiport

memories. Hence, special structures need to be designed for building larger systems.

A multiport memory cell is similar to a dual-port memory cell, but there are more than

two ports to access the cell. The block diagram of a 4-port memory is shown in

Figure 4.2 on page 57. The internal circuit and operation of multiport memory are

explained in detail in the Appendix.

The design of multiport memory and its applications are active research fields. Several

structures for memory cells have been proposed and tested, and it has been utilized in

many applications. More specifically, with its parallel paths, it is widely used in the

design of the datapath for high performance processors. Using it for interprocessor

communication for large systems is a challenging area that has not been explored much

before, and is the objective of this study. In the following subsections, the advances in

multiport memory cell design are explained and different structures proposed for

building it are presented. In addition, several applications based on multiport memory

including very few structures for interprocessor communication are demonstrated.

1.1 Multiport memory design

A multiport memory cell can be achieved by extending the structure of the dual-port

memory cell, which in turn is derived from the single-port memory cell. The operation

of single-port, dual-port, and multiport memories are explained in detail in the

Appendix. Several variations in multiport memory design have been investigated by
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researchers and different structures have been proposed and tested. Some of these will

be mentioned in this section.

Earlier versions of multiport memory had very small capacity and limited number of

ports. However, this was useful enough to enable datapath designers to group individual

registers into a register file, which could be implemented by a multiport memory. One

of the earliest use of multiport memory as a register file has been reported in [Dedrick

841. It discusses the design of LFR08, an eight 8-bit register file from Logic Devices

Incorporation with two read ports, two write ports, and one bidirectional port. The

paper shows that the use of this chip in a bit-slice architecture processor like 4m2903 is

superior to the traditional approach. If used in pipeline processors, the reconfiguration

of registers can be simplified and data routing through the system can be controlled by

software.

fMaly+ 91] discusses the design of a memory chip for a 24-port global register file. A

chip with eight read ports and eight write ports with capacity of 256x2 bits was

fabricated as a base unit. In order to achieve the required 24 ports (8 write and 16 read

ports), two chips were used and the write ports of the chips were connected together,

but the read ports remained isolated. With this configuration, any write operation was

performed on both of the chips, so that the data in the chips was the same. As each chip

could be accessed by eight independent read ports, the number of effective read ports

was increased to 16. The required word size could be created by connecting several

memory chips in parallel. The base unit was fabricated using 2 pm CMOS technology.

In [Silburt+ 931, a family of modular memories was designed based on synchronous

self-timed architecture. For a 0.8 ¡rm BiCMOS process, nominal access time was 5.5 ns

for 64-Kbit blocks of 1,2 and 4-port SRAMs, The cell for 4-port SRAM was three

times bigger than the cell for a single-port RAM. In [Lai+ 94], a new design

methodology for SRAM cell has been proposed that utilizes fewer bit-lines to perform

read./write access at lower cost. [Nii+ 95] reports a new proposal for cell design that

contributes to the operation at high speed and low voltage. A 3-port test chip was

fabricated in 0.5 pm CMOS SOG (Sea-Of-Gates) and could operate with the access
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time of 4.8 ns at 3.3 volts. [Izumikawa+ 96] describes a sense circuit that can be applied

to a single-ended multiporl SRAM to accelerate the memory access 3.2 times.

lZhi+ 961 discusses a compact cell design for multiport register file with one write port

and three read ports for implementation in 0.8 ¡rm CMOS technology. [Chin+ 96]

describes a 3-port register file fabricated in 0.6 ¡rm BiCMOS technology using a 3.3V

power supply. The pin-to-pin access time was measured as 1.3 ns. [Franch+ 97] also

reports a 3-port register file fabricated in 0.25 ¡rm CMOS technology with an access

time of 640 ps.

Other researchers have tried to automate the design of multiport memory to the

requirements of the user. [Hana+ 89] reports a multiport RAM compiler that can

generate user definable memories. Up to four read and two write ports with a capacity

of up to 128 words and word length of 64 bits can be designed. The compiler places and

routes various cells comprising the RAM, and generates a floor plan and a layout for

fabrication of the chip. A more powerful compiler is reported in [Shinohara+ 91], which

is more flexible in layout and port organization, and can generate faster chips. The

compiler is capable of designingread, write, or read-write ports with word lengths of up

to '72 bits, and memory size of up to 32 Kbits 3-port, or 16 Kbits 6-port.

The trend in multiport memory research is to design faster memory cells that occupy

less space and can be integrated more densely. In addition, successful attempts have

been made to use higher number of ports.

1.2 Innovative structures for multiport memory

Rather than designing true multiport memory, some researchers have used innovative

structures to build pseudo multiport memory with the efficiency of true multiport

memory. A few examples are given below:

[Endo+ 91] describes a pipelined time-sharing access (PIA) technique that can be used

for the construction of high-density multiport memories with a large number of ports. In

this technique, an N-port memory can be designed with N/2-port memory cells

resulting in a smaller chip size and wider operating margins. A 4-port memory with the
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capacity of 8 KBytes was designed and fabricated in 0.8 pm n-well CMOS technology

using PTA technique and had a cycle time of 16 ns. The chip area was only 1.2 times

larger than the equivalent dual-port memory.

A new approach for designing 4-port memories is presented in [Hirano+ 98]. The

multiport memory is called Shared DRAM (SHDRAM) and it uses four DRAM rzøfs.

The data written to the sense amplifier of a mat is broadcast to the sense amplifiers of all

the mats by using special fast broadcast buses, and is written to the corresponding

memory cells of each mat. Hence, all the mats have identical data that can be accessed

by four separate ports. An 8-Kbit test chip was fabricated and tested successfully using

this technique.

[Landsberg+ 93] describes the modelling and design of a 6-port CMOS static RAM.

The cell is relatively large, but it can swing the bit-line very quickly. The memory

system is a true multiport memory and can be read and written independently and

simultaneously subject to consistency constraints. The model can be extended to

characterize general multiport memories.

L.3 Application of multiport memory

Researchers have utilized multiport memory to develop innovative structures for many

applications. The main use of multiport memory has been in the design of high

performance processors. It has been also used in the design of special purpose systems.

The other application area is the communication among processors, which is the focus

of this study. Some of these applications are explained below:

l.3.L Processor design

Multiport memory plays an important role in the datapath of most high performance

processors. Designers use on-chip multiport memory to group the processor registers

into a register flle. Various functional units within the processor can access different

registers simultaneously using separate read/write pofts and high throughput is

achievable.
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Register files has been an integral part of almost every RISC or superscalar machine.

fBakoglu+ 90] describes the hardware overview of the IBM RISC System/6000

processor, and [McGeady 90] discusses the structure of i960CA superscalar processor

from Intel using a 6-port register file.

[Asato+ 95] discusses the design of a register file with 10 read ports and four write ports

and size of LI6x64 bits. The access time of the register f,le is 3.8 ns and it was used in a

four-issue V9 SPARc-architecture superscalar processor operating at I54 MHz.

Multiport memory has been also used in the design of very long instruction word

(VLIW) processors. Examples can be found in [Labrousse+ 90] and [Nakamura+ 96].

Moreover, a data-flow CPU has been designed using an on-chip 3-port smart memory.

Beside conventional read"/write operation, the smart memory had content addressability

and support for branch prediction and exception handling [Uvieghara+ 90].

In order to establish a connection from a register to a functional unit in different control

steps, registers should be assigned properly to the memory porls and interconnect

minimization becomes more important. [Ahmad+ 93] presents a design methodology

for datapath synthesis using on-chip multiport memories. The proposed technique can

be applied to scheduled algorithms to reduce the design space. This method can group

variables into a minimum number of multiport memories depending on the available

ports and the access requirements of the variables. The method also can minimize the

interconnection hardware such as buses, multiplexers, or tri-state buffers. Similar

techniques can be found in [Lee+ 95] and [Mandal+ 96].

Researchers have worked on efficient memory design techniques to fulfill high

bandwidth demand for the memory of fast processors. As explained in previous

sections, some researchers have designed faster cells with several read/write ports.

Others have developed special testing models to test the embedded multiport memory

using built-in self-tests (BIST). These models take into account the complex couplings

resulting from simultaneous access of memory cells to ensure very high fault coverage.

Examples can be found in fCastro+ 92], [Matsumura 95], and [Yuejian+ 971.
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1.3.2 Special purpose systems

Before the availability of true multiport memory, researchers have designed systems in

which multiport memory was generated with innovative structures. [Shibayamà+ 811

repofts a knowledge-based machine that was implemented using a memory system

called multiport page-memory (MPPM). lStrohman+ 89] describes the control system

for the Cornell Electron Storage Ring (CESR) that used a 16-port memory and could be

accessed by many computers. The multiport memory was built with conventional

DRAM, 16 FIFO buffers, and semaphore registers. [Litazie+89] explains the concept of

serial multiport memory and proposes a structure for designing a multiprocessor using

this concept. The serial multiport memory used a conventional memory that was

connected to several shift registers. Each node was connected to one shift register using

a high-speed serial link. [Mzoughi+ 93] reports the implementation of this

multiprocessor and discusses several design lssues.

After the release of the first commercial true 4-port memory by IDT (Integrated Device

Technology), researchers have proposed innovated structures for the design of special

purpose systems. [Handy 90] proposed several architectures such as a pipelined FFT

processor, an array processor, and a multiported image memory. He claimed that

considerable speed increase could be achieved by the new architectures. [Nanduri 91]

explains how multiport memory can improve system bandwidth, data flow rate, and

system speed requirements. Various examples were presented to illustrate the potential

benefits of these devices in alleviating the bottlenecks and ensuring that a balance was

attained in the system. [Lin+ 96] describes the design of a matrix multiplication engine

for graphics and DSP applications using 4-porf memories.

Multiport memory has been used in the design of multiprocessors for artificial

intelligence applications. In [DeMara+ 9ll, the design of a parallel architecture called

Semantic Network Array Processor (SNAP) is explained in which 4-port memories

were used for marker passing in the clusters. [DeMara+ 93] reports the implementation

of the first generation SNAP-I system and evaluates its performance. fZhang+ 951

discusses the scalability of a parallel signal processing system using shared multiport

memory for neural networks.

Mulliport Memory os o Medium for lnlerprocessor Communicotion in Multiprocessors 4t



CHAPTER 3 Multiport Memory Jor Interprocessor Communícatíon

Moreover, some specific purpose multiprocessors have been designed using multiport

memory. For example, Aladdin is a distributed memory multiprocessor designed for

automatic target recognition and radar processing applications. The multimode memory

used in its design is an 8-port image memory with a variety of input and output scan

patterns. It is capable of simultaneously inputting 16-bit data to four ports while

outputting 16-bit data from other ports [Lum+ 92].

ATM switch design is another area in which researchers have recently focused on the

use of multiport memory. Novel switch architectures based on using multiport memory

as buffers have been proposed. Several switches were fabricated on this basis and tested

successfully with high efficiency and speed [ElGuibaly+ 96] [Kornaros+ 97].

1.3.3 Communication

Several communication structures have been proposed and implemented using dual-

port memories. Some examples were explained the in the previous chapter. However,

only very few structures for communication using multiport memories have been

proposed. [Handy 90] explains one of the earliest proposals. As shown in Figure 3.1,

the nodes and 4-port memories are ar-ranged in a two dimensional array. Each node is

connected to four 4-port memories, and each memory is connected to four nodes.

Neighbouring nodes can conìmunicate directly, but non-neighbouring nodes should

involve intermediate nodes for their communication. This architecture was termed a

Computing Fabric Hypercube.

An equivalent architecture has been also proposed in [Varshneya+ 94]. This architecture

is almost identical to the previous one except that the boundary of the structure is all

nodes. The dotted square in Figure 3.1 illustrates this structure. Moreover, a similar

architecture based on 6-port memories was also proposed. In this structure, six nodes

arranged as a hexagon share a 6-port memory and several hexagons can be connected

together to create a two dimensional grid similar to Figure 3.1.

The above communication structures based on multiport memory were only on the

proposal stage. Hence, the detail of communication was not explored and no

performance evaluation was carried out in either of the proposals.
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O Node

I 4-port Memory

Figure 3.1 Communication in a grid with 4-port memory

ln o two dimensionol grid, eoch 4-port memory is surrounded by four

nodes ond eoch node by four memories. Adjocent nodes con

communicole direclly Through A-porI memory, ond non-odjocenf nodes

should communicote using intermediote nodes. The doshed squore

shows o similor proposol in which the boundory is oll nodes.

2 Proposed structure for interprocessor communication

In this section, a new structure for interprocessor communication using multiport

memory is proposed. In this structure, shared memory is used as a medium for message

passing between the nodes. The proposal is presented in three stages: communication of

nodes in a group, communication in a cluster, and communication in a network. Each

stage is subsequently discussed in detail.
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2.1 Communication in a group

Multiport memory can be used to interconnect several nodes in a group. As shown in

Figure 3.2, each node is connected to a separate port of a multiport memory. The nodes

can com.municate with each other directly in two steps:

1. The transmitting node writes the message in the shared memory.

2. The receiving node reads the message from the memory.

Data transfer between a node and its memory can be performed in 16, 32 bits or more

depending on the width of the node's data bus. Because nodes can read from or write to

the memory using a single instruction, the rate of memory data transfer can be very high

and the nodes can communicate with each other very efficiently. Moreover, by using

appropriate memory management, several communications can be performed

simultaneously.

extension link

MPM Multiport Memory

L6 or 32-bit link

Y

Figure 3.2 Communication with multiport memory in a group

ln o group, the nodes ore connecled to o common memory Ihrough o
seporote port ond they con communicote direcTly, As on exomple of
communicolion using lhis structure, node X writes the messoge to the memory
ond node Y reods it. The extension link is used to expond the sTructure.

X
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This structure is in fact a shared memory structure and can be compared to a system

using interleaved memory. Its design is much simpler than the multiple-bus, crossbar

switch, or multistage networks used in the interleaved memory systems and it does not

have the delay and overhead of such networks. However, this structure cannot be used

to create a true shared memory system because of the limited capacity of the multiport

memories. As mentioned before and will be explained later in more detail, this structure

uses multiport memory as a link for message passing and a small shared memory is

adequate for this purpose. Unlike other shared memory systems, the small shared

memory in this structure is exclusively used for communication purpose.

Compared to communication structures using dual-port memories discussed in the

previous chapter, this structure can increase the throughput and reduce the size, cost,

and the number of required components and interconnections as explained in Chapter 5.

The number of available ports in multiport memories is another limiting factor in

expanding the system and only a few nodes can be grouped together using this

structure. If more nodes are to be connected, another structure should be used in which

different groups are interconnected using extension links. The expansion of the

structure to cover more nodes is explained in two stages in the subsequent sections.

2.2 Communication in a cluster

The number of ports on the available multiport memories is very limited and the

memory capacity is small. This is because increasing the port count increases the size of

memory cell as well as the access time. In addition, with more ports, the complexity of

the intemal wiring increases significantly and the area available for memory cells is

reduced.'With advances in technology and achievements in cell size reduction, it can be

expected that memories with more ports will become available in the future. However,

as explained in the discussion section, the number of ports would be still limited and the

size of the memory would be small. This suggests that the number of nodes connected

in a group will always be a limiting factor and suitable structures are required to

overcome the restriction of limited port count.
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The structure of Figure 3.3 is proposed for the interconnection of a cluster of groups of

nodes. In this structure, the groups are connected to a network controller (NC) to form a

cluster. The network controller is a special processor that has permission to access the

shared memory of different groups. Its main task is to get a message from the sender in

one group and pass it to the appropriate receiver in another group. The nodes in

different groups communicate through the NC in two hops, In the first hop, the

transmitter sends the message to the NC. In the final hop, the NC reads the message and

transfers it to the shared memory of the group in which the receiving node is located,

t ta

2"d hop ,'/
n' NC Neìùo.k Controller

r

Y

Itt hoo+--

X

16 or 32-bit link

MPM

Node

Figure 3.3 Communication in a cluster

ln o clusler, severol groups ore interconnecled by o neTwork controller. The nodes within

eoch group con communicole directly. lf the receiver is in onoïher group, The

communicotion lokes ploce in two hops. First, The tronsmitter (X) sends lhe messoge to
the NC through the MPM of its group. Then the NC delivers the messoge lo the receiver

0) by the woy of ihe MPM in receiver group.
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The message can be collected by the receiver from the relevant shared memory. This

process takes longer than a direct communication within a group.

Several local shared memories have been used in a cluster structure and as the

mechanism of data transfer demonstrates, they are used as links for message passing.

If several nodes need to concurrently use the NC for inter-group communication, the

NC will be overloaded, In this case, the system performance will drop because of delays

in delivering the messages by the NC. Hence, the number of groups in a cluster should

be limited. It is anticipated that under heavy communication traffic, this structure might

be inefficient, especially if several groups are connected to the NC, or the request for

inter-group message transfer is high. Based on the results of simulations described in

Chapter 6, modif,ed versions of the cluster structure will be presented in Chapter 7.

2.3 Communication in a network

A cluster can accommodate a limited number of groups. In order to interconnect a large

number of nodes, the structure of Figure 3.4 is proposed. In this structure, the NCs are

interconnected using an extra multiport memory in the upper level of the hierarchy. As

explained in the previous section, the nodes communicate directly within groups and

use the NC of the cluster for message passing to the other groups in the same cluster. If

the receiver is in another cluster, the message is handled by two network controllers in

three hops. In the first hop, the transmitting node sends the message to the NC of the

cluster. In the second hop, the NC sends the message to the NC of the receiver cluster

by transferring it to the multiport memory at the top level of the hierarchy. In the third

hop, the NC of the receiver cluster transfers the message to the multiport memory of the

group where the receiving node is located. The message can be collected by the

receiving node from this memory.

This introductory structure is useful for light traffic conditions. This is because the NCs

have limited communication capacity. and if they have to handle several messages, they

will be overloaded, resulting in delays in message delivery and inevitable performance

loss. After reviewing the results of simulations, an improved communication structure

will be introduced in Chapter 7.

Multiport Memory os o Medium for lnlerprocessor Communicotion in Multiprocessors 47



CHAPTER 3 Multíport Memory Jor InterpÍocessor Communicatíon
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Figure 3.4 Communication in a network

ln the proposed slruclure for o network, the clusters ore interconnecïed by
shoring o multiport memory of the top of The hierorchy. An inter-cluster
messoge from node X to node Y should be senT in three hops. First X sends the
messoge to NC-1. Then NC-l lronsfers the messoge to the NC-2locoted in The

receiver cluster, Finolly, NC-2 sends the messoge To Y by lhe woy of the group
MPM.
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3 Verifying the structure

Multiport memory has not been widely used for communication in large scale. As

explained in previous sections, only few structures have been proposed in this regard

and no evaluation on these structures has been reported.

The proposed structure in this thesis was verified in two stages. As a hardware model, a

prototype system was designed and constructed to check the feasibility of the structure

and to evaluate its performance. Based on the results of this prototype, a simulation

model was created to further assess the prototype itself and its expansion to larger

systems. Both models are briefly explained here, and they will be analysed in depth in

separate chapters.

3.1 MultiCom, a hardware prototype

In first stage of evaluating the proposed structure, a small multiprocessor called

MultiCom was designed and built. In this prototype, four nodes were interconnected

using 4-port memories as the communication medium. Chapter 4 describes the

hardware design and implementation of MultiCom and discusses its programming.

Chapter 5 discusses the memory management required for MultiCom and explains

different memory allocation schemes used to control the shared memory. The

communication protocols and the achieved results are also presented in Chapter 5.

3.2 Simulation model

MultiCom was a valuable device to characterize the behaviour of the nodes and

multiport memory used in the proposed structure. A software simulation model was

constructed on the basis of MultiCom. As described later in Chapter 6, initially the

model of MultiCom was created and its timing was fine-tuned to produce the same

results of MultiCom. Then the model was gradually expanded to simulate larger groups,

a cluster of groups, and several clusters in a large network. The simulation model

revealed that some modifications were necessary. Hence, the structure was improved

and re-evaluated in Chapter 7.
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4 Discussion

As multiport memory is the main component of the proposed structure, its availability

with large port count is discussed here and the requirement on the pinout is explained.

In addition, the effect of overloading a network controller in the proposed structure is

discussed.

4.1 Avaitability of multiport memory

The structure of multiport memory is explained in detail in the Appendix. The major

problems in designing alarge multiport memory are the large size of memory cells, and

more importantly, the extent of internal wiring. If an extra port is added, more switches

must be used in the memory cell, and the cell size will increase. In addition, increasing

the port count increases the number of required internal buses, and distributing them

inside the chip increases the amount of internal wiring. This requires the use of large

connection matrices for routing vertical and horizontal lines. The connection matrices

occupy a large portion of the chip area and reduce the size of the area avallable to

memory cells that are already bigger in size. Hence, for a given chip area, increasing the

port count considerably decreases the capacity of the memory.

The feasibility of true multiport memories has been discussed in [Forsell 94]. The paper

concluded that true multiport memories were feasible and anticipated that they would

be available with larger port counts and greater capacity in the future. On the other

hand, the literature review presented at the beginning of this chapter indicates that

multiport memory is an active research field and many structures for cell design and

building multiport memories have been proposed. Successful prototypes with as many

as 16-ports (8 write, 8 read) have been fabricated, and faster cells with access time up to

640 ps for three ports have been designed [Franch+ 97l.In addition, several compilers

are available for automatic design of small multiport memories.

For some time, the largest multiport memory commercially available had four ports and

the capacity of 2 KBytes IIDT 95]. During the design of MultiCom, a newer version

with the size of 4 KBytes was released UDT 961. In fact, MultiCom was implemented

with the engineering samples of this product. The fastest 4-port memory available at the
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time of design of MultiCom had an access time of 20 ns. IDT released a dual-port

memory with a capacity of 32Kx36 bits and access time of 4.2 ns (equivalent to the

speed of 133 MHz) in 1999 [IDT 99]. It has been claimed that this product was 337o

faster than any other 36-bit offering. IDT has recently upgraded its 4-port memory to

64Kx18 bits and access time of 5 ns [IDT 02].

The simulation model presented in Chapter 6 confirms that the proposed structure does

not require a large multiporl memory. The capacity of 4 to 8Kx16 bits is adequate for

efficient operation of the system. As explained later, even a smaller capacity will be

adequate if a wider data path is used. Hence, the structure can be implemented using 9-

port memories, even with a small capacity. In the light of VLSI technology and with the

trend discussed earlier, the availability of large multiport memories is not far away. In

this author's opinion, proposing suitable applications for large multiport memories will

boost their availability and increase their commercial production.

4.2 Pinout of multiport memory

In the proposed structure, groups and clusters require a memory chip with nine ports.

As explained in section 4.2 in Chapter 7 , even the improved structure can be built using

8-port memories. As there are separate address, data and control buses for each port, the

number of pins can increase considerably for large memories. Simple calculation shows

that memory pinout is not a major problem. As shown in Figure 4.2 onpage 57, in the

4-port memory used in MultiCom with a capacity of 4 KBytes, each port requires 23

lines (12 address lines, 8 data lines, and 3 control lines). With several power and ground

lines the chip is available with 108 pins. With similar calculation, a 9-port memory with

the same capacity would require around 240 pins, a 16-bit version around 320 pins, and

a 32-bit version around 480 pins. These requirements can be met by current packaging

technology.

Traditional packaging technology uses wires for interconnection between the die and

the substrate, but advanced packaging technologies use different approaches. For

example, the flip chip packaging technology used by Xilinx on its high-performance

FPGA chips utilizes conductive bumps that are placed directly on the area affay pads of

the die surface. This technology offers excellent thermal performance, higher frequency
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switching, and higher I/O density. The packaging FF1517 (Flip-chip, Fine-pitch) used

by Xilinx accommodates 1517 pins in a 40x40 mm package with 1.0 mm pitch size

[Xilinx].

As far as pinout is concerned, advanced packaging technologies such as flip chip makes

it possible to package a 4Kx64,9-port memory with around 850 pins, and a 128-btt

version with around 1500 pins. Although not required, one approach to reduce the

number of pins is to multiplex address and data buses, or low and high data buses at the

expense of slightly increased access time. In addition, memories with narrow data

widths can be used in parallel to achieve wider data widths. In this regard, using

innovative packaging technologies such as the ones offered by [DensePac] can be very

beneficial.

4.3 Overloading of network controller

The structure of a cluster relies heavily on the NC for inter-group communication.

Increasing the number of messages between the groups can overload the NC and reduce

the throughput. This point became more obvious after analysing the results of

simulations in Chapter 6. The structure of a cluster will be modified to reduce the

overloading effect of the NC in Chapter 7. Similar modifications should be applied to

the network structure as it uses the same cluster structure. It is worth mentioning that

the structures presented in this chapter are based on the original plan proposed at the

start of this research. The modif,ed and final structure will be presented in Chapter 7.

5 Conclusion

In this chapter, a structure for interprocessor communication using multiport memory

was proposed. In this structure, the nodes can coÍìmunicate by writing and reading the

message from a shared memory. As the number of ports available on multiport

memories is very limited, the structure should be arranged in a hierarchy for large

systems. A limited number of nodes can be connected directly to a multiport memory to

create a group; a network controller is used to interconnect different nodes in a cluster,

and several NCs are interconnected with a multiport memory to create links between
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the clusters. Several small shared memories have been distributed in the network and

they have been used as links for message passing. The evaluation of the structure will

be carried out with a hardware prototype and a simulator as explained in the subsequent

chapters.

Overall, as communication in the proposed structure is performed in parallel streams

with memory access instructions, it is expected that the system will achieve a high

performance.
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ultiCom is a small MIMD multiprocessor that has been

designed to check, the efficiency of interprocessor

communication through multiport memories. In this

prototype, four nodes are interconnected using 4-port

memories and the communication is performed by writing

and reading the rnemory tn parallel streams. This chapter

discusses the structure and implementation of MultiCom

and explains the node processors, 4-port memory,

interface logiq, and programming. For the memory

management of the multiport memory, a primary method

called static allocation is introduced briefly, and the results

are compared to serial coÍununication More details of

static allocation, and more advanced memory m¿rnagement

schemes are presented in the next chapter.
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1 Hardware design

The first step taken to verify the validity of the proposed structure for interprocessor

communication was to build a prototype system with the nodes interconnected by

multiport memories. In this step, a small experimental system called MultiCom was

designed and constructed, and the communication scheme was tested on it, The

performance of this system was used to evaluate the effectiveness of the structure, and

the outcomes were used in modelling and designing larger systems.

MultiCom was based on four DSP processors from TI (Texas Instruments) as nodes,

and two 4-port memories from IDT as shared memory. The nodes could communicate

with each other through the shared memory simply by writing the information into the

memory from the transmitter side, and reading the memory from the receiver side. With

suitable memory management, all the nodes could read from or write to the shared

memory concurrently without interfering with each other. This section briefly describes

the nodes and the 4-port memory of MultiCom, and explains the block diagram of the

system and the interface circuit.

L.L Nodes

The nodes of MultiCom were TMS320C50 DSP processors from TI. The main reason

for choosing them as nodes was their availability in small and cheap modules called

DSK (DSP Starter Kit). Each module was supplied with a TI assembler and debugger to

run on a PC connected as a host. Figure 4.1 shows the layout of DSK. Each module

consists of the following features ITI 96]:

. TMS320C50 16-bit integer DSP processor with 50 ns cycle time (20 MHz)

. modified Harvard architecture with separate banks for program memory, data

memory, and input/output

. 4-stage pipeline with effective cycle of one or two per instruction

. 10Kx16 bits on-chip RAM, and32 KBytes on-board boot ROM

. one 16-bit timer and four external interrupts

. one full duplex serial port (5 Mbps) and one TDM (Time Division

Multiplexing) serial port useful for the multiprocessing environment
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. analog interface chip with 14 bit A/D and D/A

. TI Assembler and debugger with RS232 link to PC
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Figure 4.1 DSK as nodes of MultiCom

TMS320C50 DSK with o ló-bit integer DSP processor

is used os nodes of MulIiCom, lt con be connected
to o COM porl of o PC using RS232link

TMS320C50 is based on the modified Harvard architecture. Internally it has two

separate buses for the program and data memories and can access both of them

simultaneously in different stages of its 4-deep pipeline. For example, fetching a new

instruction and reading an operand for another instruction can be performed on the

same cycle. However, the two buses are combined to create a single external bus for

accessing external program and data memories, or I/O ports.

For external memory, the write operation uses one extra cycle. This allows a smooth

transition between write and any adjacent bus operation. Hence, for an external memory

connected with zero wait states, a data read takes one cycle; however, a data write
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requires two cycles ITI 97]. This information will be used in the calculation of the

communication bandwidth for MultiCom in the next chapter.

L.2 Four-port memory

The 4-port memory used in MultiCom was IDT7054 from IDT with an access time of

35 ns and 108-pin packaging. As shown in Figure 4.2,the memory cells are organized

in a 4-Kbyte array. There are four independent ports with separate control, address, and

data lines. Each port is capable of performing independent and asynchronous access to

read from or write to any location in the memory. It is the user's responsibility to ensure

data integrity when accessing the same memory location from different ports [IDT 96].
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In general, there are two restrictions in using this chip [Stodieck 96]:

1. Simultaneous writes to the same location must be avoided.

2. Simultaneous read from a location that is being written could return incorrect

data.

For a reliable memory operation, these limitations must be considered in the design of

any system. As explained later, these issues were addressed in the memory management

of MultiCom by using static or dynamic memory allocation.

L.3 Interface and hardware block diagram

The hardware block diagram of MultiCom is shown in Figure 4.3. The four nodes of

this system were interconnected through 4-port memories with total capacity of 4Kx16

COM3 4

Interrupts
**r

COM2
Address

Data

Figure 4.3 The block diagram of MultiCom

ln MultiCom, two 4-port memory chips were used lo
interconnect four nodes, The host wos o PC

connected to the nodes through the ovoiloble COM
ports.
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bits. This memory size was generated by connecting two IDT7054 chips in parallel. The

interface circuit incorporated the required logic to connect the 4-port memory to each

node. An interrupt bus was also created for signalling among the nodes. Each node

could generate three intemrpts for the other three nodes, and receive three interrupts

from them. As explained later, the intemrpts were used as part of the required

handshaking for communication through the 4-port memory. Figure 4.4 shows the

board designed for MultiCom.

Figure 4.4 The board designed for MultiCom

Two 4-port memories were connected in porollel lo ochieve o

4Kxló bits shored memory. Four nodes of MultiCom ore shown on

eoch side ond eoch one is connected to one porl of the multiport

memory.
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A PC was used as a host for all the nodes and each node was connected to one of its

COM ports. The host could program the nodes through RS-232 link, and it could

control or monitor the activities of the nodes using the debugger program. More details

are given in the next section.

2 Programming

The programming language for MultiCom was the assembly language for the

TMS320C5X series. The assembler program was supplied as part of the DSK module.

A debugger was also available to run and test the programs in assembly language.

For programming the nodes, first an assembly language program was written for all the

nodes in general. Then a program written in C was used to produce the local variables

and codes for each node. Finally, the assembler was invoked to generate an individual

executable file for each node.

The executable codes were downloaded to each node through the serial links of the

host. For each node, a debugger program was running on a separate window. This

window was used to control the nodes and transfer the results back to the host.

The on-chip timer of each node was used to measure the time spent on communication

of the node from the beginning until all the nodes finished. This measurement was the

basis of all the results. It will be explained in more detail later.

2.1 Synchronization

In order to get a correct time measurement, all the nodes must be synchronized to start

at the same time. The synchronization was easily performed with the aid of the shared

memory using the algorithm shown in Figure 4.5.

In this algorithm, one of the nodes is considered as the master node. Every other node

registers its presence by writing a unique ID in the shared memory when activated. The

master raises the sync flag when all the nodes are present. The details are as follows:
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START

Clear all ID locations

Delay

Raise SYNC flag

Execute the main
program

No

YES

YES

o) moslel
T

b) oll other nodes

Figure 4.5 Synchronization algorithm

o) The moster node checks oll the nodes ond roises the SYNC

fog if oll ore reody. b) Other nodes refresh lheir lDs in the shored

memory ond check The SYNC flog continuously.

. The master clears all the IDs and enters a delay routine to give the nodes time

to register their presence. After the delay, it checks the IDs. If all the nodes are

ready, the master activates the sync flag; otherwise, it clears the IDs and starts

over again.

. 'When activated, each node writes its ID in the shared memory and monitors

the sync flag in the synchronization loop. If the sync flag is not raised, the

node checks its ID. If it has been cleared by the master, the node writes it

again.

. Once all the nodes have registered their IDs, the master raises the sync flag

and starts its main program. Other nodes that continuously monitor the sync

flag also start their main program.

T

START

Check ID location
of the node

cleared

Re-write node's ID

Execute the main
program
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The presence check of the nodes in this algorithm \ /as perfoÍned dynamically as a

static presence check was not enough in practice. In some cases, before starting all the

nodes, a node that was already started was stopped for different reasons such as

performing a check or re-programming. In these conditions, which might happen

several times during a test, the static presence check could generate a false sync;

however, the dynamic check provided a correct sync. The order in which the master and

the nodes were activated, or the number of times they had been stopped and started

again was not important in the dynamic check.

2.2 Test program

In order to test the structure under heavy communication traffic, a simple program

based on all-to-all communication was tested on MultiCom. The all-to-all test program

creates contention on memory links and makes it possible to test the system

performance under worst-case traffic conditions. Because of the 16-bit node processors

in MultiCom, the word length is defined as 16 bits throughout this chapter and most of

other chapters. As shown in Figure 4.6, each node should send a message of 1192

words (700 hexadecimal) to the other three nodes through the shared memory. If a

message is large compared to the shared-memory buffer size, it is sent in several

packets.

\
words I

Figure 4.6 All-to-all test program for MultiCom

Eoch node sends 1792 words to the other nodes. This

generotes heovy troffic on the shored memory.
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At the start up, each node fills its transmit buffers with the data to be sent to the other

nodes and then enters the synchronization loop. After a successful synchron\zation,

each node stafts its timer and executes the main loop.

In the main loop, each node checks the transmit buffers. If there is data to be sent, it

checks the status of the receiving node. If the node is ready to receive, the transmitter

allocates a buffer for transmission and writes the size of the packet in the buffer. Then it

transfers the data in the packet to the buffer and sends an intemrpt signal to the

receiving node.

Upon receiving the intemrpt, the following steps are performed in the receiver:

. The transmitter is identified.

. The receiver refers to the appropriate buffer in the shared memory and reads

the data count, which is the packet size.

. The data is transferred to the local memory and is appended to the previous

data received from the same transmitter if any.

. A flag in shared memory is activated to signal the transmitter that the receiver

is ready to receive more data from the same transmitter.

The handshaking between the transmitter and receiver is performed with the aid of an

interrupt from the transmitter side, and aflag in the shared memory from the receiver

side.

When all transmissions are complete, each node acknowledges the end of transmission

by writing a word in the shared memory and waits for the other nodes to finish. After

the entire communication is completed, each node stops its timer and writes the timer

value in the shared memory. The largest of the timer values written by the nodes is

chosen as the time spent on the overall communication.

As is apparent from the algorithm, there are several overheads in the communication

among the nodes, and each node spends some time in the management of the

transmission and reception of the data including checking the transmit buffers, checking

the status of the recipient nodes, allocation of a buffer for transmission, and interrupt
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overhead. In programming the system, every attempt was made to reduce the overhead

to a minimum.

3 Buffer allocation

Each node should be able to read from or write to the multiport memory independently.

Because of the concurrent activities of the nodes on the shared memory, they can easily

interfere with each other. A reliable communication protocol must consider the

restrictions in using multiport memory, and eliminate the conflicts among the nodes.

This can be achieved by the use of a proper memory management, and is the subject of

the next chapter. In order to complete the discussion of MultiCom, a primary method

called static allocation is briefly presented here. More detailed explanation and

advanced allocation methods are discussed in the next chapter.

In static allocation, the shared memory is divided among all the possible transmitters

and receivers, and a dedicated buffer is pre-allocated for each transmission. There are

four nodes in MultiCom and each node can send to three other nodes. Hence, 12 buffers

in the shared memory are required. With the available memory of 4Kx16 bits, the

maximum size of each buffer is 336 words. The leftover words are reserved for

administrative purposes such as the ready signal from the receiver to the transmitter.

The Il92-word message in the test program is sent in (17921336-) 6 packets.

Static allocation removes the possibility of write-write and write-read conflicts, because

each active buffer is either written by a node, or read by another node. There is no

situation where more than one node can attempt to write into the same memory

location, or one node writes while the other node reads the same location

simultaneously.

4 Results and discussion

Static allocation was tested successfully on the system. Apart from other outcomes, it

confirmed that interprocessor communication with multiport memories was feasible
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and could offer a low-overhead communication. As shown in Figure 5.14 on page 102,

the best communication rate obtained was 45.5 MBytes/s, which showed l57o overhead

compared to the peak communication rate of 53.4 MBytes/s. The peak communication

rate is the bandwidth for the overall system, in which all the nodes communicate

through the memory with the maximum possible rate without any overhead (Refer to

"Details of data transfer" on page 100). The rate of 45.5 MBytes/s was obtained for the

buffer size of 336 words, which was the maximum buffer size for the shared memory of

4K words. Reducing the buffer size would increase the overhead and drop the

performance.

The results of static allocation will be discussed in more detail in the next chapter

4.L Comparison of results

In this section, the results of MultiCom are compared to a system that uses serial links

for communication of its nodes. Other detailed comparisons will be performed in the

next chapter.

To get a basis for comparison, it is assumed that the nodes of MultiCom are

interconnected using serial links in a 2-atbe structure as shown in Figure 4.7. In

MultiCom, the TMS320C50 processors operate with a 20-MHz clock. The two on-chip

full-duplex synchronous serial ports operate at the maximum rate of 5 Mbps.

Synchronous links require the clock signal to be sent along the serial bits. In addition,

another signal for frame synchronization is also needed. This requires more connections

between the processors. On the other hand, the clock signal is not required for

asynchronous links and synchronization is achieved by sandwiching the serial data

between a staft bit and one or more stop bits. Commonly, a parity bit is also sent for

error checking. In this method, the number of connections between processors is

minimum, but throughput is reduced because of the extra time required to send start and

stop bits. Using the on-chip serial ports for this hypothetical system will reduce its

throughput significantly because of the low transfer rate of 5 Mbps. In order to achieve

a more realistic result, it is assumed that the system is using two external asynchronous

serial ports operating at 20 Mbps, which is comparable to the processor speed.
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Figure 4.7 Serial communication of four nodes in 2-cube structure

Assuming no overheod, in the f rsl time slot eoch node communicoles with
two neighbouring nodes, os shown with solid orrows, ln lhe second time
slot, eoch node communicotes with non-neighbouring nodes, os shown

with dotted orrows. A Totol of l2xl792words should be tronsferred.

Overoll, the minimum time for oll-to-oll communicotion is double thct of Ihe
time spent in sending from one node To onother.

It is worth mentioning that a hypercube of order 2 with serial links is not a very suitable

structure for four nodes, and in practice, other structures can be used for this small

system. This hypothetical system was used only to get a basis for comparison,

Similar to the all-to-all test program of Figure 4.6, each node should send 1792 words

to all other nodes. As each of four nodes sends a message to other three nodes, this adds

up to 4x3xll92 words in total . In order to obtain the maximum performance for this

system, the following assumptions are made:

. Links are full duplex and messages are sent or received on separate lines.

. The intermediate nodes do not store the data. They pass it directly to the next

node.

serial Iink
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. An optimum communication protocol is used so that no node is idle at any

time, and no message is waiting because of a line being used for another

transmission, or a free line cannot be used because it has been blocked by

other communications.

. There is no overhead in sending or receiving and only the time spent on the

actual transmission is considered.

. The communication is asynchronous. For each byte, a total of 11 bits

comprising of 8 data bits, a start bit, a stop bit, and a parity bit is sent.

It is very unlikely that all of the above conditions are met for a realistic system, Hence,

the performance of a practical system would be lower to some extent.

The following steps can be taken to deliver all the messages in this system:

1. In the first time slot, each node communicates with the two neighbouring

nodes to send and receive the required data at the same time. All the

communication to the neighbouring nodes can take place in this slot as shown

by the solid arrows in the figure.

2. In the second time slot, each node communicates with a non-neighbouring

node through an intermediate node. The data is sent to the neighbouring node

and is immediately passed on to the destination. As the dotted affows in the

figure show, all the remaining communication can be performed in this time

slot.

Using these steps, the overall communication would only take two time slots.

Considering the speed of serial ports (20 Mbps, equivalent of 0.05 ¡r,s/bit), sending 11

bits for each byte will take 0.55 ¡ts. Hence, sending Il92x2 bytes in each time slot

would take I97I.2 ps (i.e. 1192x2x0.55 ps).The size of the total message transforred

between the nodes is I2xIl92x2 bytes and the effective communication rate can be

calculated as 10.9 MBytes/s (i.e. I2xI792x2bytesl2xI971.2 ¡t"s).

Comparing this result to the 45.5 MBytes/s of static allocation shows that the

performance has increased more than 4.2 times. Note that as explained before, in

practice the increase in performance could be even higher, as no overhead has been

considered in serial communication.
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It is worth mentioning that the number of links used for each node in MultiCom is 16

bits (size of the data bus). On the other hand, the number of links connected to each

node for asynchronous serial communication is 4 (two full-duplex serial links).

MultiCom can be also compared to a bus-based system and a system using dual-port

memories. This will be performed in the next chapter where timing of MultiCom is

discussed in detail.

5 Conclusion

This chapter has discussed how MultiCom, a hardware prototype, was designed and

implemented as the first step to evaluate the performance of the proposed structure. The

nodes of MultiCom were selected from off-the-shelf DSP processors and they were

interconnected using 4-port memories. Conflicts between the nodes on the shared

memory were removed by using static allocation as an initial allocation method.

MultiCom proved to have very efficient performance in communication achieving 45.5

MBytes/s. This rate was very close to the peak communication rate and the overhead

was less than I57o. Compared to a system using 20 Mbps asynchronous serial links

with no overhead, it showed at least a 4.2-fold speed improvement. The improvement

could be even higher if realistic overheads encountered in practical systems were also

considered. Overall, the design of MultiCom proved that interconnecting systems with

multiport memories is feasible and it can provide high performance. Other benef,ts such

as reducing the size, cost, and internal wiring will be discussed later. This structure will

be elaborated upon in the subsequent chapters.
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s the communication of nodes in MultiCom is performed

through multiport memory, it is essential to manage the

sha¡ed memory in a way that the nodes do not interfere

with each other. For MultiCom, a range of memory

management strategies are possible. In static allocation, as

introduced in Chapter 4, each transmitter uses a pre-

allocated buffer to send a message to a receiver. An

alternative is dlmamic allocation, in which a free buffer can

be allocated to any communication on demand. Better

memory utilization is expected for dynamic allocation;

however, a lock mecharrism is required to eliminate the

shared memory conflicts. In this chapter, first a detailed

discussion of static allocation is presented. Then d¡rnamic

allocation is explained, and two newly devised software

locks are introduced. Multicasting/broadcasting and

coÍununication protocols are discussed later. Finally,'the
results obtained from MultiCom are presented and

compared. to other systems interconnected with serial

links, dual-port memories, or bus-based systems.
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I Memory management

Since shared memory is used as a communication medium, the nodes need to perform

several activities on the memory as part of transmitting or receiving data. In order to

preserve data integrity and to achieve reliable communication, the nodes must not

interfere with each other. Hence, proper memory management and a suitable

communication protocol must be implemented.

Allocation of buffers in the shared memory to different data transmissions ls an

important issue in the memory management. A proper allocation method must prevent a

node from using a buffer that is already in use by another node unless both reading.

Allocation of buffers can be performed in two ways: in static allocation, the nodes use a

pre-allocated buffer for transmission to each node; in dynamic allocation, the buffers

can be allocated to any transmission on request. Each method is discussed separately,

and its advantages and disadvantages are highlighted.

L.1 Static allocation

In static allocation, all of the possible combinations of transmitters and receivers are

determined and a buffer is assigned to each combination. For N nodes connected to a

multiport memory, each node can transmit to N-l nodes and N(N-l) buffers are

required in total. Hence, MultiCom would require 12 buffers, and for the shared

memory of 4K words, the maximum buffer size would be 336 words. Figure 5.1 shows

the layout of memory under static allocation in which a dedicated buffer is available for

each transmission. The outcomes of static allocation are presented in the result section.

The benefit of static allocation is that a node simply refers to an address table to find the

location of the buffer pre-assigned to the desired transmission. This procedure requires

very small overhead. Moreover, the allocation method ensures that other nodes will not

interfere while the node is writing into the buffer. This is because each buffer is

assigned to a unique transmission only, and the receiver will read the buffer after the

message is completely written. Hence, both of the restrictions for using 4-port

memories as mentioned on page 58 have been addressed in this method.
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Figure 5.1 Memory map of MultiCom for static allocation

The 4 Kword-memory is divided into l2 buffers of 33ó words ond eoch
buffer is pre-ollocoted to o specific tronsmission. Memory is not
utilized efficiently ond porl of it is idle ot o time, but there is no conf ict
on lhe memory occess.

On the other hand, as only some of the nodes are actively communicating at a time, only

a fraction of the shared memory is concurrently used for communication. In other

words, after the data in a buffer is delivered to the receiver, the buffer remains idle until

used again by the same transmitter and receiver. Hence, the valuable shared memory is

not utilized efficiently in static allocation and part of it remains idle at a time. This is

one of the disadvantages of static allocation. Another disadvantage is that it does not

scale properly when the number of nodes increases. This point will be discussed in the

next chapter.
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A more sophisticated allocation method can use the memory more efficiently. Instead of

creating a buffer for every possible communication, fewer non-allocated buffers can be

generated and the allocation process can assign each of them to a transmission when

requested. Hence, the buffers are assigned only to the active communications and the

number of required buffers is reduced. Consequently, larger buffers can be created

resulting in reduced overhead and increased performance. This method is called

dynamic allocation and is the subject of the next section.

L.2 Dynamic allocation

In dynamic allocation, the shared memory is divided into a number of buffers that are

not dedicated to any specific communication link. The list of the buffers is stored in a

table called the "buffer allocation table". Each buffer has an entry in the table that

defines whether the buffer is free or in use. More information such as the size and the

start address of the buffers can be also stored in this table. Any node requiring a buffer

for transmission refers to this table and if a free buffer is available, the node allocates it

to its transmission. Figure 5.2 illustrates the memory layout under dynamic allocation.

As there is no central controller on the shared memory to perform the buffer allocation,

each node is responsible for the required allocations. If two or more nodes perform the

allocation process simultaneously, there is a potential for conflict among the nodes,

which can cause data loss. For example, if two nodes simultaneously allocate the same

buffer to their transmission without knowing the activity of the other node, some data

will be overwritten and data loss is inevitable. Hence, there must be a mechanism to

control the allocation process so that it can be performed exclusively. In order to

achieve this goal, a lock mechanism implemented in hardware or software must be used

and each node must possess the lock exclusively before allocating a buffer. This

prevents the others from doing a similar task until the lock is released.

It is worth mentioning that the lock is only used in critical activities such as buffer

allocation, where there is a possibility for conflicts among the nodes. Other tasks such

as writing into or reading from a pre-allocated buffer do not require the possession of

the lock. Therefore, nodes can work independently on unlocked areas of the shared

memory, in parallel with the other memory activities.
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Size (hex)
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Figure 5.2 A typical memory layout for dynamic allocation

Memory is divided into severol buffers ond eoch con be ollocoted to
ony tronsmission on demond. Memory con be uTilized more efficiently,

but o lock mechonism is required for buffer ollocotion.

The advantage of dynamic allocation over static allocation is the use of fewer but larger

buffers. This is achieved by combining the active buffers with the idle ones. In general,

larger buffers can reduce the communication overhead and increase the performance,

provided that sufficient buffers are available. The drawback of dynamic allocation is the

use of a lock that introduces a serial mechanism into the system and requires extra

overhead.

1.3 Multicast / broadcast

One benef,t of using dynamic allocation is that if the same message is to be sent to two

or more nodes, multicasting or broadcasting can be used instead of sending the message
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to each node individually. In this method, once the message is copied into a buffer, it

can be sent to more than one node without rewriting. Each involved node can receive

the message from the same buffer simultaneously and in parallel with the other nodes.

The buffer must be released by the last node.

In multicasting, multiple attempts for getting the lock, allocating a buffer, and

transferring data to the buffer are reduced to one attempt only. Hence, cotrununication

overhead drops and system performance rises. This method will be discussed in more

detail later.

2 Semaphore signalling

In assigning a buffer using dynamic allocation, there is a possibility that nodes could

interfere with one another. The use of a lock mechanism or semaphore signalling can

remove the conflict and produce mutually exclusive access to the shared memory. Each

node is required to possess the semaphore before performing a sensitive task on the

memory such as buffer allocation. This will preserve data integrity.

Semaphore signalling can be implemented in either hardware or software. With a

hardware semaphore, if a node possesses the lock, the other nodes attempting to get it

will receive a denial until the lock is released. With software semaphores, after

requesting the lock, the nodes are required to check regularly a dedicated memory

location for their turn to use the memory. Different algorithms can be used to create a

software semaphore. Both methods are discussed in subsequent sections.

2.1 Hardware semaphore

Hardware semaphores have been implemented in some dual-port memories for a long

time. In general, semaphore latches are independent from the memory locations on the

chip. The control of semaphore requests can be handled using a standard write followed

by a read instruction. There is no requirement to lockout the other processor to access

the semaphore between the write and read. In some products, as many as eight

semaphore latches have been implemented in one memory chip [Cypress 96].
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Hardware semaphores can be used to implement a token controlled scheme allowing

the port in possession of the token to have exclusive access to a block of shared

memory. The port releases the token after f,nishing its critical section. A request for

possessing the token from another port will be denied if the token is held by the other

port, but the request will be registered to take affect after the token is released.

Possession of the token is indicated by the state of a semaphore latch formed by two

cross-coupled NAND gates as shown in Figure 5.3. Only one port can set the

semaphore latch at a time. An extra input latch on each port is used to hold the request

for setting or clearing the semaphore latch. Output latches are also used to prevent the

output data from changing during a read operation.

The semaphore latch is accessed through the address and data buses similar to accessing

a memory location. The semaphore enable line should be activated in this cycle instead

of the memory chip select. The latch is accessed using the lower data bus line, and if
more than one semaphore latch is implemented, the lower address bus lines can select

one of them.

The semaphore latch in Figure 5.3 is active high. A node can request the control of the

semaphore by writing "1" into the port. This request is stored in the port input latch and

held until the same node clears it by writing "0" into the input latch. If the semaphore

latch is free, the node will immediately gain the control of the latch. On the other hand,

if the semaphore is controlled by the other port, the request will be denied. If the request

remains pending in the input latch, the requesting node will be granted the control only

after the other port has released the semaphore by writing "0" into its input latch.

The read of the semaphore will indicate if a request for controlling it was successful. A

readout of "1" indicates that the port controls the semaphore and "0" indicates a denial.

As the state of the semaphore latch could change during a read operation, an output

latch is used to prevent propagation of the change to the output line. In this case, the

next read will show the updated state of the semaphore. The node receiving the denial

should either repeatedly check the status of the semaphore until control is granted, or

write "0" to clear the request and try another time fBaumann 96].
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Write L Write R
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Data L Data R
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Figure 5.3 Semaphore latch cell

Only one port con possess the semophore of o time. Eoch port

con request the semophore by writing "1" into the inpuï lotch.
Reoding " l " on the oulput indicotes o success ond "0" o deniol,

If the semaphore is free and both ports attempt to request it at the same time, semaphore

arbitration logic guarantees that only one side gains the control [Cypress 96].

As IDT7054,the 4-port memory used in MultiCom, was a very new product at the time

of system design, no semaphore logic was implemented on this chip. The structure of

the semaphore as explained above applies only to two ports and needs a major change

for implementation on more ports. The semaphore latch should be modified to have

more inputs, and other parameters such as the order in which the nodes apply for the

semaphore should be taken into account. In addition, a priority scheme should be set up

for pending requests or for requests applied at the same time. Consequently, the overall

logic can become complicated. On the other hand, the absence of semaphore logic in

the IDT7054 could have commercial reasons such as releasing the chip to market as fast

as possible. A new design for a multiport semaphore is explained in the Appendix.

The conclusion is that hardware semaphores are currently unavailable on multiport

memories. There is no semaphore latch on multiport memories with more that two ports

and the control of these memories is entirely left to the system designer. The only

remaining solution is the use of software semaphores as discussed in the next section.
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2.2 Software semaphore

A hardware semaphore is a convenient way to control a shared memory. In its absence,

software semaphores should be used. Software semaphores can be implemented using

dedicated memory locations to hold the semaphores and are extensively used as a

mechanism to provide synchronization and concuffency for different processes [Ben-

Ari 821 [Stallings 98]. In a general semaphore, the number of waiting processes is

stored in a variable and the ID of each requesting process is stored in a queue. A binary

semaphore can only have values of 0 or 1. In a system using a simple binary semaphore

stored in a reserved memory location, each node attempts to gain control of the

semaphore by using an indivisible test and set instruction. The test instruction checks if
the semaphore is set by other nodes. If the semaphore is free (cleared), the node sets the

semaphore and gains exclusive control of a block of memory associated with that

semaphore. If the semaphore is not free, the set instruction is aborted and the node

should reapply again later.

Software approaches to mutual exclusion and semaphores can be implemented for

concurrent processes that execute on a single processor or a multiprocessor machine

with shared memory. These approaches rely on some elementary mutual exclusion

mechanism at the memory access level [Lamport 91]. That is, simultaneous accesses to

the same memory location in the shared memory are serialized by some sort of memory

arbiter, although the order of access granting is not specified ahead of time. With this

mechanism in place, accessing a memory location excludes any other access to the

same location simultaneously [Stallings 98].

Checking a semaphore and changing its value must be an indivisible atomic action

[Tanenbaum 01]. The system must guarantee that once a semaphore operation has

started, no other process can access the semaphore until the operation has completed.

According to [Tanenbaum 01], "this atomicity is absolutely essential to solving

synchronization problems and avoiding race conditions."

The software semaphores discussed in [Ben-Arr 82], [Stallings 98], and many other

operating systems textbooks cannot be directly implemented for multiport memories.

The reason is that on a system using multiport memories, nodes can freely access the
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shared memory from different ports concurrently. Unless there is a hardware memory

arbitration circuit, or a software mechanism to enforce mutual exclusion, the algorithms

cannot be successful. Multiport memory has not been discussed in these references and

new methods need to be found to address this issue.

Hardware memory arbitration has been implemented in some dual-port memories to

achieve mutual exclusion. [Wyland 88] discusses an address arbitration circuit for dual-

port memories. It consists of common address detection logic and a cross-coupled

arbitration latch. If the same memory location is accessed from both sides

simultaneously, this logic provides a busy signal to the address that arrived last and

inhibits write operation for the port receiving the busy signal. It also makes a decision in

favour of one port or the other when both addresses arrive at the same time. A busy line

is available in most of dual-port memory products IIDTI and is explained in more detail

in the Appendix. It can be used to extend the memory cycle for the operation performed

by the losing processor until the winning processor finishes its access.

As stated earlier, the IDT7054 has no extra circuit to resolve simultaneous access to a

common memory location. The IDT7052, the 2K version of this memory, has a BUSY

line for each port. This input line has a very limited functionality and is different from

the busy line explained in the previous paragraph. If activated by external logic, it will

block the write to the addressed location from the pertinent port [IDT 95]. The system

designer should devise the required external logic to detect the address match from

different ports and resolve the conflict in favour of one of them by providing busy

signals to the others. A simplified version of this external circuit may search for only

one speciflc location such as address zero, where the semaphore flag could be kept. If a

BUSY line were available in IDT7054, it could facilitate the implementation of

software semaphores; however, the extra address line required to expand the chip from

2K to 4K has replaced the BUSY line in the pinout. Hence, system designers should

rely on software methods to implement a lock for IDT7054.

The only method that has been implemented to control 4-port memories with no

hardware arbitration, is TOKEN passing [Mick 96]. Token passing and other methods

attempted in this study are discussed in subsequent sections.
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2.2.1 TOKEN passing

In this method, every node has a unique ID. The owner or the master is the node whose

ID matches the TOKEN that resides in a dedicated memory location. The master can

use the locked paft of the memory exclusively for performing critical tasks such as

buffer allocation. When finished, the master passes the token to another node in a

prescribed order by writing the ID of the node into the token.

At the start, one of the nodes is the master by default. To determine who is the master,

each node should read the token regularly and compare it to its ID. The node successful

in finding a match can go ahead to use the memory as the master.

After finishing with the lock, the master passes the token to another node in a circular

manner. While the owner is writing the new master's ID in the token, if other nodes

attempt to read the token, there is a possibility of data corruption for the read operation.

Hence, the new master must verify its success by multiple read lcompares lMick 96].

Token passing is very easy to implement, and it is very effective as long as all the nodes

are active in the token passing operation. On the other hand, a node that no longer needs

the token, or is performing tasks not requiring the token, would still be included in the

token passing cycle. This demands that all of the nodes, regardless of their interest in

becoming a master, should regularly check the token to use it, or at least to pass it to the

others. This requirement is an extra burden for the nodes and failure to do it on time

may result in long delays for the other nodes waiting for the token.

Moreover, as explained in Section4.2 on page 101, in the node processors used in

MultiCom, transferring packets of data to or from allocated buffers were performed by

specific instructions in repeat mode. Once started, the repeat mode generates a firmware

loop and transfers the entire packet before stopping. This increases the transfer rate

considerably, but it is not possible to perform other tasks such as token checking while

the transfer is in place.

For the reasons discussed above, in spite of its simplicity, token passing was not

suitable for MultiCom and other methods were devised for implementing a software

lock. These methods are explained subsequently.
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2.2.2 Waiting list

With a waiting list, similar to the token passing, each node accesses the memory using a

separate port and the master is the node with a matching ID to the number in OWNER.

Each node requesting to become the master registers its ID at the end of a waiting list in

the shared memory. The registered node should regularly monitor the list to upgrade its

position in the queue. If the upper request is cleared because of a move in the queue, the

node should upgrade its turn by moving its ID to the cleared location. This process is

repeated until the node reaches the highest position and writes its ID in OWNER

indicating that it is the master. Figure 5.4 demonstrates this algorithm.

The move in the queue is initiated when the master clears its ID from OWNER. If there

is a node waiting at top of the queue, the node writes its ID in OWNER and becomes

the new master. It also clears its ID from top of the queue. This in turn enables any

requesting node to advance in the queue by moving its request to a higher position.

This method is acceptable in principle; however, its implementation on MultiCom

showed that there were several potentials for write-write, and write-read conflicts as

discussed below:

A new
request

finds the
end of
queue
and
takes
turn

Each node monitors the
queue to upgrade its turn

Figure 5.4 Waiting list
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. More than one node may attempt to register at the end of the queue at the same time.

The conflict can be compensated for by verifying the write operation and starting

again if not successful.

. In the upgrading process, each node moves to a higher position and clears the lower

one. Before all the nodes finish the upgrading, a new request may be inserted in a

freed location. To avoid this, two different codes should be used to clear the requests,

one code for end of the queue where there is no other request, and another code for

between the other requests. Even with this approach, a lucky node may find a free

location for registering its ID while there is another request underneath. This case

may happen if registering of a request for a node at the end of the queue coincides

with the release of the last request by another node. Normally this situation causes no

problem because the new request is upgraded within a short time. However, if a third

node attempts to register in the queue before this request is upgraded, it may register

in a place that is not the end of the queue. The results of several tests using this

method showed that the probability of this situation was very low; however, it was

observed in long run under heavy demand for the lock.

. In the upgrading process, several write-read conflicts are possible. The sensitive ones

are overcome by repeated reads and compares. There are also a few possibilities for

write-write conflicts as discussed above.

. The algorithm is very sensitive to the processor and memory timing. If either one is

changed, the algorithm should be adjusted for the new condition.

. All the registered nodes should monitor the queue continuously for an upgrade in

their position. Delay in upgrading could hold the other nodes registered in the lower

parts of the queue.

For the reasons discussed above, this algorithm was not successful. Applying a few

modifications may result in a successful algorithm. For example, if the upgrade process

is performed entirely by the master or even by the node at the top of the queue, most of

the memory conflicts can be removed. The latter is a better alternative, because no

provision is required when no master is available, The algorithm may work as follows:

. The nodes register at the end of the queue as discussed previously.

. After the master releases the lock, the node on top of the queue writes its ID in

OWNER and upgrades the positions of the other nodes if any.
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a Other nodes only monitor the top of the queue. The node the ID of which

reaches this point will be responsible for the upgrade.

The algorithm would be successful even if the queue is empty and there is no master. In

this case, any node registering at top of the queue would become the master. There are

still some remaining conflicts in this algorithm, but they can be overcome by repeated

verifying.

The author came across this idea only at the time of writing the thesis. Therefore, the

modified algorithm was not tested on MultiCom.

2.2.3 Lock with BUSY

This new lock scheme was designed in an attempt to exclude the uninvolved nodes from

the token passing scheme. In this method, only the nodes registered for the lock are

considered in the TOKEN passing cycle. As shown in Figure 5.5, each requesting node

can register in a dedicated location if the BUSY flag is cleared. Otherwise, the node

should keep checking the flag until it is cleared.

The master is the node the ID of which matches the number in OWNER. After finishing

the allocation process, the master determines the next owner by checking all the

registered nodes in a circular priority in which the current owner is in the lowest

position. Before determining the new owner, the master raises the BUSY flag to prevent

the other requests from registering. This is essential because it prohibits write-read

conflicts in a sensitive situation. A short delay is also inserted to settle any request that

might be in progress.

In the process of determining the new master, if there is no request, this simple

algorithm may fail. This is because if a new request is made later, none of the nodes will

be responsible for determining the master. Therefore, aflag called No_owner is added

to the algorithm. When this flag is set, the requesting node takes the responsibility of

determining the owner. Sometimes there might be more than one node registered. They

all compete to be the master, and the node having the highest circular priority is the

winner. The algorithm is shown in the flow chart of Figure 5.6 and is explained in more

detail in Table 5.1.
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No-owner flag

BUSY flag

Node-l request

Node-2 request

Node-3 request

Node-4 request

Figure 5.5 Lock with BUSY

The nodes register in o dedicoted locotion if BUSY is

nol set. The currenl owner determines the nexl
owner using circulor priority. lf there ìs no owner, the
requesting node is responsible for determining the
owner.

This algorithm was successful in sharing the lock among the nodes of Multicom. There

is no starvation for any of the nodes, because after clearing the busy flag, there is plenty

of time for all the waiting nodes to register their request before busy goes high again.

Moreover, circular priority ensures that all the registered nodes will receive the lock.

Although the overhead of the algorithm is slightly high, the benefit is that a registered

node is free to perform other tasks while its request is processed by other nodes. The

only remaining write-write conflict is a possible setting of the BUSY flag by more than

one node simultaneously. This situation may happen if there is no current owner, and

two or more nodes register at the same time, All of the nodes activate the BUSY flag to

block the new requests, and start to determine the new master. As they all write a"I" in
the BUSY flag, the conflict has no drawback. The shaded box in Figure 5.6 shows the

location of this possible conflict. In this case, the node with the highest circular priority

will be the master.

For a reduced overhead, the algorithm can be modified as explained in the next section.
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Figure 5.6 Flow chart of the lock with BUSY
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. Each node registers its request if the BUSY flag is cleared.

Otherwise, it waits until the flag is cleared.

. If there is a current owner, the requesting node only should check

the OWNER regularly. When the ID of the node matches the

OWNER, the node is the master.

. If there is no owner, the requesting node sets the BUSY flag to block

new requests from registering. As more than one node may register

simultaneously in this situation, a short delay is inserted to make

sure that any other possible requests in action are registered.

Considering all the requests, each registered node determines the

owner in a circular priority where the previous owner has the lowest

rank. The node the ID of which matches the determined owner is the

new master. It writes its ID in the OWNER, clears the No_owner

and BUSY flags, and can use the locked part of the shared memory.

The losing nodes, if any, perform regular checking of the OWNER

to determine their turn to obtain the lock.

. When the owner finishes with the lock, it sets the BUSY flag to

disable incoming requests, clears its own request, and determines

the next owner using the circular priority. It writes the ID of the new

owner, if any, into the OWNER; otherwise, it sets the No_owner

flag. It clears the BUSY flag in the end.

Table 5.1 Algorithm for lock with BUSY

2.2.4 Fast lock

This lock has a structure similar to the previous one. The main difference is that each

node is responsible for acquiring the lock rather than receiving it through the current

master. It was devised in an attempt to eliminate the No_owner flag in the previous

algorithm. Figure 5.7 shows the memory structure used for the fast lock.

If BUSY flag is not set, the requesting node sets it to block the other requests and

registers in a dedicated location in memory. In some conditions, more than one node

may register. This is because as the BUSY flag changes from set to clear, all the waiting

nodes register almost simultaneously before the flag is raised again. Each registered
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Previous-Owner

BUSY flag

Node-L request

Node-2 request

Node-3 request

Node-4 request

Figure 5.7 The fast lock

AII registered nodes determine the owner ond the winning

one con proceed os lhe mosler. OThers keep checking Their

turn to become the mosler using circulor priorify,

node determines the next owner using circular priority where the previous owner has

the lowest priority. The winning node in finding a match with its ID is the new master.

After finishing with the lock, the master writes its ID in the Previous-Owner and clears

its request. Consequently, another node having a pending request can win to become the

new master. If there are no more requests, the master clears the BUSY flag to enable

waiting nodes to register new requests. Figure 5.8 shows the flow chart of this lock and

Table 5.2 illustrates its detail.

Fast lock is simple and very efficient. The associated overhead is also low. The

drawback is that the registered nodes should continuously check for their turn to

become the master. Moreover, registering a new request for the lock may take longer

than the previous method, because the BUSY flag remains active until all the registered

nodes have finished with the lock. Similar to the previous lock, there is no starvation in

this lock, as nodes have time to register, and after registering, they will certainly receive

the lock.

Dynamic allocation was implemented on MultiCom using both the "lock with BUSY"

and the "fast lock" as software semaphores. Both algorithms proved to be efficient in
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. If not BUSX each requesting node raises BUSY to block the other

requests and registers in a dedicated location. Under heavy demand

for the lock, usually more than one request can be registered.

. After a short delay to make sure that all requests in progress are

recorded, each registered node determines the next owner based on

the circular priority with the prevìous owner having the lowest rank.

The winning node can proceed as the master, while the losing nodes

keep determining the owner repeatedly until it matches the ID of the

node.

. After finishing with the lock, the current owner writes its ID in the -

Owner and removes its request. If no other request is pending, the

owner also clears BUSY to enable registering of new requests.

. By changing the Previous-Owner and removing the relevant request

by the current owner, one of the other registered nodes, if any, can

win to be the new master.

Table 5.2 Algorithm for fast lock

assigning the lock to the requesting nodes with no conflicts. It is worth mentioning that

these algorithms have not appeared anywhere in the technical literature and are new

lock schemes. The outcomes of dynamic allocation are presented in the result section.

Buffer allocation is part of a larger algorithm called "communication protocol" that

controls the overall communication. It is discussed in the next section.

3 Communication protocol

A proper communication protocol facilitates the communication task in a system. A

simple and basic protocol was used to test the static allocation on MultiCom. The basic

protocol was gradually upgraded to include the extra features required for complicated

algorithms such as dynamic allocation or broadcasting. For evaluation of larger systems

using the simulation model in the next chapter, the communication protocol was also

modified and upgraded. The basic communication protocol is explained in the next
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section, and the required modif,cations for other algorithms are discussed in the relevant

secíons

3.1 Basic communication protocol

The basic communication protocol was tested on MultiCom for static allocation. In the

all-to-all test program, as discussed in page 62, depending on whether a node is a

transmitter or a receiver (or both), two different activities are performed in the node.

They are explained below:

Transmitter:

Each node sets up the transmit buffers with the messages to be sent to other nodes. Each

message can be sent in several packets if it is larger than the buffer size. Within a loop,

each node checks the transmit buffers, and if there is data to be sent, it checks the

appropriate receiver. If the receiver is ready, a packet of data is copied into a pre-

allocated buffer in the shared memory and an interrupt is generated for the receiver.

This process is repeated several times until all the messages in transmit buffers are sent

out to the appropriate receivers. Figure 5.9-a shows the activities of a transmitter in the

basic protocol.

Receiver:

In a receiver, interrupts coming from different transmitters are connected to separate

interrupt lines. The receiver identifies the transmitter by the received interrupt and

refers to the appropriate buffer in the shared memory. Then it transfers the packet of

data from this buffer to a local buffer and appends it to the previous packets of the same

message received from the sender, if any. When transfer is complete, the receiver raises

the receiver ready flag to acknowledge that the data is received and the receiver is ready

again to get more data from the same transmitter. After updating the necessary

variables, it terminates the intem;pt service routine. Figure 5.9-b illustrates the receiver

activities in the basic protocol.

Note that the shaded parts of Figure 5.9 depend on the protocol in use, whereas the

unshaded parts are general. Only the shaded parts will be explained for other protocols.
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Figure 5.9 Basic communication protocol
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Table 5.3 summarizes the communication protocol under static allocation.

Table 5.3 Basic communication protocol

In transmitter:

1. In the transmission loop, each transmit buffer is checked. If there is data

to be sent, step 2 is performed; otherwise, the next buffer is checked.

After checking all the buffers, the loop is executed again until data in all

the buffers is transmitted.

2. The status of the receiving node is checked. If it is not ready, indicating

that the previous transmission is still in progress, the transmission loop is

resumed.

3. The address of the pre-allocated buffer is determined and a packet of

data with proper size is generated. Proper size is the minimum of the

buffer size, and the size of remaining data in the transmit buffer.

4. The packet of data is transferred to the buffer in the shared memory. The

internal variables are updated.

5. An interrupt is generated for the receiving node. The transmission loop is

resumed.

In receiver:

1. Depending on the received interrupt, the identity of the transmitter is

known to the receiver. Therefore, upon receiving an intemrpt, the

appropriate buffer address in the shared memory is determined and the

size of the packet is obtained. The local buffer to transfer the received

data is also identified.

2. The packet is transferred from the shared memory into the local buffer

and is appended to the previous packets of the same message, if any.

3. The receiver ready flag is raised to indicate that the data is received and

the receiver is ready again for more data from the same transmitter.

Internal variables are updated and the interrupt service routine is

terminated.
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3.2 Protocol for dynamic allocation

The general activities in the dynamic allocation protocol are similar to the basic

protocol, but the memory management is very different. Before describing the protocol,

a closer look at dynamic allocation is needed to identify the required components.

Figure 5.10 shows the memory layout and the essential elements for dynamic

allocation. Detailed explanations are given below.

Lock variables:

As explained in previous sections, OWNER, No_owner, BUSY, and node requests are

the variables used for the lock.

Buffer address table:

Buffer address table lists the start address of the buffers in the shared memory. The

address of a buffer can be obtained by using the buffer number as an index to this table.

The number of available buffers and the buffer size is determined by the size of

available memory.

Buffer allocation table:

Each buffer has a 16-bit entry in the buffer allocation table. Bit-15 shows the status of

the associated buffer. "0" indicates a free buffer and "1" an allocated buffer. The

remaining bits are reserved for multicasting/broadcasting and will be explained later.

Receiver mailbox:

Each of the possible receivers that can be connected to a transmitting node has a 16-bit

mailbox entry dedicated for that transmitter. As there are four nodes each transmitting

to three other nodes, there are 12 mailboxes. Bit-15 of each mailbox shows the status of

the receiver associated with it. "0" is used for ready and "1" for busy. Other bits are

used to hold the number of the buffer allocated for the transmission. If a receiver is

ready, the transmitter writes the allocated buffer number in the mailbox of the receiver

and sets bit-15 to mark it a busy receiver. It also sends an interrupt to the receiver to

signal that a message is ready to be collected. Upon receiving the interrupt, the receiver

refers to the appropriate mailbox to identify the number of the buffer in use. After
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Figure 5.10 Memory map of MultiCom for dynamic allocation
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Buffers:

Each buffer consists of a header and data. In the simplest fotm, the header contains the

size of data in the buffer. Other information such as the sender's ID, the receiver's ID,

and the relative order of the packet in the entire message can be included in the header.

The protocol is shown in Figure 5.11. More detail can be found in Table 5.4
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Table 5.4 Protocol for dynamic allocation

In transmitter:

1. The status of the Rx node in the mailbox is checked. If it is not ready,

indicating that the previous transmission is still in progress, the transmission

loop is resumed.

2. A buffer is allocated for transmission. To do this:

. The lock is obtained by applying and waiting to become the master.

. The file allocation table is searched and a free buffer is allocated. If no

free buffer is available, the search is performed repeatedly until one

buffer is freed by other nodes.

. The lock is released.

3. The packet is transmitted as follows:

. The allocated buffer number is written into the receiver mailbox and

the Rx is marked as busy.

. The start address of the buffer is obtained from the address table.

. The header and data are written into the buffer.

. The variables are updated.

4. An intenupt is generated for the receiver. The transmission loop is resumed.

In receiver:

1. Depending on the received interrupt, the identity of the transmitter is known

to the receiver. Therefore, after receiving an interrupt:

. The local buffer to hold the data is determined.

. The buffer number used in transmission is read from the receiver

mailbox and its address is obtained from the buffer address table.

. The size of the packet is obtained from the buffer header.

2. Data is transferred from the shared memory into the local buffer.

3. The buffer is released and the busy flag in the mailbox is cleared to indicate

that the packet is received and the receiver is ready to get more data from the

same transmitter. Variables are updated and the interrupt service routine is

terminated.
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Note that in the last step of the protocol as shown in Figure 5.11-b, the receiver releases

the buffer without using the lock. The reason for this will be explained in the discussion

section.

3.3 Protocol for multicast / broadcast

Multicast and broadcast can be implemented by applying minor changes to the

protocol. Each entry in the allocation table is capable of holding broadcast information.

A modified entry incorporates the following information:

. Bit-15 is for buffer status ("0" for free,"1" for allocated).

. Bit-14 is for transmission type ("0" for normal, "1" for multicast/broadcast).

. Bits 3-0 are node-bits for the receivers 4 to I in bitmap form. A "1" in each

bit position indicates that the corresponding node will receive the data.

The structure of the buffer allocation table is shown in Figure 5.I2. The format and the

protocol were modified in a way that the added overhead to the transmissions not using

multicasting was reduced to a minimum.

l5 0

l5 l4 32 r 0

node-bits for nodes 4-l
0 = node will not recelve
I = node will receive doto

o) buffer ollocolion loble

mullicost bil
0 = normol
I = muìticosl

ollocqtion b¡t
0 = free
I = qllocoted

b) lhe entry for eoch buffer

Figure 5.12 The structure of buffer allocation table
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The transmitter checks the status of all the receivers. If all are ready, it allocates a

buffer, writes the broadcast information in the buffer entry in the allocation table, and

transfers data to the buffer. Then it writes the buffer number into the mailbox of each

receiving node and marks them as busy. In the end, it generates an intemrpt for each of

the receivers.

The receiver reads the data from the buffer and clears its node-bit from the

corresponding buffer entry in the allocation table. If the buffer entry shows that no more

nodes are left to receive the data, the receiver also releases the buffer as the last node.

Figure 5.13 shows the communication protocol under multicasting/broadcasting.

Because of the structure of the buffer allocation table, there is a possibility of write-

write conflict on the shared memory. This may happen if two or more nodes try to

remove their node-bits from the buffer entry at the same time. In removing a node-bit,

other information in the buffer entry must be preserved. Therefore, any programming

method should first read the entry, mask the corresponding bit, and write it back. Even

with the instruction set of the TMS320C50 that makes it possible to do this task using

only one instruction, the memory read and write take place at two different clock

cycles. Therefore, if two or more nodes perform this step at the same time, one of them,

which is normally the lagging one, may overwrite the data written by the other nodes.

Consequently, removing the node-bit may not take effect properly and the buffer may

remain allocated.

This conflict is unlikely to happen and it was observed only in long runs on MultiCom.

However, a reliable system requires the removal of the conflict. Two approaches can be

considered in this regard:

1. After removing the node-bit from the buffer entry, each node checks the entry

and if unsuccessful, tries again.

2. The node-bit is removed by the aid of the lock.

The first approach is very simple and there is not much overhead involved. However,

because at least two nodes may attempt to write different data in the same location

simultaneously, undesired information could be written in the target location, which
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could be neither of the two nor even a combination of them. This may create a deadlock

and is not acceptable for a reliable system. It is worth mentioning that no such situation

was observed in MultiCom even in the long runs.

The method of using a lock to remove node-bits is better suited for a reliable system.

There are two options in this case:

1. Use of the existing lock.

2. Use of a special lock as explained below:

. Removing the node-bits is performed on an allocated buffer entry, but the

allocation process searches for a free buffer. Therefore, there is no conflict

between the two, even if both are performed at the same time. Hence, a

separate lock can be used for this purpose.

. In order to minimize the overhead, a simplified version of the fast lock can be

used. In this version, a fixed priority for the nodes rather than circular priority

can be implemented.

. If other nodes have already removed their node-bits from the buffer entry, the

last node does not require a lock to remove its node-bit.

Using the existing lock increases the overhead, and the system may end up in a

deadlock as explained in the discussion section, but the special lock has a reasonably

small overhead. Therefore, the latter was used for removing the node-bits in

multicasting/broadcasting.

It should be restated that the programming was carried out with the minimum added

overhead to the communication without multicastin g/broadc asting.

Considering the fact that broadcasting can reduce the communication overhead in the

system by a large extent, the small overhead of removing the node-bits is negligible.

The system throughput is expected to rise considerably under this protocol.

The results obtained from MultiCom under different protocols are presented and

discussed in the following section.
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4 Results from MultiCom

Using suitable protocols, static allocation, dynamic allocations, and multicasting/

broadcasting were tested on MultiCom and the performance of the system was

evaluated. The results are presented in this section. The outcomes are also compared to

other systems using serial links, bus-based architecture, and dual-port memories.

Before discussing the results, the mechanism of data transfer using the nodes of

MultiCom is described so that the results can be analysed thoroughly.

4.1 Details of data transfer

In order to interpret the achieved results better, the mechanism of data transfer is

explained in more detail. The transfer of data from a local buffer to a buffer in the

shared memory and vice versa is performed with block transfer instructions. The

TMS320C50 has a series of instructions to perform this task. One of them is BLDD

standing for "Block Load from Data memory to Data memory". This instruction can be

repeated with the RPT instruction to create the transfer loop. Considering the effect of

the 4-stage pipeline of the processor, BLDD in repeat mode is optimised to act as a

single cycle instruction. Therefore, the data transfer from shared memory to local

memory takes only one cycle per a 2-byte word. However, the reverse transfer that

writes to the external memory includes an internal wait cycle and takes two cycles per

word. As explained in the discussion of the nodes in Chapter 4, this extra cycle is

introduced to allow a smooth transition between write and any adjacent bus operation

ITI 97]. Hence, the overall transfer of a Z-byte word from one node to another takes

place in three cycles; two for writing by the transmitter, and one for reading by the

receiver. This number puts an upper limit for the communication bandwidth of the

system.

With the 50 ns cycle time of the processor, the communication bandwidth through the

memory for each node is 13.3 MBytes/s (i.e. 2 bytes in 150 ns). For four processors in

the system, and assuming that all of them are communicating without any overhead, the

peak communication rate or the bandwidth for the overall system would be 53.4

MBytes/s. In practice, the following factors, as explained in different protocols, degrade

the peak rate:
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. Finding the transmit buffers and checking the readiness of the receiver.

. Allocating a buffer in the shared memory (especially in dynamic allocation,

which requires applying for the lock, acquiring it, and searching for a buffer).

. Initialising the counter and address pointers, initiating the repeat mode, and

generating an interrupt for the receiver.

. Latency in acknowledging the interrupt in the receiver, and the overhead of

identifying the transmitter, initialising and initiating a block transfer.

. The busy status of the receivers, which adds extra delay to the communication.

. The finite and limited buffer size in the shared memory, which causes a long

message to be sent in several packets rather than one.

The buffer size in the shared memory is a very important factor in the communication

rate. As there is a fixed overhead in sending a packet of any size, by using bigger

buffers, a long message can be sent in fewer large packets and the overall overhead will

be reduced, resulting in a higher throughput.

With the total communication rate as the focus of the experiment, MultiCom was tested

under static allocation, dynamic allocation, and broadcasting. The results are presented

in the next section.

4.2 Results of static allocation

The effect of the buffer size on the communication fate and the associated

communication overhead using static allocation are shown in Figure 5.14.

The figure shows that by increasing the buffer size, the communication rate increases

and approaches the peak communication rate. For static allocation, the maximum buffer

size for the shared memory of 4K words was 336 words. The maximum conìmunication

rate of 45.5 MBytes/s was achieved for this buffer size, showing overhead of I57o.

Considering the unavoidable overheads in the system as discussed above, I5Vo is

reasonable and shows the effectiveness of the protocol under heavy traffic. As explained

in the next chapter, by increasing the memory size, the communication rate can increase

and approach the peak rate, because bigger buffers can be used.
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4.3 Results of dynamic allocation

With the performance of static allocation being reasonably close to the peak

communication rate, there is not much to gain in applying dynamic allocation.

However, there are two reasons why dynamic allocation is more useful:

1. Dynamic allocation scales better than static allocation. As explained in

Chapter 7, the ultimate goal is to design a communication structure using 9-

port memories. In static allocation, an N-port memory should be divided into

N(N-I) buffers. Therefore, the buffer size would be very small for large N.

Moreover, as the number of ports increases, the internal connections inside the

memory chip increase considerably resulting in less space for the memory

cells. Hence, a 9-port memory is expected to have a small capacity and

dividing it into 72 buffers will yield even a smaller buffer size. Hence, the

performance loss will be substantial. Considering the fact that not all of the

buffers are simultaneously used, a better memory management such as

dynamic allocation is required to make efficient use of small shared memory

size.

z. Multicast and broadcast, which potentially increase the system performance

considerably, can be implemented easily in dynamic allocation as explained

before. However, in static allocation, each buffer is pre-allocated to one

transmission only and it cannot be shared with the other nodes. It might be

possible to change the structure of static allocation to incorporate multicast

and broadcast, but it would require a lock similar to the one used in dynamic

allocation and will lose its simplicity, speed, and efficiency.

Dynamic allocation adds extra overhead to the system, mainly because of the lock

mechanism and the buffer allocation process. However, its capability for easy

implementation of multicasting/broadcasting, as well as its better scalability makes it

more attractive than static allocation. In Chapter 6, the difference between the

scalability of these allocation methods will be demonstrated.

Figure 5.15 shows the communication rate for different buffer size and buffer counts.

During each test, the number of allocations performed on each buffer was also

recorded. An interesting result was achieved from these figures; they showed that for

four nodes under heavy communication traffic, no more than six buffers were required
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For five buffers of 806 words, although the buffer size was increased, the performance

dropped. This is because one less buffer could be created for the limited memory size of

4K words. Hence, some nodes had to wait for a buffer to be released. Increasing the

number of buffers to seven dropped the performance because of the reduced buffer size.

The extra buffer in this case was rarely used. The rate obtained for the buffer size of 336

words was 40.8 MBytes/s compared to 45.5 MBytes/s of the static allocation for the

same buffer size. This reveals the extra overhead imposed on the system by using the

lock mechanism and the allocation process.

Moreover, the latency of the dynamic allocation was slightly higher than the static

allocation, obviously for the same reasons stated before.

Dynamic allocation enjoys the benefits of better memory management, but it suffers

from the overhead imposed by the serial nature of the lock mechanism, and the software

implementation of the lock. Better performance could be expected if a hardware lock

similar to the semaphore logic were available for multiport memories. Moreover,

improving the algorithm for the software lock could enhance the performance slightly.

4.4 Results of multicasting/broadcasting

One of the major advantages of the dynamic allocation is the easy implementation of

multicasting/broadcasting. A message is written into the shared memory buffer once,

but it is received by more than one node. This results in a considerable saving in time by

avoiding duplicate buffer writes. In addition, multiple attempts to apply for the lock and

to allocate a buffer are reduced to one attempt only and the overhead decreases. Hence,

messages are transferred much faster and the communication rate increases.

Figure 5.16 shows the communication rate for broadcasting. The best result was 68.2

MBytes/s, and shows about 507o increase in the performance of static or dynamic

allocations. Owing to the fact that messages can be delivered much faster because of

fewer writes and reduced overhead, the achieved communication rate is 307o better than

the peak rate for node-to-node communication. The maximum number of buffers

involved in communication did not exceed four.
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allocation is 672 words, only the performance of the broadcasting for this buffer size

should be considered as the realistic throughput. Compared to static or dynamic

allocations, the performance increase ts 417o.

These results confirm that dynamic allocation performs better than static allocation

because of the ability to implement multicasting/broadcasting, and better scalability as

shown in the next chapter.

4.5 Comparison of results

The results from MultiCom show that both static and dynamic allocation can achieve a

reasonably good perfoÍnance close to the peak communication rate. Furthermore,

dynamic allocation shows its advantage by the use of broadcasting that can reduce the

overhead considerably and achieve a higher communication rate.

As discussed in Chapter3, all the communication structures based on multiport memory

have not gone beyond the proposal stage and their perforrnance have not been

investigated. This makes it difficult to compare the outcome of this research to the

previous work. However, in the following sections, the results of MultiCom are

compared to a bus-based system and other systems using dual-port memories or serial

links.

4.5.L Comparison to a bus-based system

On a bus-based system using a conventional single-port memory as shown in the

structure of Figure 2.I on page 12, the processors need to take turn for using the bus and

the communication rate is limited by the memory bandwidth and the speed of

processors. The realistic communication rate would be signif,cantly lower than the

memory bandwidth. This is because each word of a message requires two transactions

on the shared memory. The transmitter should write the word in the shared memory and

the receiver should read from it. Hence, for a transfer of a word under heavy traffic, the

delay of the arbitration logic and the waiting time of the processors for the busy bus

should be taken into account. In addition, the time spent on local memory transactions

to fetch or store the word should be also considered. Moreover, if the system is

upgraded to more nodes, the communication rate will not improve at all, and in fact, it

Mulliport Memory qs o Medium for lnterprocessor Communicotion in Multiprocessors 107



CHAPTER 5 Memory Ma,tnøgement ø,nd. Communico'tion Protocol

will be further downgraded, as there would be more demands to access the shared

memory and increased waiting period for the nodes.

To illustrate these facts, the results of a research to interconnect four Inmos T800

Transputers through a bus-based shared memory are discussed here. [Boianov+ 91]

reports a network of 20-MHz T800 Transputers interconnected with 64 KBytes of

single-port memory (with 45 ns access time) through memory arbitration logic. If the

bus was used by one of the nodes, other nodes requesting a memory access were forced

into a wait state by the arbitration logic. When the bus was released, the arbitration

logic terminated the wait state for the node with the highest priority enabling the node

to use the bus for its memory access. For a reduced communication overhead, the

memory management of this system used predefined memory buffers similar to the

static allocation discussed earlier. The communication rate for 2 or 3 nodes was 3.36

MBytes/s; however, adding the 4th node reduced the communication rate by 257o to

3.31 MBytes/s. This was because of the increased waiting period for the nodes to

perform a memory access.

MultiCom outperforms this bus-based system by a factor of 14. The main reason for

this large difference is that in the bus-based system the nodes have to share the limited

bandwidth of the bus. In a heavy demand for memory, such as all-to-all communication,

most of the times the nodes are forced into wait states and the throughput of the system

is reduced considerably.

4.5.2 Comparison to a system using dual-port memory

The result of a system using dual-port memories for communication is discussed below.

[Campbell+ 96] reports the design of COMPS, which stands for "COmmon memory

Message Passing System". This system was designed by using Intel486DX2l66 CPUs

as node processors (with 66 MHz processor clock and 33 MHz bus clock), and

IDT7006 dual-port memories (16 KBytes, 45 ns) as shared memory. The memory chips

were used in pairs to achieve a word length of 16 bits. A cluster of five nodes was

reported to be near completion in [Campbell+ 96]. Under light traff,c conditions and for

a buffer size of 1000x16 bits, the measured memory access rate to send a packet of data

to the dual-port memory was quoted to be around 2 MBytes/s. The same rate applied for
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receiving data from the dual-port memory. Consequently, each node had a

communication rate of 1 MBytes/s. The aggregate communication rate was not

mentioned; however, for comparison, an upper bound can be estimated for a four-node

system. In order to have a full connection between four nodes, this system would

require six blocks of dual-port memory between the nodes, and each node would need

to be connected to three different memory blocks. Under these conditions, the upper

bound communication rate would be 4 MBytes/s [Asgari+ 98]. It should be mentioned

that COMPS was designed to work under an operating system with slow bus protocol

and it used slower memory than MultiCom (45 ns compared to 35 ns of MultiCom).

The results of MultiCom show a considerable improvement over the system using dual-

port memories in terms of both performance and cost. The communication rate is

increased more than 11 times and the number of blocks of memory is reduced six times

(one 4-port memory compared to six dual-port memories, which is about J57o redtction

in cost). The increase in performance could be even higher if the exact value of the

communication rate rather than an upper bound was available. Moreover, broadcasting

shows an increase of at least 16 times in performance compared to this system.

It is worth mentioning that although broadcasting is possible in structures using dual-

port memories, it will not have similar benefits as the systems using multiport

memones.

4.5.3 Comparison to serial links

The results of a system using serial links with comparable capabilities to MultiCom are

also included in this comparison. As discussed in detail in the previous chapter, in this

hypothetical system, four nodes are connected in a 2-ctbe structure using 20 Mbps

links. The intermediate nodes pass the data to the destination node without storing it. It

is assumed that there is no overhead in the communication and the optimum approach

in delivering the messages is selected. Under these conditions, the upper bound for the

aggregate communication rate would be 10,9 MBytes/s. Compared to the upper bound

performance of this system, MultiCom performs at least 4.2 times better.

Multiporl Memory os q Medium for lnferprocessor Communicotion in Multiprocessors 109



CHAPTER 5 Memory Mc;no;gement o,nd Communícation Protocol

15

60

o
o
c4D
.9
o
.9cfc
E30
oo

MBytes/s

15

0
Bus-bqsed

lnmos T800
2OMHz

Duol-porl
486DX2-ó6
óól33MHz

Ser¡ol
20Mbps

Stotic Dynomic peqk Broodcosl

MultiCom with TMS320C50 nodes running ot 20 MHz

Figure 5.17 Comparison of results

MultiCom oulperforms cerloin bus-bosed sysTems ond systems using

duol-port memory or seriol links by o consideroble omount, The

performonce is more thon 4.2 times compored to o seriol system ond
I I times better thon o system using duol-port memory, ond l4 times

better Ìhon o bus-bosed system. Broodcosting hos the highest
performonce in MultìCom.

Figure 5.17 summar,zes the results obtained form MultiCom and compares them to a

bus-based system and other systems using dual-port memories or serial links.

5 Discussion

In this section possible ways of improving the performance of MultiCom such as using

wider datapaths or faster nodes are discussed. In addition, the structure of the allocation

table is discussed and the advantages of using this structure over other methods are

presented.
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5.1 Improving the performance

The performance of MultiCom can be improved in two ways as explained in the

following sections:

5.1.1 Increasing the speed of nodes

The performance of MultiCom was tested with 20 MHz node-processors. Increasing the

speed of the nodes can enhance the performance of the system. In upgrading the

processor speed, the speed of memory or its access time should be also considered. If a

linear performance increase is required, the speed of memory should be upgraded at the

same rate of the processor speed. If the memory speed cannot follow the rate of increase

of the processor clock, affangements should be made for the memory to be accessed in

two or more cycles. In this case, the perfotmance will depend mostly on the memory

access time. Nevertheless, performance boost is still expected as tasks other than data

transfer can be performed at a higher clock rate, reducing the communication overhead.

In 2002,IDT introduced IDT70V5388, a four-port memory with capacity of 64Kx18

bits and speed of 200 MHz [IDT 02]. The performance of MultiCom can be increased

significantly by using high-speed processors and faster memories such as IDT70V5388.

5.1.2 Use of wider datapath

MultiCom was built as a prototype to evaluate the performance of a communication

scheme using multiport memory. It used 16-bit processors and the required 16-bit

memory was created by two 8-bit memories connected in parallel. There is no

restriction in using a wider datapath. For example, if a 32-bit processor is selected, the

required memory can be built with four 8-bit memories in parallel, or with two 18-bit

newer version of the 4-port memory. Similar affangements can be made for 64-bit

nodes.

Using a wider datapath can enhance the communication bandwidth linearly because

transferring a fixed amount of data to or from memory will require less time. The

practical communication rate will be slightly less than this, because the communication

overhead that arises mainly from the preparation of the nodes for transmission or
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reception does not depend very much on the width of the datapath and remains virtually

the same.

A wider datapath can compensate for the use of smaller multiport memories in larger

systems. This is because horizontal expansion of memory can yield higher performance

increase than vertical expansion. For example, MultiCom upgraded to a 4Kx32-bit

shared memory can achieve much higher rates than a system upgraded to an 8Kx16-bit

memory. Although both use the same number of memory cells, the throughput will be

almost doubled in the former, where as in the latter the throughput will increase only

slightly (Refer to Figure 6.1 on page I23). This point is especially important in bigger

systems in which a larger number of ports for the multiport memory is required. As

explained before, multiport memories with larger port counts will probably have very

limited capacity; however, the small capacity can be balanced by the use of a wider

datapath.

Wider datapaths combined with higher port counts will increase the routing complexity

of the PCB design. However, with current multi-layer PCB design technology, a careful

design can overcome the routing problems. The designer should also keep the PCB

trace lengths balanced to avoid signal skews.

Wider and faster multiport memories are supported by the leading memory

manufacturing companies. For example, IDT70V3579 is a dual-port memory module

from IDT with a capacity of 32Kx36, speed of 4.2 ns/133 MHz in a 208-pin packaging

IIDT 99]. Moreover, as explained before, IDT has released its new version of 4-port

memory with the capacity of 64Kx18 bits and speed of 200 MHz in a 256-pin

packaging UDT 021.

5.2 Structure of the allocation table

As explained earlier in Section 3.3, the allocation table uses one entry per buffer, and bit

15 indicates if the buffer is allocated or free. An alternative approach would be to use

only one word to hold the status of all the buffers as a bitmap. Although this is a very

common practice, it may end up in performance loss by adding extra overhead to the

system. The reasons are discussed below:
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In the last step of the protocol in Figure 5.11-b, the receiver releases the buffer without

using the lock. The reason lies in the structure of the allocation table as shown in

Figure 5.12. A free buffer is sought in the allocation process, whereas an allocated

buffer is freed in the releasing process. As each buffer has a separate entry, there is no

conflict between allocating and releasing, even if performed simultaneously. Hence,

there is no need to acquire the lock for releasing a buffer.

On the other hand, if the bitmap approach were used to keep the status of the buffers,

the use of the lock for releasing a buffer would be inevitable. This is because two nodes

allocating and releasing two distinct buffers at the same time would write different

information in the same location; hence, there is a potential for a write-write conflict.

This type of conflict could easily crash the entire communication in the system because

of the major dependency of the communication on the allocation table.

Using the lock to release the buffer would require the receiver to apply for the lock and

wait to acquire it. This process increases the overhead of the system and reduces the

performance. Moreover, it could interfere with the other activities of the receiving node

such as transmitting to other nodes. The reason is that at the end of an interrupt service

routine where the receiving node should free the buffer, the node has no information

about its previous attempt to register for the lock (for transmission purpose) and the

progress made so far. If the node applies a second time, it may destroy the previous

request or interfere with it. It is possible to solve this problem by modifying the

protocol to check previous attempts and share it for releasing the buffer as well, but this

means unwanted overhead, extra perforrnance loss, as well as a prolonged intenupt

service routine.

Moreover, the bitmap structure for the allocation table could end up in a deadlock. In

order to clarify this statement, imagine that a transmitting node acquires the lock to

allocate a buffer for its transmission, but no free buffer is available. Although the

critical section of a node when using a lock should be short and free of loops, there is no

point in releasing the lock for others to use. This is because the lock is used exclusively

to allocate a buffer. If another node gets the lock, it'ù/ill also search for a free buffer,

which is not available yet. While holding the lock, the node keeps trying until a buffer is
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released. Meanwhile, another node finishes receiving the data and needs to release the

buffer. It registers to get the lock, This creates a deadlock because there is no buffer to

allocate, and no lock to release an allocated buffer. The deadlock can be removed by

adding extra steps to the protocol such as releasing the lock when no buffer is available

and applying again later; however, adding extra steps increases the overhead and

decreases the performance.

Another benefit of using a separate entry for each buffer is that it facilitates the

implementation of multicasting/broadcasting. As explained in Figure 5.I2 on page96,

the unused part of the buffer entry is used to identify the receiving nodes. If a bitmap

structure for the allocation table were used, a separate table would be required to hold

the broadcast information.

Furthermore, there is no extra overhead in searching the current structure of the

allocation table for a free buffer compared to searching the bitmap structure. In fact,

with the instruction set of the processor in use, the current structure is searched even

faster.

6 Conclusion

Memory management is an important issue for the interprocessor communication of

MultiCom and it is implemented using both static and dynamic allocations. Static

allocation is easy to implement and the associated overhead is very low. However, only

a portion of the valuable shared memory is actively used in communication at a time,

and the rest remains idle. On the other hand, dynamic allocation can use the entire

capacity of the memory in the communication, but its structure is much more

complicated and requires a lock mechanism, which has a serial nature. The lock

mechanism can be easily implemented with hardware semaphores; however, the

memory used in MultiCom did not have a semaphore latch. Hence, the only possible

way to implement a lock was to use software semaphores.

The waiting list algorithm was tested on MultiCom to implement a software semaphore.

In addition, two newly devised algorithms based on a modified TOKEN passing scheme
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were designed and tested on the system. Both of the algorithms proved to perform

effectively and could overcome all the memory conflicts.

For the communication protocol, first a basic protocol was developed and tested for

static allocation. Then the software semaphore was added and the protocol was

modified to support dynamic allocation. As an advantage of dynamic allocation,

multicasting/broadcasting was also implemented by applying the required

modifications to the protocol. The structure of the buffer allocation table was designed

in a way that it could facilitate the implementation of multicasting/broadcasting and the

lock was not required for releasing buffers.

The aggregate communication rate in the entire system was measured in several

experiments. The buffer size of the shared memory was a very impofiant factor in this

regard. For static allocation, the best communication rate was 45.5 MBytes/s. For

dynamic allocation, the best rate was 45.8 MBytes/s. This rate was achieved in the

presence of the extra overhead for checking multicasting/broadcasting in the protocol.

Both of the results were very close to the peak communication rate in which all of the

nodes could communicate with zero overhead. Considering the amount of overhead

available in the protocols, the overhead of l57o is very reasonable. Multicasting/

broadcasting could achieve the rate of 64.8 MBytes/s, which was 4l7o better than the

node-to-node communication rate using static or dynamic allocations.

The capability of dynamic allocation in implementing multicaslbroadcast as well as its

better scaling characteristics proves that dynamic allocation is a better memory

management technique compared to static allocation. This outcome will be discussed in

more detail in the next chapter.

MultiCom outperformed a bus-based system in its class by a factor of 14. Compared to

a system using dual-port memory for interprocessor communication, the performance

was boosted 11 fold, and the cost was reduced by using one shared memory. If
multicasting were also considered, the boost in performance would be more than 16.

MultiCom performed 4.2 times better in comparison with a hypothetical system using

serial links.
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The performance of the system can be greatly enhanced by using faster node processors

and wider datapaths. The communication bandwidth of MultiCom can be upgraded to

over 1 GBytes/s by using 32-bit processors running at2}0llll}Jz and fast memories.

Overall, the system shows a signif,cant increase in performance over comparable

multiprocessor architectures with serial links, dual-port memories, or bus-based

systems. It also shows a significant cost reduction and a much simpler design compared

to dual-port memory schemes.
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cating of MultiCom cannot be easily performed within the

lirnited resources of a research laboratory. Hence, the best

way to evaluate larger systems would be the use of a
simulator. In this chapter, the simulation model of

MultiCom is introduced and is gradually expanded to cover

a larger network. First the extension of the model to cover a

large group is presented and scaling of the system under

both static and dynamic allocations is verifi.ed. Then the

expansion of the model to encompass a cluster of groups of

ncides interconnected by a network controller is
demonstrated and performance of the system is evaluated.

A proper communication protocol was implemented in each

simulation stage. The overloading of network controller is

also explored and the cause of a communication bottleneck

is investigated. Finally, the model for a larger network and

the associated problems a¡e discussed.
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1 Simulation model

As a new framework for interprocessor communication, MultiCom showed that the

communication between the nodes could be performed through a multiport memory

with high throughput. Small systems are easy to implement and design; however,

moderate or large-scale systems cannot be implemented within the limited resources of

a research laboratory. Moreover, the design of larger systems requires significant

financial support and well-organized teamwork. Hence, the only possible way to

evaluate the structure on larger systems was the use of a simulation model.

MultiCom provided sufficient background to build a simulator. Observing the

behaviour of nodes and their interaction with multiport memory in a working system

was very valuable in building the structure of the model. As the first step in designing

the model, it was decided to simulate MultiCom. This could be useful in two ways:

1. The basic structure of the model would be generated and verified by a working

prototype.

2. Further expansion of the model would be relatively reliable, as it would be

based on a verified model.

The simulation model created in this stage was modified to cover larger systems in three

stages [Asgari+ 99b]. In the subsequent sections, the structure of the model and the

simulation stages are explained and the achieved results are discussed.

2 Structure of simulation model

The simulation model incorporated several modules. The main modules were the node

module, multiport memory module, and network controller module. Related modules

such as group module and cluster module were derived from these main modules. Other

minor modules were also used in the simulator. Because of the modular features of the

model, an object-oriented approach was used and the simulations were carried out in

C++. Only important modules are explained in the subsequent sections.

Multiport Memory os o Medium for lnterprocessor Communicolion in lvlultiprocessors 118



CHAPTER 6 Símulaúíon Modelling

2.1 Node module

The simulation model of the nodes was based on the simulation of TMS320C50

processors. Critical tasks such as applying and acquiring the lock that were subject to

memory contentions were simulated on a cycle-by-cycle basis. For non-critical tasks,

instead of simulating every instruction, an abstract form was used whereby a group of

instructions that performed a specific task was simulated as a single command that

required several cycles. Checking receivers, allocating a buffer, initialising for

transmission, transmitting data, generating interrupts, and various steps in receiving

data in an interrupt service routine are examples of the available commands. Based on

the characteristics of the TMS320C50 node processors and the observation of their

behaviour in MultiCom, the timing of the commands and the number of cycles required

for each one were defined in a configuration file. The activities of the nodes under the

applied protocol were defined in a program file using these commands.

The clock rate of the nodes was fixed at 2O I|¡4}lz, which was the same rate used in

MultiCom. In fact, the clock rate does not affect the simulation model, but it defines the

period of the simulation clock used in calculating the communication rate.

After defining the node module, a group module was created by instantiating the

required number of nodes and integrating them with a multiport memory module,

which is explained in the next section. A cluster could be generated by connecting

several groups to a network controller module as explained later.

2.2 Multiport memory module

The module for multiport memory was designed by considering the structure and

behaviour of IDT5054, which is the 4-port memory used in MultiCom. The module

could be linked to the required number of node modules with each node capable of

reading from or writing to the memory cells independently.

Apart from the normal activities of this module as a shared memory, a sub-module was

also defined. All the signalling among the nodes could be performed through this sub-

module. For example, generating an interrupt for a node was recorded in the sub-

module and every node had to check it routinely to detect the incoming intemrpts.
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In both the memory module and the sub-module, provisions for simultaneous access of

the nodes to critical data such as lock variables were provided. Lock variables could be

accessed by more than one node at a time, and modifying their contents needed to take

place only after termination of all the accesses in progress. By implementing this

method, the write-write and write-read conflicts that may have occurred in queuing or

acquiring the lock and in interrupt generation or reception were taken into account.

2.3 Network controller module

Similar to the nodes, network controllers were based on the TMS320C50 processors;

however, the two modules were not identical. One of the differences between a node

and a network controller is that a node only accesses one multiport memory, but a

network controller needs to access more than one multiport memory in order to link

different groups or clusters. As shown in the structure of Figure 3.4 on page 48, for

linking eight groups of a cluster, each network controller is connected to eight different

multiport msmories. It is also connected to another multiport memory for linking its

cluster to other clusters. The other difference is that the activities of a network

controller acting as a link between nodes are different from the activities of a normal

node working as a transmitter or a receiver in the network. Hence, a network controller

required a separate program file and new commands were created for programming its

tasks.

Consequently, the model of a network controller module was very similar to that of the

node module with the provision of accessing several multiport memory modules

arranged as a memory affay. In addition, new commands were defined for its

programming. With the capabilities of C++, it was possible to derive the node and

network controller modules from the same class; however, for various reasons, a

separate module was defined for each one.

2.4 Logfrle

The log file was not really a module. It was an output file generated by the simulation

program and every activity in the network was recorded in it. As the simulation clock

advanced, the activity and status of all the nodes and network controllers were recorded
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in this file. These records were listed in chronological order and the status of the

network at any stage could be checked by reviewing the recorded events. The log file

was a valuable tool in debugging the simulation program, especially at the development

phase, and was used for checking the validity of the communication between the nodes.

In addition, conditions such as an insufficient number of buffers or an overloaded

network controller could be detected by examining the records of the file.

3 Simulation stages

The simulations were carried out in four stages starting from the simulation of

MultiCom to the simulation of the entire network of Figure 3.4. The stages were as

follows:

. Simulation of MultiCom

. Simulation of a large group with more nodes

. Simulation of a cluster with several groups interconnected by a network

controller

. Simulation of the entire network

Each stage will be discussed separately and the results will be presented in separate

sections.

3.L Simulation of MultiCom

Simulation of MultiCom \ryas a good starting point in developing the framework for the

simulation model. In this stage, the basic structure of the model was implemented

according to the characteristics of the nodes and the multiport memory of MultiCom.

The results were compared to the results of MultiCom, and the model was f,ne-tuned to

produce identical results. This was performed to ensure that the simulation results

would be more reliable in the expanded system.

The all-to-all test program used in MultiCom was used to test the model. As explained

earlier, each node sent a message of 1792 words to all other nodes through the shared
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memory and heavy traffic was generated. For testing buffer sizes bigger than the buffer

size of MultiCom, the message size was also increased to maintain the heavy traffic.

In verifying the simulation model, every attempt was made to ensure that the model

worked under the same conditions as in MultiCom. After checking the results obtained

from the model, the timing of commands in the configuration f,le was adjusted so that

the simulation results matched the results of MultiCom.

Both static and dynamic allocations \üere implemented on the simulation model. Each

case is discussed in a separate section.

3.1.1 Static allocation

The simulation model was tested under static allocation and the results are plotted in

Figure 6.1. The X-axis is almost logarithmic as, with few exceptions, for each entry the

buffer size and the memory size are double the previous entry. (In fact, the buffer size is

divided by two in decreasing X direction and rounded.) The shaded bars on the graph

are almost identical with the results obtained from MultiCom in Chapter 5. The striped

bars show that if the buffer size (hence the memory size) is increased, performance of

the system will approach the peak rate and the overhead will drop to 37o. As explained

earlier, the peak rate was calculated from the maximum rate that the nodes could write

to and read from the multiport memory without any overhead.

As stated in the previous chapter, a large shared memory was not required for this

communication scheme. Figure 6.1 confirms this statement. For the memory size of 4K

words and under heavy traffic, the performance is close to the peak rate with l57o

overhead. By increasing the shared memory size to 8K words, overhead drops to 87o.

Additional increase of memory to 16K and24K words drops the overheadto 4%o and

37o respectively and the performance rise is not significant. A further memory increase

has no effect and the overhead stays at a minimum value of 3%o.Itcan be concluded that

for the all-to-all test program, the system is able to operate with a shared memory as

small as 4 or 8K words and can achieve near peak performance with reasonable

overhead. Additional increase of memory will not boost the performance significantly.

As explained in the next section, this is even more obvious in dynamic allocation.
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3.1.2 Dynamic allocation

The simulation model of Multicom was tested with dynamic allocation. The results are

shown in Figure 6.2. Similar to the static allocation, the shaded bars match the results of

MultiCom. The striped bars were obtained by increasing the buffer size (hence the

memory size). Increasing the memory size up to a point increases the performance

slightly; however, for the memory sizes beyond I2K words, performance is f,xed at 50

MBytes/s. The reason is that the software lock and the associated allocation process

both have a serial nature. They impose extra overhead on the data transfer and limit the
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For the all-to-all test program, the results strongly confirm the low memory requirement

of the communication structure. The figure shows that by increasing the memory size

beyond 4K words, the gain in performance is very small. A memory size of 4K words is

adequate for MultiCom and the negligible boost in performance achieved by doubling

the memory size cannot be justified. The outcome is particularly significant because

dynamic allocation is the memory management better suited for large systems. This

point will be explained later in this chapter.

For a four-port system, the effect of memory size on both allocations can be better

explained on a graph using linear axes. Unlike Figure 6.1 or Figure 6.2, the X-axis

representing the memory size in Figure 6.3 is linear. Both static and dynamic

allocations perform more or less the same. The figure shows that performance will not

increase considerably if memory size is increased beyond 4 or 8K words. The saturation

level is 51.9 MBytes/s for static allocation and 50.0 MBytes/s fordynamic allocation.
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The simulation model of MultiCom developed in this stage was expanded to cover more

nodes as explained in the next section. As the model was verified by a physical system,

the results of simulation for larger systems would be more reliable.

3.2 Simulation of a larger group

The simulation model was expanded to cover alarger group with more nodes connected

directly to a multiport memory. A proper communication protocol as discussed in the

previous chapter was implemented in this model. In this stage of the simulation,

performance of the communication in a group was evaluated and the maximum number

of buffers required in dynamic allocation was explored. In addition, the eff,ciencies of

static and dynamic allocations in larger systems were compared.
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Figure 6.4 displays the communication rates for different node counts under both

allocations. With the fixed buffer size of 672 words in dynamic allocation, the size of

shared memory was increased to accommodate all the required buffers. The f,gure

shows that by increasing the number of nodes and ports, higher communication rates

can be obtained and the dependency is almost linear. As an example, for eight nodes,

the rate of 90.9 MBytes/s was achieved, which is double the rate for four nodes. The

size of 8-port memory was 8K words compared to the 4K words of 4-port memory.
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For dynamic allocation, a test program was used to explore the dependency of the

required number of buffers on the number of nodes. In this test, enough buffers were

available and the buffer size was fixed at 672 words. The number of allocations

performed on each buffer was recorded during the test run. The number of buffers used

in the communication was obtained from the recorded data. As shown in Figure 6.5, for

N nodes, the number of buffers actively used in the communication was approximately

1.6N. If more buffers were available, they would not be used [Asgari+ 99b].
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a maximum of 1.6N buffers is required for dynamic allocation. Hence, if static

allocation is used in a system with fixed memory size, increasing the number of nodes
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N2. On the other hand, under similar conditions for dynamic allocation, increasing the
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number of ports increases the communication rate, as the buffer size is only reduced by

1.6N. Figurc 6.6 compares the communication rates for static and dynamic allocations

for the fixed memory size of 4K words. The figure shows that performance of dynamic

allocation rises as the number of nodes increases. Since the memory size is fixed at 4K

words, the communication rate does not increase linearly as in Figure 6.4. On the other

hand, performance of static allocation flattens at around eight nodes, and even drops

slightly for 10 nodes, achieving only 67Vo of the performance of dynamic allocation.

The results obtained in this stage of simulation confirm two important features of the

communication structure:

1. Dynamic allocation performs better than static allocation.

2. The structure requires only a small amount of shared memory for

interprocessor communi cati on.

It is worth mentioning that unlike other shared memory systems, in this structure, the

shared memory is only used for message transfer, and a small memory size is adequate

for this purpose.
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Because of the better performance of dynamic allocation and its capability for

implementing multicasting/broadcasting, only this method was used throughout the rest

of the simulations.

3.3 Simulation of a cluster of groups

In this stage, the simulation model was further expanded to encompass a cluster of

groups. Several groups can be interconnected in a cluster using a network controller

(NC). As shown in Figure 3.3 on page 46, a network controller is connected to the

multiport memory of each group through an extra port and acts as an intermediate node

for inter-group communication. Before transmitting data, if a node discovers that the

receiver is in another group, it sends the message to the NC. The data received by the

NC can be transferred to an internal buffer, or it can be kept in the multiport memory.

When the end receiver is ready, the NC transfers the message to the appropriate

multiport memory, where the receiver can collect it.

The simulation model was based on a structure using eight groups, each comprising of

eight nodes. Each node was prograÍìmed to send a message of 1792 words to each of

the other seven nodes using dynamic allocation. The receiving nodes could be in the

same group or in other groups. The buffer size was 6'72 words and 14 buffers were

available in each 9-port memory module.

There are two types of communication in this model. One type is the direct

communication within a group, which is fast and takes very short time. The other type

is the inter-group communication that takes longer to finish because it must go through

the NC and requires two hops. As there is only one NC with limited communication

capacity, if too many inter-group messages are to be sent, the NC can be overloaded and

long delays will be expected. Several different simulations were performed to

determine the effects of sending messages within groups, and between groups of a

cluster.

Considering these points, the communication rate is no longer constant in this model.

The reason is that the nodes that communicate within a group finish early and become

idle, while some nodes are still communicating with the NC. In fact, there are two
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different communication rates in this case. The first one is the communication rate

between the nodes within a group, plus the rate between the NC and the end receivers.

The second one is merely the rate of communication between the NC and some nodes

as the end receivers. In order to measure these rates, the simulator was programmed to

compute the total data communicated in the entire system within fixed time intervals.

By dividing this result by the duration of the interval, the communication rate in the

interval was calculated. It is worth mentioning that only the data received by the end

receivers was included in the total communication measurements, and the intermediate

communications such as transferring data from a node to the NC were not taken into

account.

The interval size was set to 4000 simulation clocks, equivalent to 200 ¡rs. The

simulation model was programmed to generate an output file in which the time, the

cumulative communicated data, and the communication rate in each interval were

recorded. The data in this file can be plotted versus time to achieve the graphs of the

total communication and the communication rate. A closer look reveals that the

communication rate is in fact the slope of the total communication and each one can be

derived from the other one using integration or differentiation. However, as each graph

carries different visual information, both the total communication and the

communication rate are included in the figures.

3.3.1 Communication protocol in a cluster

The communication protocol needed some modifications to include the requirements of

a cluster. The protocol for the nodes required minor changes, but a new section was

added for the tasks of a network controller. The modified protocol for the nodes was

derived from the communication protocol for dynamic allocation as shown in

Figure 6.7. As a transmitter, the node checks the end receiver. If it is in the same group,

the node proceeds as before, otherwise, it sets the NC as the receiver of the message. A

new header, as explained in the next section, was used to identify the original sender

and the end receiver for the messages distributed by the NC. As a receiver, each node

checks the source of received interrupt and if it is from the NC, it refers to the header of

the message to identify the original sender. Only the outline of the protocol is shown in

this figure and the details are omitted.
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Figure 6.7 Communication protocol for a cluster

o) A tronsmitter node sends The messoge to the NC if the receiver is in

onother group. b) A receiver node finds the originol sender from the
heoder if lhe messoge hos been dislributed by the NC.

A simplified version of the tasks of a network controller is illustrated in Figure 6.8.

After receiving an interrupt, the NC determines the sender and refers to the appropriate

buffer in the shared memory of the sender. It creates a transmit buffer and transfers the

header information along with other useful data into the buffer. As a transmitter, if there

Identify the sender

Find the

original
from the
header

The Tx
is in the

group

Read allocated buffer
number from mailbox

Transfer data from
shared memory to

a local buffer

Release the buffer

Clear Rx busy flag
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\
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Figure 6.8 Communication protocol for the NC of a cluster

o) As o lronsmitler, lhe NC gets o buffer from the shored memory of the
end receiver ond tronsfers the messoge to it, b) As o receiver, lhe NC

creotes o buffer for lhe incoming messoge ond tronsfers the informotion lo
the buffer.

is an active transmit buffer, the NC checks the end receiver. If it is ready, the NC applies

to get the lock from the shared memory of the receiver. After obtaining the lock, the NC

allocates a buffer, transfers the header and the data to the allocated buffer, and sends an

interrupt to the receiver.
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3.3.2 Header of a packet

The ID of each node represents its group and node numbers. The header of a packet

contains the following information:

. sender's ID

. receiver's ID

. size of data in the packet

. a flag for the last packet of the message

If the message is long, it is sent in several packets. A flag indicates that the current

packet is the last packet of the message. Each receiver checks the header and generates

an effor message if it finds any error.

3.3.3 Results

The model of a cluster was tested under the conditions explained in the previous

sections. Figure 6.9 shows three different cases. In case (a), all the nodes were

communicating within their groups. In total, 1.61 MBytes was transmitted in around2.2

ms and the average communication rate was 0.73 GBytes/s. This rate is the slope of the

dashed line in the figure. Each 8-node group contributed 91 MBytes/s to this rate,

consistent with the results of Figure 6.4. The graph of the communication rate as the

slope of the total communication shows a rate of 0.78 GBytes/s. This rate is slightly

higher than the average communication rate, because it excludes the initial delay in the

start of the communication. In case (b), one of the receivers of only one node in each

group was in another group and the message was delivered by the NC. Case (c) was

similar to (b) with two receivers of a node located in other groups. In both cases, the

majority of the messages were transmitted within the groups with the rate of 0.71 and

0.76 GBytes/s respectively, slightly less than the rate in case (a). The inter-group

messages took longer to go through the NC for another hop. V/hen the communication

within the groups terminated, the communication rate dropped considerably indicating

that the remaining communication had to be handled by the NC. In case (c), it took

longer for the NC to distribute the inter-group messages because of its limited

communication bandwidth. For the transfer of larger inter-group messages in a cluster,
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the only available NC can be overloaded and longer delays will be expected, resulting

in performance loss.

It is worlh mentioning that the graphs show only the effective communication. This

denotes that only the messages delivered to the end receivers were considered and

intermediate messages received by the NC were excluded from the measurements. This

point can be observed from the initial rise of the communication rate graph. In case (c),

the initial rise is slightly flattened compared to case (a) because of sending some of the

messages to the NC.

The results show that the structure of a cluster could suffer from a communication

bottleneck if the NC is overloaded. This is caused by using only one NC that has a

limited transfer capacity. In order to investigate overloading of the NC further, two

other tests were conducted on the model. The results are plotted in Figure 6.10. In case

(a), four nodes in each group had a receiver in other groups. Under this condition, the

load of the NC was increased to Ill4th of the total messages. The graph of total

communication clearly displays two different slopes. One is 0.72 GBytes/s showing the

rate of delivery of messages by both the nodes and the NC. The other one is 11. 5

MBytes/s, which shows the rate of delivery by the NC only. This is consistent with the

communication bandwidth of the NC, which like the other nodes is 13.3 MBytes/s. The

test shows that the NC is working effectively, but the bandwidth it provides is not

enough for large inter-group transfers.

In case (b), the NC was further overloaded by doubling its load. Every node in each

group had a receiver in a different group. The NC was responsible for delivering one out

of seven messages of a node. The messages within the group were delivered at the rate

of 0.56 GBytes/s. The rate had dropped considerably compared to case (a) partly

because a portion of the available bandwidth of the nodes was used to transmit to the

NC and had not been included in the measurements. The other reason is the effect of an

overloaded NC and will be explained in the discussion section. It can be also observed

that the communication of nodes within the group has taken slightly longer than case

(a). This is also caused by an overloaded NC and will be explained later.
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o) Four nodes in eoch group hod o receiver in other groups. ln this

cose, I llAIh of the totol messoges were delivered by the NC.

b) Every node in eoch group hod o receiver in other groups. ln this

cose, I lTth of the messoges were delivered by the NC. The effect
of on overlooded NC con be observed os role drop, longer time

to deliver The messoges wiïhin groups, ond very long time to
deliver Ihe inter-group messoges.

The simulation results show that the structure is only suitable for a light inter-group

traff,c. Heavy traffic will overload the NC and pedormance will drop considerably. In

order to get an acceptable pedormance, the structure needs to be improved and the

bottleneck must be removed. An improved structure will be presented and evaluated in

the next chapter.
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3.4 Simulation model for the entire network

In the network structure of Figure 3.4 on page 48, the clusters were interconnected by

sharing a multiport memory among the network controllers. For this structure, each

node is defined by its cluster number, group number, and node number. A message can

be sent directly to a node within a group. If the receiver is not in the same group, the

message should be sent to the NC. The NC checks the cluster number of the receiver. If

it is in the same cluster, the NC sends the message to the appropriate group; otherwise,

it sends the message to the NC of the cluster where the end receiver is located.

In this structure, both inter-group and inter-cluster messages should be handled by the

network controllers. The simulation model of a cluster in the previous section indicated

that a network controller could be overloaded by large inter-group messages.

Interconnecting clusters using the same network controllers used for connecting the

groups increases the load of the network controllers, resulting in a poor performance for

the network. Although this stage of simulation was implemented and preliminary

results were presented in fAsgari+ 99b], it will not be discussed here until the structure

of a cluster as its sub-model is improved. The improved communication structure is

presented in the next chapter.

4 Discussion

The simulation model for MultiCom was a credible and simple start for a complex

model. The results of this model showed that increasing the memory size could increase

performance of the system. For very large memories, performance of static allocation

was slightly better than dynamic allocation because of the lower overhead. However,

the increase of memory size beyond 4 or 8K words was not advantageous in terms of

cost/performance.

The results of group communication and the effect of overloaded NC are discussed in

the following sections.
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4.L Group structure

The expansion of the model to cover alarger group showed that in the range of up to 10

nodes dictated by the limited number of ports on multiport memories, a system can

scale linearly under dynamic allocation; however, performance drops if static allocation

is used. Given that dynamic allocation is also capable of performing multicasting/

broadcasting, it was selected as the memory management for complex models. The

results also confirmed the small shared memory requirement of the structure and

showed that for an 8-node group, good performance was achievable even with a

memory size as small as 4K words.

The structure of a group can achieve higher performance compared to serial links used

in hypercubes. With similar assumptions and calculations as stated in Chapter 4, the all-

to-all communication for an 8-node system interconnected using a hypercube of order-

3, would require at least five time slots if no overhead is assumed. For this system, a

calculated aggregate communication rate of 20.4 MBytes/s (i.e. 56x1792x2 bytes in

5x1911.2 ¡rs) could be achieved. If the system were implemented using multiport

memories, the practical communication rate would be 91 MBytes/s, showing a

performance increase of 4.5 times. If a practic al rate rather than the calculated rate for

serial communication were considered, performance boost would be even higher.

The structure also shows a large reduction in the number of memory elements and a

significant increase in performance compared to a system using dual-port memories. If

the cluster of eight nodes were to be implemented with dual-port memories similar to

the system explained in [Campbell+ 96], it would require 20 modules of dual-port

memory, instead of one multiport memory. Even with this many DPMs, the

communication between some nodes would not be direct and would require the use of

at least one intermediate node [Asgari+ 01]. This would decrease the performance of

the DPM system considerably compared to a system communicating in one hop using

one multiport memory.
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4.2 Overloaded network controller

The simulation model of a cluster showed that the NC could be overloaded if the

number of inter-group messages was high. An overloaded NC will result in longer

delays in delivering the messages to the end receivers. In addition, it can reduce the

communication rate within the groups by using most of the resources in the system.

This effect can be observed in Figure 6.10-b. Compared to case (a), there were fewer

messages to be transferred within each group, but the group communication was

performed at a lower rate and was completed in a longer time. The lower rate was partly

because the nodes had to send some of the messages to the NC, which was not included

in the total communication until delivered to the end receivers. With fewer inter-group

messages, the group communication was expected to finish sooner, or at least at the

same time of case (a); however, it took longer. The cause for this delay was not very

clear until the log file was examined. The records of the log file revealed that most of

the nodes had allocated a buffer to send a packet of data to the NC, and had transferred

the data to the buffer, but the messages were not collected by the NC for some time. As

the NC could not handle all of the requests within a short time because of its limited

communication bandwidth, the allocated buffers were not released. Hence, there were

fewer buffers available for group messages and it took longer for them to be

transmitted.

In order to verify this point, another experiment with the same conditions but with more

buffers was tested. The results showed that the communication within groups was

completed within the time and almost at the same rate of case (a). This experiment

showed that an overloaded network could create a bottleneck in the communication by

delaying the delivery of the inter-group messages. It could also prolong other activities

in the network by not releasing some of the available buffers. An improved structure for

a cluster is required to overcome this bottleneck.

Moreover, inter-cluster messages in a network increase the load of NCs. The

performance of a network can be highly degraded because of overloaded NCs. A new

network structure based on the improved cluster structure will be introduced in the next

chapter.
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5 Conclusion

In this chapter, a simulation model was developed to evaluate the efficiency of the

proposed communication structure on larger systems. Initially, the model of MultiCom

was cteated and its functionality and timing were verified against the results from

MultiCom. The model conflrmed that the structure does not require a large shared

memory for its operation, because shared memory is only used for communication

purposes.

Expanding the model to higher numbers of nodes showed that the system could scale

linearly if dynamic allocation were used. On the other hand, static allocation was

suitable for small systems, but its performance dropped for expanded systems. The

main reason was that in static allocation the number of required buffers increased as N2,

whereas in dynamic allocation it increased as 1.6N. Considering the capability of

implementing multicasting/broadcasting, and in spite of its lock mechanism, dynamic

allocation proved to be a better solution for the memory management of larger systems.

A system of eight nodes connected in a group can perform at least 4.5 times better than

a hypothetical system interconnected in an 8-cube structure by serial links running at

comparable speed. A wider datapath could improve the communication bandwidth

considerably. In addition, increasing the speed of the nodes and the multiport memories

would also increase the performance.

Compared to a system using dual-port memories, the 8-node system requires only one

multiport memory instead of 20 blocks of dual-port memories. This is a significant

reduction in the cost and complexity of the system, and a considerable increase in

performance because of direct communication.

A cluster is a group of nodes interconnected using a network controller. The inter-group

messages should be transmitted in two hops through the NC. The results obtained from

the simulator showed that the current cluster structure was only useful if the number of

inter-group communications was low. Because of its limited communication bandwidth,

a network controller could be overloaded as the number of inter-group messages was

increased. An overloaded NC would create a communication bottleneck that could
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reduce the performance significantly. The cluster structure will be modified in the next

chapter and similar improvement will be applied to the network structure.

Overall, communication using multiport memory is very efficient for small systems.

The structure is simple to implement and requires a very small shared memory. It scales

linearly achieving a substantial increase in performance. It also enjoys a big reduction

in the system cost by minimizing the number of required components. The efficiency of

medium and large systems will be discussed after evaluating the improved structure in

the next chapter.
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valuation of the simulation model in the previous chapter

showed that if the number of messages transferred

between groups was high, the NC of a cluster could be

overloaded. ln this chapter, first an improved structure for

a cluster is presented which can reduce the overloading

considerably. Then, a modified network structure for using

the improved clusters is presented. Evaluation of the

modifi.ed network shows that the configuration is not

suitable yet, as inter-cluster messages can still overload

the NCs. Hence, an improved network structure is
proposed that can handle the inter-cluster messages \Mith

sirnilar effi.ciency of the corrununication within elusters.

Finally, the effect of an extra hop required for some inter-

cluster messages is explored and scaling of the system is

discussed
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1 Improved cluster structure

In the cluster model used in the previous chapter, all of the inter-group messages in a

cluster were handled by a single NC. As the NC had limited communication capacity, it

could be easily overloaded. One solution to reduce overloading would be to distribute

the load among several NCs rather than exhausting a single NC under heavy traffic.

Based on this idea, an improved structure for a cluster is presented in Figure 7.1. In this

structure, each group is connected to a group-NC and several groups are interconnected

using a cluster-MPM. If the receiver is in a different group, the message is sent to the

group-NC. Then, it is transferred to the NC of the receiver group through the cluster-

MPM, and finally it is delivered to the end receiver.

In this structure, an inter-group message requires three hops. This may increase the

latency of an individual message; however, the transmission of several inter-group

messages would be much faster. In order to reduce latency and to increase the cluster

T MPM

CNC
O Node

cluster-MPM

16 or 32-bit link

group-NC

group-MPM

Figure 7.1 Improved cluster structure

The communicoTion lood of o cluster is dislribuled over severol NCs, ln this

structure, on inter-group messoge is senT to the group-NC by the tronsmitter

node. Then, iT is tronsfened to the NC of fhe receiver group through the
cluster-MPM for delivery to the end receiver,

Multiport Memory os o Medium for lnterprocessor Communicotion in Multiprocessors 143



CHAPTER 7 Improaed Communicatíon Structure

performance, the NCs were upgraded to operate at twice the speed of node processors.

As a network controller mainly handles memory transfers, a cut-down processor

specifically designed for network requirements could be used for this purpose. The

memories connected to NCs should be capable of working at the increased speed.

The structure was implemented in the simulator and was tested under different loading

conditions. Figure 7.2 tllustrates the performance of the system under the same

conditions of Figure 6.10. In case (a), four nodes in each group had a receiver in another
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Figure 7.2 Communication of groups in improved cluster

o) Four nodes in eoch group hod o receiver in onother group. ln this cose, I /l4th
of the totol messoges were delivered by the NCs.

b) Every node in eoch group hod o receiver in onother group. ln Ihis cose, I /7th

of the messoges were inler-group type.

ln controst to Figureó.1O on poge 13ó, the NCs were not overlooded in the
modified cluster ond The messoges were delivered much foster,
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group, requiring llI4th of the total messages to be delivered by NCs. As shown in the

figure, the communication was performed in almost the same time of the

communication within groups only (refer to Figure 6.9-a on page 134). In addition,

unlike Figure 6.10-a on page 136, the inter-group communication did not increase the

overall communication time. In case (b), each node in every group had a receiver in

another group, requiring LlTrh of the messages to be delivered by the NCs. The

communication was performed six to seven times faster than Figure 6.10-b, and no

overloading effect was observed.

These results show that the improved cluster structure can considerably reduce

overloading of NCs. For further evaluation of this structure, the model was tested with

more inter-group transfers and Figure 7.3 presents the results. In case (a), the number of

inter-group messages was doubled and 2l'7th of the total messages were handled by the

NCs. In case (b) and (c) the load of the NCs was increased to 3/7th and 4l7rh of the total

messages respectively. The results show that in all cases, the transfers were performed

in a reasonable amount of time, without excessive overloading.

As previously explained in Chapter 6, the graph of the total communication shows two

different slopes. One is around 650 to 720 MBytes/s, which is mostly the message

delivery rate by nodes. The other one is 75 MBytes/s, which is the rate of message

delivery by NCs only. The NC delivery rate shows an improvement of six to seven times

compared to a structure using a single NC.

These results show a simple but effective way for estimating the time required for the

transfer of total messages. In a similar communication pattern, the messages can be

divided into two categories: within groups and inter-groups. For each category, the

transfer time can be calculated using the appropriate rate for the category. The time

required for the total communication is approximately equal to the longer calculated

time. The validity of this method was verified by all the cases shown in Frgure 7 .2,

Figure J.3, and some other cases not shown.

It can be concluded that the performance of a cluster depends on two types of transfers.

If most of the messages are transferred within groups, the system will show high
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Figure 7.3 More inter-group communications in improved cluster

o) Every node in eoch group hod two receivers in olher groups. lnter-group

messoges were 2l7Ih of the totol messoges,

ln b) ond c) 3/7Th qnd 4l7Ih of the totol messoges were hondled by NCs,

respectively,
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throughput because of the direct communication between nodes. On the other hand, if

most of the communication is of inter-group type, the communication will have lower

throughput, as these messages will be handled by the NCs and will require three hops.

2 Modified network structure

For interconnection of clusters in a network, each cluster requires at least one extra link.

In the structure of the improved cluster, no extension link is available for further

MPM

NC

Node

link to network-MPM

cluster-NC

16 or 32-bit link

group-MPM

Figure 7.4 Modified cluster for a network

Adding on exlro NC fo the clusler structure con provide Ihe required link for the
inlerconnection of Ihe clusters in o nelwork, To ochieve the modified network,

this strucTure should reploce the cluster strucTure in Figure 3.4 on poge 48.

group-NC
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expansion. One possible method for creating such a link is to add an extra NC to the

cluster structure. As shown in Figure 7.4, a cluster-NC is connected directly to the

MPM of each group. It uses an extra link for connection to other clusters. In a network

structure as shown in Figure 3.4 on page48, the clusters are interconnected through a

network-MPM that is shared among different cluster-NCs. The modified network

structure can be obtained by substituting the old clusters with the modified ones.

In the modified network structure, the inter-group messages are handled by the group-

NCs. Similarly, inter-cluster messages are handled by the cluster-NCs, as explained in

Chapter 3. The advantage of this structure over the previous structure of Figure 3.4 is

that in the new structure the cluster-NCs only handle the communication between the

clusters and they are not overloaded by the inter-group communication. Although the

performance of the new structure will improve very much, the limited bandwidth of the

cluster-NCs can be still a problem and overloading of NCs may be observed if the

number of inter-cluster messages is high, The drawback of the structure is the need for

an extra port on the memory, which adds up to 10 ports in total.

The simulation model was upgraded to simulate the modified network with the new

cluster structure. Figure 7.5 illustrates the system performance under inter-cluster

communication. In case (a), two nodes in each group had a receiver in another cluster.

The aggregate communication rate within the groups was 6 GBytes/s, which was 0.7

GBytes/s for each of the eight available clusters. However, the transfer of inter-cluster

messages took longer to go through the cluster-NCs. In case (b), the load of cluster-NCs

was doubled to handle tlI4rh of the messages. Consequently, the time spent on

communication was doubled. In both cases, the communication rate for inter-cluster

messages was around 70 MBytes/s, which was very low for a network of this size. The

overloading of the very few available cluster-NCs was the main cause of performance

loss. These results show that the model still requires more modifications.

The model was also tested in presence of a large number of inter-group messages. In

addition to the same conditions of Figure 7 .5, three out of seven messages in each group

were directed to other groups within the same cluster. As there was very little

interaction between the inter-cluster and inter-group messages, the results of Figure 7.6
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Figure 7.5 Inter-cluster cornmunications in modified network

o) Two of the nodes in eoch group hod o receiver in other clusters,

b) The lood in o) wos doubled ond I ll|In of the iotol messoges were

tronsferred between the clusters using the cluster-NCs.

were in fact the combination of the results of Figure 1.5 and Figure 7.3-b. The

communication rate had three components in this Figure. The highest one was mainly

the rate of message transfer within groups observed at the beginning of the

communication combined with the inter-group and inter-cluster rates. After this initial

high rate, the combination of inter-group and inter-cluster rates added up to around 610

MBytes/s. Although not very clear in the graph of case (a), inter-cluster communication

finished within 6.8 ms and the rate dropped to 600 MBytes/s. After this point, which is

shown on the graph with a circle, the rate was merely the inter-group conìmunication

rate achieved by scaling the network to eight clusters of 75 MBytes/s. In case (b), inter-

640 14
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Figure 7.6 Inter-cluster and inter-group communications in modified network

o\ 3/7t of the messoges were inter-group ond I/28th were inTer-cluster types. Bolh cluster-

NCs ond group-NCs were used for messoge delivery.

b) Some os o) with inler-cluster messoges doubled.

group transfer was the same, but inter-cluster transfer was doubled. In this case, inter-

group transfers finished within 9.4 ms (the same time it took for inter-group transfer in

case-a) and the remaining communication was between clusters with a rate of 70

MBytes/s. An initial rate of 6 GBytes/s was expected for both (a) and (b); however, only

5.2 and 4.3 GBytes/s were achieved respectively. Similar to the case explained in

section 4.2 in Chapter 6, this was the result of overloaded cluster-NCs and was detected

by reviewing the records of the simulation log file. Inter-cluster messages that were sent

to cluster-NCs were not picked up from the shared memory at a rate comparable to the

lDter-cluster +
b)

inter-groug and

lnter-cluster
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transmit rate because of the limited communication bandwidth of the cluster-NCs.

Hence, communication within groups was conducted with fewer available buffers and

the rate was reduced. Increasing the number of buffers fixed this problem and the

expected rate was achieved.

These results confirm that in the modified network, inter-group communication is

performed with acceptable speed, while a large number of inter-cluster messages can

create a bottleneck. This demands more improvements to the model. In the next section,

the network structure will be further improved to achieve the desired performance.

3 Improved network structure

The performance of the modified network was not satisfactory as large inter-cluster

communication could degrade it significantly. An improved structure with more links

for interconnecting the clusters is presented in Figure 1.7.In this structure, the cluster-

NCs are removed and group-NCs in different clusters (simply called NCs) are

interconnected using several MPMs.

As shown in the Figure, each NC is connected to a group-MPM, a cluster-MPM and a

network-MPM. Each network-MPM interconnects the NCs connected to similar groups

in different clusters. If the receiver is in another cluster, the node sends the message to

the NC of the group. The NC passes it to the linked NC in the destination cluster. If the

receiver node has the same group number as the sender, the NC delivers the message

directly, otherwise, it sends the message to the NC of the destination group for delivery

to the end receiver. Hence, an inter-cluster message may be transferred with three or

four hops depending on the group number of the sender and the receiver nodes.

The improved network structure can be viewed as the expanded version of the original

structure in Figure 3.4 on page 48. The cluster-MPM has been duplicated several times;

the clusters have been substituted by improved clusters, and they have been linked by

cluster-MPMs. In fact, by considering only one of the cluster-MPMs and ignoring the

others, the structure of Figure 3.4 can be obtained. In the resultant network, the clusters
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group-MPM network-MPM

Figure 7.7 Improved network structure

The NCs in different groups ore inTerconnecTed with severol

network-MPMs. lnter-cluster messoges con be delivered in three or

four hops. The highlighted poths show two different types of inter-

clusler communicotion.

Node
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q) l/l4lh of lotol messoges were lronsferred between clusters ond 3/4 of

them required four hops.

b) l/7th of the totol messoges were inter-cluster type.

are interconnected with more links and the communication load is distributed among

several NCs.

The simulation model was modified to accommodate the required changes in the

structure. At first, besides communication within groups, only inter-cluster

communication was tested on the model and the results are displayed in Figure 7.8. In

case (a), lll4th of total messages were inter-cluster type with 757o requäng four hops.

The condition was similar to the case in Figure 7.5-b, but it finished much faster and

required almost the same time of communication within groups only. In case (b), the
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improved network

ln bolh coses, 2l7t^ of the messoges were ìnter-cluster Type. They required

o) three hops b) four hops.

load was doubled to ll7th of the total messages and all were delivered in a short time.

These results show that overloading of NCs has been reduced significantly.

In another test, the effect of the extra hop on the performance was investigated.

Figure 7.9 illustrates the performance of the system with 2llth of the total messages as

inter-cluster type. In case (a), all of these messages required three hops. The rate for

inter-cluster communication was around 0.6 GBytes/s. In case (b), all of the messages

required four hops and the rate dropped to 0.45 GBytes/s as the consequence of using

0
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an extra hop. These results show that the improved network can handle inter-cluster

communication much better than the modified network.

Figure 7.10 illustrates the results of a test in which besides communication within

groups, a mixture of inter-group and inter-cluster messages, each consisting of 1/7th of

the total messages were used. In case (a), three hops were required for inter-cluster

messages. Both inter-group and inter-cluster messages were delivered at the rate of

0.6 GBytes/s, which can be seen after the initial high rate for the communication within

groups. In this case, the system performance was similar to the case in Figure J.9-a, and
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it shows that inter-group and 3-hop inter-cluster messages had been treated almost

equally, because the same NCs handle both types. In case (b), inter-cluster messages

required four hops and the communication rate dropped to 0.45 GBytes/s for the

duration of this type of communication. The rate was increased to 0.6 GBytes/s after the

inter-cluster communic ation terminated.

As can be seen from this test, communication of messages using NCs is controlled by

two rates. Inter-group communication can be performed in three hops with a rate of 0.6

GBytes/s. This rate is achieved by scaling the structure to eight clusters, each having a

rate of 75 MBytes/s. Likewise, 3-hop inter-cluster communication can be performed at

the same rate of inter-group communication because the mechanism for both types is

very similar. On the other hand, 4-hop inter-cluster communication is performed with

the reduced rate of 0.45 GBytes/s because of the extra hop. As both inter-group and

inter-cluster messages are handled by the same NCs, in the worst case, a mixture of

both type of messages will require the sum of the time spent on each communication

individually.

For further evaluation of the system performance with mixed types of communication,

more tests were conducted andFigure7.11 shows the results. In case (a),3l7rh of the

total messages were inter-cluster type, all requiring three hops. As expected, the

communication rate was around 0.6 GBytes/s. In case (b), the configuration was

changed to Il7th inter-cluster and 2l7th inter-group messages. A similar performance

was achieved and the communication rate and time were almost identical. Case (c) was

similar to case (b) with the number of hops of inter-cluster messages increased to four.

The extra hop dropped the communication rate to 0.45 GBytes/s. When inter-cluster

communication was terminated, the rate of 0.6 GBytes/s could be achieved for inter-

group communication.
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4 Discussion

4.1 Scaling of the structure

Communication within groups has the highest performance in this structure as the

nodes can directly communicate in one hop. For a limited number of nodes, the group

communication is scalable. The limiting factor is the number of available ports on

multiport memories. For a group of eight nodes running at20}l{I{z, the communication

rate is about 90 MBytes/s.

For more nodes, a cluster in which groups of nodes are interconnected 'with NCs can be

used. An inter-group message is handled by two NCs and it is transferred in three hops.

Hence, it cannot be transmitted as fast as the communication within groups. The

communication rate for a cluster of eight groups (64 nodes) is 75 MBytes/s. However,

the communication rate within groups can rise up to 700 MBytes/s.

A network of 5I2 nodes can be organized as the structure of Figure J .J , in which eight

clusters are interconnected using eight multiport memories. The communication within

groups has the highest throughput and can rise up to 6 GBytes/s. The inter-group

communication has the second highest rate and can rise up to 600 MBytes/s. Inter-

cluster communication has the lowest performance. Depending on the location of

sender and receiver in the structure, it can be performed with the same rate of inter-

group communication (600 MBytes/s) in three hops, or with the reduced rate of 450

MBytes/s in four hops. Scaling of the structure beyond 512 nodes requires more

changes and is not beneficial because of the increasing number of hops.

4.2 lJse of 8-port memories

The structure of an 8-node group discussed so far is based on 9-port memories, which

includes an additional port for a network controller. The idea of using eight nodes in a

group originated from the structure of a hypercube of order-3 for interconnecting eight

nodes. Another reason for choosing 8-node groups was the ease of using a 3-bit binary

code to address each node. This reasoning also applies for eight groups in a cluster and

eight clusters in a network. In the growth of multiport memories, a more realistic
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expectation is to look for 8-port memories rather than 9-port. Hence, in communication

structure using multiport memories, it is more sensible to use 8-port memories rather

than 9 or 10 ports.

One of the advantages of the improved network structure is that for a network with eight

clusters, each including eight groups, the network MPMs and cluster MPMs require

only eight ports. This means that if only the number of nodes in each group is reduced

to seven, all the multiporl memories in use will be 8-ported. With this modif,cation, the

number of total nodes in the network is reduced from 512 to 448, but a more realistic

network is proposed. Of course, a smaller number of ports can still be used; however,

reducing the number of ports reduces the parallelism in the structure, which is the main

contributor to performance rise.

The network structure based on 7-node groups has not been evaluated by the simulator.

However, it is expected that the higher communication rate related to the

communication within groups will be reduced by a factor of 1/8 or 12.57o. The rate of

communication for inter-group and inter-cluster messages should not be affected.

4.3 Practical issues

The improved network structure presented in Figure 7.7 was evaluated by simulation

and practical issues were not addressed. The results illustrate the system performance

under perfect conditions. Obviously, implementing this structure in practice will face

several practical issues. One of the problems is the physical location of the nodes,

network controllers, and multiport memories. Physical location of these components

affects the length of the links that connect them. As data is transmitted in parallel bits

with speeds comparable to processor clock, the length of the links need to be kept to a

minimum. This in turn puts a constraint on the physical size of a large system that may

not be easily achievable and will require a meticulous design.

The critical component in the network structure is the network controller. Each network

controller is connect to three MPMs, one of which, the network-MPM may not be in the

close vicinity. Proper buffering of the network controllers buses, especially the one

connected to network-MPM can alleviate the lengthy bus-issue discussed earlier.
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Wider data paths combined with higher port counts will increase the routing complexity

of the PCB design. However, with current multi-layer PCB design technology, a careful

design can overcome the routing problems. The designer should also keep the PCB

trace lengths balanced to avoid signal skews.

The network structure encompasses many cluster structures that are interconnected by

several network-MPMs. A cluster structure also contains several group structures. It

would be very beneficial to highly optimize the physical structure of a group and use it

to generate an optimum cluster structure. lvith this approach, the remaining problem

would be the interconnection of several clusters through network-MPMs. Using

appropriate buffering on the network controller as discussed before will considerably

reduce the complexity of the connections.

In implementing any type of structure, several small or large practical issues need to be

considered and resolved. The experience of the technical team plays an important role

in this process. The structure proposed in this study was not intended to address all the

practical issues related to a complex structure such as the one presented in Figure 7.7.

Careful consideration of the practical issues need to be performed at the time of

implementing the system and proper solutions need to be applied.

5 Conclusion

The limited bandwidth of the single NC in a cluster could qeate a communication

bottleneck as discussed in the previous chapter. In the improved cluster, the bottleneck

was removed by distributing the load among several fast NCs. In the new structure, an

inter-group message requires three hops, as an extra hop is used to transfer the message

between NCs. Even with this extra hop, throughput was greatly enhanced and

overloading of NCs was reduced considerably.

The network structure was modified to utilize the improved cluster structure. In each

cluster, an extra NC was used to handle inter-cluster communication. Inter-cluster NCs

were interconnected by a cluster-MPM. The communication within groups and inter-

group communication scaled very well; however, cluster-NCs could be overloaded if
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the number of inter-cluster conìmunications was increased. This demanded extra

improvements to the model.

The network structure was further improved by removing the cluster-NCs and

interconnecting the group-NCs through different paths generated by several MPMs. In

this structure, overloading of cluster-NCs is reduced and inter-cluster communication

takes three or four hops depending on the location of the sender and receiver. A 3-hop

message can be transferred at the same rate of an inter-group message, as they both use

a similar mechanism for transmission. On the other hand, the communication rate for 4-

hop messages is reduced by 257o as the result of the extra hop. In the worst case

communication when all NCs are engaged in message handling, the communication

time would be equal to the sum of the time spent on inter-cluster and inter-group

communications.

Multiport Memory os q Medium for lnterprocessor Communicotion in Multiprocessors t6t



CHAPTER 8 Conclusion and
F\ffiher Directions

his study has explored the possibility of a new scheme for

interprocessor communication using multiport memories.

A novel structure for this type of communication was

proposed and evaluated by a hardware protot¡re and a

simulation model. In this concluding chapter, the' steps

involved in designing, evaluating, and improving the

structure are presented briefly and the achievements are

discussed. Finally, several possibilities for improvin$ the

system and further directions in pursuing tJ:is study are

presented.

'is;t
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1 Conclusions

The intended focus of this study was to improve the performance of interprocessor

communication in multiprocessors. A novel communication scheme based on passing

information through multiport memories was proposed and the structure was evaluated

by a hardware prototype and simulation modelling.

In shared memory systems, several processors are connected to a common memory and

communication is performed by using memory load and store instructions. In message

passing systems, several nodes are connected by an interconnection network and

communicate by sending and receiving messages. In the proposed structure, several

nodes share a local shared memory in a group and communicate through independent

ports of shared memory without the overhead and delay of bus or interconnection

network. A cluster of groups can be created in which differnt groups are interconnected

by network controllers and other multiport memories. Nodes can communicate by

sending and receiving messages through multiport memories. In fact, multiport memory

is used as a link for message passing. Unlike message passing systems in which

communication is normally performed serially, in this structure a message is passed

through wider data path of the shared memory. In contrast to other shared memory

systems, the common memory in this structure is only used for message passing and

small capacity is adequate for this purpose.

In order to evaluate the structure, a small system called MultiCom was built as a

prototype, which had four nodes and a four-port memory. The memory management of

the system had to be designed in a way that it could prevent the nodes from interfering

with each other. By using static allocation, the memory was divided into several buffers

and each buffer was allocated to the communication of two specific nodes. No

interference was expected in this method as a separate buffer was assigned for the

activities of each node. However, the idle buffers that were not used in a communication

at a time could waste the memory and reduce the efficiency of the communication

scheme. On the other hand, dynamic allocation could use fewer but larger buffers that

could be assigned to any communication on demand, and full memory utilization was
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thus possible. This approach required a lock mechanism for allocating the buffers and

higher overheads were involved.

As no hardware lock was available on the multiport memories, the lock had to be

implemented entirely in software. New algorithms for the lock mechanism were

devised and were successfully tested on MultiCom. A primary communication protocol

for both allocations was established and it was improved gradually to accommodate the

required modifications deemed necessary in the process of scaling the structure.

The performances of static and dynamic allocations were almost the same on

MultiCom. For 20-MHz node processors, the system could achieve an aggregate

communication rate of 45.5 MBytes/s. This is at least more than 4.2 times faster than a

hypothetical system using serial communication running at comparable speed, 11 times

faster than a system communicating through dual-port memories, and 14 times better

than a bus-based system. In addition, the cost of the system was reduced considerably

compared to a system using dual-port memories as a result of reducing the number of

required chips.

The main advantage of dynamic allocation over static allocation in MultiCom was that

multicasting/broadcasting could be performed with dynamic allocation with higher

efficiency. This increased the communication rate to 64.8 MBytes/s.

In order to evaluate larger systems, a simulation model was created. To make the model

more accurate and reliable, at the first stage, a model of MultiCom was created and

tested successfully. Evaluation of the model revealed that increasing the memory size of

MultiCom beyond the memory size of 4 or 8K words did not improve the performance

very much. If fact, doubling the existing memory size increased the communication rate

by 77o, and further doubling increased the rate by only 2.57o. Doubling the memory size

increases the cost considerably and the gain in performance is very little to justify the

additional expense.

This stage of simulation confirmed an important feature of the proposed

communication scheme: For the all-to-all test program, the structure only requires very

small shared memory for communication. This is a very important outcome, especially

Multlport Memory qs o Medium for lnterprocessor Communicoiion In Multiprocessors 164



CHAPTER 8 Conclusion o:nd Fwrther Directíotts

considering the fact that the capacity of the future multiport memories with large

number of ports would be very small. Even with a small memory size, it would be still

possible to achieve a high performance using this structure. Unlike other shared

memory systems, the small shared memory in this structure is exclusively used for

communication purpose. In fact, shared memory is used as a link for message passing.

The model of MultiCom was expanded to cover more nodes. This stage of simulation

revealed that dynamic allocation could scale linearly, but static allocation could not.

The reason was that for a fixed memory capacity, the buffer size in static allocation was

reduced by N2, but in dynamic allocation, it was reduced by 1.6N. Considering the

advantage of using multicaslbroadcast, dynamic allocation was used as the memory

management of the larger systems in the simulation model.

The simulation model was expanded to cover several groups in a cluster, which were

interconnected by a network controller. The results of this step showed that using only

one NC for a cluster could easily overload the NC because of its limited communication

capacity. To achieve a higher performance, an improvement in the structure was

necessafy.

The cluster structure was modified by introducing a separate NC for each group in the

cluster. In addition, the NCs were also interconnected using an extra multiport memory.

Although this modification increased the number of hops for inter-group

communication from two to three, the performance of the system was significantly

improved and overloading of the NCs was reduced considerably.

The simulation model was expanded again to cover several clusters in a network.

Because of the modified cluster structure, the original proposal also had to be modified

to accommodate the new cluster structure. For this purpose, a cluster-NC was added to

the cluster structure for handling coÍìmunication between clusters. The cluster-NCs

from different clusters were interconnected by a network multiport memory. Evaluation

of this structure revealed that it was not eff,cient and the cluster-NCs could be

overloaded in moderate or large inter-cluster communications.
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To overcome the shortcoming of this structure, a major change in the proposed structure

was necessary and several parallel paths were required to distribute the communication

load among the NCs. In order to achieve the improved network structure, the cluster-

NCs were removed and the group-NCs with identical group numbers in different

clusters were interconnected using a multiport memory (refer to Figure 7.7 on

page 152). This structure created several data paths for communication between

clusters, and depending on the position of the transmitting and receiving nodes in the

network, a message could be delivered in three or four hops.

The simulation model showed that the new improvements reduced the load of NCs

considerably. Three communication rates were measured in the improved network. A

rate of 6 GBytes/s could be achieved for communication within groups. A rate of 600

MBytes/s was also achievable for inter-group communication. The inter-cluster

messages were transferred at arate of 450 or 600 MBytes/s, depending on whether four

or three hops were needed.

The overall conclusion is that the structure is very efficient for small-scale networks, it

is good for medium to large-scale structures up to 512 nodes, but it is not recommended

for very large networks, because of increased number of hops.

2 Further research

There are several possibilities to improve and extend the results of this study. They

range from the use of hardware supports for multiport memories to the use of other

structures for connecting the nodes and multiport memories. Some of these possibilities

are discussed here as the recommendation for further research.

2.L Hardware support for multiport memory

Dynamic allocation proved to be a better memory management strategy for the

proposed communication scheme. The major disadvantage of this method is the

overhead of the lock mechanism and the allocation process, as both have a serial nature.
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The use of hardware support can reduce the overhead considerably. A few options are

discussed in the following sections.

2.I.1 Multiport semaphore logic

As discussed in Chapter 5, semaphore logic can simplify the required lock mechanism

for the multiport memory. Unfortunately, at the time of this study, semaphore logic was

only available on dual-port memories. Hence, in the design of MultiCom and the

simulation model, a purely software-based lock was used. Some of the problems in

designing the semaphore logic for multiport memories are discussed in the Appendix

and a new semaphore logic based on fixed priority is proposed and tested by the

hardware design tools for satisfactory operation. The use of this logic or similar ones in

multiport memory will lead to a much faster lock mechanism. This can reduce the

overhead and increase the perforrnance.

2.1.2 Centralized control

Using hardware support for the tasks that are time consuming in the software can also

reduce the overhead of the lock mechanism. For example, buffer allocation can be also

performed with a controller rather than by each node processor. In addition, other

control circuitry such as semaphore logic and interrupt logic (as proposed in the

Appendix) can be integrated into the controller chip to achieve a centralized control.

This chip can greatly simplify the management of the multiport memory. A simple

approach for designing this chip can be as follows:

1. A very small size multiport memory with the same number of external ports as

the main multiport memory plus an extra port for the access of the controller

is required. In general, the word size of this control memory can be smaller

than the main multiport memory.

2. A fast but simple custom-designed controller should be connected to the

control memory through the extra port. It should be capable of reading and

writing the control memory and performing simple calculations and tests. As

there is no interaction between the controller and the main multiport memory,

no extra poÍ for the main memory is required.

Multiport Memory os o Medium for lnlerprocessor Communicotion in Multiprocessors 167



CHAPTER 8 Conclusion and, Fwrther Dírections

3. Each node can request a service from the controller by writing a cofiìmand to

a specific location assigned exclusively to that node. For example, a node can

request a buffer, and the controller can return the allocated buffer number to

the requesting node. Note that no lock mechanism is required in this structure,

as only the controller performs the sensitive tasks. In addition, the nodes do

not interfere with each other in any way.

4. The interrupt generation logic as proposed in the Appendix can be also

integrated into this chip as an independent logic. Although the controller

mentioned above is also capable of controlling the interrupt logic, using an

independent circuit for the interrupt logic within the same chip is benef,cial,

because the response time for buffer allocation will not be affected.

5. Any other required logic can be integrated into this chip as an independent

logic, or as an additional task for the controller.

The use of this kind of controller external to the main multiport memory has the

advantage that the memory chips can be designed to be simpler and bigger, because no

extra logic is added to the chip. Furthermore, in horizontal or vertical expansion of the

memory, which is performed by connecting several chips in series or in parallel, there

will be no duplicate control circuitry which would normally be left idle. In addition, the

control chip can be used with any kind of multiport memory, as there is no interaction

between the main memory and the controller. The only requirement is the compatibility

of the port counts.

2.2 Use of DMA for data transfer

In this communication structure, a shared memory created by multiport memories is

only used as a conìmunication medium for message transfer. Unlike other shared

memory systems, the memory is not used as a shared areain general. As shown earlier,

the structure requires only a small shared memory for message transfer. Otherwise, as it

is not practical to create very large memory size using multiport memories, the structure

would not be feasible.

In this approach, each node assembles a message in its local memory and sends it to

another node in several packets through the shared memory. Hence, data transfer
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between local and shared memory or vice versa is a common task for a node and

improving it will improve the communication rate.

In both the hardware prototype and the simulation model, all data transfers were

performed by the node processors. It is possible to increase the speed of data transfer by

using Direct Memory Access (DMA) controllers. In this approach, a node should apply

for the lock and allocate a buffer in the shared memory. It should also initialise a DMA

channel for the appropriate transfer. At this stage, the DMA controller can take over and

perform the required data transfer. This approach will have the following benefits:

1. In general, the overall data transfer rate is higher with DMA, because

everything is controlled by hardware and no software loop is required.

z. If the DMA transfer is transparent to the processor, it is possible for the

processor to perform other tasks like applying for another lock,

acknowledging an intemrpt, or programming another DMA channel. The

higher transfer rate and the freedom of the processor to perform other tasks

can boost the performance. If the DMA transfer is not transparent, the node

can be forced into an inactive state while DMA is efficiently performing the

data transfer.

3. If the memory of the processor including the shared memory is partitioned

and located in different memory banks, more than one DMA transfer can be

active at a time, provided that adequate hardware support for accessing

simultaneous banks is incorporated in the system design. The performance

boost in this approach can be very high.

2.3 Using different communication structure

Other structures for interconnecting nodes using multiport memory can provide

different performance. A mesh structure as discussed in the following subsection can be

used for medium-scale systems. In addition, a method that virtually increases the

number of ports of a multiport memory is also presented.

2.3.L Mesh structure

Other structures can be also used for connecting nodes through multiport memory.

Figure 8.1 shows a new structure using a two-dimensional mesh. Each node is
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connected to two 8-port memories (excluding boundary nodes). The nodes sharing the

same multiport memory can communicate directly, but other nodes should use

intermediate nodes for their communication. The structure can be expanded in both X

and Y directions and is useful for low to medium size networks. This mesh structure is

the extension of the structure presented in [Varshneya+ 94] for 6-port memories. Based

on the future availability and organization of new multiport memory chips, it is feasible

to develop a variety of such meshes.

8-port
memory

o Node

Figure 8.1 Mesh structure

Eoch node con occess lwo 8-port memory modules. Some

nodes con communicote direclly. Others should use

intermediole nodes for dofo possing.

The effectiveness of this structure needs further investigation; however, it is anticipated

that it would only be useful for medium-scale systems, because of the increasing

number of intermediate nodes involved in the communication of non-neighbouring

nodes as the system expands.

2.3.2 Increasing the port count of multiport memory

The simulation model showed that increasing the number of ports of a multiport

memory could increase the performance; however, the availability of multiport

memories with higher port counts still remains a question. With some perfofinance

degradation, the bus system can be combined with multiport memory to increase the
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number of port counts. Several nodes can be connected to each memory port using a bus

to have a shared access to the memory. Although in principle, more than two nodes can

be connected to each bus, no more than two nodes is recommended for this application.

Figure 8.2 shows an example in which eight nodes are connected to a 4-port memory

using a bus at each port. This method virtually doubles the port count, but it reduces the

performance. It can be used as a compromise for the unavailability of higher port counts

on multiporl memories. Further investigation is required to analyse the impact of

sharing a port among more than one node under different traffic conditions.

node 2 node 1

BUS 1

node 3

node 4

I

node I

node 7

Õì

Ê
\

N
(h
Þ
É

\

node 5

Figure 8.2 Increasing port count of multiport memory

By using o bus for eoch port, more thon one node con be

connected to shored memory, This virtuolly doubles the port

counT,

4-port
Memory

node 6
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or an efficient design with multiport memories, it is very

beneficial for design engineers to understand the structure

and architectural features of this kind of memory. In this

Appendix, a t5pical structure for single-port memory is

presented and is gradually expanded to dual-port and

multiport memories, In addition, the control logic

commonly used in dual-port memories to handle the

sirnultaneous access conflicts are presented. These

materials are from lMick 96], lWyland 88] and [Baumann

961. In the discussion section that follows, several issues in

designing and using multiport memories are discussed and

new circuits for multiport semalrhore logic and intermpt

logic that can facilitate the use of multiport memories are

proposed:
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1 Structure of single-port memory

Figure 4.1 shows a typical single-port four-transistor static RAM cell. This architecture

is commonly used by most static RAM manufacturers because it offers high density,

good speed, and low power.

cc

Row Select

o

Bir
Line

Figure A.1 Tlpical four-transistor SRAM cell

The cross-coupled inverters form the bosis of lhe memory cell.

When one is ON the other is OFF. 02 lronsistors octivoted by

row select connect the cell outputs to complementory bit-

lines used for reoding or writing.

The memory cell consists of two N-channel transistors (Q1) and two resistors (R1) that

are connected to form two cross-coupled inverters. This gives a regenerative action such

that when one transistor is ON, the other is OFF. Two additional N-channel transistors

(Q2), usually called pass transistors are connected between the cell outputs and the bit-

lines. The gates of the pass transistors are connected to the row select line. When a

particular row of cells in the RAM is addressed, these two transistors are turned on.

Depending on the current state of the cell, one of the bit-lines is driven high and the

other one low.

A simplified structure of a 16x1 bits RAM organized in four rows and four columns is

shown in Figure 4.2. The row address decoder selects only one row. In each column,

QzQe

a

B'rt
Line

R, Rl
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one cell is selected and its outputs appear on the corresponding biflines. The bit-lines

of each column are connected to the inputs of a differential sense amplifier by means of

N-channel switches called data multiplexers. These switches are controlled by the

column address decoder and only one column is selected. Hence, the sense amplifier is

connected only to the one cell located at the intersection of the selected row and the

selected column. The sense amplifier detects whether the state of the cell is logic one or

logic zero depending on the relative polarity of the two bit-lines. In a read operation, the

sense amplifier drives the Data-Out pin accordingly.

Vcc

A1

Data¡n Data6u¡

am¡¡lifier

Figure A.2 The structure of L6xL bits RAM

Only one cell is selected of The intersecTion of o row ond o column, For

READ, fhe differenïiol sense omplifier derives the Doto-Out line occording
to the stole of the two biT-lines connecTed to its inpuïs. For WRITE, the
write buffer overpowers lhe Two biT-lines ond sets The selected cell

occording to the stoie of the Doto-ln line,

A2

A3

Vcc Vcc

VccVcc

write buffer BENEEControl
Logic
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For a write operation, a cell is selected at the intersection of a row and a column and its

output appears on the active bit-lines. However, the write buffer that is driven by the

Data-In line differentially drives one bit-line high and the other one low as determined

by the logic state of the data input. The output of the write buffer is more powerful than

the inverter transistors in the RAM cell (Ql pair in Figure 4.1) and it easily overpowers

them if it is necessary to flip the static RAM bit.

A variation on the standard four-transistor static RAM cell is the six-transistor static

RAM cell. In this cell, the two pull-up resistors (R1 pair in Figure 4.1) have been

replaced by two P-channel transistors. The operation of such a six-transistor cell is

identical to the four-transistor cell described above. The difference between the two

approaches is that the physical size of the cell with the P-channel transistors is larger

than the cell with the resistors. The standby power is lower for the six-transistor cell

because there is ordinarily no power being dissipated; in a four-transistor cell, one of

the pull-up resistors is always dissipating power since one transistor of the cell is

always ON. The six-transistor cell has higher radiation hardened characteristics than the

four-transistor cell because the voltage swing in the cell is larger. This is because the

internal node in the cell that is high is pulled to the Vcc rail by the P-channel transistor.

In addition, the six-transistor cell provides higher internal noise margins in the circuit

for the same reason. Most manufacturers of static RAMs use the four-transistor cell

because it allows static RAMs of higher density to be fabricated with smaller die sizes.

2 Structure of dual-port memory

A dual-port RAM cell can be derived from the structure of a single-port cell. As

illustrated in Figure 4.3, the basic cell is created by the standard cross-coupled invefier

pairs. There are two pairs of bit-lines associated with a cell, each pair acting as a read/

write port into the dual-port RAM. Two pass transistors (Q2) controlled by a row select

line connect the cell outputs to a pair of bit-lines. Ignoring all the lines of port-2, the

operation of the cell using port_l is exactly as described for a single-port cell. Similarly,

port_Z can access the cell using Q3 pass transistors.
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vcc

P1
ROW

SELECT

P2
ROW

SELECTQsQa

o

P1 P2
BIT BIÏ
LINE LINE

P2
Eir
LINE LINE

Figure A.3 Dual-port SRAM cell

Eoch cell con be occessed by two differenT ports using o

seporoïe row select ond o poir of bil-lines. The operotion
of the cell from eoch port is similor to lhe operotion of o
single-port cell.

A schematic diagram of a 16x1 bits dual-port RAM is shown in Figure 4.4. As each

port has a separate address line, any memory cell can be selected by one port

independent of the other port. Each pair of bit-lines in each column is connected to a

sense amplifier and a write buffer via a data multiplexer so that each port can read from

or write to its selected cell via separate data lines.

The ports can access the cells independently as long as both do not select the same cell;

otherwise, data corruption may occur. Simultaneous reading of the same cell by two

ports is not a problem; however, if two ports write to the same cell at the same time, one

or both values may be lost. Likewise, if one port writes to a cell at the same time that the

other port is reading the cell, the read may be corrupted even though the write is

completed correctly.

2.1 Control logic for dual-port memory

Most dual-port memories include control logic to deal with three common application

issues: conflict arising from simultaneous addressing of a memory location by both

Rr R',

) "z
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Figure A.4 Structure of 16-bit dual-port memory

Eoch port con select o different cell using seporote oddress lines, The

selecTed cells con be reod or written independenlly using doto lines

thot ore isoloted from The olher port.

ports, hardware suppofi for temporary assigning a block of memory to one side only

(semaphore), and signalling between processors. Each case will be discussed briefly.

2.1.1 Busy logic for simultaneous access conflicts

A conflict can occur with dual-port memories when both ports attempt to access the

same address at the same time. There are two significant cases: when one port is trying

to read from the same location that the other port is writing to, and when both ports
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attempt to write to the same location at the same time. If one pofi is reading while the

other port is writing, the data on the read side will be changing during the read and

corrupted data may be obtained. If both ports attempt to write at the same time, the

memory cell will be driven by both sides and the result can be a random combination of

both data words rather than the data word from one side or the other. Busy logic solves

this problem by detecting when both sides are addressing the same location

simultaneously.

Busy logic is a hardware address arbitration circuit that decides which side will receive

a busy signal if the addresses are equal. It consists of a common address detection

circuit and a cross-coupled arbitration latch. A typical circuit for busy logic is shown in

Figure 4.5. This circuit provides a BUSY signal to the port that has sent the address

slightly later, inhibits the write request from that port, and makes a decision in favor of

one side or the other when both addresses arrive exactly at the same time. The logic

consists of a pair of address comparators, a pair of delay buffers, a cross-coupled

arbitration latch, and a set of BUSY output drivers. The address comparator output is

set true when both addresses at its inputs are equal.

ADORESST
ADORESSR

CEt-

EIISYI

WFIïEIñHIEITT-
(lnternal)

o

CER

EUSiYn

WFIIËIñHTEIÎn
(lnternal)

c

Figure A.5 Busy logic for dual-port memory

When cccessing the some locotion from boTh porTs, busy logic internolly

inhibits the wrile request fhot hos orrived slightly loter ond sends o busy

signol to the corresponding port. lf bofh of Ihe requesls orrive exoctly ot
the some lime, The circuit will decide in fovor of one side.
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In the logic shown in Figure A.5, the ability to detect which address arrived last is

provided by the time delay buffers between the address lines and the comparators.

Assume that the L (left) address is stable and the R (right) address changes to match the

L address. The R address comparator will go true immediately while the L address

comparator will become active some time later as determined by the time delay gates.

The arbitration latch formed by the L and R gates settles with the timing of the address

comparator outputs A and B. This latch has three stable states: both latch outputs C and

D high, C low - D high, and C high - D low. Initially, both C andD are high because A

and B are low. For the L address stable and the R address arriving later, B becomes

active before A and forces D to go low. C will remain high because A will go high

sometime later, but the input of L gate connected to D will go low before this occurs.

Hence, D will be low and will inhibit the write request from the right port, which its

address has arrived later. In addition, the right port will receive a busy signal.

The extreme case of decision making in busy logic occurs when both addresses arrive at

exactly the same time. In this case, the outputs of both address comparators go high

simultaneously activating both sides of the arbitration latch. The latch will settle into

one of two states with either C or D latch outputs being active. The latch design must

ensure that one side will be given priority in this case to avoid metastability.

A common way of using the busy line is to stretch the cycle for the operation performed

by the losing processor until the other processor finishes its access. Note that for the

read-read case, no arbitration is required, but this circuit generates a busy signal for one

side. The arbitration latch can be modified to remove this case. As illustrated in Figure

4.6, if both of the ports are performing read operations, the arbitration logic will be

disabled and will have no effect on read operations.

2.1.2 Semaphore logic

Data integrity is a major issue in dual-port memories. Sometimes there is a requirement

to assign a block of memory to one port temporarily. For example, if one processor

needs to update a data table as a whole, the other processor should not interfere until the

update is complete. Moreover, block allocation can be used to avoid the address
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A B

Read ¡ Read s

cE r- cEn

Write lnhibit ¡ c D Write lnhibit s

Figure A.6 Modified arbitration latch

lf bofh of the ports perform reod ocïion, the orbilrotion

lotch will be disobled ond no busy signol will be generoted.

arbitration problem since it is a way of ensuring that both sides do not use the same

address at the same time.

Semaphore logic is a hardware support mechanism to allocate a block of memory to

one side. Most dual-port memories have up to eight semaphore latches. This method

was explained in detail in "Section 2.1, Hardware semaphore" in Chapter 5.

2.1.3 Interrupt logic for signalling

A common problem in dual-processor systems is signalling between processors. For

example, when processor A needs to request processor B to perform a task, it sends a

signal to processor B. The task might be defined by a data word written in the common

memory. When processor B completes the task, it needs to signal processor A that the

task is done. Note that signalling must occur in both directions. A common form of

signalling is to send an interrupt from one processor to the other one. This allows the

receiving processor to be informed of a communication without having to check for it

constantly.

Hardware support for this type of signalling is provided by the interrupt logic, which is

available on most dual-port SRAMs. As shown in Figure 4.7, in these devices, the two

top memory locations serve as interrupt generators for the ports. If the left CPU writes
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Figure 4.7 Interrupt logic for signalling

Eoch processor con signol the other processor by sending on

interrupt to it. lf the processor on the left side writes o byte in the

lost memory locotion, on interrupt will be generoted to the right

side. Reoding the some locotion by the right processor will cleor

the interrupi, The right processor con perform o similor tosk by

writing in the penultimote locotion.

into the location XFF (X depends on the memory size), an interrupt latch is set and the

intemrpt line connected to the right CPU is activated. This intem¡pt latch is cleared

when the right CPU reads from the same location. Similar logic is also provided to

allow the right CPU to send an interrupt to the left CPU using the location XFE. The

availability of this logic on memory chips simplifies the system design, because no

extra logic is required for intemrpt control. The intemrpt logic is an additional feature

on the memory chips and using it has no impact on the normal operation of the other

memory locations.

3 Structure of multiport memory

The dual-port memory cell can be further expanded to form a multiport memory cell.

Figure A.8 shows the schematic diagram for a 2-bit N-port RAM. The two inverters

INTERRUPT
TO R SIDE
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making up the basic memory cell are similff to a single-poft memory cell except that

two P-channel pull-up transistors are used instead of pull-up resistors. This cell has

similar benefits of a six-transistor cell as explained before. The inverters are connected

in the normal cross-coupled fashion to create a single memory cell. N individual

memory ports are generated by using N pairs of pass transistors for connection to N

pairs of bit-lines. For each port, an individual row select line can activate the

corresponding pair of pass transistor connected between the RAM cell outputs and the

birline pairs. N sense amplifiers and write buffers are used to provide individual read/

write paths from each port to all the cells in the RAM. There are some practical limits

on N such as the maximum number of sense amplifiers that a memory cell can feed.

As there are more ports in this memory, it is more likely that two or more ports will try

to access the same cell simultaneously. Furthermore, the simultaneous access can

happen for more than one cell by different groups of ports. Hence, data comrption

problems in simultaneous access of the cells are more complicated in a multiport

memory. This issue and several other issues in designing multiport memories are

discussed in the next section.

4 Discussion

In the design of multiport memories with a large capacity and a large number of ports,

several issues such as limited capacity, large pinout, and control logic should be

considered. These issues are discussed in the following sections.

4.1 Limited capacity

The capacity of a multiport memory chip suffers from the bigger cell size and larger

connection matrices. As illustrated in Figure 4.8, the size of a multiport cell is big and

for an N-port cell, 2N+4 transistors are needed. In addition, increasing the number of

ports increases the amount of wiring inside the chip, and large connection matrices are

required for routing vertical and horizontal lines. Consequently, a large section of chip

area has to be devoted to the connection matrices and the chip area available to the cells

(that are already big) is reduced. Therefore, the capacity of the multiport memory is
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Figure 4.8 Architecture of multiport memory

For eoch port, seporote dolo ond oddress lines ore ovoiloble.
Within some conslroinls, eoch cell con be occessed independenlly
for reoding or writing by the ports,

limited. Nevertheless, the multipoft memory is a very useful device and even a small

capacity is valuable. Moreover, by using advanced packing technologies such as the

I

J-_I-
I

_l---f_
I

_l---E_
I

__l---E_

Vcc

I

_f--L
I

_f---E_

I

-l---E_
I

__f--L_

X

I

_l-E_
Irc

Mulliport Memory os o Medium for lnlerprocessor Communicotion in Multiprocessors 183



APPENDIX S.tructure oJ Multiport Memory

Vertically Expandable Memory UEM) used by [DensePac], up to eight layers of

memory can be packed into a single package. Hence, the limited capacity is not a major

issue, especially if the structure using it, such as the communication scheme presented

in this research does not require large memories.

4.2 Large number of pinout

As the number of ports of a memory increases, more pins are required to interface to the

external devices. However, for the application discussed in this document, the required

pinout is under control. Using similar calculations shown in Chapter 3, a 16K,64-bit

8-port memory would require around 750 pins, which can be easily packed in a single

chip using advanced packaging technologies such as the ones used by [Xilinx].

4.3 Control logic for multiport memory

Although the multiport cell was derived from the dual-port cell, extending the dual-port

control logic to multiport memories is not trivial. This section discusses some of the

issues in designing control logic for multiport memories.

4.3.1, Busy logic

Extending the busy logic to multiport memory is possible but requires considerable

hardware. For example, for only three ports, the size of the hardware is tripled. In this

case, each pair of address lines requires two comparators and an arbitration latch as

illustrated in Figure 4.5. As the address lines can be paired in three different ways,

three separate circuits are required. For each port, the two busy outputs coming from

different circuits should be combined together to form only one busy line for that port.

Even with this circuit, if all the ports apply exactly at the same time, all of them may

receive a busy signal, as arbitration latches may decide in favor of different ports.

Although the probability of all of the ports applying exactly at the same time is very

low, this case must be removed by careful latch design, otherwise it can keep all the

ports in an endless waiting state. In general, for N ports, N(N-l) arbitration circuits are

required and their outputs should be combined properly. In this case, the maximum

number of cells that might be accessed by more than one port simultaneously is N/2.
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4.3.2 Semaphore logic

Among the range of available control schemes, semaphore logic is the most effective

but the hardest one to extend to multiport memories. The present concept works only on

two ports and it requires major modifications if it is to be used on multiport memories.

In the semaphore logic used for multiport memories, the semaphore latch should be

modified to include all the ports and it should take into account the order in which the

ports apply for semaphore. There should be also a priority scheme among the ports if

more than one port apply at the same time.

Adding the order of applying for semaphore can increase the complexity the semaphore

logic. A simplified version can be designed in which a fixed priority is used for the ports

that request the semaphore. Figure 4.9 illustrates a new proposal for semaphore logic.

In this circuit, the shaded priority logic exerts a priority scheme in which Port_l has the

highest and Port_n the lowest priority. Each port requests the semaphore by writing "1"

in its input latch. If the semaphore latches are all cleared, the request with the highest

priority will be the winner and it write "1" in its semaphore latch. Once one of the

latches is set, a NOR gate combined with AND gates at the input of the priority logic

disables the other requests from entering the semaphore latches and keeps them in a

pending state. The winning node receives "1" in the output and all the losers receive

"0".'When the winning node writes "0" in the input latch, its semaphore latch is cleared

and the highest pending request wins the semaphore.

In this circuit, semaphore latches are clocked by delayed data. When the data input of a

latch changes from "0" to "I", ã low to high transition is generated at the clock input

using the short delay of a buffer. The delay is inserted so that the data in the input settles

before the clock is applied. When the request is removed from the input latch, if the

semaphore latch is already set, an AND gate connected to the asynchronous reset of the

latch resets it to zero. The output latches are included to avoid the change of state while

reading the semaphore.

This circuit was simulated and successfully tested with the Xilinx' Foundation Tools.
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4.3.3 Interrupt logic

In the multipoft interrupt logic, each port should be able to generate interrupts for other

ports, or clear the received interrupts from them. Although the individual interrupt

circuits are isolated from each other, several issues should be considered in the design
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of an N-port logic. For this logic, N(N-l) memory locations are required, and each

processor should use a table to find the address of other processors. For large N, it is

necessary to combine all of the interrupts generated for one processor into one line, as a

processor may have few interrupt lines, with some allocated to other resources. In this

approach, a mechanism is required to identify the source of generated interrupts. In

addition, as the received interrupts can be cleared only one by one, a new signal may be

included for clearing them all at once. Moreover, some other issues need to be resolved

such as conflicts between clearing interrupts and receiving new interrupts at the same

time, or receiving new interrupts while the interrupt line is active and other interrupts

are being serviced. The latter case may result in missed new interrupts, or excessive

delays before servicing them.

A new proposal for multiport interrupt logic is presented here. In order to reduce the

size of the required logic and to simplify the operation of the circuit, a different

approach from the one discussed for dual-port memory is used. Figure 4.10 illustrates

the proposed structure for four ports and it can be scaled easily. In this structure, there is

no memory location associated with the interrupt generation logic. The number of

available addresses that are accessible from each port is equal to the number of

available ports on the memory. The chip-enable signal for this circuit can be different

from the memory chip-enable. Each processor can send an intemrpt to any other

processor by writing to the address matching the port number of the destination

processor. The write operation does not require any data as it only sets the

corresponding intemrpt latch. This will create an active high signal for the destination

processor on its interrupt line. If a command needs to be sent along with intem¡pt, it can

be passed in the mailbox, which is not in this circuit. For this purpose, each port of an

N-port memory will require N-l dedicated memory locations in the main multiport

memory, each regarded as the mailbox of one of the ports. In total, N(N-l) such

locations will be required.

All the intemrpt latches related to one port share the same interrupt line for sending an

intemrpt to the processor connected to the port. In order to identify the source of

interrupt, the target processor should perform a read from the address matching its port

number. In order to avoid probable data change during read operation, the interrupt
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latches of a port are stored in the output latches at the start of read. The interrupt

information is available on separate bit lines during reading. An active bit indicates a

pending intemrpt from the corresponding port.

The start of a read operation also clears all the corresponding intemrpt latches and frees

the interrupt line. If another interrupt is generated for this port immediately after

releasing the interrupt line, the interrupt system of the receiving processor may not be

able to detect the short transient on this line. Hence, an AND gate forces the interrupt

line to the inactive state during a read operation and provides sufficient time for the

intemrpt system of the target processor to settle before accepting another interrupt.

The design of the interrupt latch ensures that if an interrupt is generated during a read

operation, the destination port will not miss it or receive it in duplicate. As shown in

Figure 4.11, this latch is cleared by clocking "0" using the rising edge of read

operation, but it is set through the asynchronous SET input. By using an AND gate, the

latch output is available when the set signal goes inactive, as if setting of the latch is

performed by the trailing edge of write operation. A delay buffer is used in the SET

input with the delay value matching the delay of the latch plus the AND gate. This

structure ensures that in clearing all the interrupts, if the destination port resets a latch

while the originating port is setting it, both of the operations will be performed without

any conflict. In this case, the read operation will not reflect the newly generated

INTR

lnterrupt to destinotion port (INTR)

Wrile from originoiing pori (SET)

Reod from destinqtion port (CLR)

Figure A.11 Interrupt latch design
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interrupt. Instead, the port will receive another interrupt by re-activation of the interrupt

line, and the subsequent read will show the intemrpt information.

The interrupt circuit was simulated and successfully tested with the Xilinx' Foundation

Tools.

4.4 Simultaneous read of a cell

A common problem in multiport memory is the simultaneous write of a cell by more

than one port. In addition, simultaneous reading and writing of a cell can cause

problems. Both of these issues should be resolved by the use of hardware or software

tools, as explained earlier. Another issue in the design of multiport memory is the

simultaneous read of a cell by many ports. Although there is no conflict in this case, the

issue should be considered in the design of multiport memories.

The problem arises from the loading effect on the memory cell. Referring to Figure 4.8,

if many sense amplifiers attempt to read the same cell, the sink or source current of the

cell will increase resulting in a poor logic state at the cell output. Hence, the output

transistors of the cell should be strong enough to sink or source the required current.

This may add to the complexity of the cell and a bigger area may be required.

Furthermore, the capacitive loading of the sense amplifiers can also affect the logic state

of the cell output and should be kept to a minimum.

5 Summary

In this Appendix, the structures of single-port and dual-port memories were presented

and different hardware controls for dual-port memories were discussed. The structure of

the multiport memory was shown to be an extension of the dual-port memory structure.

As currently there is no control circuitry for multiport memory, newly devised practical

circuits have been proposed for easier control of multiport memories. The new

semaphore logic and interrupt logic for multiport memories were tested by hardware

design tools.
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Another option for the control of multiport memory is the use of a central off-chip

controller. In this method, as discussed in Chapter 8, different types of control circuitry

are integrated into a single chip that can be connected to the main memory chip

externally. Even the buffer allocation process can be integrated into this chip. The

advantages are faster control of the memory and utilization of the entire memory chip

for memory cells. Moreover, as stated earlier, in vertical or horizontal memory

expansion performed by connecting several chips in series or in parallel, there will be

no duplicate control circuitry, which would normally be left idle.
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