LABILE ZINC AND ITS ROLE IN
REGULATION OF PRO-CASPASE-3
AND NF-κB ACTIVATION
IN MAST CELLS

A thesis submitted to the University of Adelaide as the
requirement of the Degree of Doctor of Philosophy

by

Lieu Ha Ho B. Health. Sc. (Hons).

Department of Medicine
The University of Adelaide
The Queen Elizabeth Hospital
June 2003
**TABLE OF CONTENTS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM THESIS</td>
<td>xvii</td>
</tr>
<tr>
<td>CONFERENCE PRESENTATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

**CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW**

1.1 Introduction ........................................................................... 2

1.2 Zinc (Zn) ............................................................................ 3
  1.2.1 Historical Background .................................................. 3
  1.2.2 Chemistry .................................................................... 4
  1.2.3 Bioavailability And Absorption ..................................... 4
  1.2.4 Zn Transporters ........................................................... 5
  1.2.5 Other Zn Transporters .................................................. 8
  1.2.6 ZnT3 Transporter .......................................................... 9
  1.2.7 Two Distinct Pools Of Cellular Zn ................................. 10
  1.2.8 Detection of Zn ........................................................... 11
  1.2.9 Techniques For Manipulating Intracellular Zn Levels ........... 13
  1.2.10 Zn Deficiency ............................................................ 14
  1.2.11 Biological Functions .................................................. 16

1.3 Apoptosis ............................................................................. 20
  1.3.1 Cellular Changes in Apoptosis ....................................... 20
  1.3.2 Apoptosis Signalling Pathways ....................................... 21
  1.3.3 Caspases ....................................................................... 23
  1.3.4 Activation Of Caspases .................................................. 29
  1.3.5 Inducers Of Apoptosis: Bistyrate, Staurosporine ................. 31
  1.3.7 Zn and Apoptosis .......................................................... 32

1.4 Nuclear factor kappa-B (NF-κB) ........................................... 36
  1.4.1 Activation of NF-κB ....................................................... 37
  1.4.2 NF-κB and Zn ................................................................. 39
  1.4.3 NF-κB And Apoptosis ....................................................... 41

1.5 Types of Cells Studied ....................................................... 47

1.6 Mast Cells ........................................................................... 48
  1.6.1 Heterogeneity ............................................................... 49
  1.6.2 Growth and Maturation .................................................. 51
1.6.3 Mast Cell Activation ................................................... 52
1.6.5 Zn And Mast Cells ..................................................... 58
1.6.6 Mast cell apoptosis ................................................... 61
1.6.7 Recovery Of Mast Cells Following Degranulation ................. 65

1.7 Neuronal Cells .................................................................. 65
1.7.1 Zn and Neuronal cells .................................................. 66
1.7.2 Zn and Neuronal cell apoptosis ..................................... 67
1.8 Project Hypotheses And Aims ............................................ 71

CHAPTER TWO: MATERIALS AND METHODS .................................. 72

2 General Methods .................................................................. 73

2.1 Mast Cell Cultures .......................................................... 73
2.1.1 Isolation Of Human Umbilical Cord Blood Mast Cells .............. 73
2.1.2 Isolation Of Rat Peritoneal Mast Cells (RPMC) ....................... 75
2.1.3 HMC-1 Human Mast Cell Line And Its Maturation ................. 75
2.1.4 Culturing of Human Bone Marrow Mast cells and RBL-2H3 Basophilic
Mast cells ................................................................. 76
2.1.5 Toluidine Blue Staining Of Mast Cells ............................... 76
2.1.6 Degranulation Assays .................................................. 77
2.1.7 Confirmation Of Mast Cell Degranulation ............................ 77
2.1.8 Epithelial Cell Cultures ............................................... 78
2.1.9 Neuronal Cell Cultures ................................................. 79

2.2 Zinc Studies ..................................................................... 79
2.2.1 Basal Zinc Measurement ............................................... 79
2.2.2 Zinc Manipulation Assays ............................................. 80
2.2.3 Fluorescence Image analysis ......................................... 81

2.3 Apoptosis Assays ............................................................. 82
2.3.1 Induction Of Apoptosis By Butyrate And TPEN ...................... 82
2.3.2 Caspase Assay ........................................................... 82
2.3.3 Protein Measurements ................................................ 83
2.3.4 Morphological Criteria And Chromatin Fragmentation .......... 83

2.4 Immunofluorescence Labeling ............................................ 84
2.4.1 Pro-Caspase-3, -4 And ZnT3 Labelling ............................... 84
2.4.2 NF-κB Labeling ........................................................ 85

2.5 Electron Microscopy ........................................................ 86
2.5.1 Ultra Structural Visualization Of Cells ............................. 86
2.5.2 Immunogold Labeling Of Cells ...................................... 87

2.6 ZnT3 And Pro-caspase-3 mRNA Expression by Northern Hybridization ..... 89
2.6.1 Isolation Of RNA From Cells ....................................... 89
2.6.2 RNA Transfer To Hybridization Filter ............................. 91
2.6.3 Preparation Of ZnT3 DNA Probe For Northern Hybridization .......... 92
2.6.4 Preparation of Pro-caspase-3 DNA Probe For Northern Hybridization .... 95
2.6.5 Northern Hybridization/Blooting .................................. 97
CHAPTER THREE: ZINC AND ZnT1 IN MAST CELLS PRIOR TO AND FOLLOWING ACTIVATION .................................................. 103

3.1 Introduction ........................................................................ 104

3.2 Methods ........................................................................... 106
  3.2.1 Distribution Of Intracellular Labile Zn ......................... 106
  3.2.2 Distribution And Expression Of ZnT1 ......................... 106
  3.2.3 Statistical Analysis ............................................... 107

3.3 Results ............................................................................ 108
  3.3.1 Basal Zinc Fluorescence Of Mast Cells ....................... 108
  3.3.2 Morphology And Zinc Fluorescence In Immature And Mature HMC-1 Cells ................................................. 108
  3.3.3 Effect Of Activation On Morphology And Zinc Fluorescence ................................................................. 109
  3.3.4 Repletion Of Zn After Degranulation ......................... 111
  3.3.5 Expression Of ZnT1 mRNA in mast cells .................... 111
  3.3.6 Localization And Levels Of ZnT1 in Mast Cells .......... 113
  3.3.7 Dual Labelling Of ZnT1 And Zn In Mast Cells .............. 114
  3.3.8 Immunogold Labelling Of ZnT1 In Mast Cells .......... 114

3.4 Discussion ...................................................................... 116

CHAPTER FOUR: LOCALISATION OF PRO-CASPASE-3 AND -4 IN MAST CELLS AND EFFECTS OF ACTIVATION ............................................... 119

4.1 Introduction ...................................................................... 120

4.2 Methods .......................................................................... 123
  4.2.1 Expression Of Pro-Caspase-3 By Northern Hybridization ................................................................. 123
  4.2.2 Activation Of Mast Cells ............................................. 123
  4.2.3 Localization Of Pro-Caspase-3 And -4 By Immunofluorescence ................................................................. 123
  4.2.4 Localization Of Pro-Caspase-3 And -4 By Electron Microscopy ................................................................. 123
  4.2.5 Statistical Analysis ..................................................... 124

4.3 Results .......................................................................... 125
  4.3.1 Expression Of Pro-Caspase-3 mRNA In Mast Cells ....... 125
  4.3.2 Expression Of Pro-Caspase-3 And -4 In Mast Cells By Immunofluorescence .................................................... 125
  4.3.3 Effects Of Mast Cell Activators On Pro-Caspase-3 And -4 In Immature And Mature HMC-1 Cells And RPMC ........................................................................................................... 126
  4.3.4 Localization Of Pro-Caspase-3 And -4 In Mast Cells By Electron Microscopy .................................................... 127
  4.3.5 Quantification Of Gold Labelling .................................. 129

4.4 Discussion ....................................................................... 131
CHAPTER FIVE: INTERACTIONS BETWEEN ZINC DEPLETION AND APOPTOTIC INDUCERS ON CASPASE ACTIVATION IN MAST CELLS... 134

5.1 Introduction ............................................................................................................. 135

5.2 Methods .................................................................................................................. 137
  5.2.1 Activation Of Mast Cells ................................................................................ 137
  5.2.2 Treatment With Apoptotic Inducers (Butyrate, Staurosporine) Or TPEN ...... 137
  5.2.3 Fluorogenic Substrate Assay For Active Caspases ........................................ 137
  5.2.4 Statistical Analysis .......................................................................................... 138

5.3 Results ................................................................................................................... 139
  5.3.1 Basal Levels Of Active Caspases In Mast Cells .............................................. 139
  5.3.2 Concentration-Dependent Induction Of Caspase-3 (DEVD-Caspase)
       Activity By Butyrate In Mast Cells .................................................................... 139
  5.3.3 Concentration-Dependent Induction Of Caspase-3 (DEVD-Caspase)
       Activity By TPEN In Mast Cells ....................................................................... 140
  5.3.4 Interaction Between Butyrate And TPEN In Induction Of Caspase-3
       (DEVD-Caspase) And General (VEID-Caspase) Activity In Mast Cells ............ 140
  5.3.5 The Effect Of Zn Depletion By Degranulator On Caspase Activity In Mast
       Cells .................................................................................................................... 142
  5.3.6 Interaction Between Staurosporine And Compound 48/80 On Levels Of
       Active Caspases In Mast Cells ........................................................................... 143
  5.3.7 Effects Of Degranulator And TPEN On Chromatin Fragmentation In
       Immature HMC-1 Cells ...................................................................................... 144

5.4 Discussion .............................................................................................................. 145

CHAPTER SIX: EFFECTS OF ZINC DEPLETION AND SUPPLEMENTATION
ON ACTIVATION OF NF-κB .................................................................................. 149

6.1 Introduction .......................................................................................................... 150

6.2 Methods ............................................................................................................... 153
  6.2.1 Activation Of NF-κB By TNF-α In Mast Cells And NCI-H292 Human
       Epithelial Cells .................................................................................................. 153
  6.2.2 Activation Of Immature And Mature HMC-1 And RBL-2H3 Mast Cells By
       Degranulators .................................................................................................... 155
  6.2.3 Detection And Quantification Of NF-κB By Immunofluorescence Labeling
       ......................................................................................................................... 153
  6.2.4 Measurement Of Cell Size By Image Analysis ............................................... 154
  6.2.5 Depletion And Supplementation Of Zn In Mast Cells .................................. 154
  6.2.6 Statistical Analysis ........................................................................................ 154

6.3 Results ............................................................................................................... 155
  6.3.1 Activation Of NF-κB In NCI-H292 Human Epithelial Cells ......................... 155
  6.3.2 Activation Of NF-κB In Immature And Mature HMC-1 And RBL-2H3
       Mast Cells .......................................................................................................... 155
  6.3.3 Effect Of Zn Depletion By TPEN On The Activation Of NF-κB In Mast
       Cells .................................................................................................................... 156
  6.3.4 Effect Of Degranulators On The Activation Of NF-κB In Mast Cells ............ 157
CHAPTER SEVEN: SUPPRESSION OF CASPASE-3 ACTIVATION IN NEUROBLASTOMA CELLS BY INTRACELLULAR LABILE ZINC

7.1 Introduction........................................................................................................... 164
7.2 Methods............................................................................................................... 165
  7.2.1 Zn Supplementation And Depletion Assays................................................... 167
  7.2.2 Induction Of Apoptosis.................................................................................. 167
  7.2.3 Statistical Analysis....................................................................................... 168
7.3 Results................................................................................................................. 169
  7.3.1 Distribution Of Labile Zn In Neuroblastoma Cells......................................... 169
  7.3.2 Effect Of Depleting Intracellular Zn In BE(2)-C Cells On DEVD-Caspase
      Activation......................................................................................................... 170
  7.3.3 DEVD-Caspase Activity In BE(2)-C Cells Treated With Butyrate Plus
      Staurosporine.................................................................................................... 170
  7.3.4 Adherent Versus Non-Adherent Cells............................................................ 171
  7.3.5 The Effect Of Priming With Butyrate On Induction Of DEVD-Caspase
      Activity By TPEN............................................................................................. 172
  7.3.6 Time Course Of TPEN Effects On DEVD-Caspase Activity In Butyrate-Primed
      BE(2)-C Cells................................................................................................. 173
  7.3.7 Effects Of Zn Supplementation With Pyrithione On DEVD-Caspase
      Activity In BE(2)-C Cells................................................................................ 174
  7.3.8 Concentration Dependence Of Pyrithione...................................................... 175
7.4 Discussion.......................................................................................................... 176

CHAPTER EIGHT: GENERAL DISCUSSION AND FUTURE STUDIES.............. 182
8.1 Introduction........................................................................................................... 183
8.2 Labile Zn And ZnT4 In Mast Cells....................................................................... 183
8.3 Localisation Of Pro-Caspases-3 And -4 In Resting And Activated Mast
    Cells..................................................................................................................... 185
8.4 Interactions Between Zn Depletion And Mast Cell Apoptosis........................... 186
8.5 The Effect Of Zn On NF-κB In Mast Cells And Relationship To Apoptosis...... 189
8.6 Zn and caspase activation in neuroblastoma cells........................................... 190
8.7 General Model.................................................................................................... 192

REFERENCES............................................................................................................ 197

APPENDIX A: CELL CULTURES AND BUFFERS......................................................... 257
SUMMARY

The main aim of this thesis was to further investigate the relationship between Zinquin-detectable intracellular pools of labile Zn and caspase activation since caspases have now been shown to be important effector enzymes in apoptosis. This was largely studied in mast cells and some findings confirmed in neuronal cells, a cell type with quite different function and cell physiology.

Mast cells were chosen because these cells are important inflammatory cells that have been shown to contain Zn rich granules. However, there have been no previous studies of labile Zn in these cells, the mechanisms by which it is accumulated and its function in relationship to apoptosis. Labile Zn was shown to be rich in mast cells by Zinquin fluorescence with a granular like staining pattern and the fluorescence decreased during degranulation. A major issue is how mast cells regulate their uptake of Zn from their environment. The experiments reported here are the first to describe the localization of a Zn transporter, ZnT4 in mast cells. There was high expression of both the mRNA and its protein in mast cells, suggesting that it is likely to be involved in the transportation of Zn either across the plasma membrane or into the granules. The absence of overlap between Zn and ZnT4 may imply that only a subset of granules require ZnT4 as their major Zn transporter. Other transporters need to be investigated.

The distribution of pro-caspases, important components in apoptosis signaling has not been a focus of mast cell biologists. It was important to determine whether these were
present in mast cells and their relationship to mast activation. In mast cells, expression of pro-caspase-3 mRNA was shown and the detection of its protein by immunocytochemistry indicated that it was translated. One unexpected finding was that pro-caspase-3 (and -4) were localized within granules of the mast cells as shown by immunoelectron microscopy. This was confirmed by their loss during degranulation.

Explanations for why pro-caspases are localized in mast cell granules include: 1) pro-caspases may be released and activated during degranulation and cleave extracellular substrates, 2) caspases may be released and induce apoptosis in other cells, 3) caspases may have a special function in cleaving proteins within the granules and 4) in order to prolong their survival during activation, mast cells may shed their caspases during degranulation and thereby become more resistant to noxious stimuli.

Depletion of Zn by one mechanism (TPEN chelation) but not by degranulation increased the activation of pro-caspase-3, either spontaneously or in cells treated with the apoptotic inducer butyrate. The experiments described in this thesis show that at least under *in vitro* conditions, degranulated mast cells can recover their granular content of Zn and do not undergo apoptosis spontaneously. Similar results were obtained for a range of degranulators and various mast cell types. These findings suggest that there are two labile pools of Zn; one regulates caspase activation and apoptosis while the other (the granular pool) has other functions.

To further understand the mechanism by which Zn may regulate apoptosis in mast cells, the effects of Zn supplementation and depletion on activation of NF-κB were
Investigated. NF-κB is thought to be an anti-apoptotic factor prolonging the survival of inflammatory cells. Zn supplementation by the ionophore pyrithione blocked nuclear translocation of NF-κB, an important step in the activation of this transcription factor. Furthermore, Zn depletion by TPEN was found to be an effective inducer of nuclear NF-κB translocation. This has not previously been demonstrated. These findings suggest that Zn is a regulator of NF-κB translocation and raise questions as to whether abnormalities in NF-κB activation occur in Zn deficiency.

The studies with neuroblastoma cells confirmed some of these findings. BE(2)-C neuroblastoma cells had cytoplasmic/cytoskeletal pools of intracellular labile Zn which were further increased by Zn ionophore or decreased by Zn chelator TPEN. As for mast cells there was synergy between TPEN and butyrate in caspase activation and this was suppressed by Zn supplementation, suggesting that the effect of Zn on caspase regulation is a general phenomenon.

As a summary of the findings reported in this thesis, a general model is proposed describing possible interactions between Zn, pro-caspases and NF-κB. Some of these findings were reported in Ho et al 2000 and form part of a submitted manuscript Ho et al 2003.