Molecular & cytological aspects of
seed development in sexual &
apomictic *Hieracium*

by
Matthew Robert Tucker
B. Biotech (Hons)

A thesis submitted for the degree of

Doctor of Philosophy

at

The University of Adelaide,
Department of Agricultural Science

in collaboration with

CSIRO Plant Industry,
Horticulture Unit

Urrbrae, Adelaide
April 26th 2003
CONTENTS

Molecular & cytological aspects of seed development in sexual & aposomatic Hieracium 1

Abstract ... VI

Declaration ... VIII

Acknowledgements ... IX

Abbreviations .. XI

Publications ... 1

Chapter 1: Molecular and cytological aspects of early seed development 2

A. Preliminary Comments .. 2

1.1 Introduction .. 3

1.2 Ontogeny of seed development in sexually reproducing plants 5
 1.2.1 Early ovule development... 6
 1.2.2 Embryo sac development - megasporogenesis ... 7
 1.2.3 Embryo sac development - megasporeogenesis and maturity 8
 1.2.4 Post-fertilization seed development .. 9
 1.2.5 Embryo development .. 10
 1.2.6 Endosperm development .. 11
 1.2.7 The role of the endosperm in seed development .. 15
 1.2.8 Molecular controls of endosperm formation - the Ambidiposis PS genes 17

1.3 Aposixis: asexual reproduction through seed ... 22
 1.3.1 Types of aposixis .. 23

1.4 Hieracium is a model aposiotic plant ... 26
 1.4.1 Initiation of aposicy in Hieracium ... 27
 1.4.2 Aposxicous embryo sac development in Hieracium ... 28

1.5 Endosperm formation in facultative aposixics .. 29
 1.5.1 Formation of pseudosperm endosperm ... 29
 1.5.2 Formation of fertilization-independent (autonomous) endosperm 31

1.6 Genetic control of aposixis .. 32

1.7 Models for the control of aposixis .. 33
 1.7.1 Hybridization of related species .. 34
 1.7.2 Mutations of a key regulatory gene(s) ... 35
 1.7.3 Epigenetic regulation of gene expression .. 35
 1.7.4 Aposixis-specific factors - "silent" DNA .. 36

1.8 Addressing questions of aposixis in Hieracium ... 37

1.9 Specific thesis aims .. 38
Chapter 2: Cytological characterisation of early seed development in sexual and apomictic Hieracium

2.1 Introduction

2.2 Materials and Methods

2.3 Results

2.3.1 Early seed development in sexual P4 Hieracium

2.3.2 Early seed development in apomictic D3 Hieracium

2.3.3 Apomixis during seed development in apomictic D3 Hieracium

2.3.4 Tracking seed variability during development in apomictic D3 Hieracium

2.3.5 Fidelity analysis of mature Hieracium seeds

2.3.6 Variable ploidy levels in mature seeds from apomictic D3 Hieracium

2.4 Discussion

2.4.1 Early divisions of the embryo sac and endosperm are abnormal in apomictic D3 Hieracium

2.4.2 Cellular endosperm is required for embryo growth to maturity in apomictic D3 Hieracium

2.4.3 Multiple origins of the endosperm and embryo in apomictic D3 Hieracium

2.4.4 Molecular identity of endosperm cells in sexual and apomictic Hieracium

Chapter 3: AIFIS2-GUS, AIFIS2-GUS and AtPRO:GUS expression during seed development in sexual and apomictic Hieracium

3.1 Introduction

3.2 Materials and Methods

3.3 Results

3.3.1 AIFIS2-GUS gene expression marks mature embryo sacs and initiating seed structures in sexual Hieracium

3.3.2 Conservation of AIFIS2-GUS expression in sexual and apomictic Hieracium

3.3.3 AIFIS2-GUS marks megaspores and is down-regulated in the selected megaspore

3.3.4 AIFIS2-GUS is differentially expressed at mestome in apomictic Hieracium

3.4 Discussion

3.4.1 AIFIS2-GUS reflects a deregulated sexual program

3.4.2 A simple model for the regulation of apomixis in Hieracium

3.4.3 Interactions between sporophytic tissues, sexual and apomictic pathways

3.4.4 Roles of fish-class genes in apomictic reproduction

Chapter 4: Isolation of Arabidopsis enhancer trap tagged promoters and characterisation of their expression during megagametogenesis and seed development

4.1 Introduction

4.2 Materials and Methods

4.3 Results

4.3.1 Insertion sites of five ETS in the Arabidopsis genome and their expression characteristics

4.3.2 Identifying apomictic marker genes were not expressed in floral tissues

4.3.3 Expression of At1831:GUS was detected in vascular tissues

4.3.4 Expression of At2209:GUS was detected in synergid and antipodal cells in Arabidopsis ovules

4.3.5 Expression of At2209:GUS was not detected in apomictic D3 Hieracium

4.4 Discussion
Chapter 5: Identification of cDNAs from *H. pseudosieboldii* encoding putative regulators of gametophyte and sporophyte development

5.1 Introduction
5.2 Materials and Methods
5.3 Results
5.4 Discussion

Chapter 6: Characterisation of *H. pseudosieboldii* FHIE genes

6.1 Introduction
6.2 Materials and Methods
6.3 Results
6.4 Discussion

Chapter 7: Silencing of FHIE genes in sexual and sporophytic *H. pseudosieboldii*
7.1 Results ... 170
7.1.1 Generation of 35S:HFIE-RNAi and MEA:HFIE-RNAi transgenic lines 170
7.1.2 General morphology of 35S:HFIE-RNAi plants and MEA:HFIE-RNAi plants 171
7.1.3 Expression of HFIE mRNAs in leaves, ovaries and receptacles of RNAi lines .. 173
7.1.4 Abnormalities during early ovule development in D3 35S:HFIE-RNAi line #7 175
7.1.5 Embryo sacs and embryo start in 35S:HFIE-RNAi line #5 and #7 176
7.1.6 P4 35S:HFIE-RNAi line #6 does not develop embryos without fertilization 179

7.4 Discussion .. 180
7.4.1 RNAi constructs silence gene expression in *H. erectum* 180
7.4.2 Down-regulation of HFIE in apomictic *H. erectum* alters plant development 182
7.4.3 Promoter limitations may effect the persistence of phenotypes in *H. erectum* 183
7.4.4 Down-regulation of HFIE in vegetative tissues alters early seed development in apomictic *H. erectum* ... 184
7.4.5 Down-regulation of HFIE in developing seeds alters late seed development in apomictic *H. erectum* ... 184
7.4.6 MES-6, the *C. elegans* homolog of *EXTRA SEX COMBS* (Esc) and FIE, is required for RNAi silencing ... 185
7.4.7 Functional models for the HFIE PE complex ... 187

Chapter 3: Summary and Concluding Discussion .. 189

Appendix 1: Stages of floral development in *H. erectum* 195
Appendix 2: Contents of haematoxylin stained seeds .. 196
Appendix 3: Primers and PCR Conditions .. 198

Bibliography ... 202
Abstract

Sexual reproduction in angiosperms is a highly regulated process that begins with the formation of a flower and ends with the formation of seeds. The ovule is the progenitor of the seed and during the course of reproduction it is the site of embryo sac formation, double fertilisation and embryo and endosperm development. Asexual seed reproduction in Hieracium, referred to as apomixis, is characterised by the formation of an embryo sac(s) without meiosis, and an embryo and endosperm without fertilisation. The molecular processes controlling apomixis are unknown.

In this study, molecular and cytological aspects of fertilisation-independent (autonomous) endosperm development were investigated in Hieracium. Early autonomous endosperm divisions were irregular in the apospatic when compared to fertilisation-dependent endosperm divisions in the sexual plant. However, the general morphology of dividing syncytial nuclei and endosperm cells, and the expression patterns of the A-MEA:GUS, A-FIS2:GUS and A-FIE:GUS chimeric genes were strikingly similar in sexual and apospatic plants throughout endosperm development. Flow cytometry analyses showed that seeds arising from apomictic Hieracium displayed a higher level of heterogeneity compared to those from the sexual plant. These findings emphasised the presence of overlaps between sexual and apospatic processes in facultative apomictic Hieracium.

Hypotheses suggest that in apomictic plants, altered expression or function of the FERTILISATION INDEPENDENT SEED (FIS) genes, MEA, FIS2 and FIE, which regulate endosperm initiation in sexual plants, may result in the formation of autonomous endosperm. A full-length FIE homologue was identified from sexual
and apomictic *Hieracium* plants, and function of the apomict equivalent of *FIE* was verified by genetic complementation of the *Arabidopsis fie-2* mutant. Further genomic characterisation and RNAi silencing studies suggested that the *HFIE* gene from apomictic *Hieracium* was required for viable autonomous seed development. Mutations in *HFIE* are unlikely to be the cause of autonomous endosperm development in apomictic *Hieracium*.

The cytological and molecular data obtained from this thesis provide evidence that apomictic and sexual pathways share common regulatory elements to produce a seed. The findings support models that suggest apomixis is caused by mutations in a key regulatory sexual gene(s) or by changes in gene expression induced by epigenetic factors.¹

¹ Findings from this thesis were combined with data from other *Hieracium* developmental marker studies in a paper published in *The Plant Cell*.